Recall fram last tince that we are constunting a Topolegial pisture off a hypar-elliptic surface $R=\left\{(z, w): \omega^{2}=P(z)\right\} \quad$ Pleas in suinple atroo $z_{1} \ldots z_{m}$.

Qwre a larpe dish D contaning $z_{1} \ldots z_{m}$ and ares between the z_{j}.

We alvo choose an are connecteng z_{m} to 7D. Wo do thrio in order to mabre the complementory reapoin
singly connected.
Picture could le:

Write V for D-\{aras\} . ~ W e ~ d e f i e d ~
$\phi_{0}, \phi_{1}: V \rightarrow R$ lo y lifting pathos. no plunge tiro role of a birgepinit in V. w_{0} and w_{1} satisfy $w_{j}^{2}=P\left(u_{0}\right)$ and $w_{c}=-w_{0}$

$$
\phi_{j}\left(u_{1}\right)=w_{j} \cdot \exp \left(\frac{1}{2} \int_{\gamma}^{\gamma} \frac{P^{\prime}(z)}{P(z)} d z\right) \cdot\left[\begin{array}{l}
\left(u_{1}, \phi_{j}\left(u_{1}\right)\right) \in R \\
\phi_{j}^{2}\left(u_{1}\right)=P\left(u_{1}\right) .
\end{array}\right.
$$ where γ is a pouts in V from u_{0} to $m_{\text {. }}$.

note that for any point u in $D \quad \phi_{0}\left(u_{1}\right)=-\phi_{1}\left(u_{4}\right)$ so the sets $\left(u, \phi_{j}(u)\right)$ cere disponil莫 foo $u \in D$.

Definer $V_{0}=\left\{\left(u, \phi_{0}(u)\right): u \in D\right\} \quad V_{1}=\left\{\left(u, \phi_{1}(u)\right): u \in D\right\}$ V_{0}, V_{1} are dijon. How do thees doserer intersect? Chimin. ϕ_{j} extends continuously to the z_{j} and Tales the value oo z_{j}.

Proof. The equation $\phi^{2}\left(u_{1}\right)=P\left(u_{1}\right)$ arica us $\left|\phi_{j}(u)\right|^{2}=|P(u)|$ to $\left|\phi_{j}(u)\right|=\sqrt{|P(u)|,}$ If $u \rightarrow z_{j}$ Aten $|P(u)| \rightarrow 0$ so $\left|\phi_{j}(u)\right| \rightarrow 0$.

The wort step is to extend ϕ_{j} to the slits. This will tell us how the sets $\phi_{j}(V)$ are gland toyetor in R_{1}

$$
\phi_{j}\left(u_{ \pm}\right)=w_{j} \cdot \exp \left(\frac{1}{2} \int_{\gamma_{ \pm}}^{\left.\frac{p^{\prime}}{p} d z\right)}\right.
$$

note that

$$
\phi_{0}\left(u_{t}\right)=w_{0} \cdot \exp ()=-w_{1} \cdot \exp ()=-\phi_{1}\left(u_{4}\right) .
$$

Annularly

$$
\phi_{0}\left(u_{-}\right)=-\phi_{1}\left(u_{-}\right)
$$

The bottom slit on Vo is disjoint from tho bottom slit on V_{1}. Animiarly the top tire slits are disjoint. k how do the bottom slits glue to the top slits?

How do these edges pair up in R ?
e_{x}^{0} and e_{+}^{1} are disjoint.
e_{-}^{0} and e_{-}^{\prime} are aferjoint?

Jook at $\phi_{0}\left(u_{+}\right)$curd $\phi_{0}\left(u_{-}\right)$.

$$
\frac{\phi_{0}\left(u_{+}\right)}{\phi_{0}\left(u_{-}\right)}=\frac{w_{0} \cdot \exp \left(\frac{1}{2} \int_{\gamma+} \frac{p^{\prime}}{p} d z\right)}{w_{0} \cdot \exp \left(\frac{1}{2} \int_{\gamma^{-}} \frac{p^{\prime}}{p} d z\right)}
$$

Do there two edge get identifeneid? Culentute:

$$
\begin{aligned}
\frac{\phi_{0}\left(u_{+}\right)}{\phi_{0}\left(u_{-}\right)} & =\exp \left(\pi i \cdot \sum_{j} \omega i n d\left(\gamma_{t} \cdot \gamma_{-}^{-1}, z_{j}\right)\right) \\
& =e^{\pi i \cdot 2}=+1
\end{aligned}
$$

Opposits sides in Vo are identified:

see the pattern: bu l_{0} every other slit has the perporty that the two edges in V_{0} are idontifiect.

Cuse 1 un is even

$R \cap \pi_{2}^{-1}(D)$
Our surfase is lemeonorgshic to a surface of gouns $\frac{u s}{2}$ cirth 2 boundory compronentar

Ris homsomonglive to a soered ose of grmase $\frac{M}{2}-1$ with $2 p^{t a}$ sewoved.
of unis odd:
Thints of ows buse surfere as \mathbb{Q}_{∞} instend of \mathbb{C}.

R is homeomorphic to a surfore of genns $\frac{m-1}{2}$ inth one point rewoved.

