MA424 Example Sheet 2

13 October 2015

Let \mathbb{S} denote the circle \mathbb{R} / \mathbb{Z}.

1. Let f be the diffeomorphism of the circle defined by $f(x)=x+1 / 4+$ $1 / 10 \sin (8 \pi x) \bmod 1$. Find the periodic points, the rotation number and the forward time and backward time behaviour of a typical point. Do the same for $f(x)=x+1 / 2+1 / 10 \sin (8 \pi x) \bmod 1$.
2. Identify \mathbb{S} with $\left\{\mathbb{R}^{2}-0\right\} / \mathbb{R}^{+}$where \mathbb{R}^{+}is the set of positive numbers and \mathbb{R}^{+}acts by scalar multiplication. An invertible linear map on \mathbb{R}^{2} gives a homeomorphism of \mathbb{S}. Find the rotation numbers the homeomorphisms given by the following linear transformations. Describe the forward time behaviour of a typical point.

$$
\left[\begin{array}{cc}
3 & 0 \\
0 & 1 / 3
\end{array}\right],\left[\begin{array}{cc}
0 & -1 \\
1 & 1
\end{array}\right], \quad\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] \text { and }\left[\begin{array}{cc}
-2 & 0 \\
0 & -1 / 2
\end{array}\right]
$$

3. Let \mathcal{O} be the set distinct triples in $\mathbb{S} \times \mathbb{S} \times \mathbb{S}$. Show that \mathcal{O} has exactly two components. If $f: \mathbb{S} \rightarrow \mathbb{S}$ is a homeomorphism then f induces a map from \mathcal{O} to itself by taking (p, q, r) to $(f(p), f(q), f(r))$. Say that f is orientation preserving if it takes each component of \mathcal{O} to itself and orientation preserving otherwise. Show that f is orientation preserving if a lift is monotone increasing and orientation reversing if a lift is monotone decreasing.
4. Let $f: \mathbb{S} \rightarrow \mathbb{S}$ be orientation reversing. Prove that the equation $f(x)=$ x has exactly two solutions. (In other words show that f has exactly two fixed points).
5. Let f be an orientation preserving circle homeomorphism. Prove that all its periodic orbits (if any) have the same period.
