Reiman 'surface structure on S ?

$$
\text { Jet } S^{2}=\left\{(x, y, t): x^{2}+y^{2}+t^{2}=1\right\} \text {. }
$$

Let $N P=(0,0,1), S P=(0,0,-1)$.

$$
u_{1}=S^{2}-N P, \quad u_{2}=S^{2}-S P .
$$

$V_{1}=\mathbb{C}$: Identify \mathbb{C} with the x, y flame in \mathbb{R}^{3}.

$$
x+i y \text { to }(x, y, 0)
$$

coordinates by mapping
Fro any $p t^{P=}(x, y, t) \neq N P$ drown- the live from $N P$ to P, intersect with the $t=0$ plane cued identifying $(x, y, 0)$ with $x+i y \in \mathbb{C}$.
Formula for the live $s \rightarrow(1-s)(0,0,1)+s(x, y, t)$. futersection perimeter is s sst. $(1-s)+s t=0, s=\frac{1}{1-t}$, dubersection point in $\left(\frac{x}{1-t}, \frac{y}{1-t}, 0\right)$. Identify this with $\frac{x+i y}{1-t} \in \mathbb{C}$. Ar $\phi_{1}(x, y, t)=\frac{x+i y}{1-t}$.

Po define ϕ_{2} we do the sene construction sturtring with $S k$. An this cure we use a different identification of $t=0$ with \mathbb{C}, send $(x, y, 0)$ to $x-i y$ and get $\Phi_{2}(x, y, t)=\frac{x-i y}{1+t}$ defined on $u_{2}=s^{2}-s p \quad V_{2}=\mathbb{C}$.
(of we had not done this we would lave gotten as ar orientation reversing angle preserving amp.) (Best to-ttinds of twa distinct copier of c)
(tw the definistion of the suffece structure we sen allow ruittijle eopico of C.)

$$
(x, y) \hookrightarrow(x, y, t)
$$

risther of two werpe is "Lutomoyplice", The question of Holomoyplinety first cerses irth cespect to the overlap functions.

We calculate that for $p \in S^{2}-\{N P S P\}=u_{1} \cap U_{2}$

$$
\begin{gathered}
\phi_{1}(p) \cdot \phi_{2}(p)=\frac{x+i y}{1-t} \cdot \frac{x-i y}{1+t}=\frac{x^{2}+y^{2}}{1-t^{2}}=1, \quad\left(\begin{array}{c}
\text { compless } \\
\text { und } \\
\text { product inc. }
\end{array}\right)
\end{gathered}
$$ siuce $x^{2}+y^{2}+t^{2}=1, x^{2}+y^{2}=1-t^{2}$ tro foect trutit in inflia $\phi_{2 i} \phi_{1}=\phi_{2}$.

Write zar for $\phi_{1}(p)$ Thon:

So setting $\phi_{21}(z)=\frac{1}{z}$ we lave $\phi_{21} \cdot \phi_{1}=\phi_{2}$.
sevice $z \leadsto \frac{1}{z}$ is conformal on $\mathcal{C} \cdot\{0\}$ we lave a conformal (or lolomorplic) attar.

Analogonaly $\phi_{12}(z)=\frac{1}{z}$.

$$
\begin{aligned}
& w_{1}=\mathbb{C}-\{0\} \\
& w_{2}=\mathbb{C}-\{0\} .
\end{aligned}
$$

$\mathrm{CH}_{1} \cap \mathrm{Cl}_{2}$

$$
S^{2}-\left\{N D_{1} S P\right\}
$$

ϕ_{2}

$$
\phi_{21}: w_{1} \cap w_{2} \rightarrow w_{1} \cap w_{2}
$$

$$
\omega_{1} \cap \omega_{2}=\mathbb{C}-\{0\}
$$

Recall thin the rpt.
atlas, S is a Riemann surface.
For our second construction, we take the compactification \mathbb{C}_{∞} of © by adjoining the single point ∞ to \mathbb{C} (see Section 2.10). An explicit homeomorphism of $\mathbb{\Phi}_{\infty}$ onto S can be constructed as follows. For each $z(=x+i y)$ in \mathbb{C}, we project z linearly towards or away from ζ_{1} until it meets S at a point $\left(\neq \zeta_{1}\right)$ which we denote by $p(z)$. A computaLion shows that

