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1. Introduction

These notes are based on lectures given at the Mathematical Institute,
University of Warwick in the Autumn 2012. The author is grateful to Sebas-
tian van Strien, Mark Pollicott and Davoud Cheraghi for copies of their own
notes and exercises. The lectures follow the traditional syllabus and are
aimed at explaining mathematical tools and methods used in Dynamical
Systems.

A dynamical system is defined by three objects (X,T, f t). The set X
is called the phase space and is used to describe the state of the dynamical
system. The family of maps f t : X ! X describes the evolution of the
system with time. The variable t 2 T is called the time. In the theory of
dynamical systems the time T is usually one of the following: Z,Z+,R,R+.
It is natural to distinguish the cases of the discrete and continuous time. In
the latter case f t is called a flow.

The phase space X is usually equipped with some additional structures.
For example, X can be a topological space, a metric space, a di↵erentiable
manifold, or a measure space. In these lectures we will discuss many exam-
ples including X = [0, 1], S1, R2, T2 and S2.

The family of maps f t : X ! X must satisfy the following properties:

(1) f t1+t2 = f t1 � f t2

(2) f0 = id
(3) f t respects structures on X

Among various structures, a measure on X plays a distinguished role.
We will not discuss the corresponding class of measure-preserving dynamical
systems as this topic will be discussed in Ergodic Theory taught in Term 2.

In Dynamical Systems we will study trajectories of points: Let x 2 X,
then the trajectory of x is the set

O
x

= { f t(x) : t 2 T } .
If the time is discrete, e.g., T = Z, then

O
x

= { fn(x) : n 2 Z } ,
where fn stands for the composition:

fn = f � · · · � f
| {z }

n times

and f�n = f�1 � · · · � f�1

| {z }

n times
and we will speak about a dynamical system generated by iterations of the
map f = f1.



CHAPTER 1

One Dimensional Dynamical Systems

1. Circle maps

In this section we study properties of dynamical systems generated by
iterations of a circle homeomorphism f : S ! S. So the phase space X = S is
a circle. The time is discrete, i.e., t 2 Z. For any point x 2 S, its trajectory
is the set

O
x

= { fn(x) : n 2 Z } ,
where fn stands for the composition:

fn = f � · · · � f
| {z }

n times

and f�n = f�1 � · · · � f�1

| {z }

n times

.

1.1. Preliminary information. We assume that the circle S = R/N,
i.e. S is a factor-space of R with respect to the following equivalence relation:
x ⇠ y i↵ x � y is integer. Then each point of the circle is considered as
an equivalence class x (mod 1) of a point x 2 R. We define the natural
projection ⇡ : R ! S setting ⇡(x) = x (mod 1). From the definition it
follows that ⇡(x+ j) = ⇡(x) for any x 2 R and any j 2 Z.

The restriction of the projection ⇡ : (0, 1) ! S \ {0} is a bijection,
therefore sometimes it is convenient to think about S as the interval [0, 1]
assuming that 0 and 1 represent a single point in S.

We note that the circle has two possible orientations: clockwise and an-
ticlockwise. We say that the anticlockwise direction on the circle is “positive
direction”.

The circle is a compact metric space. Any two points x, y 2 S with x 6= y
define two (closed) arcs which we denote by [x, y] and [y, x] respectively
(taking the points in the positive direction on the circle). Then we can

define the metric on S by dist(x, y) = min
n

�

�[x, y]
�

�,
�

�[y, x]
�

�

o

, i.e. the distance

equals to the length of the shortest of the two arcs defined by x, y. It is
easy to see, that dist satisfies the axioms of a metric (it is non-negative,
non-degenerate, symmetric, and satisfies the triangle inequality).

The metric is used to define the notion of a continuous map on the circle.

A homeomorphism f : S ! S either preserves or reverses the orientation
of the circle. This property can be described in the following way: take any
three distinct points x, y, z 2 S located in the positive (anticlockwise) order
on the circle (so if you start from x and move anticlockwise you first meet y
and then z), then f(x), f(y), f(z) can be either in the original order or not.
It can be easily checked that the answer is independent of the choice of the
points and, consequently, characterises the homeomorphism f .

1



2 1. ONE DIMENSIONAL DYNAMICAL SYSTEMS

1.2. Rotations. Let ↵ 2 R. A rotation R
↵

: S ! S is defined by

R
↵

(x) = x+ ↵ (mod 1).

Exercise. Show that R
↵

is a homeomorphism.

Obviously,

R
↵

(x) = x+ ↵ (mod 1)

R2
↵

(x) = x+ 2↵ (mod 1)

Rm

↵

(x) = x+m↵ (mod 1) 8m 2 Z
The properties of the trajectory depend on arithmetic properties of ↵.

Rational Rotations: ↵ 2 Q (, ↵ = q

p

, q 2 Z, p 2 N). Since ↵ = q

p

we see

Rp

↵

(x) = x+ p↵ = x+ q = x (mod 1)

So Rp

↵

= id and all trajectories are finite:

O
x

=
�

x, x+ ↵, . . . , x+ (p� 1)↵
 

8x 2 S

Irrational rotations: ↵ 2 R \Q.

Proposition 1. If ↵ is irrational, then for any x its trajectory O
x

is

dense in S.

Proof. Using the pigeonhole principle: for any " > 0 there are numbers
0  k < l  1 + "�1 such that dist(Rk

↵

(x), Rl

↵

(x)) < ".
Let m = l � k. Since rotations preserve distances:

dist(x,Rm

↵

(x)) = dist(Rk

↵

(x), Rl

↵

(x)) < ".

Thus Rm

↵

is a rotation by an angle less than ".
Then for any y 2 S there is n 2 N such that dist(y,Rnm

↵

(x)) < ".
Consequently the set of Rj

↵

(x), j 2 N, is dense in S. ⇤
1.3. Lifts.

Proposition 2. If f : S ! S is a homeomorphism, then there is a

homeomorphism F : R ! R such that ⇡ � F = f � ⇡ where ⇡ : R ! S is the

natural projection.

Proof. Exercise.

Definition. F is called a lift of f .
The definition can be illustrated by a commutative diagram: F is a

homeomorphism such that the following diagram is commutative

R F����! R
?

?

y

⇡

?

?

y

⇡

S f����! S
The lift has the following properties:

(1) F is unique up to adding an integer
(2) If f preserves orientation, then F is strictly increasing and

F (x+ 1) = F (x) + 1.
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(3) If F is a lift of f , then Fn is a lift of fn for any n 2 Z.
(4) If F : R ! R is a strictly monotone map such that F (x + 1) =

F (x) + 1 for all x 2 R, then F is a lift of a circle homeomorphism
f . Moreover, f preserves orientation.

Example. F (x) = x+ ↵ is a lift of the rotation R
↵

.

1.4. Rotation numbers. Let f : S ! S be a homeomorphism and F
be a lift of f . Then

⇢ = lim
n!1

Fn(x)

n
(mod 1)

is called a rotation number of f . We will see that the limit exists and depends
on the choice of F . Nevertheless, the rotation number ⇢ is unique as it is
defined modulo 1.

The rotation number describes an “average rotation angle” for homeo-
morphism f .

Example. For any rotation ⇢(R
↵

) = ↵ (mod 1).

Proposition 3. If f : S ! S is an orientation-preserving homeomor-

phism, F is its lift and x 2 R, then the limit

lim
n!1

Fn(x)

n

exists and is independent of x. Moreover, ⇢ (mod 1) is independent of the

choice of the lift F .

Proof. (1) Existence of the limit for x = 0.
Let k

n

= [Fn(0)] (we use the notation [x] to denote the largest integer
k such that k  x), so k

n

 Fn(0)  k
n

+ 1. Then for any m 2 N
mk

n

 Fmn(0)  m(k
n

+ 1) .

Indeed, the statement is true for m = 1. Suppose it is true for some m.
Then

F (m+1)n(0) = Fmn(Fn(0)) � Fnm(k
n

) = Fnm(0) + k
n

� mk
n

+ k
n

Fmn(Fn(0))  Fnm(k
n

+ 1) = Fnm(0) + k
n

+ 1  m(k
n

+ 1) + k
n

+ 1

i.e., the inequality also true for m replaced by m + 1. The induction in m
implies the inequality for all m 2 N.

Dividing by mn we get

Fnm(0)

nm
2


k
n

n
,
k
n

+ 1

n

�

.

Since the interval is independent of m, we conclude that
�

�

�

�

Fn(0)

n
� Fnm(0)

nm

�

�

�

�

 1

n
.

Now for any n,m 2 N we get
�

�

�

�

Fn(0)

n
� Fm(0)

m

�

�

�

�


�

�

�

�

Fn(0)

n
� Fnm(0)

nm

�

�

�

�

+

�

�

�

�

Fm(0)

m
� Fnm(0)

nm

�

�

�

�

 1

n
+

1

m
.
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Take any " > 0. Then for any m,n > 2
"

we get
�

�

�

�

Fn(0)

n
� Fm(0)

m

�

�

�

�

< " .

Thus F

n(0)
n

is a Cauchy sequence, hence convergent.

(2) The limit exists for all x and is independent of x. Indeed,
let x 2 R. The function Fn is monotone increasing for any n 2 N. Then for
any y 2 [0, 1]

0  Fn(y)� Fn(0)  Fn(1)� Fn(0) = 1.

Then take any x 2 R and let y = x� [x]. Since y 2 [0, 1) we get
�

�Fn(x)� Fn(0)
�

� =
�

�Fn(y)� Fn(0) + [x]
�

�  1 +
�

�[x]
�

� .

Dividing by n we get
�

�

�

�

Fn(x)

n
� Fn(0)

n

�

�

�

�


1 +

�

�[x]
�

�

n
.

The right hand side converges to 0 when n ! 1. So the limit of F

n(x)
n

exists
and

lim
n!1

Fn(x)

n
= lim

n!1

Fn(0)

n
.

(3) Dependence of ⇢ on the lift. Let F̃ be another lift of f . Then
there is a number j 2 Z such that F̃ (x) = F (x)+ j for all x. Then check by
induction that F̃n(x) = Fn(x) + nj and consequently

F̃n(x)

n
=

Fn(x) + nj

n
=

Fn(x)

n
+ j ! ⇢+ j .

Consequently, ⇢(F̃ ) = ⇢(F ) + j and, in particular, ⇢ mod 1 is independent
of the lift. The proposition is proved. ⇤

1.5. Periodic trajectories. A point p 2 S is called periodic if p =
fn(p) for some n 2 N. The smallest n is called the period, the trajectory of
a periodic point is called a periodic trajectory. If n = 1, the periodic point
is called a fixed point of f .

Proposition 4. Let f be a homeomorphism on the circle. The rotation

number of f is integer if and only if it has a fixed point.

Proof. If f reverses orientation, it has a fixed point and its rotation number
is zero (Exercise). So we need to consider the orientation preserving case
only. Let f be an orientation-preserving homeomorphism.

(). Let p = f(p) and x 2 R be such that ⇡(x) = p. Let F be a
lift of f . Since f(p) = p we have F (x) = x + m for some m 2 Z. Then
F 2(x) = F (x+m) = x+ 2m and by induction Fn(x) = x+ nm. Using the
definition of the rotation number we get

⇢(F ) := lim
n!1

Fn(x)

n
= lim

n!1

x+ nm

n
= m,

which is integer.
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)). Let F̃ be a lift of f and ⇢(F̃ ) = m 2 Z. Then F = F̃ �m is also a
lift of f . Moreover, ⇢(F ) = ⇢(F̃ )�m = 0 (see the last step in the previous
proof).

Consider the iterates of the zero: Since F is increasing, the sequence
Fn(0) is monotone (it is increasing if F (0) > 0 and decreasing otherwise).
Suppose the sequence is unbounded. Then there is n0 2 N such that
|Fn0(0)| > 1. Then |Fmn0(0)| > m for all m 2 N. Dividing by mn, we
get

|Fmn0(0)|
mn0

>
m

mn0
=

1

n0
.

