MA424 Example Sheet 6 2 December 2015

- 1. Let $f_r(x) = rx(1-x)$ with $r \ge 4$. Show that f_r^n has 2^n fixed points for every $n \ge 1$.
- 2. Let G and G' be the directed graphs associated to the matrices

$$A_G = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$
 and $A_{G'} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$.

Show that the associated shift maps on G_{∞} and G'_{∞} are topologically conjugate.

- 3. Let $f: X \to X$ be a continuous map from a compact metric space X to itself. Define $d_n(x, y) = \max_{0 \le \ell \le n-1} d(f^{\ell}(x), f^{\ell}(y))$. Show that d_n satisfies the axioms of a metric. Show that d_n defines the same topology on X as d.
- 4. Show that a compact metric space possesses a finite (n, ϵ) -spanning set. Show that a compact metric space possesses a finite (n, ϵ) -separated set.
- 5. Compute the entropy of the Smale horseshoe.
- 6. Compute the entropy of a C^2 -diffeomorphism of the circle with an irrational rotation number.
- 7. Compute the entropy of the map $f : [0,1] \to [0,1]$ defined by f(x) = x(1-x).
- 8. Give an example of a continuous map with h(f) > 0 and no periodic points.