$P G(G, 4)$ gramp of hiobiis trinof porceaticus

$$
B=\left\{\left(\begin{array}{ll}
a & \bar{c} \\
c & \bar{a}
\end{array}\right): k 4^{2}-|c|^{2}=1\right\} .
$$

A acta transutweth on \triangle :
(swen

$$
f \in \mathcal{A} \quad f(0)=z \text {. }
$$

Siem any ${ }^{2}$ pointe
z_{0}, z_{1}, triere in some $f \in \mathcal{A}$
tatuing zo to $z_{1}, f_{1} \circ f_{0}^{-1}$.)
There is an element of $\operatorname{PSL}(2, C)$ that lutreo \triangle to the uppor lualf plane: UAP.
Conjirgating by this element taties it to $\operatorname{PSL}(2, \mathbb{R})$.

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): a, b, c d \in \mathbb{R}
$$

$$
\begin{aligned}
& 0 \rightarrow-i \quad z \rightarrow \frac{c z+b}{c z+d} \\
& \infty \omega+i \\
& i \mapsto 0 \\
& z \rightarrow \frac{z-i}{-i z+1} \\
& \left(\begin{array}{cc}
1 & -i \\
-i & 1
\end{array}\right) \\
& \left(\begin{array}{cc}
1 & i \\
-i & 1
\end{array}\right) \\
& \frac{b}{d}=-i \\
& \frac{a}{c}=i \\
& a i+b=0 \\
& b=-i \\
& a=1 \\
& \frac{z-i}{-i z+1} \\
& \frac{1}{c}=i \quad c=-i \\
& d=1 \\
& \left(\begin{array}{ll}
1 & i \\
i & 1
\end{array}\right)\left(\begin{array}{ll}
a & \bar{c} \\
c & \bar{a}
\end{array}\right)\left(\begin{array}{cc}
1 & -i \\
i & 1
\end{array}\right)=(\\
& \left(\begin{array}{ll}
a+c i & \bar{c}+i \bar{a} \\
a i+c & \bar{i} \bar{c}+\bar{a}
\end{array}\right)\left(\begin{array}{cc}
1 & -i \\
-\bar{i} & 1
\end{array}\right) \\
& \text { (} a^{+}+\bar{c}-i \bar{c}_{+} \bar{\omega}
\end{aligned}
$$

dr the course of our argument churwaterining Cut (Δ) eve showed:

$$
f \sim\left(\begin{array}{ll}
a & \bar{c} \\
c & \bar{a}
\end{array}\right)
$$

(*) $\quad 1-|f(z)|^{2}=\left(1-|z|^{2}\right) \cdot \frac{1}{|c z+\bar{a}|^{2}}$

How-do we desterilu geonetryp on a 2 -manifuld?

Ssometry of a anspoce is descriled ance you bruow the bugtus of tingent vectors. If you lrnow thi you also know the lengting of prattes

$$
\gamma:[a, b] \rightarrow s^{2} \quad \text { length }(\gamma)=\int_{a}^{b} \text { longtu }\left(\frac{d \gamma}{d t}\right) d t \text {. }
$$

You bnow the distance between point $d(p, q)=\operatorname{nf}($ bongth $\gamma: \gamma(0)=p, \gamma(1)=q)$.
Unost important unvariant of a seurfrece is the curvature.

Example: The sphere lua posituie cunsture. Thar the propperty that the cencumference of a
a cercle frobewin uncreases nore slouly thum the corresponding Eiclideun cercle. (< $2 \pi v$)

Eample: Ityperboloid of 1-shact lues negature cervature.
"saddle"
Cencinforence of a ceicle of nuclives increases nore
quicirly thun aEicctitern seicle.
1tuer do we discrilue geonetry in a sconfuce?