This contradicts to ⇢(F ) = lim
n!1

F

n(0)
n

= 0. Therefore Fn(0) is bounded.
A bounded monotone sequence has a limit. So there is x⇤ = lim

n!1 Fn(0).
Since F is continuous we can swap F and lim to get

F (x⇤) = F
⇣

lim
n!1

Fn(0)
⌘

= lim
n!1

Fn+1(0) = x⇤ .

Let p⇤ = ⇡(x⇤) = x⇤ (mod 1). It follows f(p⇤) = p⇤, so p⇤ is a fixed point
of f . ⇤.

Corollary 5. A circle homeomorphism has a rational rotation number

if and only if it has a periodic orbit. More precisely, ⇢(f) = m

n

if and only

if there is p 2 S such that fn(p) = p.

Proof. From the definition of the rotation number it follows that ⇢(fn) =
n⇢(f) where n 2 N. Then note that a periodic point of period n is a fixed
point of fn and apply Proposition 4. ⇤

Exercises:

(1) Let f be a circle homeomorphism. Prove that if its rotation number
⇢ 2 Q, then any point x 2 S is either periodic or converges to some
periodic orbit, i.e. there is a periodic point p such that

lim
n!1

dist(fn(x), fn(p)) = 0.

(2) Let f be an orientation preserving circle homeomorphism. Prove that all
its periodic orbits have the same period.

(3) Let f be an orientation reversing circle homeomorphism. We have seen it
has exactly two fixed points. Can it have periodic orbits of other periods?
Which periods are possible? Find examples.

(4) Given ⇢(f). Find ⇢(f�1). /Hint: F�1 is a lift for f�1/

1.6. Topological equivalence. Let f : X ! X and g : Y ! Y be
homeomorphisms of some topological spaces X and Y respectively. We
say that f and g are topologically conjugate if there is a homeomorphism
h : X ! Y such that g = h � f � h�1. In other words, the following diagram
is commutative:

X
f����! X

h

?

?

y

?

?

y

h

Y
g����! Y

The homeomorphism h is called a topological conjugation between f and g.



6 1. ONE DIMENSIONAL DYNAMICAL SYSTEMS

The topological conjugacy introduces an equivalence relation among dy-
namical systems. This relation is called topological equivalence.

We note that hmaps trajectories of f into trajectories of g. In particular,
fixed points of f are mapped into fixed points of g and periodic trajectories
are mapped into periodic trajectories of the same period.

Let f, g : S ! S be two circle homeomorphisms. They are topologically
conjugate, if there is a homeomorphism h : S ! S such that h � f = g � h,
i.e., the following diagram is commutative:

S f����! S

h

?

?

y

?

?

y

h

S g����! S
We can say that g is obtained from f by changing a parameterisation (i.e.
the angle variable) on the circle.

Proposition 6. Let circle homeomorphisms f and g be topologically

conjugate. If the topological conjugation preserves orientation, then ⇢
f

= ⇢
g

(mod 1), otherwise ⇢
f

= �⇢
g

(mod 1).

Proof. Since f and g are topologically conjugate, there is a homeomorphism
h such that g = h � f � h�1. Let F and H be lifts of f and h respectively.
Then G = H � F �H�1 is a lift of g. Let k

n

= [Fn(0)] and x = H(0). Then

Gn(x)

n
=

H � Fn �H�1(x)

n
=

H � Fn(0)

n
=

H(Fn(0)� k
n

)± k
n

n
.

The sign is positive if H is increasing and negative if H is decreasing. Taking
into account that |Fn(0)�k

n

|  1 we can take the limit n ! 1 and conclude
that

⇢(G) = lim
n!1

Gn(x)

n
= ± lim

n!1

k
n

n
= ± lim

n!1

Fn(0)

n
= ±⇢(F ) .

⇤

In particular we get the following corollary: Two rotations R
↵

and R
�

are topologically conjugate if and only if ↵ = ±� (mod 1). Note that the
map x 7! �x (mod 1) topologically conjugates R

↵

and R�↵

.

1.7. Poincaré’s Theorem. Definition. A homeomorphism is called
minimal , if every orbit is dense in the phase space.

Example. Any irrational rotation R
↵

is minimal.

Let h : S ! S be a homeomorphism which preserves orientation. The
following commutative diagram defines a circle homeomorphism f :

S f����! S

h

?

?

y

?

?

y

h

S ����!
R

↵

S
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In other words, f := h�1 � R
↵

� h is a circle homeomorphism. Moreover,
Proposition 6 implies that ⇢(f) = ⇢(R

↵

) = ↵ (mod 1). Moreover, f is
minimal as h maps a dense set into a dense set.

Theorem 7 (Poincaré’s Theorem). Any minimal circle homeomorphism

is topologically conjugate to an irrational rotation.

Before proceeding to the proof of the theorem we state and prove a
statement which will be useful more than once (=twice). Let us define the
sets ⇤

x0 ,⌦ ⇢ R by

⇤
x0 =

n

Fn(x0) +m : m,n 2 Z
o

,

⌦ =
n

n⇢+m : m,n 2 Z
o

.

We note that ⇤
x0 = ⇡�1{fn(⇡x0) : n 2 Z} and ⌦ = ⇡�1{Rn

⇢

(0) : n 2 Z},
where ⇡ is the natural projection ⇡ : R ! S.

Lemma 8. Let f be a circle homeomorphism and x0 2 S. If the rotation

number ⇢ is irrational, then the map T : ⇤
x0 ! ⌦ defined by

T (Fn(x0) +m) = n⇢+m

is a bijection. Moreover, T is strictly increasing,

T (x+ 1) = T (x) + 1 and T (F (x)) = T (x) + ⇢ for all x 2 ⇤
x0 .

Proof of Lemma 8. Since ⇢ is irrational, neither f nor R
⇢

have any
periodic point. Consequently, the maps Z2 ! ⇤

x0 and Z2 ! ⌦, defined by

(m,n) 7! Fn(x0) +m and (m,n) 7! n⇢+m

respectively, are bijective. Therefore T is a bijection as a composition of two
bijections.

Now take any x1, x2 2 ⇤
x0 such that x1 < x2. There are n1, n2,m1,m2 2

Z such that x
j

= Fn

j (0) +m
j

for j = 1, 2. So we have

Fn1(0) +m1 < Fn2(0) +m2 .

Let y = Fn2(0). Then

Fn1�n2(y) < y +m2 �m1 .

Exercise: Let Fn(y) < y + m for some y 2 R, n,m 2 Z. If n > 0 then
⇢(F ) < m

n

, and if n < 0 then ⇢(F ) > m

n

.1

Consequently, if n1 > n2 then ⇢ < m2�m1
n1�n2

and if n1 < n2 then ⇢ >
m2�m1
n1�n2

. In both cases we obtain

n1⇢+m1 < n2⇢+m2 .

So T (Fn1(0) +m1) < T (Fn2(0) +m2) and T is indeed strictly increasing.

1
Case n < 0. Let z = F

n

(y). Then F

n

(y) < y + m implies z < F

|n|
(z) + m so

F

|n|
(z) > z �m. Applying the inequality several times, we get F

k|n|
(z) > z � km using

induction:

F

k|n|
(z) = F

(k�1)|n|
(F

|n|
(z)) > F

(k�1)|n|
(z �m) = F

(k�1)|n|
(z)�m > z � km .

Then

F

k|n|(z)
k|n| >

z�km

k|n| , and taking the limit we get ⇢ � m

n

. An equality is not possible as

⇢ is irrational.
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Let x = Fn(x0) +m then T (x) = n⇢+m. So

T (x+ 1) = T (Fn(x0) +m+ 1) = n⇢+m+ 1 = T (x) + 1

T � F (x) = T (Fn+1(x0) +m) = (n+ 1)⇢+m = T (x) + ⇢

It follows directly that T (x+ 1) = T (x) + 1 and T (F (x)) = T (x) + ⇢ for all
x 2 ⇤

x0 . ⇤

Now we are ready to prove Poincaré’s theorem.

Proof of Poincar

´

e’s Theorem. Since f is minimal, it has no pe-
riodic points (periodic orbits are finite sets, hence not dense in S). Con-
sequently, the rotation number ⇢ is irrational. We construct a lift of a
homeomorphism which conjugates f and R

⇢

.
Let F be a lift of f , x0 2 R and ⇤ = ⇤

x0 . Since both ⇡⌦ and ⇡⇤
x0 are

dense in S (⇤
x0 due to the minimality of f and ⌦ due to Proposition 1), ⌦

and ⇤
x0 are both dense in R. Moreover T : ⇤ ! ⌦ is strictly increasing by

Lemma 8. Consequently, there is a unique continuous function H : R ! R
such that H

�

�

⇤
x0

= T . Moreover, H is strictly increasing, and both H and

H�1 are continuous.2

Finally, the continuity implies that H inherits properties of T :

H(x+ 1) = H(x) + 1 and H � F (x) = H(x) + ⇢ for all x 2 R.

The first property implies that H is a lift of a circle homeomorphism h and
the second one implies the identity h � f = R

⇢

� h. ⇤

We just proved that if f is a minimal homeomorphism of the circle, there
is a homeomorphism h which solves the equation

h(f(x)) = h(x) + ⇢ (mod 1) .

This is a linear equation on the function h. Its solution is defined up to
adding a solution of the corresponding homogeneous equation. Indeed, if
h̃ is another solution of the same equation, then h0 = h � h̃ satisfies the
homogeneous equation

h0(f(x)) = h0(x) (mod 1).

The equation implies that h0 is constant on a trajectory of x. Since the
trajectory is dense and h0 is continuous, we conclude that h0 is constant.
So a solution of the original equation is unique up to adding a constant.
This freedom can be used to chose which point in S is mapped to zero.

In particular, it follows that the choice of x0 in the proof defines that
map h uniquely.

2
Exercise: Let X,Y ⇢ R be dense and

˜

f : X ! Y be a strictly monotone bijection.

Then there is a unique homeomorphism f : R ! R such that f

��
X

=

˜

f .
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1.8. Denjoy’s Theorem. Before applying Poincaré’s theorem to a
homeomorphism f , we need to check if f is minimal or not. A direct proof
of minimality is not always straightforward. The next theorem shows that
the minimality property can be deduced from smoothness properties of the
map.

Definition. We say that a continuous function g : [0, 1] ! R has bounded
variation if its variation,

var(g) := sup

(

n�1
X

i=0

�

�g(x
i+1)� g(x

i

)
�

� : 0 = x0 < x1 < . . . x
n

= 1, n 2 N
)

,

is finite.

Exercise. Show that if g 2 C1([0, 1]), then var(g)  max
x2[0,1] |g0(x)|.

Theorem 9 (Denjoy’s Theorem). Let f be a circle homeomorphism with

an irrational rotation number ⇢. If f 2 C1
and w(x) = log f 0(x) has bounded

variation, then f is topologically conjugate to R
⇢

.

We will need two technical statements before proceeding to the proof of
the theorem.

Lemma 10. Let f be a circle homeomorphism with an irrational rota-

tion number. There is a sequence n
k

" 1 (i.e.monotone increasing and un-

bounded) such that for any x 2 S the intervals (x
i

, x
i+n

k

), where x
i

= f i(x)
and 0  i < n

k

and (x
i

, x
i+n

k

) is the shortest arc with the ends at x
i

and

x
i+n

k

, are disjoint.

Proof. Let y
k

= Rk

⇢

(0), k 2 Z, be the trajectory of 0 under R
⇢

, an
irrational rotation which has the same rotation number as the homeomor-
phism f .

Let n0 = 1. Then define n
k

for k � 1 recursively:

n
k

:= min{ i 2 N : dist(y0, yi) < dist(y0, yn
k�1) } .

Since the positive trajectory of an irrational rotation is dense, any interval
contains infinitely many y

i

with i > 0 and, consequently, n
k

is defined. The
sequence n

k

corresponds to times of consecutive closest returns to zero as

dist(y0, yi) � dist(y0, yn
k�1) > dist(y0, yn

k

)

for 0 < i < n
k

and, consequently, the sequence is monotone, n
k

> n
k�1.

