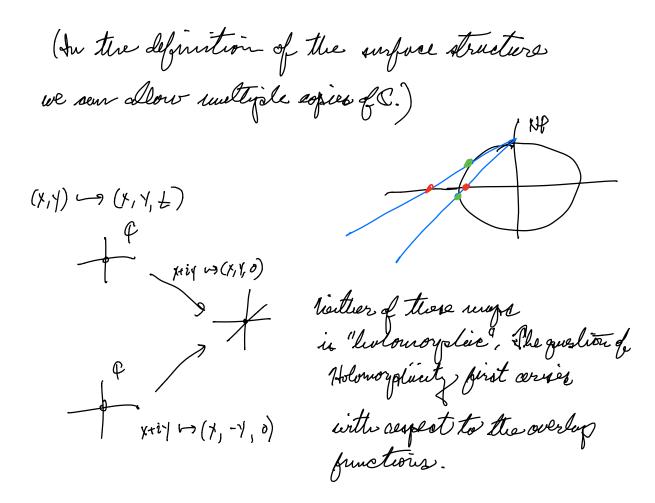
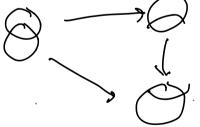
AT X Riemann unfore Atructure on S? Jet S² = §(X, Y, t): X²+Y²+t² = 13. Let NP=(0,0,1), SP=(0,0,-1). Use coosdin (X,Y,t). $U_1 = S^2 - NP$, $U_2 = S^2 - SP$. Vi= C. forentify C with the X,Y plane in R³. Nordinates by mapping X+iY to (X,Y,O) for any pt. P=(X, Y, E) + NP drow the line from NP to P intersect with the t=0 plane cued identify (1, Y, 0) with KiyEC. Formula portie line 5 ~ (1-5)(0,0,1) + 5 (X, Y, E). futersection parameter is 5 s.t. (1-5)+5t=0, 5=1-2. pubrisection point in (T-E, T-E, O). Adentify this with $\frac{X_{11}Y}{1-t} \in \mathbb{C}$. As $\varphi_{i}(X,Y,t) = \frac{X+2Y}{1-t}$. To define \$2 we do the same construction starting with SP. In this care we use a different identification of two with C, send (X, Y, 0) to X-i' and get $\Psi_2(X,Y,t) = \frac{X-tY}{l+t} \text{ defined on } U_2 = S^2 - SP \quad V_2 = \mathbb{C}.$ (If we had not done this we would have gotten an orientation reversing angle preserving mup.) (Best to think of two distinct copies of C)



, (Filte) We calculate that for PES²-ENP. SP3 = U. N.U.2 $\phi_{i}(p) \cdot \phi_{2}(p) = \frac{\chi_{+2}\gamma}{l-t} \cdot \frac{\chi_{-2}\gamma}{l+t} = \frac{\chi^{2}+\gamma^{2}}{l-t^{2}} = 9, \quad (ann flax)$ To product in C. Since X2+Y2+t2=1, X2+Y2=1-t2 complett Solve for fre using the fact that it satisfies Write 200 for $\phi_{21}(\phi_i(p)) = \phi_2(p) = \frac{1}{\phi_i(p)}$. Q20 Q1 = Q2. > surverse of complex #. retting $\phi_{21}(z) = \frac{1}{2}$ we have $\phi_{21} \circ \phi_1 = \phi_2$. So Service Zun 2 is conformal on C. Evs we have a conformal (or holomorphic) attas. analogously \$12 (2) = -1/2 **ą**,() \$_(e) $W_1 = C - \{0\}$ Unlez ₽z 52- 2NP, SPZ W2 - C- E3. W1NU2 = C- E3 φ_2 ; $W_1 \wedge W_2 \rightarrow W_1 \wedge W_2$



atlas, S is a Riemann surface.

For our second construction, we take the compactification $\ \ensuremath{\mathbb{C}}_{_\infty}$ of C by adjoining the single point ∞ to C (see Section 2.10). An each z (= x+iy) in \mathfrak{C} , we project z linearly towards or away from ζ_1 until it meets S at a point $(\neq \zeta_1)$ which we denote by p(z). A computation shows that

$$p(z) = \left(\frac{2x}{|z|^{2}+1}, \frac{2y}{|z|^{2}+1}, \frac{|z|^{2}-1}{|z|^{2}+1}\right)$$
(3.4.1)

Recall that the opt. compactification of a locally compact space is obtained by adding a point a and belowing the above. of a to be complements of compact sets.

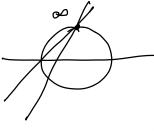
and we define $p(\infty)$ to be ζ_1 : see Figure 3.4.1. Obviously, p is a homeomorphism of \mathfrak{C} onto $s - \{\zeta_1\}$. This means that compact subsets of \mathfrak{C} correspond to compact subsets of S - $\{\zeta_1\}$ so p is actually a homeomorphism of \mathbb{C}_{∞} onto S.

