There regions have well defined metricis on their fuces. Phose unctrin together vitro the choice of an oneatabion give sonfermal strenctures an the fuces.

$$
\rightarrow
$$

We cun also thiurls of \mathbb{C} / Λ cas howing not just a comfermal itrueture lut a unetroc structive. 「astion proserved thes unctric structure.
Esample.

Pabre $\lambda_{0}=1, \lambda_{1}=e^{2 \pi i / 6}$
Consider $\gamma(z)=-z+\lambda_{0}+z_{1}=-z+1+e^{\pi i / s}$,
Finsal px. is $\frac{1+C^{7 i} i_{3}}{2} . \quad r(F)=F$.

Quotient surfuce \mathbb{C} / Γ can be identified ivith the boundary of the tetralledron. We eonstructid
(d) $\xrightarrow[A l]{p} \mathbb{C}_{\theta}$
 dey 1
a Peinaun surfase structure on tivs surface earlier in the course.

Conformal isourpplasin

Example E. $\quad \Lambda=\{m+n i\}=\pi^{2} \subset \Phi$.

Viewed as a geometric object this is the pillowcase F.

Vote that it is no longer the boundary of a polygonal region in \mathbb{R}^{3} but it caw still be realized as obtunded from poly zonal regions in \mathbb{R}^{2} glued together along their bounduries by isometries.

Note that the singes of the "cone points" of $P_{0} \pi^{-1}$ are the inayes of the bunch points of P.

Pinduces a conformal
asoworphisin from the bounding of the tetrahedron to T_{∞}, Af this Δ is conf. isomorphic to $\mathbb{C O}_{0}$.

This picture suggests that the points of valence 2 for P are the half. lativic points. Jets code this.
$p^{\prime}=-2 \varepsilon_{3}$ and $\varepsilon_{3}=\sum_{t \in \Lambda} \frac{1}{(t-\lambda)^{3}}$ is an odd function,
If $x_{0} \in \Lambda / 2$ then

$$
P^{\prime}\left(x_{0}\right)=-p^{\prime}\left(-x_{0}\right)=-P^{\prime}\left(-x_{0}+2 x_{0}\right)=-P^{\prime}\left(x_{0}\right),
$$

so $P^{\prime}\left(x_{0}\right)=0$. This implies that for $x / 2, x / 2$ and $x+\pi / 2 \quad P$ has valence
at least 2. But Phis degree 2 so the valence must be exactly?

Sine P hus a pule of oder 2 at 0 , Pulse hus values at 0 .

Vote that this is exusistent with the Reimamn-Iternoty formula:

$$
\begin{gathered}
x(T)-2 x\left(s^{2}\right)=\sum_{v_{p}(p)=1 .} 1-v_{p}(p)=4(-1) . \\
-4
\end{gathered}
$$

Prop, The values of P at $t_{0, \frac{\lambda}{2}}, \frac{\lambda_{1}}{2}, \frac{\lambda_{0}+\lambda_{1}}{2}$ are distinct.

Proof. $P: \mathbb{C} / \Lambda \rightarrow \mathbb{C}_{\infty}$ hae degree 2 and at rock half-lattrie point it has value ?,

The deynce formulu givin $2=\sum_{p: p(p)=q} V_{p}(p)=2+\sum_{p^{\prime} \neq p: i} V_{p}\left(p_{p}\right)$
 give additivial positine enitributions $\overrightarrow{e_{0}} \overrightarrow{e_{1}} \quad \overrightarrow{e_{2}} \quad \overrightarrow{e_{3}}$ to the degree.

Prop. $\left(p^{\prime}(z)\right)^{2}=4 p^{3}(z)-g_{2} p(z)-g_{3}$ for centuin coustunts go and gs thut depend on the lative 1.

Proof $\quad P(z)-\frac{1}{z^{2}}=\sum_{\lambda \in \Lambda-\alpha 0 j} \frac{1}{(z-\lambda)^{2}}-\frac{1}{\lambda^{2}}$
vanshes at o suice eudv torm vousties
at 0 and it is an even frueteoin (swice P and $\frac{c}{z^{2}}$ are even functisins).

Thun $P(z)=\quad z^{-2} T \quad \lambda z^{2}+\mu z^{4}+O\left(z^{6}\right)$

$$
\begin{aligned}
& P^{\prime}(z)=-2 z^{-3}+2 z z+4 \mu z^{3}+O\left(z^{5}\right) \\
& \left(P^{\prime}(z)\right)^{2}=\quad 4 z^{-6} \quad-8 x z^{-2}-16 \mu \quad+0\left(z^{4}\right) \\
& P^{3}(z)=z^{-6}+3 z z^{-2}+3 \mu \quad+O\left(z^{4}\right) \\
& \left.\left(p^{\prime}(z)\right)^{2}-4 p^{3}(z)=-20 \lambda z^{-2}-28 \mu \quad+\alpha z^{5}\right) \\
& -20 k P(z)-28 \mu+O\left(z^{3}\right)
\end{aligned}
$$

T hus $\left(P^{\prime}(z)\right)^{2}-4 P^{3}(z)+20 \lambda P(z)+28 \mu$ lie no prole at 0 and hus value 0 at 0 . stiver the only poles of P rand of occur at lattice pants this function has no otter poles.

Thus we here a biol. fen an a comport Phemian surface so it is constant. Evaluating at 0 we ne the at it vanishes Now set $g_{2}=-20 \lambda$ and $g_{3}=-28 \mu$.

Cor. The polynonial $4 z^{3}-20 \lambda z-28$ ge hav distiuct 0's.