Now suppose that the intervals (y
i

, y
i+n

k

) with 0  i < n
k

are not
disjoin. Then y

j

2 (y
i

, y
i+n

k

) for some 0  i, j < n
k

. Since y
j

is inside the
interval and the rotation preserves distances:

dist(y0, yi�j

) = dist(y
j

, y
i

) < dist(y
i

, y
i+n

k

) = dist(y0, yn
k

),

dist(y0, yi+n

k

�j

) = dist(y
j

, y
i+n

k

) < dist(y
i

, y
i+n

k

) = dist(y0, yn
k

).

If i > j, the first inequality contradicts the definition of n
k

. If i < j, the
second one contradicts the definition of n

k

.
Now let f be a homeomorphism with an irrational rotation number

⇢. The monotonicity of the function T of Lemma 8 implies that, for any
i, j, k 2 Z, f i(x) 2 [f j(x), fk(x)] if and only if Ri

⇢

(0) 2 [Rj

⇢

(0), Rk

⇢

(0)].
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Consequently, the sequence n
k

is the same for all homeomorphisms with the
rotation number ⇢ and does not depend on the choice of x0 2 S. ⇤

Lemma 11. Let f be a C1
di↵eomorphism of the circle with an irrational

rotation number. If there is a sequence n
k

2 N, n
k

" 1 and C > 0 such that

�

�(fn

k)0(x)
�

�

�

�(f�n

k)0(x)
�

� > C 8x 2 S, 8k 2 N

then f is minimal.

Proof. Suppose that there is x 2 S such that its orbit is not dense.
Let Y = O

x

. Y is closed so its complement is open and, by our supposition,
not empty. Consider an open interval I ⇢ S \ Y with end points in Y . Let
I
n

= fn(I). The intervals I
n

are disjoint.3 Let |I
n

| be the length of I
n

. Since
the interval are disjoint

P

n

|I
n

|  1 (as the length of the circle is equal to
1). So necessarily |I

n

| ! 0.
On the other hand we can write for n = n

k

|I
n

|+ |I�n

| =

Z

I0

�

|(fn)0(z)|+ |(f�n)0(z)|
�

dz

� 2

Z

I0

p

|(fn)0(z)||(f�n)0(z)|dz � 2
p
C|I0| .

The last inequality contradicts to |I
n

| ! 0. Thus f is minimal. ⇤

Proof of Denjoy’s Theorem. Take any x 2 S and let x
m

= fm(x)
for m 2 Z. Let n

k

be the sequence defined by Lemma 10. The inverse
function theorem and the chain rule imply that

�

�

�

log(fn

k)0(x)(f�n

k)0(x)
�

�

�

=

�

�

�

�

log
(fn

k)0(x0)

(fn

k)0(x�n

k

)

�

�

�

�



�

�

�

�

�

n

k

�1
X

i=0

log f 0(x
i

)�
n

k

�1
X

i=0

log f 0(x
i�n

k

)

�

�

�

�

�


n

k

�1
X

i=0

�

�log f 0(x
i

)� log f 0(x
i�n

k

)
�

�  Var(w) .

The last inequality uses that the intervals (x
i�n

k

, x
i

) = f�n

k((x
i

, x
i+n

k

))
are disjoint due to Lemma 10. Consequently,

(fn

k)0(x)(f�n

k)0(x) � exp (�Var(w)) .

Then Lemma 11 implies that f is minimal. Finally, Poincaré’s Theorem
implies that f is topologically equivalent to R

⇢

. ⇤

3
Indeed, let I = (a, b), a, b 2 Y . If f

i

(I) \ f

j

(I) 6= ;, i 6= j, then f

j�i

(I) \ I 6= ;
and either f

j�i

(a) 2 I or f

j�i

(b) 2 I. Consider the former case and set y = f

j�i

(a) (the

latter case is similar). Since a 2 Y there is a sequence i

k

such that f

ik
(x) ! a. Since

f is continuous f

j�i+ik
(x) ! y = f

j�i

(a) which implies that y 2 Y but y 2 I ⇢ S \ Y .

Contradiction implies that the intervals are disjoint.
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1.9. Wandering intervals. Definition. We say that an interval I ⇢
S is wandering, if its iterates I, f(I), f2(I), . . . are pairewise disjoint and I
is not attracted by a periodic point.

If f does not have any periodic point, the second part of the definition is
automatically satisfied. We only note that this requirement his introduced
to ensure that a circle homeomorphism with a rational rotation number does
not have wandering intervals: in that case every orbit is either periodic or
converges to a periodic one. On the other hand, in the case of an irrational
rotation number the second requirement of the definition does not add any
restriction (independently of its precise meaning) as there are no periodic
points.

We already proved that an irrational rotation does not have any wan-
dering interval (as every orbit is dense). Denjoy’s theorem states that a C2

di↵eomorphism of S is topologically conjugate to an irrational rotation, so
it is minimal and does not have any wandering interval.

The following construction provides an example of a C1 di↵eomorphism f
which has a wandering interval. Therefore, f is not minimal and, conse-
quently, is not topologically conjugate to an irrational rotation.

1.10. Denjoy’s example. For every irrational ↵ 2 (0, 1), there is a

di↵eomorphism f : S ! S with rotation number ↵ (mod 1) which has wan-

dering intervals.

The idea of Denjoy’s example is illustrated on the figure below:

We start with an irrational rotation setting x
n

= n↵ (mod 1). At each
point x

n

, we cut the circle and glue in an interval I
n

of length `
n

. Then we
construct a di↵eomorphism, such that f(I

n

) = I
n+1 and on S \ [

n2ZIn the
map is left “unchanged”. (The illustration from Wikipedia)

Now let us provide an accurate description of the example.

(1) Take an irrational number ↵ 2 (0, 1).
(2) Take a sequence of positive numbers (`

n

)+1
n=�1 such that

L =
X

n2Z
`
n

< 1,
1

2
<

`
n+1

`
n

< 2, and
`
n+1

`
n

�!
n!±1

1 .
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Any sequence which satisfies these properties can be used.4

(3) Let x
n

= n↵� [n↵] (in the essence, this is the trajectory of x0 = 0
of the rotation by ↵).

Properties: x0 = 0, x1 = ↵, x
n

2 [0, 1), (x
n

)
n2Z is dense in [0, 1].

(4) Define a sequence (a
n

)
n2Z by

a0 = 0 and a
n

= (1� L)x
n

+
X

k :x
k

2[x0,xn

)

`
k

.

Properties: the sum is convergent, a
n

2 [0, 1), the map x
n

7! a
n

is
monotone increasing.

Proof: Since the sequence (x
k

)
k2Z is dense in the interval [0, 1],

any interval contains infinitely many x
k

. Thus the sum contains
infinitely many terms. Since all terms are positive and any partial
sum (a sum other any finite subset of indeces) does not exceed L,
the total sum is independent of the order of terms and does not
exceed L. It follows 0  a

n

< 1.
Monotonicity of the map x

n

7! a
n

is obvious.
(5) Define intervals I

n

⇢ (0, 1) by

I
n

= (a
n

, b
n

), b
n

= a
n

+ `
n

.

Properties: I
n

⇢ (0, 1). The intervals I
n

are pairwise disjoint.
Proof: Since ↵ is irrational x

n

6= x
m

for all n 6= m. Suppose
x
n

< x
m

, then

a
m

� a
n

= (1� L)(x
m

� x
n

) +
X

k :x
k

2[x
n

,x

m

)

`
k

� `
n

.

So b
n

= a
n

+ `
n

< a
m

and I
n

\ I
m

= [a
n

, b
n

] \ [a
m

, b
m

] = ;.
(6) Define a sequence (C

n

)
n2Z by

C
n

= 2

✓

`
n+1

`
n

� 1

◆

.

Properties: �1 < C
n

< 2,

lim
n!±1

C
n

= 0 , and

Z

b

n

a

n

C
n

�

✓

x� a
n

`
n

◆

= `
n+1 � `

n

,

where �(x) = 1� |1� 2x|. For your information: this is the graph
of � : [0, 1] ! [0, 1]:

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Proof: Exercise /easy/.

4
For example, `

n

=

1
n

2+25
. We note that

L =

1X

n=�1

1

n

2
+ c

2
=

⇡ coth c⇡

c

< 1 for c � 4,

other properties are easy to check. I use c = 5 to produce illustrations.
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(7) Define a function F 0 for x 2 [0, 1] by

F 0(x) =

(

1 + C
n

�(x�a

n

`

n

) if 9n such that x 2 I
n

,

1 x 2 C := [0, 1] \ [
n2ZIn,

Define F 0(x) = F 0(x� [x]) for all other x 2 R.
Properties: F 0 : R ! R is continuous, periodic, F 0(x) > 0 for

all x 2 R and
Z 1

0
F 0(x)dx = 1 .

Proof: Exercise.

0.2 0.4 0.6 0.8 1.0

0.8

0.9

1.0

1.1

1.2

Figure 1. Graph of the function F 0 constructed numerically

for ↵ =
p
5�1
2 and `

n

= 1
n

2+25 . This function is equal to 1 on
the set C = [0, 1] \ [

n

I
n

.

(8) Define the function F : R ! R by

F (x) = a1 +

Z

x

0
F 0(t)dt .

Properties: F is a di↵eomorphism, dF

dx

(x) = F 0(x), F (x + 1) =
F (x) + 1 for all x 2 R.

Proof: Exercise /easy/.
(9) Corollary: there is a di↵eomorphism f : S ! S, such that F is a

lift of f .

Proposition 12. The di↵eomorphism f has the following properties:

A. ⇡I0 is a wandering interval for f , where ⇡ : R ! S is the natural

projection x 7! x (mod 1).
B. ⇢(f) = ↵ (mod 1).

Proof. First we take any n 2 Z and show that F (a
n

) = a
n+1 if xn 2 [0, 1�↵)

and F (a
n

) = a
n+1 + 1 if x

n

2 [1� ↵, 1).
Indeed, the definition of F (item 8 in the list above) and the properties

of C
n

(item 6) imply

F (a
n

) = a1 +

Z

a

n

0
F 0(x)dx = a1 + a

n

+
X

k:I
k

2[0,a
n

)

Z

I

k

C
k

�

✓

x� a
k

`
k

◆

dx

= a1 + a
n

+
X

k : a
k

2[0,a
n

)

`
k+1 �

X

k : a
k

2[0,a
n

)

`
k

.
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Using that x1 = ↵,

a1 = (1� L)↵+
X

x

k

2[0,↵)

`
k

and a
n

= (1� L)x
n

+
X

x

k

2[0,x
n

)

`
k

,

we get

F (a
n

) = (1� L)(↵+ x
n

) +
X

k :x
k

2[0,x
n

)

`
k+1 +

X

x

k

2[0,↵)

`
k

.

The definition x
n

= n↵� [n↵] implies that

x
n+1 =

⇢

x
n

+ ↵, if x
n

+ ↵ < 1,
x
n

+ ↵� 1, if x
n

+ ↵ � 1.

In the first case, x
k

2 [0, x
n

) i↵ x
k+1 2 [↵, x

n+1). Indeed x
k+1 = x

k

+↵ < 1.
Then

F (a
n

) = (1� L)x
n+1 +

X

k :x
k

2[0,x
n

)

`
k+1 +

X

x

k

2[0,↵)

`
k

= (1� L)x
n+1 +

X

k :x
k

2[↵,x
n+1)

`
k

+
X

x

k

2[0,↵)

`
k

= a
n+1 .

In the second case, x
k

2 [0, x
n

) i↵ x
k+1 2 [0, x

n+1) [ [↵, 1). Indeed, x
k+1 =

x
k

+ ↵ if x
k

2 [0, 1� ↵) and x
k+1 = x

k

+ ↵� 1 if x
k

2 [1� ↵, x
n

). Then

F (a
n

) = (1� L)(x
n+1 + 1) +

X

k :x
k

2[0,x
n

)

`
k+1 +

X

x

k

2[0,↵)

`
k

= (1� L)x
n+1 + 1� L+

X

k :x
k

2[0,x
n+1)[[↵,1)

`
k

+
X

x

k

2[0,↵)

`
k

= (1� L)x
n+1 + 1� L+

X

k :x
k

2[0,x
n+1)

`
k

+
X

x

k

2[0,1)

`
k

= a
n+1 + 1 .