$$
p(z)=\left(\frac{2 x}{|z|^{2}+1}, \frac{2 y}{|z|^{2}+1}, \frac{|z|^{2}-1}{|z|^{2}+1}\right)
$$

compactificiation of w
bradly compact sure is decimal boy adding a point ∞ aud e flaring tho weds. of to be complements of compare rets.
and we define $p(\infty)$ to be ζ_{1} : see Figure 3.4.1. Obviously, p is a homeomorphism of \mathbb{A} onto $s-\left(\zeta_{1}\right)$. This means that compact subsets of \mathbb{C} correspond to compact subsets of $s-\left\{\zeta_{1}\right\}$ so p is actually a homemorphism of \mathbb{d}_{∞} onto s.

A computation shows that $\phi_{1}=p^{-1}$ so using p^{-1} to transfer the atlas on S to an atlas on \mathbb{X}_{∞} we arrive at the atlas

$$
\begin{aligned}
& \sigma_{1}(z)=\phi_{1} p(z)=z \text { on } \mathbb{C}, \\
& \sigma_{2}(z)=\phi_{2} p(z)=1 / z \text { on } \mathbb{C}_{\infty}-\{0\}
\end{aligned}
$$

Ar portends to a honcomorphiom.
on \mathbb{C}_{∞}. We call \mathbb{C}_{∞} the extended complex plane: it is a Riemann surface homeomorphic to S and being compact, cannot be extended any further (Theorem 3.1.3).

$$
\Phi_{1}(x, y, t)=\frac{x+i y}{1-t}
$$

$$
\sigma_{1}(x, y)
$$

Consider live

$$
\overline{p(z)}=\left(\frac{2 x}{|z|^{2}+1}, \frac{2 y}{|z|^{3}+1}, \frac{|z|^{2}-1}{\mid z z^{2}+1}\right)
$$

p induce a borneo.
frow $\left.\mathbb{C} \rightarrow s^{2}-q N P\right\}$.
Set $p(\infty)=N P$.
Comport ats of \mathbb{C} crovelsond to souppuct sits of s^{2} - \{NP3. Ar $\mathrm{P}: \mathrm{C}_{\infty} \rightarrow \mathrm{S}^{2}$ in a bower.
$(s x, s y,(1-s)+s t) \quad$ set $t=0$
($s x, 5 y,(1-s)$) has corner 1

$$
\begin{aligned}
& s^{2} x^{2}+s^{2} y^{2}+(1-s)^{2}=1 \\
& s^{2}\left(x^{2}+y^{2}\right)+\left(-2 s+s^{2}=1\right. \\
& s^{2}\left(x^{2}+y^{2}+1\right)-2 s=0
\end{aligned}
$$

Solve four 5

$$
5\left(x^{2}+y^{2}+1\right)-2=0
$$

$$
S=\frac{2}{1^{2}+1^{2} t}=\frac{z}{z^{z t}}
$$

Polyhodral surface.

Polyludron in \mathbb{R}^{3} is a topologicial surfure arusisturiy of facer, edyes and vertices.

We virl show thut a polyledron deternuries a Phemonn sonfuse. This sonstruction gives a large rumber of examples (untice previous constructiois) uicluding examples of Rimann surfuse structures on orioutad surfusen of every geners. There constructions such luve a biinte \#f sourmetess that cen be adjusted.
Stop 1. We will atart by constructuiy aluerts at intervor pointo of fuces.
Owr surfare comes with an outsuond poistuog wit nornal.

Polyhodral surface.
Contrunct polar coordinates $\left(P_{0}^{I} P_{0}^{\theta=0}\right.$
$x+i y \mapsto(x, y, 0)$
$\mathbb{C} \rightarrow \mathbb{R}^{3}$
 in a ubd. of P. $0 \leqslant r \leqslant \delta_{0} \quad 0 \leqslant \theta \leqslant 2 \pi$.

If two points are in the sane frese thon uble. can overlap and transituon functions luve the form $z \backsim z+c$

Hep 2, Coordinates on edges
Cet a point p on the bonudary

$0 \leqslant v \leqslant S_{p}$
of a face f_{j} se
caw constmurt a
buaf-dids coordinate.
Hf we "pat toyetter" a poirs of these.
Edye proints.