A computation shows that $\phi_1 = p^{-1}$ so using p^{-1} to transfer the atlas on S to an atlas on $\mathfrak{C}_{_{\!\!\!\!\!\infty\!}}$ we arrive at the atlas

$$\sigma_1(z) = \phi_1 p(z) = z \text{ on } C ,$$

 $\sigma_2(z) = \phi_2 p(z) = 1/z \text{ on } C_m - \{0\}$

on ${\tt C}_{\infty}$. We call ${\tt C}_{\infty}$ the <u>extended complex plane</u>: it is a Riemann surface homeomorphic to S and being compact, cannot be extended any further (Theorem 3.1.3).



44

$$\Phi_1(x,y,t) = \frac{\chi_{tiy}}{1-t}$$

$$P(z) = \left(\frac{2\sqrt{k}}{|z|^{n} + 1}, \frac{12l^{2}}{|z|^{n} + 1}\right)$$

$$P(z) = \left(\frac{2\sqrt{k}}{|z|^{n} + 1}, \frac{12l^{n}}{|z|^{n} + 1}\right)$$

$$P(z)$$

gouns' Polyludron in R genus 2 is a topological surface consisting of face, edges and vertices Polyhedral surface We will show that a polyledron determines a Remann surfiel. This construction gues a large rember of examples (unlike previous constructions) recluding examples of themann surface structures on oriented unposes of every geners. These constructions such have a finite # of parameters that can be adjusted. step 1. We will start by constructing durts at interior points of faces. Our surface comes with an outward pointing unt normal. K+i(L-> (X, Y, 0) $\mathbb{C} \to \mathbb{R}^3$ (χ, γ, t) Polyhedral surface. Construct polar coordinates in a uld. of P. $0 \le \theta \le 2TT$. 055530

If two points are in the same five then able. can overlap and transition functions lave the form 2492+C

Hep 2, Coordinates ou edges Cet a point p on the boundary 0555 Sp & Ga Gace f; ele 05V5 Sp san construct a 058 ST. haff-dich coordinate. If we "put together a pier of these maps we get a destr soordenale. Edys points. Docido which half digh becomes the upper liaf 2 1,30²²²²,2^t lower half.

At this point we have an atlas for P-vertices where all of the transition maps leave the form Pir(2) us et 12+ cir. This is a bolomorphic attas of a special form and we will see this again. (v, D) coordinates Atep3. Coordinates at vertices. 05r58p total cone angle = 3TT ا جا Cugle emeller than T. $\frac{3\pi}{2}$, $d = 2\pi$ $(Z \rightarrow Z^{l/3})$ x=4 3 - 끝드曰 드 31 (r, 0) ~ (r, x0+coust.) X=211-2 <u>3∏</u>. x = 2T 2 m, 2x

Adding in durts of this form give us travsition prudious of the form Zur 22⁵+c where 2⁵ is a brunch of the power function. and lo and lore

Remark. Construction can be applied to a collection of polyous in R² with stallfunction of sides which need not be realizable in R³ 11. m Southy opposite In this case the "vertex" laws some angle $d_1 + d_2 + d_3 + d_4 = \Pi$ Overtation reversing maps of sides (To create orientation preserving clients.) Dotuyon: for this care all of the vertices get doutified to a single point and the cone angle at that point is 8.317 = 677.

There are two types of puthological beliavior that can occur: o a priori a surface used wat be Hansdorf © a surfore need not have a contable base for its topology. Here is a simple example of a swofuce which is weither Hausdorff was 2nd countable: A^{2} Jet $P_{\alpha} = \{(r, \gamma, z) : z = \alpha\}$. Since \mathbb{R}^{3} the lop- d_{α} a disjoint encircles d_{β} and d_{β} and d_{β} and d_{β} . X Form the questiont spins K by identifying (X, Y, Z) and (X, Y, Z) if 170.

(For a more soplisticated sample ses Boardon)

The first property is computible with a Riemann verbase structure and we will assume that our Remann surfaces are Housdorff. It is a theorem (which will be a corology of something that we prove) that a Heusdorff Riemann surface is 2nd contable.

Example: CP

and we define $p(\infty)$ to be ζ_1 : see Figure 3.4.1. Obviously, p is a homeomorphism of \mathfrak{C} onto $s - \{\zeta_1\}$. This means that compact subsets of \mathfrak{C} correspond to compact subsets of $S - \{\zeta_1\}$ so p is actually a homeomorphism of \mathfrak{C}_{-} onto S.

A computation shows that $\phi_1 = p^{-1}$ so using p^{-1} to transfer the atlas on *S* to an atlas on \mathfrak{C}_{∞} we arrive at the atlas

$$\begin{split} \sigma_{1}(z) &= \phi_{1}p(z) = z \text{ on } \mathfrak{C} ,\\ \sigma_{2}(z) &= \phi_{2}p(z) = 1/z \text{ on } \mathfrak{C}_{\infty} - \{0\} \end{split}$$

on Φ_{∞} . We call Φ_{∞} the <u>extended complex plane</u>: it is a Riemann surface homeomorphic to S and being compact, cannot be extended any further (Theorem 3.1.3).

