Corollary. A meromonplic functioni on a compeet. Rienume surface lias the sunue muaber of zeas as poles (ountect up to umlliplisity.)
Proof, A meronorpluic function on R in a lid. function $f: R \rightarrow \mathbb{C}_{\infty}$.

We luve $\delta_{t}(0)=\delta_{t}(\infty)$ in such a cose.

Of t : $R \rightarrow S$ is a mupbetween compart Thomainu surfaces then
Aefinition. we call $d_{f} \equiv \delta_{f}(q)$ the degree of f. Vote $d_{f}=1$. (We uuv before thats a now constant live map is soyjective, Pling is a refriement of thut.).

Cowllary. A bolowoyplic wap leterseen compract Peinam surfores of degreel is a sonformal equivalenve.

Cor. If a merw. function a R han 1 yero of order / then R is imformally squialent to S^{2}.
Proof. If $d_{f}=1$ then every point has 1 unvirse ineage and nol-zerodervatue, fo f is invertible. twerse is loblouorplic loy the siverse function theoron.

Commente on Euler alvarecterictec.

Tecall the Enler chornderistie of a suerfose R.

$$
X(R)=\# i(R)-\pi C(R)+\pi f(R) \quad X(R)=d i u H_{0}-d u H_{1}+d u H_{2} .
$$

Reoull $k(R)=2-2 g$.
Ispeály $x<0$.

$$
\begin{aligned}
& \bigoplus_{x=2}^{\infty}, \\
& y=0 \\
& y=1
\end{aligned}, \begin{array}{r}
x=-2 \\
g=2
\end{array}, \begin{aligned}
& x=-4 \\
& g=3
\end{aligned}
$$

Saurs-Trounet. $2 \pi x(R)=\int_{R}$ arvature dvol.
Cor. If R is w compret Thimn inffuse irth a wetric of constunt curvature then the cevvature is positice if the serfuse is a aphere, 0 if the seerfecee is a Toms and negature if the sufise has lighor gruse.

Pemurbs. What about anuuli?

Comment. In the fullowing proof we ue the esistence of triongulutions of serfpeces.
These do exist but we are ust pronning that. they rast.

Reimanm-Aturivity Therrem. Iet $f: R \rightarrow S$ bs a won-constunt holomonplic map between compact Remonu surfuses. Shen
(1)

$$
\begin{aligned}
& x(R)=d x(S)-\sum_{p \in R}\left(v_{f}(p)-1\right) .
\end{aligned}
$$

Proof. There cue only finitely many porite $\rho \in R$ with $V_{f}(\rho)>l$.

Cunstruct a triangulationin of S where the set of wertives $q \cdots q_{k}$ conturis the inuges 1 of $p_{1} \ldots p_{j}$. Cuacy from the uiverse inuagss of the q^{\prime} sthe unp is a sovering map of deyreed so euch open edye lifts to d oper edyes in R.

Con vase the local model of the nap ter slow that we sun estond the lift of the path to its endpoints:

$$
\begin{aligned}
& \text { of } \lim _{t \rightarrow 0} \sigma(t)=0 \text { ten } \\
& \lim _{t \rightarrow 0} \delta_{0} \times(t)=0 \text {, }
\end{aligned}
$$

Each triangle dowisatwis lefts tod topologiail triangles upstiurs since triangles are simply connected.

The Euber duracteristic cav be calculated as the alternating sum of $t^{\prime}+2$ of simplesies is a triagulatori.

$$
\begin{aligned}
& x(S)=\# i(S)-\# c(S)+4 f(s) \\
& x(R)=\# v(R)-\# e(R)+4 f(R)
\end{aligned}
$$

now $\# e(R)=d \# e(S)$ and $\# f(S)=d \cdot \# f(R)$

$$
x(R)-d x(S)=\# v(R)-d \cdot \# v(S) .
$$ write the sem in

terwe of rivages of counting cordinality here.

Wow recall that

$$
\begin{aligned}
& \sum_{p: f(p)=q} v_{p}(p)=d \quad \sum_{q \in V(s)}\left(\sum_{p: f(p)=q} 1-\sum_{p: f(p)=q} \psi(p)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { ropulo pith. } \\
& \text { Onyly afinite } \text {. } \\
& \text { dy unvery } \mathrm{p}^{\text {bo }} \\
& =\sum_{\substack{p \in V(R) \\
f(P)=0}}\left(1-V_{f}(p)\right) \leftarrow \text { firite sum }
\end{aligned}
$$

$$
\begin{aligned}
& =4\left\{\begin{array}{lll}
\stackrel{p_{2}}{p_{2}} & \rightarrow \\
\underset{p_{2}}{\alpha} & \approx \\
\underset{p_{1}}{p_{1}} & \underset{p_{4}}{ } & \rightarrow
\end{array}\right. \\
& \dot{q}_{1} \quad{ }^{\prime} q_{2} \quad{ }^{\prime} q_{3}
\end{aligned}
$$

Note that point p with $\left.Y_{4}()_{0}\right)=1$ make io contribution.

$$
=\sum_{p \in R} 1-v_{f}(p) .
$$

Cor. If $f: r \rightarrow S$ is hal and won soushunt then

$$
g(s) \leq g(R) .
$$

Proof. It is useful here to recurite
the Riemann. Iterieity suction in lerwos of the gens.

$$
\begin{array}{ll}
1-g=\frac{x}{2} \quad g=\frac{x}{2}+1 & 2-2 g(R)=d(2-2 g(s))-\sum V_{p}(p)-1 . \\
-g=\frac{x}{2}-1 & 2 g(R)-2=d(2 g(s)-2)+\underbrace{\sum V_{q}(p)-1}_{\geq 0}
\end{array}
$$

If $S=S^{2}$ then the assertion is true.
of $s \neq s^{2}$ then $2 g(s)-2 \geq 0$ av

$$
\begin{gathered}
2 g(R)-2 \geq d(2 g(S)-2) \geq 2 g(S)-2 \\
g(R) \geq g(S)
\end{gathered}
$$

$$
\begin{aligned}
& \chi(R)=d \cdot \chi(S)-\sum_{p \in R}\left(V_{f}(p)-1\right) . \\
& \underbrace{V_{f}(p)>1}_{\text {Jg9 is chatemumed }}
\end{aligned}
$$

Climin $X(R)<X(s)$. Cossume $X(R), X(s)<0$

$$
\begin{aligned}
x(R) \leq d \cdot x(s) \quad \text { if } x(s) & =2 \text { tum } x(R) \leq 2 . \\
\text { of } x(s) & =0 \text { tem } x(R) \leq 0
\end{aligned}
$$

of $f: R \rightarrow R \quad f$ uot const $x(R)<0$ lien $d=1$.

$$
\begin{aligned}
x(R)-d x(s) & \leq 0 . \\
x(R) & \leq d x(s)
\end{aligned}
$$