Asciles whide
 hafe dish becowes ther apper luef + cr andwlich the lower hulf.

At this point we lucre an atlas for P-vertios were all of the transition maps lave the form $\phi_{j k}(z) \omega e^{\theta_{v}} z+c_{j k}$. This is a bolomorplice attar of a special form and eve will see this again.

Step 3. Coordinates at vertriès.
(r, θ) coordinates
$0 \leq r \leq \delta p$ $\theta_{0} \leq \theta \leq \theta$,

Adding in charts of tens form give us transition functions of the form $z \mapsto \lambda z^{B}+C$ explore z^{β} is a brander of the power function.
ended lore

Remarls. Conotruction cun le applièd to a collection of polyous in \mathbb{R}^{2} isth estrilfration of sides which need nut he realiyoble in \mathbb{R}^{3}
 Porallelogram. blentify oppoite sider.

An tins cuse the "vertex" lus sone angle $\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}=\pi$.

Orientution swersing mups of sodes (To create orientution prosercing chusts.)

Ostayon:

fur this ase all of the verticis get inintifeic to a single poont and the cone angle at test ponti ir $8.3 \frac{3 \pi}{}=6 \pi$.

There are two typer of putholagiod beluwion that can occer:

- a priori a surfase need not be Ttansdorf
(5) A sunfure veed not lave a coutable buse for ita topolosy.

Here in a simple example of aimansfuce whick is neittor Hansdooff wer 2.d comutable:

Sine \mathbb{R}^{3} the lop.

It $P_{a}=\{(x, y, z): z=a\}$. quand and P_{α}.
Foun the quationt spme by identefifing (x, y, z) and $\left(x, y, z^{\prime}\right)$ if $y>0$.
(for a more applusticated soomple see Baerdon)

The first property is compulible with a Diewnum serfuce structure and we will assume that ons Bumunn surfeces are Aansdorff.
to is a theorem (which will be a corollory of somettring trat we prove) lteat an itcensdorff Rimame susperee is 2 nd coutable.
and we define $p(\infty)$ to be ζ_{1} : see Figure 3.4.1. Obviously, p is a homeomorphism of \mathbb{C} onto $S-\left(\zeta_{1}\right)$. This means that compact subsets of \mathbb{d} correspond to compact subsets of $S-\left\{\zeta_{1}\right\}$ so p is actually a homeomorphism of \mathbb{C}_{∞} onto s.

A computation shows that $\phi_{1}=p^{-1}$ so using p^{-1} to transfer the atlas on S to an atlas on \mathbb{d}_{∞} we arrive at the atlas

$$
\begin{aligned}
& \sigma_{1}(z)=\phi_{1} p(z)=z \text { on } \mathbb{C}, \\
& \sigma_{2}(z)=\phi_{2} p(z)=1 / z \text { on } \mathbb{C}_{\infty}-\{0\}
\end{aligned}
$$

on $\mathbb{\Phi}_{\infty}$. We call \mathbb{C}_{∞} the extended complex plane: it is a Riemann surface homeomorphic to S and being compact, cannot be extended any further (Theorem 3.1.3).
For our third model we begin with the space

$$
\mathbb{W}=\mathbb{C} \times \mathbb{C}-\{(0,0)\}
$$

$$
=\left\{(z, w): z, w \in \mathbb{C},|z|^{2}+|w|^{2} \neq 0\right\}
$$

with the subspace topology derived from the product topology on $\mathbb{C} \times \mathbb{C}$. Next, we say that (z, w) and (u, v) are equivalent if there is some complex number t (necessarily non-zero) with $(z, w)=$ (tu,tv). This is an equivalence relation on W : the equivalence class containing (z, w) is

$$
[z, w]=\{(t z, t w): t \in \mathbb{C}, t \neq 0\}
$$

The quotient map $q:(z, w) \mapsto[z, w]$ maps W onto the space \mathbb{P} of equivalence classes and we give \mathbb{P} the quotient topology induced by $q: W \rightarrow \mathbb{P}$. We call IP Complex projective space.