For our third model we begin with the space

$$W = C \times C - \{(0,0)\}$$

= {(z,w) : z,w \in C, |z|² + |w|² z 0}

with the subspace topology derived from the product topology on $\mathbb{C} \times \mathbb{C}$. Next, we say that (z,w) and (u,v) are equivalent if there is some complex number t (necessarily non-zero) with (z,w) = (tu,tv). This is an equivalence relation on W: the equivalence class containing (z,w) is

$$[z,w] = \{(tz,tw) : t \in \mathbb{C}, t \neq 0\}.$$

The quotient map $q : (z, w) \mapsto [z, w]$ maps W onto the space \mathbb{P} of equivalence classes and we give \mathbb{P} the quotient topology induced by $q : W \rightarrow \mathbb{P}$. We call \mathbb{P} complex projective space.

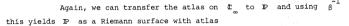
There are natural maps $\alpha : W \rightarrow \mathbb{C}_{\infty}$ and $\beta : \mathbb{P} \rightarrow \mathbb{C}_{\infty}$ defined by

$$\alpha(z,w) = \beta([z,w]) = \begin{cases} z/w & \text{if } w \neq 0; \\ \infty & \text{if } w = 0 \end{cases}$$

so $\alpha = \beta q$. It is easy to see that α is continuous, open and surjective and, as β is 1-1, we see that β is a homeomorphism of \mathbb{P} onto \mathfrak{C}_{∞} (Theorem 2.7.2): see Figure 3.4.2.

45

Figure 3.4.2.



 $\begin{bmatrix} z, w \end{bmatrix} \mapsto z/w \quad \text{on} \quad U_1 = \{ \begin{bmatrix} z, w \end{bmatrix} : w \neq 0 \} ,$ $\begin{bmatrix} z, w \end{bmatrix} \mapsto w/z \quad \text{on} \quad U_2 = \{ \begin{bmatrix} z, w \end{bmatrix} : z \neq 0 \} .$

Exercise 3.4

1. Verify (3.4.1) and that
$$\phi_1 = p^{-1}$$
.
2. Show that

$$d(z,w) = |p(z) - p(w)| = \frac{2|z-w|}{(1+|z|^2)^{1/2}(1+|w|^2)^{1/2}}$$

is a metric on \mathfrak{C}_{∞} and that the metric topology is the given topology. We call d the <u>chordal metric</u> on \mathfrak{C}_{∞} and with this metric, $p : \mathfrak{C}_{\infty} \to S$ is an isometry. Prove that

$$d(1/z, 1/w) = d(z, w).$$

3. Verify that $\alpha: W \rightarrow \mathbb{C}_{m}$ is open and continuous.

4. Let Q be a plane in \mathbb{R}^3 which meets S. Using (3.4.1), show that $p^{-1}(Q \cap S)$ is a circle in C (if $\zeta_1 \in Q$) or is $L \cup \{\infty\}$ for some straight line L (if $\zeta_1 \in Q$). For this reason, we usually regard $L \cup \{\infty\}$ as a circle in \mathbb{C}_{∞} .

5. Writing the elements of W as column vectors, a 2×2 non-singular matrix A acts on W by the rule

$$A \ : \begin{pmatrix} z \\ w \end{pmatrix} \not \mapsto \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} z \\ w \end{pmatrix} \ .$$

44

$$C^{2} = \{(2, w): 2, W \in C\}$$

$$W = C^{2} - \{(0, 0)\},$$
Define an equivalence relation on let leg

$$(2, w) \sim (u, V) \text{ iff for some to } (2, w) = (tu, 2V).$$

$$uotes t = 0.55.$$
Write the equivalence dere of (3, w) as level
fet CP be the set of equivalence alones
$$W = \frac{2}{\sqrt{C}} + \frac{2}{\sqrt{C}} +$$

 $f_{\mathcal{T}} \in \mathbb{P}' \text{ we get } \mathcal{U}_{1} = \{[z:w]:w\neq 0\}$ $\mathcal{U}_{2} = \{[z:w]:z\neq 0\}$

 $\begin{aligned} \varphi_1 : \mathcal{U}_1 & \to \mathcal{C} & \mathcal{U}_1 \left([\mathbb{Z} : \mathcal{W}] \right) = \frac{2}{\mathbb{Z}} \\ \mathcal{U}_1 : \mathcal{U}_2 & \to \mathcal{C} & \mathcal{U}_1 \left([\mathbb{Z} : \mathcal{W}] \right) = \frac{\mathcal{W}}{\mathbb{Z}} . \end{aligned}$

Ilis gines CP' a Riemann surface structure.