MA475 Example Sheet 5

7 March, 2019
(Modified 18/3.)

1. Show that the degree of the composition of two proper maps between Riemann surfaces is the product of the degrees.
2. Show that the parallelogram with vertices $0, \lambda_{0}, \lambda_{1}$ and $\lambda_{0}+\lambda_{1}$ has area $\left|\Im\left(\lambda_{0} \bar{\lambda}_{1}\right)\right|$ (where \Im denotes the imaginary part). Show that if λ_{0} and λ_{1} generate the lattice Λ then this area depends on Λ but not on the choice of generators.
3. Let \wp be the Weierstrass \wp-function with respect to a lattice $\Lambda \subset \mathbb{C}$. Say that $\wp(z)=z^{-2}+a z^{2}+O\left(z^{4}\right)$. Compute the value of a in terms of Λ.
4. Let \wp be the Weierstrass \wp-function with respect to a lattice $\Lambda \subset \mathbb{C}$. Show that \wp satisfies the differential equation $\wp^{\prime \prime}(z)=6 \wp(z)^{2}+A$ for some constant A. Show that there are at least three points and at most five points in \mathbb{C} / Λ at which \wp^{\prime} is not locally injective.