We have just proved that

F (a
n

) =

⇢

a
n+1, if x

n

+ ↵ < 1,
a
n+1 + 1, if x

n

+ ↵ � 1.

Since

F (b
n

)� F (a
n

) =

Z

I

n

F 0(x)dx = `
n

+

Z

a

n

+`

n

a

n

C
n

�

✓

x� a
n

`
n

◆

dx = `
n+1,

we see that the interval I
n

= (a
n

, b
n

) is mapped either to (a
n+1, bn+1) or to

(a
n+1 + 1, b

n+1 + 1). Let J
n

= ⇡I
n

. Then f(J
n

) = J
n+1. The intervals J

n

are disjoint as I
n

⇢ (0, 1) are disjoint. So J
n

are wandering.
Part A of the proposition is proved.

Now we find the rotation number of f . Let k
n

= [n↵] for n 2 Z. Let us
prove that

Fn(0) = k
n

+ a
n

.
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Proof. The statement is true for n = 1. Indeed, x1 = ↵ 2 (0, 1) implies
k1 = 0. On the other hand, F 1(0) = a1. Continuing by induction, we
suppose that Fn(0) = k

n

+ a
n

for some n. Then

Fn+1(0) = F (Fn(0)) = F (a
n

+ k
n

) = F (a
n

) + k
n

= a
n+1 + k

n+1 .

To check the last equality two cases are to be considered: x
n

+ ↵ < 1 and
x
n

+ ↵ � 1.
The induction implies Fn(0) = k

n

+a
n

for all n 2 N. Similar arguments
are used to prove the statement for negative n .

Finally we can find the rotation number: Since Fn(0) = k
n

+ a
n

and
n↵ = k

n

+ x
n

, we get
�

�

�

�

Fn(0)

n
� ↵

�

�

�

�

=

�

�

�

�

Fn(0)� n↵

n

�

�

�

�

=

�

�

�

�

a
n

� x
n

n

�

�

�

�

 1

n
.

Taking the limit n ! 1:

lim
n!1

Fn(0)

n
= ↵.

Since F is a lift of f , we get ⇢(f) = ↵ (mod 1).

Remark: The set C = [0, 1] \ [
n2ZIn is closed and every point of C is

a boundary point, the Lebesgue measure of C is positive (equals to 1�L ⇡
0.38) but C does not contain any interval. So C is a Cantor set of positive
Lebesgue measure.

Remark: There is a unique continuous function h : S ! S such that for every
n the interval Jn is mapped to the single point xn (mod 1). Obviously, h is not
invertible. Since the sequence (xn)n2Z is dense in [0, 1], the map h is surjective.
Moreover, the following diagram is commutative:

S f����! S

h

?

?

y

?

?

y

h

S ����!
R↵

S

We say that f is semi-conjugate to the rotation R↵.

Definition. We say that g : Y ! Y is topologically semiconjugate to f : X ! X,
if there exists a continuous surjection h : X ! Y such that the following diagram
commutes:

X
f����! X

h

?

?

y

?

?

y

h

Y
g����! Y
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0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 2. Graph of the function h constructed numerically

for Denjoy’s example with ↵ =
p
5�1
2 . This function simicon-

jugates f and R
↵

.

1.11. Families of circle maps. Example: Consider the map f : S !
S defined via its lift:

F (x) = x+ ↵+ " sin(2⇡x)

where " and ↵ are constant.
If |"| < 1

2⇡ , then F 0(x) > 0. Consequently, F is strictly monotone. The
inverse function theorem implies that F�1 is continuously di↵erentiable.
Moreover, F (x + 1) = F (x) + 1 for all x 2 R, hence F is a lift of a circle
di↵eomorphism f .

For " = 1
2⇡ the map F is strictly monotone, but F 0(12) = 0 so the inverse

map F�1 is not di↵erentiable at the point F (12). Thus F : R ! R is a
homeomorphism only.

This map depends on two parameters ↵ and ". Let ⇢ = ⇢(↵, ") be the
rotation number of f . If " = 0, then f is obviously linear rotation and
consequently ⇢(↵, 0) = ↵ (mod 1). Let us fix " 6= 0. A typical graph of
⇢(↵, ") looks like this one:

The function ⇢(↵, ") has the following properties. The rotation number
is non-decreasing function of ↵. Indeed, if ↵1 < ↵2, then F (x,↵1) < F (x,↵2)
for all x 2 R and consequently ⇢(↵1, ")  ⇢(↵2, ").

It can proved (we are not proving it now) that the function ⇢(↵, ") is
continuos. Moreover, it is locally constant at every rational value. /Indeed,
⇢ is rational if and only if f has a periodic point. If fn(p) = p for some ↵0, "0
and (fn)0(p) 6= 1, then there is a solution of the equation fn(p) = p for all
↵, " in a small neighbourhood of ↵0, "0 – use implicit function theorem/.

If we paint yellow points on the plane (↵, ") which correspond to rational
⇢(↵, ") we will see Arnold’s tongues:
There is a “tongue” rising from every rational point on the ↵-axis.
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0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure 3. “Devil’s staircase”: Graph of ⇢(↵) for the map
f
↵

(x) = x+ ↵+ 1
2⇡ sin 2⇡x (mod 1).

Figure 4. Arnold’s tongues (taken from Wikipedia:
http://en.wikipedia.org/wiki/Arnold tongue)

2. Expanding maps of the circle

Definition. A continuously di↵erentiable map f : S ! S is called expanding

if |f 0(x)| > 1 8x 2 S.
Remarks:

(i) Since S is compact and f 0 continuous there is a constant K such
that |f 0(x)| > K > 1 8x 2 S.

(ii) f is not a homeomorphism (it is not invertible).
(iii) If f 0(x) > 1, then f is orientation-preserving. Otherwise it is ori-

entation reversing.
(iv) We will mainly consider the orientation preserving case.
(v) If f is expanding then f2 is also expanding. Moreover, f2 is ori-

entation preserving. Indeed, the chain rule implies that (f2)0(x) =
f 0(f(x))f 0(x) > 1.

Examples.

(1) f(x) = mx (mod 1), m 2 N, m > 1.
(2) f(z) = zm, |z| = 1, z 2 C. (Note: set z = e2⇡ix, you’ll get the

previous example).

Let f be expanding, then f is a local di↵eomorphism, i.e., for each x
there are open intervals U, V ⇢ S such that x 2 U and f : U ! V is a
di↵eomorphism. Since S is compact, for any y 2 S the number of preimages
is finite and independent of y.
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Definition. Let f be an expanding map of the circle and y 2 S. The
number of preimages of y is called the degree of f .

Example. Let f(x) = mx (mod 1), m � 2, integer. Then deg(f) = m.

Definition. A function F : R ! R is called the lift of f if ⇡ � F = f � ⇡,
i.e., the following diagram is commutative:

R F����! R
?

?

y

⇡

?

?

y

⇡

S f����! S
The lift has the following properties:

(1) F is unique up to adding an integer
(2) If f preserves orientation, then F is strictly increasing and

F (x+ 1) = F (x) + d

where d is the degree of f .
(3) If f reverses orientation, then F is strictly decreasing and

F (x+ 1) = F (x)� d.

Example. Let f(x) = mx (mod 1), m � 2, integer. Then F (x) = mx.

Proposition 13. If f, g : S ! S are both expanding, then deg(f � g) =
deg(f) deg(g). In particular, deg(fn) = (deg(f))n for all n 2 N.

Proof. Count the number of preimages. ⇤
Recall, that x 2 S is called a periodic point of period n if x = fn(x).

The least n > 1 is called a period of p.

Proposition 14. If f : S ! S is expanding, orientation preserving and

d = deg(f), then there are exactly dn � 1 points p 2 S such that fn(p) = p.

Proof. Let n = 1. The number of solutions of the equation x = f(x),
x 2 S equals to the number of solutions of the equation x = F (x) (mod 1),
x 2 [0, 1). The latter coincides with the number of integer values of the
function g(x) := F (x) � x when x 2 [0, 1). The function g is monotone
increasing and

g(1)� g(0) = F (1)� 1� F (0) = d� 1.

So the number of fixed points is exactly d� 1.
For n > 1, the proposition follows immediately as deg(fn) = deg(f)n.

⇤
It follows, that the number of periodic points of the prime period n

equals to dn � dn�1.
Since a periodic orbit consists of a finite number of points, it is not dense.

Thus an expanding maps is not minimal.

Example (Symbolic dynamics). Consider the linear doubling map f(x) =
2x (mod 1).
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We can use binary numeral system: any x 2 [0, 1] can be written in the
form

x =
a1
2

+
a2
22

+
a3
23

+ . . .

where a
k

2 {0, 1}. Then

f(x) =
a2
2

+
a3
22

+
a4
23

+ . . .

So we see that any x 2 S can be represented by a sequence (a
k

)1
k=1 and the

map f acts on these sequences as a shift, which deletes the first elements
and then shifts every element of the sequence to the left:

� : (a1, a2, a3, . . .) 7! (a2, a3, . . .).

The map � : ⌃ ! ⌃ where

⌃ =
n

(a1, a2, a3, . . .) : a
k

2 {0, 1}
o

is called a shift map. This representation simplifies the study of the dynam-
ics. For example, we can easily deduce that there is a dense orbit. Indeed,
let

⌃
f

=
n

(a1, . . . , an) : n 2 N, a
k

2 {0, 1}
o

be the set of all finite sequences. Obviously, the set
(

x =
n

X

k=1

a
k

2k
: n 2 N, (a

k

) 2 ⌃
f

)

is dense in [0, 1]. The set ⌃
f

is countable, so we can concatenate all its
elements in a single infinite sequence and take x0 2 (0, 1) which has this se-
quence as its binary representation. Its orbit, {fn(x0) : n 2 N}, is dense (as
every finite binary number appears at the beginning of the binary expansion
of fn(x0) for some n).

2.1. Symbolic Dynamics for an expanding map on the circle.
Let f : S ! S be expanding of degree 2. In the previous lecture we proved
that there is a unique fixed point p 2 S, f(p) = p. Moreover, since p has
exactly two preimages, there is a unique point q 6= p such that f(q) = p.
These two points define two intervals A0, A1 ⇢ S: A0 = [p, q] and A1 = [q, p].
Note that the intervals are chosen to be closed. Obviously,

S = A0 [A1 and A0 \A1 = {p, q}.

For any x 2 S we define a sequence (!
k

)1
k=0 such that

!
k

=

⇢

0 if fk(x) 2 A0

1 if fk(x) 2 A1

Since A0 [A1 = S such a sequence exists for all x 2 S. The sequence is not
necessarily unique as A0\A1 6= ;. The definition is obviously ambiguous for
the points p and q. Moreover, if fk0(x) 2 {p, q} for some k0, then fk(x) = p
for all k > k0 and the definition is ambiguous for all !

k

with k � k0. We
note that the number of these exceptional points is countable because the
set f�k{p} consists of 2k points as deg(fk) = 2k.
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For each of these points we assign two sequences instead of one using
the following additional rules. The sequences

(0, 0, 0, 0, . . .) and (1, 1, 1, 1, . . .)

are assign to the fixed point p. The sequences

(1, 0, 0, 0, 0, . . .) and (0, 1, 1, 1, 1, . . .)

are assign to the point q.
If fk0(x) = q for some k0 � 0, then fk(x) 6= p, q for 0  k < k0 and

consequently !0, . . . ,!
k0�1 are defined uniquely by the general rule. Then

we assign two di↵erent sequences to x

(!0, . . .!
k0�1, 0, 1, 1, 1, 1 . . .) and (!0, . . .!

k0�1, 1, 0, 0, 0, 0 . . .) .

