Pecall thut if f is mut locally canstent
then $f(z)=a_{0}+\ldots a_{k} z^{k}+a_{k+1} z^{k+1} \ldots a_{k} \neq 0$

$$
k=\nu_{f}(0) .
$$

Temna. Iet t be a holoworplin funstion on an open utid, U of 0 in C with $f(0)>0$ (Vfferind but f robicienticilly, Shen there is a ouinites) dids $D \subset U$ centeral at O and

$$
\kappa \nu_{g}(1)=1
$$

a lioloworplic function g evitte $g^{\prime}(0) \neq 0$ and $f(z)=h^{k}(z)$ on D wleare $k=v_{f}(0)$.
proof. $\quad f(z)-a_{k} z^{k}+a_{k c i} z^{k+1}+\ldots$

$$
f(z)=a_{k} z^{k}(\underbrace{\left.1+b_{1} z+b_{2} z^{2}+\ldots\right)}_{9(z)})
$$

where $b_{j}=\frac{a_{k+j}}{a_{n}}$.
Cossume ${ }^{0 \in} U^{\prime}$ iq suall enough lbut
$\left|\sum b_{j} z^{j}\right|<1$ then the vinuge of $z \rightarrow \quad\left(1+b_{1} z+b_{2} z^{2}+\ldots\right)$ is contanied iw a dests un $[-\{0\}$ du portecilar ue sum chouse or brande of
 in thic dils and defure

$$
h(z)=a_{k}^{r_{k}} z g^{1 / k}(z)
$$

$$
\left(r^{\mu / k}, \theta / k\right)=-(r, \theta)
$$

Let $h(z)=a_{k}^{1 / k} z g(z)$ for some shove of
then $h^{k}(z)=a_{k} z^{k}\left(1+b_{1} z+b_{2} z+\cdots\right)=f(z)$,
Seittermore sure $h^{\prime}(0)=a_{k}^{1 / k} \neq 0$.

Phooren. Jet f be a bul, \mathbb{E} valued function in a RRencau surferse R. Let $p \in R$ then there is a locally
invertitilo
function
ϕ_{1} : uldofp
to el as
that $f=\phi_{1}^{k}$

$$
\left(f(w)=\phi_{1}^{k}(\omega)\right)
$$

Sherom. Jet f be a non-constint somplex valued bolourorphic function an a connested Pinnann surface R. Jet $p \in R$ then there is an ivertine balomomooplier function $\phi_{1}: u^{n^{p}} \rightarrow v^{c^{R}}$ sv that $f(z)=\phi_{1}^{n}(z)$ where $u=v_{p}(p)$.

(Ne cun thiris of ϕ_{1} as a drart.)

Prouf,

Culjuiat $\phi_{\alpha} l y$ adding a socest w- $\phi_{\alpha}(p)=0$, tut the attus? Could be.

Apply Jomun to gat h.
Dheall 4 hus valeuse 1 at 0 . Thws 4 is hocally inverticile. ϕ_{1} is bolomorphic and bijeatron Jet $\phi_{1}=h \cdot \phi_{\alpha}$. ϕ_{1} could be in the athase.

Therowit in verate attar a^{\prime}.
 Srewsitimifen. arel ϕ_{r} is hul. and is looly
inertible lu inertible ly
the invere (1) for. Etum. $f=\phi_{c}^{k}$ war p.

Theorem. Sconetrie formulation. of $f: R \longrightarrow S$ is a lolomoyplui map between Rimanum surfoees and $p \in R$ then there are shorts ϕ_{α} with $\phi_{\alpha}(p)=0$ and ψ_{p} with $\psi_{p}(f(p))=0$ where

with $k=v(f, \rho)$.
Proof. There is some eburt ψ, defined in V, with $f(p) \in V_{1}$. Jet $\psi_{\beta}(q)=\psi_{1}(q)-\psi_{1}(f(p)$). vow consider $\psi_{\beta} \circ$ of and find a dart ϕ_{k} in which teri function sauce wirettien as $z \leftrightarrow z^{k}$.

For the west descursion it is useful to tilh abrant an athus of inverse shorts.
feng $\phi_{\alpha}: U_{\alpha}^{\nu R} \rightarrow V_{\alpha}^{\nu^{R}}$ is a shart in C ewhers $\alpha \in A$. It a^{-1} crusist of It $\psi_{\alpha}: V_{\alpha} \longrightarrow U_{x}$ be inverse drarte $\psi_{\alpha}=\phi_{\alpha}$

Set $\psi_{\alpha \beta}=\phi_{\text {e人 }}^{-1}$.

