Resull that we introduced couples valued forme last time and \& aluminised that this was a natural language for complex analysis. A will prove 2 results which valse this connection.

Example. Ang $f=u+i v$ is a lolonorpolic gunction then $d f=\frac{\partial f}{\partial z} d z$ (as P valued (Gorms).

$$
\begin{aligned}
d f & =\frac{\partial u}{\partial x} d x+\frac{\partial u}{\partial y} d y+i \frac{\partial v}{\partial x} d x+i \frac{d v}{\partial y} d y \\
& =\left(\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial y}\right) d x+\left(\frac{\partial u}{\partial y}+i \frac{\partial v}{\partial y}\right) d y \\
& =\left(\frac{\partial u}{\partial x}+\frac{i v}{\partial x}\right) d x+i\left(\frac{\partial v}{\partial y}-i \frac{\partial u}{\partial y}\right) d y \\
& =\left(\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}\right) d x+i\left(\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial y}\right) d y \\
& =f^{\prime} d x+i \cdot f^{\prime} d y \\
& =f^{\prime}(d x+i d y)=f^{\prime} d z . \\
C R: & =\frac{\partial f}{\partial z} \cdot d z . \\
\frac{\partial u}{\partial x} & =\frac{\partial v}{\partial y} \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}=
\end{aligned}
$$

Vote that the desivative (from C-analysis) now apperss in the form of a Eforme. Plee 1 -form unakes explicil reference to a perticiclos ceordivate Z. (Relevant whon we want to shange
our local coordinate.) The teilnig volution the result looks obrous bot hides some astral content.
note that the natural contest for asbring whether a porticilar function g has an anti-dervative is asking whether $g d z$ is essoct.

If $\quad g d z=d f$ then $f^{\prime}=g$.

Thorem. $d(f d z)=0$ iff foutirfeis the Cuncly-Riewam equations.

$$
\begin{aligned}
& -\left(\frac{\partial v}{\partial x} d x+\frac{\partial U}{\partial y} d y\right) \wedge d y \\
& =\frac{\partial u}{\partial y} d y_{1} d x \\
& +i \frac{\partial v}{\partial y} d y \wedge d x \\
& +i \frac{7 u}{\partial x} d x_{1} d y \\
& -\frac{\partial v}{\partial x} d x_{1} d y \\
& =\left(-\frac{\partial u}{\partial y}-\frac{\partial v}{\partial x}\right) d x \wedge d y+i\left(\frac{\partial u}{\partial x}-\frac{\partial v}{\partial y}\right) d x d y
\end{aligned}
$$

= 0 suse :
the Cunchy-Rienumer equation

$$
\frac{z u}{\partial x}=\frac{\partial v}{7 y} \quad \frac{7 u}{\partial y}=-\frac{z v}{\partial x}
$$

At rif g is bolomoopplice then gds is closed. I' has an outs- derivative if the closed form $g d z$ is exact.

Inath 3510 Day 28 pullsech eommater ivithd.

Vaturality of the esterion derivative Calso importuit for marifoldo.)

Therem:
Day 29 0:00

$$
d\left(G^{*} \omega\right)=G^{\star}(d \omega)
$$

Tunction cere

Pewerls:

$$
\begin{gathered}
d\left(G^{*} f\right)=G^{*}(d f) \\
/ \\
D(f \circ G)(\vec{a})=D f
\end{gathered}
$$

$$
\begin{aligned}
& G^{*}\left(u_{i j}\right)=G_{j} \\
& G^{*}\left(d u_{j}\right)=d G_{i} .
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { Fonction : } \quad=D_{v} \text { foG } \\
\text { case: }
\end{array} \\
& =D f \circ D G(v)
\end{aligned}
$$

$v_{j} \dot{c}\left(u_{j}\right)$
Want to show tat
" $d G_{j}=d u_{j}$
weans $d G_{j}=G^{+}\left(d a_{j}\right)$.
$G^{*}(d \theta)=d\left(G^{+}(\theta)\right)$ for arbitrary θ.

now wasider θ. Want to show

$$
\sigma^{*}(d \theta)=d\left(G^{+} \theta\right) .
$$

If we write $\theta=\sum_{I} f_{I} d x_{I}$. Seffeies to prove the result for each component function sine both sideware linear.
fo consider $\theta=f d x_{I}$.