These definitions are designed with the following property in mind: if a
sequence (!0,!1,!2, . . .) represents a point x, then the shifted sequence
(!1,!2, . . .) represents f(x).

Let ⌃ be the shift space:

⌃ =
�

(!
k

)1
k=0 : !k

2 {0, 1}
 

and � : ⌃ ! ⌃,
�(!0,!1,!2, . . . ) = (!1,!2, . . . ),

be the left shift.
Let d be a metric on ⌃ defined by the following rules: (a) if !,!0 2 ⌃

and ! 6= !0, then

d(!,!0) = 2�min{k :!
k

6=!

0
k

},

and (b) d(!,!) = 0.

Exercise: Check that (⌃, d) is a complete metric space. Show that ⌃ is
compact.

Theorem 15. If f : S ! S is an expanding map of the circle, f preserves

orientation and deg f = 2, then there is a continuous surjective map h : ⌃ !
S such that h � � = f � h, i.e., the following diagram is commutative:

⌃
�����! ⌃

?

?

y

h

?

?

y

h

S f����! S
Proof. Take any n 2 N. Then deg fn = (deg f)n = 2n, so there are exactly
2n preimages of p under fn. We denote these points by p

j

starting from p0 =
p and numbering them consecutively following the anticlockwise direction
on the circle

fn(p
j

) = p for 0  j  2n � 1.

It is convenient to set p2n = p0. These points define 2n intervals which
we denote by A

!0...!n�1 = [p
j

, p
j+1] , where (!0, . . . ,!n�1) is the binary

representation of j:

j = 2n�1!0 + 2n�2!1 + · · ·+ 20!
n�1 , !

k

2 {0, 1}.
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(1) fn(A
!0...!n�1) = S \ {p}. The map fn maps the end points of

A
!0...!n�1 to p, and none of the internal of A

!0...!n�1 is mapped to
p.

(2) A
!0...!n�1 is a closed interval of the length

|A
!0...!n�1 | < K�n.

Proof: Let p
j

, p
j+1 be the end points of A

!0...!n�1 . Property 1
implies that fn(A

!0...!n�1) is of the unit length. So
Z

p

j+1

p

j

(fn)0(x)dx = 1 .

The chain rule implies that

(fn)0(x) = f 0(x) f 0(f(x)) f 0(f2(x)) . . . f 0(fn�1(x)) > Kn

as every factor is larger than K. So

1 =

Z

p

j+1

p

j

(fn)0(x)dx � Kn|A
!0...!n�1 |

and the estimate follows directly.
(3) A

!0...!n�1!n

⇢ A
!0...!n�1

Proof: Property 1 implies that in every interval A
!0...!n�1 there

is a unique point q
j

such that fn(q
j

) = q. Since fn+1(q
j

) =
f(fn(q

j

)) = f(q) = p and fn+1(p
j

) = f(fn(p
j

)) = f(p) = p, the
points q

j

and p
j

are end points for the next generation of intervals.
Since q

j

divides [p
j

, p
j+1] in two parts, the rule for numbering of

the intervals implies

A
!0,...,!n�1,0 = [p

j

, q
j

] and A
!0,...,!n�1,1 = [q

j

, p
j+1]

(4) fn(A
!0...!n

) = A
!

n

Proof: Image of an interval is another interval and end-points
are mapped to end-points, so

fn(A
!0,...,!n�1,0) = fn([p

j

, q
j

]) = [p, q] = A0

fn(A
!0,...,!n�1,1) = fn([q

j

, p
j+1]) = [q, p] = A1

(5) f(A
!0,!1,...,!n

) = A
!1,...,!n

.
Proof: For n = 1 this property follows from the previous one.

Suppose the property holds for some n� 1:

f(A
!0,!1,...,!n�1) = A

!1,...,!n�1 .

There is j, 0  j < 2n, such that A
!0,!1,...,!n�1 = [p

j

, p
j+1]. We

already proved that there is a unique q
j

2 (p
j

, p
j+1) such that

fn(q
j

) = q. So we get fn�1(f(q
j

)) = q. It follows:

A
!0,!1,...,!n�1 = [p

j

, p
j+1]

A
!0,!1,...,!n�1,0 = [p

j

, q
j

]

A
!0,!1,...,!n�1,1 = [q

j

, p
j+1]

A
!1,...,!n�1 = [f(p

j

), f(p
j+1)]

A
!1,...,!n�1,0 = [f(p

j

), f(q
j

)]

A
!1,...,!n�1,1 = [f(q

j

), f(p
j+1)]
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So we see that the end points of A
!0,!1,...,!n�1,!n

are mapped by f
to the end points of A

!1,...,!n

and Property 5 follows.

Now we are ready to define the function h : ⌃ ! S. Take any ! =
(!

k

)1
k=0 2 ⌃. Let B

n

(!) = A
!0...!n�1 . The properties above imply that

B
n+1(!) ⇢ B

n

(!) for all n, B
n

are closed, and |B
n

| < K�n. Consequently
the intersections of all B

n

(!) is not empty, and consists of exactly one point.
Thus there is a unique x 2 S such that

{x} =
\

n2N
B

n

(!)

Let h(!) = x.

The function h is continuous. Take any " > 0. Then there is n 2 N
such that K�n < ". Let � = 2�n. Then the definition of the metric on
⌃ implies that if !0 2 ⌃ and d(!0,!) < �, then !0

j

= !
j

for 0  j  n.
Then the definition of B

n

implies that B
n

(!) = B
n

(!0) = A
!0...!n�1 . Since

h(!) 2 B
n

(!) and h(!0) 2 B
n

(!0) we conclude that

dist(h(!), h(!0))  |A
!0...!n�1 | < K�n < ".

Thus h is continuous.

The function h is surjective. Take any x 2 S. We construct the
corresponding sequence ! 2 ⌃ inductively: Let !0 = 0 if x 2 [p, q) and
!0 = 1 otherwise.

Then suppose that for some n � 1 there is a sequence !0, . . . ,!n�1 such
that x 2 [p

j

, p
j+1) where j equals to the binary number !0 . . .!n�1 and p

j

are defined at the beginning of the proof. Then let !
n

= 0 if x 2 [p
j

, q
j

) and
!
n

= 1 if x 2 [q
j

, p
j+1).

Then x 2 B
n

(!) for all n and therefore h(!) = x.

The diagram is commutative. Let x = h(!). Then x 2 B
n

(!) for
all n. According to the construction, B

n+1(!) = A
!0...!n

. Then Prop-
erty 5 implies f(B

n+1(!)) = A
!1...!n

= B
n

(�(!)). Consequently f(x) 2
T

n2ZBn

(�(!)) and
h(�(!)) = f(x) = f(h(!)).

Thus the diagram is commutative.

Theorem 16. Any orientation preserving expanding map of the circle

of degree 2 is topologically conjugate to the linear expanding map f(x) = 2x
(mod 1).

Proof. Take x 2 S. Then there is ! 2 ⌃ such that h(!) = x. Then let
y = !0

2 + !1
22 + !3

23 + . . . The map g : x 7! y defines a continuous map of the
circle which conjugates f and 2x (mod 1).

Remark: the statements remain true if we replace the maps of degree
two by maps of degree m. E.g., any expanding orientation-preserving map
of degree m is topologically conjugate to f(x) = mx (mod 1).

Corollaries.

(1) All orientation preserving expanding map of the circle of the same
degree are topologically equivalent.
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(2) Periodic orbits are dense
(3) There is a dense trajectory
(4) f is topologically mixing: For any two open sets U, V ⇢ S there is

n 2 N such that fk(U) \ V 6= ; for all k � n.

3. Interval maps

3.1. Sharkovskii’s Theorem. Let I = [a, b] ⇢ R be an interval and
f : I ! I a continuous map. The iterates of f can be represented in a
graphical form (see the figure).

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 5. Iterates of an interval map f : [0, 1] ! [0.1].

Fixed points. A fixed point x = f(x) is the intersection of the graph
y = f(x) with the diagonal y = x. Suppose that there is a close interval
J ✓ I such that f(J) ✓ J . Then there is x 2 J such that x = f(x).
Indeed, let J = [c, d]. Then f(c) � c and f(d)  d, so the intermediate
value theorem implies that the graph of f intersects the diagonal, i.e., there
is x such that f(x) = x, c  x  d.

Proposition 17. Let f : I ! I be continuous. If J ✓ I is a closed

interval such that J ✓ f(J), then there is x 2 J such that x = f(x).

Proof. Take m and M be the minimum and maximum f on J re-
spectively. Since f is continuous it attains its extremal values, so there
are x1, x2 2 J such that f(x1) = m and f(x2) = M . Since J ⇢ f(J),
m  x1, x2  M . Consequently, f(x1) � x1  0 and f(x2) � x2 � 0.
Therefore there is x 2 [x1, x2] ⇢ J such that f(x) = x. ⇤

Intervals. The image of a closed interval is a closed interval.

Lemma 18. Let f : I ! I be continuous. If J1, J2 ✓ I are closed

intervals such that J2 ✓ f(J1) then there is a closed interval J0 ✓ J1 such

that J2 = f(J0).

Proof. Let J2 = [y1, y2]. Since J2 ⇢ f(J1), then there is x01 2 J1 such
that f(x01) = y1. Let x2 2 J2 be the nearest point to x01 in the preimage
of y2. If necessary, replace x01 by the nearest preimage of y1 inside [x01, x2].
Then J0 is defined by its endpoints in x1, x2. ⇤
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Corollary 19. If J ⇢ I is a closed interval such that J ✓ f(J) then

there is an infinite sequence of closed intervals I
n

such that I0 = J , I
n+1 ✓ I

n

and f(I
n+1) = I

n

for all n � 0.

Proof. Let I0 = J . Since I0 ✓ f(I0), the lemma implies there is I1 ⇢ I0
such that f(I1) = I0. Now continue by induction, suppose that there are
intervals I0, . . . , In such that I

k+1 ✓ I
k

and f(I
k+1) = I

k

for 0  k < n� 1.
In particular, I

n

✓ I
n�1 and f(I

n

) = I
n�1. So I

n

✓ f(I
n

). Consequently,
there is I

n+1 ✓ I
n

such that f(I
n+1) = I

n

. The corollary follows by induction
in n. ⇤
Periodic points. Recall, x 2 I is a periodic point of period n 2 N, if
x = fn(x). If taken literally, this definition does not define the period
uniquely, as x = fn(x) implies that x = fnm(x) for all m 2 N. We say that
the period n is prime, if the points x, f(x), f2(x), . . . , fn�1(x) are distinct.
Equivalently, n is a prime period if x 6= fk(x) for 1 < k < n but x = fn(x).

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 6. Example of a map with an orbit of prime period 3

Theorem 20 (Sharkovskii). If f : I ! I is continuous and there is a

point of the prime period 3 then for each n 2 N there is a periodic point of

prime period n.

Proof. We have to show that if there is x 2 I such that f(x) 6= x,
f2(x) 6= x and f3(x) = x, then for every n 2 N there is z 2 I such that
z 6= fk(z), 1  k < n and z = fn(z).

Since f(I) ✓ I, there is a fixed point of f , so there is a periodic point of
the prime period n = 1.

Consider the period-3 point. Its orbit consists of 3 points. Let x be
the smallest one. Then either x < f(x) < f2(x) or x < f2(x) < f(x).
For definiteness, consider the first case (the second case can be treated in a
similar way). Define J1 = [x, f(x)] and J2 = [f(x), f2(x)]. Looking on the
positions of the images of the endpoints we conclude that

J2 ✓ f(J1) J1, J2 ⇢ f(J2) .

Take any integer n0 � 0. Since J2 ⇢ f(J2), Corollary 19 implies that there
are intervals

I
n0 ✓ I

n0�1 ✓ · · · ✓ I0 = J2
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such that f(I
k

) = I
k�1. In particular, fn0(I

n0) = I0. Applying f once,
we get fn0+1(I

n0) = f(I0) = f(J2) � J1. Then Lemma 18 implies that
there is I 0 ⇢ I

n0 such that fn0+1(I 0) = J1. Apply f one more time:
fn0+2(I 0) = f(J1) ◆ J2. Since I 0 ✓ J2 we conclude that I 0 ✓ fn0+2(I 0)
and, consequently, there is z 2 I 0 such that z = fn0+2(z).

