$$
V=\left\{(z, \omega): \omega^{2}=P(z)\right\} . \quad \begin{array}{lllll}
& P(z)=c\left(z-v_{1}\right) \cdots\left(z-r_{4}\right) \\
z_{0} & r_{1} & r_{2} & r_{3} & r_{4}
\end{array}
$$

rjore distuict
bosepanit inu $\quad \hat{u}=u-\{\alpha(s)\}$

$$
\left(z_{0}, w_{0}\right) i \sim V
$$

$\psi, \psi^{\prime}: \hat{u} \longrightarrow V$

$$
\psi\left(z_{1}\right)=\left(z_{1}, w_{0} h(8)\right) \quad \gamma \text { dispinilform } x
$$

$$
\psi^{\prime}\left(z_{l}\right)=\left(z_{1},-w_{0} h(\gamma)\right)
$$

unerste to tiz, lifting unyre

Chim. ", 'estends continiously to the r_{j} and tahes the value $\left(r_{j}, 0\right)$ at r_{j}.

Prorg. The equution $\psi^{2}\left(m_{1}\right)=P\left(u_{1}\right)$ grice us $|\psi(a)|^{2}=|P(a)|$ to $|\psi(u)|=\sqrt{|P(a)|}$. If $u \rightarrow z_{j} \operatorname{Atan} \mid P(u)(\rightarrow 0$ so $|\psi(u)| \rightarrow 0$.

Consume that the r_{j} lie on the real coria.
We will define tiro extensions of ψ to α :
a lower estenswin and an upper esturscoù.
We do there by droving specific patter to integrate along.

At $z_{i j}$ intis odd we sain that the lower estenssoin of ψ_{0} agrees with the upper estenswin of ψ !
$\psi_{h}\left(z_{j}\right)=\left(z_{j}, w_{0} h\left(\beta_{j}\right)\right) \quad$ lower ext of ψ
$\psi_{e}^{\prime}\left(z_{j}^{-}\right)=\left(z_{j},-w_{0} h\left(\gamma_{j}\right)\right) \quad$ upper est of ψ^{\prime}
Check $w_{0} \cdot h\left(\beta_{j}\right)=-\omega_{0} h\left(\gamma_{j}\right)$ or $h\left(\beta_{j}\right)=-h\left(\gamma_{j}\right)$

$$
\text { or } h\left(\beta_{j} \cdot \gamma_{j}^{-1}\right)=(-1) \sum \sum_{i n d}\left(\beta_{j} \cdot \gamma_{j}^{-1}\right)=-1 .
$$

Similarly at z_{j} with j add the upper extension of $\%$ agrees with the lower estenrwo of $\psi_{i}^{\prime} \psi_{e}^{\prime}$

When j is even the upper and lover estenscois of $\left.\psi \operatorname{cor} \psi^{\prime}\right)$ agree.

$$
\begin{aligned}
& \psi_{c}=\psi_{e} \\
& \psi_{w}^{\prime}=\psi_{e}^{\prime}
\end{aligned}
$$

$\psi \quad \omega_{0} h\left(\beta_{j}\right)=\omega_{0} h\left(\gamma_{j}\right) \sim h\left(\beta_{j}\right)=h\left(\gamma_{j}\right) \sim h\left(\beta_{j} \gamma_{j}^{-1}\right)=1$
$\psi^{\prime} \quad-w_{0} h\left(\beta_{j}\right)=-w_{0} h\left(\gamma_{j}\right) \sim$
Schematically:
Sovelo
buel 1

Redrum
the picture:
Caelo

soodo 5

N
(Sibe a perbing gornge with tewo leveles and a north bulf and a sunth half. fruetries going fromer worth to souttr breeps you on sume livel

Cuse 1 un is even

flop thin copor

$R \cap \pi_{2}^{-1}(D)$
Our surfesee is lemeonorgslie to a susfure of gouns $\frac{\text { us }}{2}$ eirth 2 boundery eompronenta.

Ris homsomonglive to a soered ose of grmase $\frac{M}{2}-1$ with $2 p^{t a}$ sewoved.
of unis odd:
Thints of ows buse surfere cas \mathbb{Q}_{∞} instend of \mathbb{C}.

R is homeomorphic to a surfore of genns $\frac{m-1}{2}$ inth one point rewoved.

$\operatorname{deg}(P)=1 . \quad V$ is a copor of \mathbb{C}
$\operatorname{deg}(P)=2$. V is a eylwiter
$g=0$
$\operatorname{deg}(\rho)=3 \quad V$ is a torns nivine I pol.
$\operatorname{deg}(P)=4 \quad V$ iq a torns nimus 2 plat. $\quad g=1$
Theonen.

$$
\operatorname{deg}(P)=2 n+1 V_{\text {is a surs }} \operatorname{surpce}_{n} \text { of }
$$

gens in
minina (jpt.
$2 n$ Aurfuce of geruss $n-1$ suine 2 pts,