$$
\begin{aligned}
& G^{*}(d \theta)=G^{*}\left(d f \wedge d x_{I}\right)=G^{*}(d f) \wedge G^{*}\left(d u_{I}\right) \\
& =d\left(c^{+} f\right) \wedge v^{+}\left(d u_{i_{1}} 1 \ldots d u_{i_{4}}\right) \\
& =d\left(\sigma^{*} f\right) \wedge G^{*}\left(d x_{i_{1}}\right) l \ldots G^{*}\left(d x_{x_{1}}\right) \\
& =d\left(c^{*} f\right) \wedge d\left(\sigma^{*} x_{i_{1}}\right) \wedge \ldots d\left(\sigma^{+} x_{i_{2}}\right) \\
& =d\left(c^{*} f\right) \wedge d u_{1} \wedge \ldots d u_{i_{k}} \\
& \left\{\stackrel{?}{=} d\left(c^{*} f 1 d u_{i,} \ldots d u_{i_{k}}\right)\right. \\
& =d\left(G^{*}\left(f d x_{I}\right)\right) \text {. } \\
& d\left(c^{*} f 1 d u_{i}, \ldots d u_{i_{k}}\right) \\
& =d\left(\sigma^{*} f\right) \wedge \quad\left(d u i_{1} 1 \ldots d u_{i_{k}}\right) \\
& =d\left(\sigma^{*} f\right) \wedge\left(\begin{array}{l}
d^{2} u_{i_{1}} \wedge d u_{i_{2}} \wedge \ldots d u_{i_{k}} \\
-u_{i_{1}} \cap d^{2} u_{i_{2}} \wedge \ldots d u_{i_{k}}
\end{array}\right. \\
& \pm \\
& \left.\begin{array}{lll}
\pm \\
\pm i_{i} & 1 & u_{i_{2}} \\
& \ldots & d^{2} u_{i k}
\end{array}\right)
\end{aligned}
$$

Worker for (forms sural C- forms are de

One highlight of a course on forms is a major gensruligation of the furdamented theorem of calculus called the geveralyel states Theorem. This worser in all dimensisue and for manifolds and has the form:

$$
\int_{m} d w=\int_{\operatorname{gim}} w .
$$

At the moment we only need a 2 -dim version which of ane assuming is foomiluos:

Sans's Theorem. Jet $u \subset \mathbb{R}^{2}$ be a serlesurforce with boundary and a a 1 form then:

$$
\int_{w}^{d \omega}=\int_{\partial u}^{\omega} \text { in orients }
$$

Chone a derection on 74 so that whan fusing foward your. effot boud ponts into $l l$.
If $\omega=a d y+b d y$ then $\partial \omega=\frac{\partial a}{\partial y} d y \wedge d y$

$$
\begin{aligned}
&+\frac{\partial b}{\partial x} d x 1 d y \\
&=\left(\frac{\partial b}{\partial x}-\frac{\partial a}{\partial y}\right) d x 1 d y \\
& \int_{u}\left(\frac{\partial b}{\partial x}-\frac{\partial a}{\partial y}\right) d x n d y=\int_{\partial u} a d x+b d y .
\end{aligned}
$$

Exangle:

Second csiterion for spactinoss:
Howotopy jivariaice. Wirding number
Ptum,
If C is suinply sornected then and wismertoradide with $d \omega=0$ on U then $\omega=d f$.

Copplientuon \square

Iet $\gamma_{0}, \gamma_{1}:[a, b] \rightarrow X$ be two curces with the ame sterting and ending spointe. z_{0} and z_{1}. Then r_{0} and r_{1} are
lomotopac if there exaits a maph of the rectangle $[a, b] \times[0,1]$ into X with

$$
\begin{aligned}
& u(t, 0)=\gamma_{0}(t) \\
& u(t, 1)=\gamma_{1}(t) \\
& u(u, s)=z_{0} \\
& u(v, s)=z_{1}
\end{aligned}
$$

Chim. If $u \subset \mathbb{R}^{2}$ and ω is u 1 foom with $d \omega=0$, if r_{0} and r_{1} ore homotopic iottu h swovth llon

$$
\int_{\gamma_{0}} \omega=\int_{\gamma_{1}} \omega_{1}
$$

Proof. Cowsider $4^{*} a$ on B.
We have $\left.\int_{B} d\left(h^{*} \omega\right)=\int_{B} l^{*} d \omega\right)=\int_{B} 0=0$.
Ao by Asewse' ltum.

$$
\int_{\partial B} h^{*} \omega=\int_{B} d\left(h^{+} \omega\right)=0
$$

$$
\int_{s_{0}} \dot{c}^{*} \omega+\int_{S_{1}} l^{*} \omega+\int_{s_{2}} k_{s_{2}^{*}}^{0} \int_{s_{3}}^{0} b^{*} \omega=0
$$

$$
\int_{s_{1}} h^{*} \omega+\int_{s_{3}} h^{*} \omega=0
$$

$$
-\int_{\gamma_{0}}^{\downarrow} \omega+\int_{\gamma_{1}}^{\downarrow} \omega=0
$$

$\Delta \sigma \int_{\gamma_{0}} \omega=\int_{\gamma_{1}} \omega$.
Cor. If w is a slosed, ${ }^{R-\theta}$ form ond on U then ω defriva a konconorplusin from $\pi_{1}(u) \rightarrow \mathbb{R}$ or \mathbb{C}.
Cor. If w is closed ${ }^{[-6 o \mathrm{~m}}$ and the inducel mapp
is train trees is sect.
Proof.

An this sure f_{γ} ow $=0$ for any loop ω.
(Alice any loop is homotopie to a constant loop.) This is are of our criteria for siuctuers.