There are natural maps $\alpha: \mathbb{W} \rightarrow \mathbb{C}_{\infty}$ and $\beta: \mathbb{P} \rightarrow \mathbb{C}_{\infty}$ defined by

$$
\alpha(z, w)=\beta([z, w])=\left\{\begin{array}{cc}
z / w & \text { if } w \neq 0 ; \\
\infty & \text { if } w=0
\end{array}\right.
$$

so $\alpha=8 q$. It is easy to see that α is continuous, open and surjective and, as β is $1-1$, we see that β is a homeomorphism of \mathbb{P} onto \mathbb{d}_{∞} (Theorem 2.7.2): see Figure 3.4.2.

Figure 3.4.2.
Again, we can transfer the atlas on \mathbb{C}_{∞} to \mathbb{P} and using β^{-1} this yields \mathbb{P} as a Riemann surface with atlas

$$
\begin{array}{lll}
{[z, w] \mapsto z / w} & \text { on } & U_{1}=\{[z, w]: w \neq 0\}, \\
{[z, w] \mapsto w / z} & \text { on } & U_{2}=\{[z, w]: z \neq 0\} .
\end{array}
$$

Exercise 3.4

1. Verify (3.4.1) and that $\phi_{1}=p^{-1}$.
2. Show that

$$
d(z, w)=|p(z)-p(w)|=\frac{2|z-w|}{\left(1+|z|^{2}\right)^{1 / 2}\left(1+|w|^{2}\right)^{1 / 2}}
$$

is a metric on \mathbb{d}_{∞} and that the metric topology is the given topology. We call d the chordal metric on \mathbb{C}_{∞} and with this metric, $p: \mathbb{C}_{\infty} \rightarrow S$ is an isometry. Prove that

$$
d(1 / z, 1 / w)=d(z, w) .
$$

3. Verify that $\alpha: w \rightarrow \mathbb{C}_{\infty}$ is open and continuous.
4. Let Q be a plane in \mathbb{R}^{3} which meets S. Using (3.4.1), show that $P^{-1}(Q \cap S)$ is a circle in \mathbb{C} (if $\zeta_{\mathcal{L}} \in Q$) or is $L u\{\infty\}$ for some straight line L (if $\zeta_{1} \in Q$). For this reason, we usually regard I. $\cup\{\infty\}$ as a circle in \mathbb{C}_{∞}.
5. Writing the elements of W as column vectors, a 2×2 nonsingular matrix A acts on W by the rule

$$
\begin{aligned}
\mathbb{C}^{2} & =\{(z, w): z, w \in \mathbb{C}\} \\
W^{\prime} & =\mathbb{C}^{2}-\{(0,0)\},
\end{aligned}
$$

Define an equivalence relation on W ley $(z, w) \sim(u, v)$ iff for some $t \in C \quad(z, w)=(t u, t v)$. mote $t \in \mathbb{C}-\{3\}$.

Write the squivalevee slat of $(3, \omega)$ as $[z ; \omega]$ ret $\mathbb{\mathbb { P }}{ }^{\prime}$ be the ret of apivaleve olasses

$$
\begin{aligned}
\alpha((z, w)) & =\frac{z}{w} \text { if } w \neq 0 \\
& =\infty \quad \begin{array}{ll}
w=0 . \\
\beta:([z ; w]) & =\frac{z}{w} \\
& w \neq 0 \\
\infty & w=0 .
\end{array}
\end{aligned}
$$

$\mathbb{C} \longrightarrow s^{2}$. If we pull bach tier attar on s^{2}
fo $\mathbb{C} \mathbb{P}^{\prime}$ we got $u_{1}=\{[z: w]: w \neq 0\}$

$$
u_{2}=\{[z: w]: z \neq 0\}
$$

$$
\begin{array}{ll}
\varphi_{1}: u_{1} \rightarrow \mathbb{C} & \varphi_{1}([z: w])=\frac{z}{w} \\
\varphi_{2}: u_{2} \rightarrow \mathbb{C} & \varphi_{2}([z: w])=\frac{w}{z}
\end{array}
$$

This gines $\mathbb{C P} \mathbb{P}^{\prime}$ a Reinanu surfuse strusture.

