Just time we constructed A invariant functions $\mathcal{C}_{\mathcal{L}}(z) = \sum_{\substack{\chi \in \Lambda}} (z-\chi)^{-e}$ with polos of order & exactly at lattice points for 2:3. We can alternatively thinks of the as a mero. fren. on the compart Riem. surface C/N. Ces such it hus a degree and that degree is & by the degree formula. What about constructing a meromorphic function of degree 2? One approach would be to integrate the 1. form Ezde. (note that we are being coroful to distinguish between bunctions & and 1- borns for were. We could get away with being sloppy here since we are working on C. The underlying fact that is unportant is that the (- form det in 1 moveriant.)

Presumaly would produce something
of the form
$$\sum_{n \in \Lambda} \frac{1}{(2 \cdot 2)^2} + C_A$$
 which were sourcespect.
Subject of integration.
(subject of integ

The freman - Hurwity formula
capalied to
$$P:T^{2} \rightarrow S^{2}$$
 tells in that
 $\chi(T^{2}) = J\chi(S^{2}) - \sum_{2 \in T^{2}} V_{p}^{(2)-1}$
w $0 = 2 \cdot 2 - \sum_{2 \in T^{2}} V_{p}^{(2)-1}$.
Since P line deg. 2 $V_{p}^{(2)+2}$ so there core exactly
1 pt in T^{2} where Plans valence 2.
Prop. P lines valence 2 exactly at the
half-lattice points
Proof.
 $P'=-2 \mathcal{E}_{3}$ and $\mathcal{E}_{3} = \sum_{2 \in T} \frac{1}{(2\pi)^{3}}$ is an
odd function.
 $J_{2} = N_{2}$ then
 $P'(\chi_{0}) = P'(-\chi_{0}) = -P'(-\chi_{0}+2\chi_{0}) = -P'(\chi_{0}).$
So $P'(\chi_{0})=0$. This implies that
for $\chi_{0}r$, $\chi_{1}r$ and $\chi_{0}\chi_{2}$ P line valence

at least 2. But Plus degree 2 so the valence must be exactly 2.

Suire Phus a pole of order 2 at 0,

Palso hus valence 2 at 0.

Prop. The values of Pato, 20, 21, 20+2. are distinct. Proof. P: C/n - Cos has degree 2 and at each half-lattice point it has valence 2,

The degree formula give $2 = \sum_{\substack{p: \mathcal{P}(p) = 2 \\ p: \mathcal{P}(p) = 2}} \sum_{\substack{p' \neq p: \\ p' \neq p: \\ x' \neq x' \neq x' \neq z' = c'} P any additional inverse invaged would give additional give additional give additional positive aoritributions to the degree.$ X Alia situation cent lington.
X p It would give \$(20)=4 instead 20 d1, \$(20)=2. of S(Z)=2.