MA424 Example Sheet 3

26 October 2015

1. Let f be an orientation reversing circle homeomorphism. We have seen it has exactly two fixed points. Can it have periodic points of other periods? Which periods? Find examples.
2. Let f be a circle homeomorphism with rotation number $\rho(f)$. Find $\rho\left(f^{-1}\right)$
3. Show that if $g \in C^{1}([0,1])$ then $\operatorname{var}(g) \leq \max _{x \in[0,1]}\left|g^{\prime}(x)\right|$.
4. Give an example of a compact metric space X, a homeomorphism f : $X \rightarrow X$ and a point $x \in X$ such that $\left\{f^{n}(x): n \in \mathbb{Z}\right\}$ is dense but $\left\{f^{n}(x): n \in \mathbb{N}\right\}$ is not dense.

Definition 1 We say that an interval I in the circle is a wandering interval for a circle homeomorphism f if the sets $f^{n}(I)$ are pairwise disjoint and I is not attracted to a periodic point.
5. Show that a minimal homeomorphism of the circle does not have any wandering interval.
6. Show that a non-minimal homeomorphism of the circle with irrational rotation number has a wandering interval.

