MA475 Example Sheet 1

16 January 2019

1. Recall that $\omega_{2}=\frac{-y d x+x d y}{x^{2}+y^{2}}$. Compute that

$$
d\left(\arctan \left(\frac{y}{x}\right)\right)=\frac{-y d x+x d y}{x^{2}+y^{2}}
$$

The first expression gives the angle θ in polar coordinates when $x>0$.
2. Compute the complex valued 1-form $\exp ^{*}\left(\frac{d z}{z}\right)$.
3. Say we have an l-form θ and an m-form ψ show that $\theta \wedge \psi=(-1)^{l m} \psi \wedge \theta$.
4. Recall that we defined the pullback of a k-form θ by a smooth function F to be F^{*} where this form is defined on a k-tuple of vectors by $F^{*}(\theta)\left(v_{1} \ldots v_{k}\right)$ to be $\theta\left(D F\left(v_{1}\right) \ldots \theta\left(D F\left(v_{k}\right)\right)\right.$. Show that for a 1-form θ that $(F \circ G)^{*}(\theta)=G^{*}\left(F^{*}(\theta)\right)$.
5. Let θ be a 1-form. Show that $\int_{\gamma} F^{*}(\theta)=\int_{F \circ \gamma} \theta$.
6. A consequence of Cauchy's theorem is that

$$
f^{(n)}(z)=\frac{n!}{2 \pi i} \int_{\partial D} \frac{f(w)}{(w-z)^{n+1}} d w .
$$

Deduce from this that power series expressions for holomorphic functions can be differentiated term by term.
7. As sequence if functions f_{n} converges locally uniformly to f in a domain D if $f_{n} \rightarrow f$ on each compact subset of D. Morera's theorem shows that if the holomorphic functions f_{n} converge locally uniformly then the limit is holomorphic.

Show that the the series

$$
\sum_{|n|>N}\left(\frac{1}{z-n}+\frac{1}{n}\right)
$$

converges uniformly in the disc $\{z:|z|<N\}$.

Deduce that

$$
\frac{1}{z}+\sum_{n \neq 0}\left(\frac{1}{z-n}+\frac{1}{n}\right)
$$

converges to a holomorphic function in $\mathbb{C}-\mathbb{Z}$. Find the derivative of this function.