In order to complete the proof of Sharkovskii theorem we need to check
that n = n0 + 2 is the prime period for z. For n0 = 0 we have by our
construction z 2 J2 and f(z) 2 J1, therefore z is not a fixed point since
J1 \ J2 = {f(x)}.

For n0 � 1, suppose that the period is not prime. Then there is k,
1  k  n � 1, such that z = fk(z). Since z 2 I 0, we get fn0+1(z) 2
fn0+1(I 0) = J1. On the other hand,

fn0+1(z) = fn0+1�k(z) 2 fn0+1�k(I 0) ⇢ fn0+1�k(I
n0) = I

n0�k+1 ✓ J2.

Consequently, fn0+1(z) 2 J1 \ J2 = {f(x)}. So fn0+1(z) = f(x). Since z is
n0+2 periodic and f(x) has period 3, we conclude z = f2(x) and f(z) = x.
Finally we note that x 62 J2 but f(z) 2 f(I 0) ✓ f(I

n0) = I
n0�1 ✓ J2. This

is a contradiction, which implies that the period is prime. ⇤

Example. The tent map T : [0, 1] ! [0, 1] is defined by

T (x) =

⇢

2x x 2 [0, 12 ],
2(1� x) x 2 [12 , 1]

has an orbit of period 3. Indeed,

2

9
T7�! 4

9
T7�! 8

9
T7�! 2

9

Sharkovskii’s theorem implies that T has periodic orbits of all periods.
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0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure 7. The tent map, logistic map and topological conjugacy.

Example. Quadratic map f : [0, 1] ! [0, 1], f(x) = 4x(1�x). The function
h : [0, 1] ! [0, 1], h(x) = 2

⇡

arcsin
p
x, topologically conjugates f and the

tent map T /Exercise/. Consequently, f has periodic orbits of all prime
periods.

Note: we can explicitly find all trajectories of f :

x
n

= sin2(2n⇡✓)

where ✓ = 1
⇡

arcsin
p
x. In fact, the quadratic map is topologically semicon-

jugate to the angle doubling map g : S ! S, g(✓) = 2✓ (mod 1). Indeed, let



26 1. ONE DIMENSIONAL DYNAMICAL SYSTEMS

h : S ! [0.1] be defined h(✓) = sin2(⇡✓). Then we can check it directly:

f(h(✓)) = 4 sin2(⇡✓)
�

1� sin2(⇡✓)
�

= 4 sin2(⇡✓) cos2(⇡✓) = sin2(2⇡✓) = h(2✓) = h(g(✓)) .

Therefore the following diagram is commutative:

S g����! S

h

?

?

y

?

?

y

h

[0, 1] ����!
f

[0, 1]

We note that h is not a homeomorphism (it is smooth and even di↵eren-
tiable but it is not invertible). Recall, that a circle and an interval are not
homeomorphic, i.e., there is no homeomorphism between these two sets.

Remark: Sharkovskii’s ordering.



CHAPTER 2

Topological Dynamical Systems

1. Topological transitivity and mixing

1.1. Definitions. A topological space is a set X together with a col-
lection of subsets of X, called open sets, which satisfy the following axioms:

(1) The empty set and X itself are open.
(2) Any union of open sets is open.
(3) The intersection of a finite number of open sets is open.

The topology is used to define notions of convergence and continuity. In
particular, a map is continuous if the preimage of every open set is open.

Examples.

(a) Let X be a set. Let X and ; be its only open subsets. Then X
is a topological space. In this topology any map f : X ! X is
continuous.

(b) Let X be a set. Let any subset of X be open. Then X is a topo-
logical space. In this topology any map f : X ! X is continuous.

(c) Let X be a metric space. Let

B
r

(x) =
�

y 2 X : dist(x, y) < r
 

.

A set U ⇢ X is open if for any x 2 U there is an open ball B ⇢ U
such that x 2 B. In this topology the continuity coincides with the
usual "-� definition.

Let T 2 {R,Z,R+,Z+}.

A family of maps f t : X ! X is a topological dynamical system if

(1) f t is continuous for all t 2 T
(2) f0 = Id, f t+⌧ = f t � f ⌧ 8t, ⌧ 2 T.

In the case of a flow, we require the map F : X ⇥ T ! X, F (x, t) := f t(x),
to be continuous.

We say that two topological dynamical systems f t : X ! X and gt :
Y ! Y are topologically conjugate if there is a homeomorphism h : X ! Y
such that the following diagram commutes for all t 2 T:

X
f

t

����! X

h

?

?

y

?

?

y

h

Y ����!
g

t

Y

27
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In the case of the discrete time (T = Z,Z+) it is su�cient to require the
commutativity for t = 1 only. The commutativity for all times follows
automatically.

A topological conjugacy maps an orbit of f t to an orbit of gt. In partic-
ular, a fixed point of one system is mapped to a fixed point of another one,
a periodic orbit is mapped to a periodic orbit of the same period, a dense
orbit is mapped to a dense orbit, and so on. So two topologically conjugate
dynamical systems have similar orbit structure.

1.2. Invariant sets. We say that a set A ⇢ X is

(1) positively invariant if f t(A) ⇢ A 8t � 0;
(2) negatively invariant if f�t(A) ⇢ A 8t � 0; 1

(3) invariant if it is both positively and negatively invariant.

Proposition 21. If A ⇢ X is positively invariant, then X \A is nega-

tively invariant.

Examples:

(1) Let x 2 X. The trajectory O
x

= {f t(x) : t 2 T} is positively
invariant

(2) The set of all periodic points is invariant. Let ⌧ > 0. The sets

Per
⌧

=
�

x 2 X : f ⌧ (x) = x
 

and Per =
[

⌧>0

Per
⌧

are positively invariant.
(3) Omega-limit set. Let x 2 X. We say that y 2 !(x) if there is

t
k

! +1 such that f t

k(x) ! y. This set is called an !-limit set.
The !-limit set is positively invariant.

Exercise: !(x) =
T

⌧>0O
+(f ⌧ (x)), where O+(x) = { f t(x) : t � 0 } is a

positive semi-trajectory.

1.3. Topological transitivity. Let X be a topological space and f :
X ! X be a continuous map. Then iterates of f define a topological
dynamical system with discrete time, T = Z+.

Topological dynamical system f t : X ! X is called topologically transi-

tive, if for any two non-empty open sets U, V ⇢ X there is t > 0 such that
f t(U) \ V 6= ;.
Exercise. Topological dynamical system f t : X ! X is topologically tran-
sitive, if for any two non-empty open sets U, V ⇢ X there is t > 0 such that
U \ f�t(V ) 6= ;.

A point x 2 X is called topologically transitive, if O
x

= X.

Exercise. A point is topologically transitive if its orbit visits every non-
empty open subset of X, i.e. for any U ⇢ X open, non-empty, there is t 2 T
such that f t(x) 2 U .

Examples:

(a) An irrational rotation f : x 7! x+↵ (mod 1) is topologically tran-
sitive. All points of S are topologically transitive.

1
f

�t

(A) = {x 2 X : f

t

(x) 2 A } and is defined even if the map f

t

is not invertible.
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(b) An expanding map of the circle (e.g. f(x) = 2x (mod 1)) is topo-
logically transitive. There are topologically transitive points. Some
points are not topologically transitive (e.g. periodic points).

(c) X = Z
p

= {0, 1, . . . , p� 1}, f(x) = x+ 1 (mod p). Topology on X
is discrete (any subset is open). This dynamical system consists of
a single trajectory. So any point in X is topologically transitive.
The dynamical system is topologically transitive.

(d) Let X = {0, 1} with discrete topology. f : X ! X is defined by
f(0) = f(1) = 0. Then O1 = X, so 1 is a topologically transitive
point. But f t is not topologically transitive. Indeed, let U = {0}
and V = {1}, then fnU = U and fnU \ V = ; for all n > 0.

(e) Let X ⇢ [0, 1] be the set of all real numbers in [0, 1] which can be
represented by a finite binary fraction:

X =
�

x : x = a12
�1 + a22

�2 + · · ·+ a
n

2�n, n 2 N, a
k

2 {0, 1}
 

.

Let f : X ! X be defined by f(x) = 2x (mod 1). Then any orbit
is finite (indeed, for any x 2 X there is n 2 N such that fn(x) = 0).
As X is not finite, there is no dense orbit. On the other hand, f t

is topologically transitive.

In order to discuss relations between topological transitivity and topo-
logically transitive points we need some definitions from topology.

A residual set = a countable intersection of open dense sets.2 A topo-
logical space X is a Baire space if any residual set in X is dense in X.

Any complete metric space is a Baire space.
The following theorems can be naturally stated for a Baire space. In

order to avoid writing proofs using the terminology from the topology, we
restrict our discussion to complete separable metric spaces.

A topological space is called separable if it contains a countable dense
set.
Example: Rn, S, C0[0, 1] are separable. Any compact metric space is
separable.

Proposition 22. Let X be a complete separable metric space and f :
X ! X be continuous. The topological dynamical system defined by the map

is topologically transitive if and only if topologically transitive points form a

residual set

Proof. Let B
i

, i 2 N, be a countable collection of open balls such that
any non-empty open set in X contains a ball from this collection.3

2
Example: Irrational numbers form a residual set in R.

3
This collection is called a base of topology. Let (a

j

)

j2N ⇢ X be dense in X. Take

any non-empty open set U ⇢ X. Since (a

j

)

j�1 is dense in X, there is a

j

2 U . Since U is

open, there is k such that B1/k(aj

) ⇢ U . The set of all balls B1/k(aj

) is countable, then

counting the balls we obtain the sequence B

i

.
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Then we note that

x 2 X is topologically transitive

() 8i 2 N 9t 2 T : f t(x) 2 B
i

() 8i 2 N x 2 A
i

:=
[

t2T
f�t(B

i

)

() x 2 A :=
\

i2N

[

t2T
f�t(B

i

).

So A is the set of all topologically transitive points.
The set A

i

:=
S

t2T f
�t(B

i

) is open. Indeed, f t is continuous for any
t 2 T, and B

i

is open, so A
i

is a union of open sets, and hence open.

Suppose that f is topologically transitive. Since B
i

is open and non-
empty, the set [

t>0f�t(B
i

) has a non-empty intersection with every open
set. Consequently, A

i

is open and dense. Then the set A =
T

i2NA
i

is
residual.

Now suppose A is residual. Since X is a Baire space, A is dense. Since
A

i

◆ A for every i, A
i

is also dense. Take any U, V ⇢ X open and non-
empty. Then there is B

i

such that B
i

⇢ U . Since A
i

is dense, V \A
i

6= ; and
consequently there is t 2 T such that f�t(B

i

)\V 6= ;. So f t is topologically
transitive. ⇤

A point x 2 X is isolated if {x} is open. Let X be a metric space. A
point x 2 X is isolated if there is r > 0 such that the open ball B

r

(x) = {x}.

Proposition 23. Let X be a metric space without isolated points and

f : X ! X be continuous. If the topological dynamics system defined by f
has a transitive point, then it is topologically transitive.

Proof. Let x be a topologically transitive point. Let U ⇢ X be open
and non-empty. Then define the “hitting set” by

H(U) = {n 2 T : fn(x) 2 U} .
The set H(U) is infinite. Indeed, suppose H(U) is finite, then there are
finitely many n such that fn(x) 2 U so the set U \ O

x

is finite. On the
other hand, the absence of isolated points implies that U contains infinitely
many points (otherwise we could find a ball which consists of a single point
taking as a radius the least distance between points in U). Then the set
U \ O

x

is non-empty and open. This implies that O
x

is not dense. The
contradiction implies H(U) is infinite.

