Just tine we constriveted 1 ivouriant funstions $\varepsilon_{l}(z)=\sum_{\lambda \in 1}(z-\lambda)^{-e}$ wittr polas of onder exactiy at lattive pininte for $l \geq 3$. We can alternatinely thinhs of ε_{e} as a mero. fow on the comparest Diem. surfure \mathbb{C}. ${ }^{\text {Eas a s mole it hus a degree and that }}$ desree is l ly thro degree formulu.

What abont eonstructing a meromoyplic functivin of doyree 2?
One approweh evould be to integrate the 1 form $E_{3} d z$. (lute that we are being careful to doatinguish between functions f and 1-forma $f d z$ hirl. We could get curny intu bering sloppy here since we are worbingon C. The underlying fuct that is inportant is ttat the 1 -form dz is 1 inveriant.)

Presumably would produce someltiving of the form $\sum_{x \in \Lambda} \frac{1}{(z-x)^{2}}+c_{x}$ colindverns convergent.

fustend we will simply poach constinutic C_{2} test words. Consider

$$
\begin{aligned}
& \text { work. Consider } \\
& \cos \lambda=0 c_{i=0} \frac{1}{z^{2}}+\sum_{\lambda<1-(3)} \frac{1}{(z-\lambda)^{2}}-\frac{1}{\lambda^{2}}<c_{\lambda} \\
& \lambda^{2}-(z-\lambda)^{2} \\
& =\lambda^{2}-z^{2}+2
\end{aligned}
$$

Then

$$
\begin{aligned}
\frac{1}{(z-\lambda)^{2}}-\frac{1}{\lambda^{2}}=\frac{\lambda^{2}-(z-\lambda)^{2}}{\lambda^{2}(z-\lambda)^{2}} & =\frac{\left.\lambda^{2}-z^{2}+2 \lambda z-\lambda\right)^{2}}{\lambda^{2}(z-\lambda)^{2}} \\
& =\frac{z(2 \lambda-z)}{\lambda^{2}(z-\lambda)^{2}}
\end{aligned}
$$

where $|z|$ in banded $\left.\left|\frac{z(2 \lambda-z)}{\lambda^{2}(z-\lambda)^{2}}\right| \leq C_{0} \frac{|\lambda|}{\left|\lambda^{4}\right|}=\frac{C_{0}}{\left|\lambda^{3}\right|} \right\rvert\,$.
following the anally is we did before, recalling that the \#of toms grows bivearly we get $M_{k} \leq \frac{c_{1}}{k^{2}}$. fo we get convergence.

Def $P(z)=\frac{1}{z^{2}}+\sum_{\lambda \in \Lambda} \frac{1}{(z-\lambda)^{2}}-\frac{1}{\lambda^{2}}$.
Is $P(z)$ invariant?

$$
d p^{\prime}=\varepsilon_{3} d z
$$ in invariant

Vote $P^{\prime}(z)=-2 \sum_{z \in \Lambda} \frac{1}{(z-z)^{3}}=-2 \varepsilon_{5}(z)$. langrage.
fo $P^{\prime}(z+\lambda)=P^{\prime}(z)$ and $P(z+\lambda)=P(z)+C_{\lambda}$
An particular $\frac{d}{d z}(P(z+\lambda)-P(z))=0$ no

$$
P(z+\lambda)=P(z)+c .
$$

quote also that $P(z)=P(-z)$ suice

$$
\begin{aligned}
& P(z)=\frac{1}{z^{2}}+\sum_{k} \sum_{\lambda \in \Lambda_{k}}(z-\lambda)^{-2}-\lambda^{-2} \\
& P(-\lambda)=\frac{1}{z^{2}}+\sum_{k} \sum_{\lambda \in \Lambda_{k}}^{\sum_{\lambda, ~}(-z-\lambda)^{-2}-\lambda^{-2}} \\
& \\
& =\sum_{-\lambda \in \Lambda_{k}}(-z+\lambda)^{-2}-\lambda^{-2}=\sum_{-\lambda \in \Lambda_{k}}(z-\lambda)^{-2}-\lambda^{-2} .
\end{aligned}
$$

Prop. $P(z)=P(z+x)$.
How does Γ at on $E_{3} d z$? $E_{3} d z$ is invariant.
Let Γ be the group generated by $z \sim-z$ and $z \mapsto z+\lambda$ for $\lambda \in l$.
Elements of M linear part -1 act with fried points:

