MA424 Example Sheet 1

2 October 2014

1. Consider the differential equations for the harmonic oscillator:

$$
\begin{aligned}
\dot{x} & =v \\
\dot{v} & =-k x
\end{aligned}
$$

For a given $t \in \mathbb{R}$ let $f^{t}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the "time advance map" defined by the equation $f^{t}\left(x_{0}, v_{0}\right)=(x(t), v(t))$ where $s \mapsto(x(s), v(s))$ is a solution to the above equations satisfying the initial condition $(x(0), y(0))=\left(x_{0}, y_{0}\right)$. Write the matrix that represents f^{t} and show that it satisfies the defining properties of a dynamical system:
(a) $f^{s} \circ f^{t}=f^{s+t}$
(b) $f^{0}=I d$
2. A natural metric on the circle \mathbb{R} / \mathbb{Z} is given by

$$
d(x, y)=\min \{|b-a|: a \in x+\mathbb{Z}, b \in y+\mathbb{Z}\} .
$$

Show that R_{α} is an isometry with respect to this metric i.e. show that $d\left(R_{\alpha}(x), R_{\alpha}(y)\right)=d(x, y)$.
3. It is not easy to find an n so that the initial digit of 2^{n} is 7 (without using a calculator or computer).
(a) Show that the initial digit of 2^{n} depends on the location of $R_{\theta}^{n}(0)$ in the circle where $\theta=\log _{10} 2$.
(b) Prove that $\log _{10} 2$ is irrational. Note that it is very close to the rational number 3/10.
(c) We have shown that if θ is irrational then orbits of R_{θ} are dense in the circle \mathbb{R} / \mathbb{Z} but, for a given $\epsilon>0$, we may have to choose a very large n in order that the set of points $\left\{R_{\theta}^{j}(0): j=0 \ldots n\right\}$ be ϵ dense in the circle.
(d) Plot the orbit $R_{\alpha}^{n}(0)$ where $\alpha=3 / 10$. Using the geometry of this orbit and the relation between R_{α} and R_{θ} of estimate the value of n for which 9 first appears as an initial digit of 2^{n}. Estimate the value of n for which 7 first appears.
4. Are the following maps lifts of circle homeomorphisms?
(a) $F(x)=x+\frac{1}{2} \sin (x)$
(b) $F(x)=x+\frac{1}{4 \pi} \sin (2 \pi x)$
(c) $F(x)=x+\frac{1}{\pi} \sin (2 \pi x)$
(d) $F(x)=-x+\frac{1}{4 \pi} \sin (2 \pi x)$
5. Show that if F is a homeomorphism of \mathbb{R} such that $F(x+1)=F(x)+1$ then F is a lift of a circle homeomorphism.
6. Show that if F is a lift of f then F^{n} is a lift of f^{n} for any integer n.