Let U, V ⇢ X be open and non-empty. The hitting sets H(U) and H(V )
are infinite. Since T = Z+, the unboundedness of H(V ) implies that for any
k 2 H(U) there is m 2 H(V ) such that m > k. Let n = m � k and
y = fk(x). Then y 2 U and fn(y) = fm(x) 2 V . So we found n > 0 such
that fn(U) \ V 6= ; and f is topologically transitive. ⇤

Examples: all system in the list below are topologically transitive.

(1) an elementary periodic cascade: X = { 0, 1, 2, . . . , p � 1 } = Z
p

,
t 2 Z, f t(x) = x + t (mod p). For any x 2 X, O

x

= X. So all
points are topologically transitive.
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(2) an elementary periodic flow: ! 2 R is fixed. X = {|z| = 1} ⇢ C,
t 2 R, f t(z) = eit!z. For any x 2 X, O

x

= X. So all points are
topologically transitive.

(3) irrational rotations: ↵ = !

2⇡ 2 R \ Q. X = {|z| = 1} ⇢ C, t 2 Z,
f t(z) = eit!z. We already checked that all orbits are topologically
transitive. The circle is a compact metric space and R

↵

is invertible,
so f t is topologically transitive.

(4) Expanding maps of the circle, e.g., X = {z 2 C : |z| = 1}, t 2 Z+,
f(z) = zm. We already established existence of a dense orbit.
Moreover, any open set contains an interval. Since the map is con-
tinuous and expanding the image of the interval is a longer interval
(m times longer in the example above, in general use the mean
value theorem for derivatives). Therefore after a finite number of
iterates, the image of the interval will be longer than 1, so it will
intersect all subsets of S. So f t is transitive.

(5) the tent map f : [0, 1] ! [0, 1], f(x) = 1� |2x� 1|. The graphs of
f(x), f2(x), f3(x), f4(x) are shown below:
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It is easy to see that the graph of fn consists of 2n�1 “tents”. So for
any two intervals I, J ⇢ [0, 1] there is n such that f�n(I) \ J 6= ;.
Therefore f t is topologically transitive.

Remark: let us replace the phase space X by X̃ = [0, 1]\Q and
consider the tent map f̃ : X̃ ! X̃ defined by the same formula.
Note that the tent map maps a rational point into a rational one.

For any x 2 X̃, O
x

is a finite set. Indeed, if x = q

p

with

p, q 2 N, then f(x) = q

0

p

with some q0 2 N and the same p. So the
number of points in O

x

is not larger than p. Therefore there are no
topologically transitive points in X̃. Nevertheless, the arguments
above can be used to show that f̃ is topologically transitive.

(6) a topological shift map. X = ⌃ = {0, . . . , p� 1}N, t 2 Z+, f t = �t,
where � : ⌃ ! ⌃ is the shift map:

�(!0,!1,!2, . . .) = (!1,!2, . . .)

We postpone the proof of topological transitivity for � till after
discussing the topology on ⌃.

1.4. Topological mixing. f t : X ! X is topologically mixing if
8U, V ⇢ X open, non-empty, there is t0 2 T such that f tU \ V 6= ; for
all t > t0.

Proposition 24. If f t

is topologically mixing, then f t

is topologically

transitive.
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Proof. Follows directly from the definitions. ⇤
Examples:

(1) an elementary periodic cascade is not mixing. Hint: U = {0},
V = {1}.

(2) an elementary periodic flow is not mixing. Hint: U, V are two small
intervals.

(3) irrational rotations are not mixing. Hint: U, V are two small inter-
vals.

(4) expanding maps of the circle are mixing.
(5) the tent map is mixing.
(6) a topological shift map is mixing /to be proved later/.

2. Shift maps

2.1. Symbolic dynamics. Let X be a topological space and S
k

⇢ X
closed subsets such that

S

N

k=1 Sk

= X and the interiors of S
k

are disjoint
(i.e. an intersection S

k1 \ S
k2 with k1 6= k2 does not contain any open

subset).
Let f : X ! X be a continuous map. Take a point x 2 X and set

x
k

= fk(x). For every k there is !
k

2 {1, . . . , N} such that x
k

2 S
!

k

.
Therefore we can associate with the point x a sequence ! = (!

k

)1
k=0.

If the trajectory of x does not intersect the boundaries of S
k

, the se-
quence ! is defined uniquely.

If the map f is invertible, we can define a be-infinite sequence (!
k

)1
k=�1

in a similar way.
For any sequence ! the set

T

k

f�k(S
!

k

) consists of all points which
follow the itinerary prescribed by the sequence, i.e. fk(x) 2 S

!

k

. The set is
closed (a countable intersection of closed sets) and can be empty.

The definition implies directly that if x corresponds to a sequence !,
then f(x) corresponds to the shifted sequence !0 = �(!), i.e., !0

k

= !
k+1.

We have already seen that an expanding map of the circle is topologi-
cally semiconjugate to a shift map. Topological conjugacy preserves many
important features of the dynamics such as existence and density of peri-
odic orbits, topological transitivity and mixing. Usually it is much easier to
establish these properties for the shift maps.

In this section we will study the shift map in more detail.

2.2. Shift spaces. Let N � 2 be integer and define the shift space

⌃ =
�

1, 2, . . . , N
 N

=
�

(!
n

)1
n=0 : 8n !

n

2 {1, . . . , N}
 

.

The shift space ⌃ is the set of all sequences in {1, . . . , N}.
Let � > 1. For any two sequences !,!0 2 ⌃ let

d
�

(!,!0) = max
n�0

⇢

e(!
n

,!0
n

)

�n

�

,

where

e(i, j) =

⇢

0 i = j
1 i 6= j

.
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Remark: e(i, j) = 1� �
ij

where �
ij

is the Kronecker symbol.

Exercise: Check that d
�

is a metric on ⌃.

The metric defines a topology on ⌃ in the traditional way: First, an
open ball of a radius r > 0 centred at ! 2 ⌃ is given by

B
r

(!) :=
�

!0 2 ⌃ : d
�

(!,!0) < r
 

=
�

!0 2 ⌃ : !
k

= !0
k

if ��k > r
 

.

Then a subset U ⇢ ⌃ is open if for every point ! 2 U there is r > 0 such
that the ball B

r

(!) ⇢ U .

It is easy to check directly from this definition that any open ball is
indeed an open set.

Definition. Let !0, . . . ,!n

2 {1, . . . , N}. A cylinder set is a subset of ⌃

C
!0,...,!n

=
n

(!0
k

)1
k=0 : !

0
k

= !
k

for 0  k  n
o

.

Proposition 25. If ! 2 ⌃, then for any integer n � 0

C
!0,...,!n

= B
�

�n(!) .

Proof. The proposition follows directly from the definitions of the
cylinder, the ball and the metric d

�

. Indeed, !0 2 B
�

�n(!) i↵ d
�

(!,!0) <
��n. Equivalently, !

k

= !0
k

for all k such that ��k � ��n, i.e., for k  n.
The last property is true i↵ !0 2 C

!0,...,!n

. ⇤
Proposition 26. A cylinder set is both open and closed.

Proof. According to the previous proposition any cylinder is an open
ball, hence open.

In order to show that the cylinder set is closed, consider its compliment.
If !00 62 C

!0,...,!n

, then !00
k

6= !
k

for some k, 0  k  n. If !0 2 C
!0,...,!n

,
then !0

k

= !
k

. So d
�

(!00,!0) � ��k. Then B
r

(!00) \ C
!0,...,!n

= ; for all
r < ��k. Consequently, the complement to the cylinder is open, and the
cylinder itself is closed. ⇤

Proposition 27. The space ⌃ is compact.

Proof. Take a sequence !(j) 2 ⌃. Then construct a convergent sub-
sequence inductively. The space ⌃ contains exactly N cylinders C

j

, j =
1, . . . , N .

One of those contains infinitely many elements of the sequence. Denote
it by B1. Take j1 to be the smallest index such that !(j1) 2 B1.

Then repeat inductively, the cylinder B
n�1 of length n � 1 contains

exactly N sub-cylinders of length n. One of those, say B
n

⇢ B
n�1, contains

infinitely many elements. Take j
n

to be the smallest index such that !(j
n

) 2
B

n

and j
n

> j
n�1.

Since diam(B
n

) = ��n ! 0, the subsequence !(j
n

) converges. ⇤
2.3. Shifts. The shift map � : ⌃ ! ⌃ is defined by

(�(!))
k

= !
k+1 for all k � 0.

Every point ! 2 ⌃ has exactly N preimages.

Proposition 28. Periodic points of � are dense in ⌃.
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Proof. A sequence ! 2 ⌃ is a periodic point of period n for the shift
map, i.e., �n(!) = !, i↵ the sequence ! is periodic:

! = (!0, . . . ,!n�1
| {z }

n

,!0, . . . ,!n�1
| {z }

n

,!0, . . . ,!n�1
| {z }

n

, . . .) .

Periodic sequences are obviously dense in ⌃ as every cylinder set contains a
periodic sequence. ⇤
Exercise: Find the number of periodic orbits of period n /without assuming
the period is prime/.

Proposition 29. � : ⌃ ! ⌃ is topologically mixing.

Proof. Take any two non-empty open sets U, V ⇢ ⌃. Since U, V are
open, then for any ↵ 2 U and any � 2 V there is n 2 N such that cylinder
sets

C
↵0,...,↵n�1 ⇢ U ,

C
�0,...,�n�1 ⇢ V .

Take any integer m > n. Consider the sequence

! = (↵0, . . . ,↵m�1
| {z }

m

,�0, . . . ,�n�1
| {z }

n

, . . .) .

Obviously, ! 2 U and �m(!) 2 V . Consequently, U \ ��m(V ) 6= ; for all
m > n and therefore � is mixing. ⇤

2.4. Two sided shifts. Let ⌦ = {1, 2, . . . , N} where N � 2. Consider
the space of all bi-infinite sequences:

⌃ = ⌦Z =
�

(!
n

)+1
n=�1 : !

n

2 ⌦
 

.

Let � > 1 and define a metric on ⌃: For any !,!0 2 ⌃ let

d
�

(!,!0) = max
n2Z

e(!
n

,!0
n

)

�|n| ,

where

e(i, j) = 1� �
ij

=

⇢

1 if i 6= j
0 if i = j

The definition implies that !0 is close to ! if both sequences share a large
common block centred around the zero position.

Proposition 30. ⌃ is a compact metric space.

Proof. The proof is similar to the case of a single sided shifts /Exer-
cise/. ⇤

The shift map � : ⌃ ! ⌃ shifts a sequence by one position to the left,
i.e., !0 = �(!) if and only if !0

n

= !
n+1 for all n 2 Z.

Proposition 31. � : ⌃ ! ⌃ is a homeomorphism.

Proposition 32. Periodic points of � : ⌃ ! ⌃ are dense in ⌃. The

map � : ⌃ ! ⌃ is a topological mixing.

Proof. The proof is similar to the case of a single sided shifts /Exer-
cise/. ⇤
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3. Smale horseshoe

In this section we will study an example of a di↵eomorphism with the
following remarkable property: there is a closed invariant subset ⇤ such that
the restriction of the di↵eomorphism on ⇤ is topologically conjugate to the
shift map.

We will define this map explicitly, but similar constructions are of much
more general interest.

Linear horseshoe map. Let � = [0, 1]⇥[0, 1]. Consider a di↵eomorphism
f : R2 ! R2 such that the image f(�) has the form of a horseshoe as shown
on the figure.

S2

S1

Let us define the restriction of the map f on � more precisely. Consider
two closed rectangles L,R ⇢ �:

L = [0, 13 ]⇥ [0, 1] and R = [23 , 1]⇥ [0, 1] .

Let f be any di↵eomorphism such that f�1(�) \� = L [ R and on these
rectangles f is linear:

f(x, y) =

⇢

(3x, 13y), (x, y) 2 L ,
(3� 3x, 1� 1

3y), (x, y) 2 R .

Moreover, any point from � \ (L [R) has an image outside �.
This definition implies that F (L) = S1 and F (R) = S2 where

S1 = [0, 1]⇥ [0, 13 ] and S2 = [0, 1]⇥ [23 , 1] .

