MA424 Example Sheet 4

4 November 2015

1. For the doubling map $f(x)=2 x \bmod 1$:
(a) What is the orbit of $\frac{1}{3}$?
(b) What is the orbit of $\frac{1}{4}$?
(c) What is the orbit of $\frac{1}{12}$?
2. Let $f_{2}: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R} / \mathbb{Z}$ be defined by $f_{2}(x)=2 x \bmod 1$. Show that a point has a finite orbit for f_{2} if and only if it is rational. When is a point periodic?
3. Let Σ be the shift space:

$$
\Sigma=\left\{\left(\omega_{k}\right)_{k=0}^{\infty}: \omega_{k} \in\{0,1\}\right\}
$$

Let d be the distance given by

$$
d\left(\omega, \omega^{\prime}\right)=2^{-\min \left\{k: \omega_{k} \neq \omega_{k}^{\prime}\right\}}
$$

if $\omega \neq \omega^{\prime}$ and $d(\omega, \omega)=0$.
(a) Show that (Σ, d) is a complete metric space.
(b) Show that it is compact.
4. Let $q_{c}(x)=x^{2}+c$ and $f_{\lambda}(x)=\lambda x(1-x)$. Show that there is a function of the form $h(x)=\alpha x+\beta$ which topologically conjugates q_{c} and f_{μ}. Find an expression for μ, α, β in terms of c.