Cansider $\gamma(z)=-z+\lambda$. folve $\gamma(z)=z$. Aot $z=-z+\lambda$ or $2 z=\lambda$ or $z=\frac{\lambda}{2}$,
fo the set of foised poincte is the set $1 / 2$.
$f_{f} z_{0} \in \Lambda / 2-\Lambda$ thon

If λ_{0} M-2 Λ and $z_{0}=\frac{1}{2} / 2$ then $z_{0} \leftarrow \Lambda / 2-\Lambda$ is fiviod lny z co $-z+\lambda_{0}$ but $z_{0} \notin \Lambda$ to z_{0} is not a pole of P. We lune $P\left(z_{0}\right)=P\left(-z_{0}\right)$

$$
=P\left(-z_{0}+x_{0}\right)+C_{z_{0}}=P\left(z_{0}\right)+C_{z_{0}} \text { bor } C_{z_{0}}=0 \text {. }
$$

Amilory $c_{\lambda_{l}}=0 . \quad P\left(z_{0}+\lambda+\lambda^{\prime}\right)=P\left(z_{0}+\lambda\right)+c_{\lambda}{ }^{\prime}$ $=P\left(z_{0}\right)+C_{\lambda}+C_{\lambda^{\prime}}$ as $\lambda \cos C_{\lambda}$ is a hououoyphicin. Anise it nanishes on genarntors of A it vanishes on all of A.
Thus Pis pariodec and indevees a werouroplic function on \mathbb{C} / Λ of segree z. Pis called the Weieratrans P-function.

The Rieman - Iturnisty formulu upphied to $P: T^{2} \rightarrow S^{2}$ telles un that

$$
X\left(T^{2}\right)=d X\left(s^{2}\right)-\sum_{z \in T^{2}} V_{p}(z)-1
$$

av $\quad 0=2 \cdot 2-\sum_{z \in T^{2}} \nu_{p}(z)-1$.
finse P lus $\operatorname{dog} .2 \quad v_{p}(z) \leq 2$ so there cose swety 4 pts in T^{2} whese P has volence 2.

Prop. Phas valence 2 sactly at the half-lattive pointa
Proof.
$p^{\prime}=-2 \varepsilon_{3}$ and $\varepsilon_{3}=\sum_{x \in \Lambda} \frac{1}{(z-\lambda)^{3}}$ is an odd function,
If $\lambda_{0} \in \Lambda / 2$ then

$$
P^{\prime}\left(\lambda_{0}\right)=-P^{\prime}\left(-\lambda_{0}\right)=-P^{\prime}\left(-\lambda_{0}+2 \lambda_{0}\right)=-P^{\prime}\left(\lambda_{0}\right)
$$

so $P^{\prime}\left(\lambda_{0}\right)=0$. This impleis that for $x_{0} / 2,2,2$ and $z_{0}+\pi / 2 P$ has valewse
at least 2. But Pharos degree 2 so the valence must be exactly?

Swine P hus a pule of oder 2 at 0 , P also hus valence 2 at 0 .

Prop, The values of P at $t_{0, \frac{\pi}{2}}, \frac{\pi_{1}}{2}, \frac{\lambda_{0}+\lambda_{1}}{2}$ are distinct.

Proof. $P: \mathbb{C} / \Lambda \rightarrow \mathbb{C}_{\infty}$ hae degree z and at such half-lattive point it has value 2,

The deynee formula givien $2=\sum_{p: p(p)=q} V_{p}(p)=2+\sum_{p \neq p:} V_{p}(p)$

$$
\begin{aligned}
& P C^{z_{0}} \operatorname{Alize}_{x_{1}}^{z_{2}} \lambda_{x_{3}}^{z_{3}} \rightarrow_{e_{0}}^{z_{0}} d p \\
& \overrightarrow{e_{0}} \overrightarrow{e_{1}} \quad \overrightarrow{e_{2}} \quad \overrightarrow{e_{3}}
\end{aligned}
$$

(This situratión χ cent huppon.
\downarrow p to would give $\delta\left(z_{0}\right)=4$ instend
zo of $\delta(z-0)=$?
ip Any additiorial iuverse inages would
gue additwinal positine eontributions to the degree.