pull back the wetrie on the scerffere in \mathbb{R}^{3} to the deart. orese this?
u

$$
\begin{aligned}
I(v, v)= & E(d y(v))^{2}+2 F(d y(v) \cdot d y(v))+G(d y(v))^{2} \\
& =E d x^{2}+F d x \cdot d y+G d y^{2} .
\end{aligned}
$$

Quabriticform deternués the hilmear form.
$E \leadsto\left(\text { lingtr of } 7_{x}\right)^{2}$.
$G \leadsto(\text { length of } \partial y)^{2}$
$F \leadsto$ angle between t_{y} and z_{y}.
Also wittin in terms of arelengthods

$$
\begin{aligned}
& (d S)^{2}=E d x^{2}+2 F d x \cdot d y+G d y^{2} \\
& \text { or } d s=\sqrt{E d x^{2}+2 F d x \cdot d y+G d y^{2}} .
\end{aligned}
$$

Kow say thut our seerfoce is a Reinam anfore.

$$
T(u)=\{(z, \dot{z}): z \in u \quad \dot{z} \in \mathbb{C}\} .
$$

Cos a Riémunn sinfpree we already lune a notion of the angle between two vectors we can abr whetter the new metric we are putting on $u \subset C$ gives the soul motion of angle. We say coordinate chaste ore isdterenal if this is the care. (Smurparwed the sesterce of

Example. Pahyoour
$E, G=1 \geqslant \Rightarrow$.
unetrics give the same notion of angle means they one is a secular muitusile of the other. Io say tat the first fundamental form is a multiple r of the Euclidean metric weans $E=G$ and $F=0$.

Oof. We say that a metric on a Preinum surfuese is conformal if it can be written in charts as $d s^{2}=\varphi(z) \cdot|d z|^{2}=\varphi(z)\left(d x^{2}+d y^{2}\right)$ ic $E=G=\varphi, F=0$.

Compare with flat metric on \mathbb{A}.

$$
E=G=1 \quad F=0 . \quad \text { Phat metric ion ll. }
$$

so charts ane isothermal of the pulled backs metric
(expressed by the first fundamental form) is conformal.

Example We constructed courts for $s^{\top} \phi_{c}, \phi_{2}$.
Let ψ_{1}, ψ_{2} be the corresponding universe charts. If we calculate the first fundamental form for ψ_{1} we get , (Inathenaliai)

$$
\begin{aligned}
& E=G=\frac{4}{\left(1+|z|^{2}\right)^{2}} \quad \quad \quad=0 \\
& d s^{2}=\frac{4}{\left.(1+\mid z)^{2}\right)^{2}}|d z|^{2} \\
& d s=\frac{2}{\left(1+|z|^{2}\right)}|d z|
\end{aligned}
$$

Descaling the metric lay $\varphi=\frac{2}{\left.(1+\mid 2)^{2}\right)^{2}}$.

Propvistion, set Q be a poo eff. Eitinenform. $F^{+}(Q)$ curd Q. forme give the same notion of angle if and only if one is a secular unttyale of the other proof.

 $Q=d x^{2}+d y^{2}$

If F preserved angles then trave triangles are similes of $|F(v)|=\lambda \cdot|v|,|F(\omega)|=\lambda \cdot|\omega|$.

$$
F^{*}(Q)=\lambda \cdot Q
$$

The geonetry of \mathbb{R}^{3} deteruinia a unetric on 9^{3} or P.
Wetrec plus orientation deternunies a complex strusterse on the tangent sposes.
such a structure is called an "almost complex strusture". Wo have built a Reimann surfose structure wheish is compatible witto thís aluost comples structure.

Pioture credit: W. Tharston Three-dimensional geometry and topology.

Remurdr. Circumference of a civale grows enponentially iotte the rachics.
to its Euclidean distance from the Dounumo re, but seen in the upper shows the same congrent tracts as figure 2.10 , but seen in the half-space model.

Figure 2.14. Hyperbolic tiling by 2-3-7 triangles. Another view of the hyperbolic world divided into congruent tracts. Upper half-plane projection.