Moreover, f(�) \� = S1 [ S2. Then iterating the map one more time, we
note that �\f(�)\f2(�) consists of 4 horizontal rectangular strips. Then
� \ f(�) \ f2(�) \ f3(�) consists of 8 horizontal rectangular strips, and
T

n

k=0 f
k(�) consists of 2n horizontal strips. This construction resembles the

definition of the Cantor set as on each step the middle third is removed.

� \ f(�) � \ f(�) \ f 2(�) � \ f(�) \ f 2(�) \ f 3(�)

! ! !

f�1(�) \�

S2

S1

f�1(S1) f�1(S2)

Using similar argument, show that
n

\

k=0

f�k(�) consists of 2n vertical strips.
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Proposition 33. The set ⇤ defined by

⇤ =
\

n2Z
f�n(�)

is closed, non-empty and invariant. Moreover, it is a product of two middle-

third Cantor sets.
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Figure 1. The set ⇤

Proposition 34. The restriction of f onto ⇤ (i.e. f : ⇤ ! ⇤) is

topologically conjugate to � : ⌃ ! ⌃, a left shift on the space of two-sided

sequences of two symbols.

Proof. Let ⌃ = {1, 2}Z and � : ⌃ ! ⌃ be the left shift. Take any
! 2 ⌃ and any integer r � 1, then define the set

C
r

(!) =
\

�rn<r

f�n(S
!

n

) .

It has the following properties

• C
r

(!) is closed and non-empty;
• C

r

(!) is a square;
• The length of its side is 3�r;
• C

r+1(!) ⇢ C
r

(!) .

It follows that the intersection
T

r�0Cr

(!) consists of exactly one point,
denote it by x. Then define a map h : ⌃ ! ⇤ by setting h(!) = x.

It follows that
h(!) 2

\

n2Z
f�n(S

!

n

)

and fn(x) 2 S
!

n

for all n 2 Z.
h is continuous: Let � > 1 and d

�

be the metric on ⌃. Take any r and
any !0 2 ⌃ such that d

�

(!,!0) < ��r. Then !0
n

= !
n

for all |n| < r. So
C
r

(!0) = C
r

(!). We note h(!) 2 C
r

(!) and h(!0) 2 C
r

(!0). Then taking
into account the size of the square C

r

(!) we conclude that kh(!)�h(!0)k <
2·3�r. The continuity of h follows from the usual ✏-� definition of continuity.
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h is injective: Suppose that for some x 2 ⇤ we can find two sequences such
that h(!) = h(!0) = x. Then the definition of h implies that fn(x) 2 S

!

n

and fn(x) 2 S
!

0
n

for all n 2 Z. Since S1 \S2 = ;, we conclude that !
n

= !0
n

for all n.

h is surjective: Let x 2 ⇤. Then, for any n 2 Z, fn(x) 2 �\f(�) = S1[S2.
Let !

n

= 1 if fn(x) 2 S1 and !
n

= 2 if fn(x) 2 S2. So x 2
T

n2Z f
�n(S

!

n

)
and h(!) = x.

h is a homeomorphism: Since ⌃ and ⇤ are compact and h is a continuous
bijection, the inverse map h�1 is also continuous.

h is a topological conjugacy: For any ! 2 ⌃ we have established that h(!) =
x i↵ fn(x) 2 S

!

n

. Let y = f(x). Obviously, fn(y) = fn+1(x) 2 S
!

n+1 .
Consequently, h(�(!)) = f(h(!)), and the following diagram commutes:

⌃
�����! ⌃

h

?

?

y

?

?

y

h

⇤ ����!
f

⇤

⇤

4. Topological entropy

Topological entropy measures complexity of trajectories of a topological
dynamical system. It has an additional important property: the topological
entropy is invariant under topological conjugacy.

For the sake of simplicity we define the topological entropy only for a
dynamical system on a compact metric space (X, d). The metric d will be
used in the definition, but later we will check that the entropy depends
on the topology only as equivalent metrics lead to the same value of the
topological entropy.

4.1. Topological entropy. Let (X, d) be a compact metric space and
f : X ! X be continuous. The topological entropy of f is defined using the
following construction.

Let n 2 N. Then the equation

d
n

(x, y) = max
0in

d(f i(x), f i(y))

defines a metric onX (Exercise: check the axioms of the metric are satisfied).
In particular, d0(x, y) = d(x, y). Then let

B(x, n, ") = {y 2 X : d
n

(x, y) < "}

be a ball with respect to the metric d
n

.
A set E ⇢ X is called an (n, ")-spanning set if X ✓

S

x2E B(x, n, ").

Note: Since B(x, n, ") ⇢ X, we can also write X =
S

x2E B(x, n, ").

Let S(n, ") denote the least cardinality of an (n, ")-spanning set. Since
X is compact, any open cover of X contains a finite subcover, so S(n, ") is
a positive integer.
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Then we define an exponential growth rate:

h(f, ") = lim sup
n!1

1

n
logS(n, ").

We note that the upper limit always exists (but can be +1). The function
h(f, ") is monotone: if 0 < "0 < " then h(f, "0) � h(f, "). This property
follows from the observation that S(n, "0) � S(n, ") as an (n, "0)-spanning
set is also (n, ")-spanning.

Finally, the topological entropy of f is defined by

h(f) = lim
"!+0

h(f, ") .

The monotonicity implies that the limit exists (but can be +1). Since
S(n, ") � 1 we conclude that h(f, ") � 0 and h(f) � 0.

4.2. Equivalent metrics and the topological entropy. We say that
two metrics d and d0 are equivalent on X is they define the same topology,
i.e., the collection of open sets are the same in (X, d) and (X, d0). It is
easy to see that two metrics are equivalent if and only if the identity map
I : (X, d) ! (X, d0), I(x) = x, is a homeomorphism. /Hint: a map is
continuous i↵ preimage of every open set is open./

Proposition 35. Let (X, d) be a compact metric space, d0 a metric on

X equivalent to d and f : X ! X continuous. Then h
d

0(f) = h
d

(f).

Proof. We recall that a continuous function on a compact metric space
is uniformly continuous. The uniform continuity of the identity map I :
(X, d) ! (X, d0) implies that for any " > 0 there is � = �(") > 0 such that
for any x, y 2 X

d(x, y) < � =) d0(x, y) < " .

Consequently, B
d

(x, n, �) ✓ B
d

0(x, n, "). If E is (n, �)-spanning with respect
to d, then it is also (n, ")-spanning with respect to d0. So S

d

(n, �) � S
d

0(n, ").
We conclude h

d

(f, �) � h
d

0(f, ") and, taking the limit, h
d

(f) � h
d

0(f).
Swapping d and d0 we also get h

d

0(f) � h
d

(f). So h
d

0(f) = h
d

(f). ⇤

4.3. Examples.

(1) Let ↵ 2 R and R
↵

(x) = x+ ↵ (mod 1). Then h(R
↵

) = 0.
Proof: Note that the linear rotation preserves distances, so

d
n

(x, y) = max0in

d(f i(x), f i(y)) = d(x, y). Consequently, B(x, n, ") =
B(x, ") for all n. Consequently, S(n, ") is independent of n. It fol-
lows immediately that

h(f, ") = lim sup
n!1

logS(n, ")

n
= 0

and

h(f) = lim
"!+0

h(f, ") = 0 .

(2) If f : X ! X is an isometry and X is compact, then h(f) = 0.
The proof is essentially the same as in the case of the rotation.
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(3) f : S ! S is a C2 di↵eomorphism with an irrational rotation num-
ber, h(f) = 0.

This property follows from the fact that f is topologically con-
jugate to a rotation (Denjoy theorem).

Remark: If f : S ! S is a homeomorphism, then h(f) = 0. /No
proof is given in the lectures/

(4) Let f : S ! S be defined by f(x) = mx (mod 1) where the integer
m � 2 is the degree of f . Let us show that h(f) = logm.

Indeed, take any " 2 (0, 12). Since the map is linear, for any
n 2 N we get

B(x, n, ") = B(x, "

m

n

)

where B(x, r) is the ball in the usual metric on S.
As the circle has a unit length, the smallest (n, ")-spanning set

consists of

S(n, ") =



mn

"

�

+ 1

elements. Then

h(f, ") = lim sup
n!1

1

n
logS(n, ") = lim

n!1

1

n
log

✓

mn

"

�

+ 1

◆

= lim
n!1

logmn

n
+ lim

n!1

1

n
log

✓

m�n

✓

mn

"

�

+ 1

◆◆

= logm.

Finally,
h(f) = lim

"!+0
h(f, ") = logm.

4.4. Entropy and topological semiconjugacy.

Proposition 36. Let (X, d
X

) and (Y, d
Y

) be two compact metric spaces,

f : X ! X and g : Y ! Y continuous, and ⇡ : X ! Y be a continuous

surjective map such that the following diagram commutes:

X
f����! X

⇡

?

?

y

?

?

y

⇡

Y
g����! Y

Then h(g)  h(f).

Proof. Since X is compact, ⇡ is uniformly continuous, i.e.,

8" > 0 9� > 0 : d
X

(x1, x2) < � =) d
Y

(y1, y2) < "

where y1 = ⇡(x1) and y2 = ⇡(x2). Therefore

⇡(B
X

(x, n, �)) ✓ B
Y

(⇡(x), n, ").

As ⇡ is surjective, we conclude that S
X

(n, �) � S
Y

(n, "), which implies
h(f, �) � h(g, "). The proposition follows from taking the limit " ! 0. ⇤

Swapping f and g we obtain the following corollary.
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Proposition 37. Let (X, d
X

) and (Y, d
Y

) be two compact metric spaces,

f : X ! X and g : Y ! Y continuous, and ⇡ : X ! Y be a homeomorphism

such that the following diagram commutes:

X
f����! X

⇡

?

?

y

?

?

y

⇡

Y
g����! Y

Then h(f) = h(g).

Since any expanding map of the circle is topologically conjugate to the
linear expanding map of the same degree, we conclude h(f) = logm where
m is the degree of f . (orientation preserving case is assumed)

4.5. (n, ")-separated sets. We give an alternative description of the
topological entropy. Let (X, d) be a compact metric space and f : X ! X
be continuous. Let n 2 N and

d
n

(x, y) = max
0in

d(f i(x), f i(y)).

Let " > 0. A set E ⇢ X is called (n, ")-separated if d
n

(x, y) � " 8x, y 2 E
such that x 6= y.

Since X is compact, the set E is finite (Exercise).
Let N(n, ") be the maximum number of elements in an (n, ")-separated

set.

Proposition 38. Let (X, d) be a compact metric space and f : X ! X
continuous. Then

h(f) = lim
"!+0

lim sup
n!1

1

n
logN(n, ") .

Proof. Step I: we show that S(n, ")  N(n, ")  S( "2 , n).
Let E be an (n, ")-separated set of cardinality N(n, ") (the maximal

possible cardinality). Then
[

x2E
B(x, n, ") = X.

Indeed, if there is y 2 X \
S

x2E B(x, n, "), then y 62 B(x, n, ") for all x 2 E.
Thus d

n

(y, x) � " for all x 2 E and, consequently, E [ {y} is also (n, ")-
separated, which is not possible as the set E already has the largest possible
number of elements.

Consequently, E is (n, ")-spanning. So N(n, ") � S(n, ").

Now let E0 be an ("0, n)-spanning set of cardinality S("0, n). Then
[

x2E0

B(x, n, "0) = X .

Let "0 = "

2 and x 2 E0. For any two points y, y0 2 B(x, n, "0), the trian-
gle inequality implies d

n

(y, y0)  d
n

(y, x) + d
n

(y0, x) < ". Consequently,
B(x, n, "0) \ E contains at most one point. So N(n, ")  S( "2 , n).

Step II. The inequalities of Step I state that

S(n, ")  N(n, ")  S(n, "2).
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Since log is monotone increasing:

1

n
logS(n, ")  1

n
logN(n, ")  1

n
logS(n, "2).

Taking lim sup we get

h(f, ")  lim sup
n!1

1

n
logN(n, ")  h(f, "2)

Taking the limit " ! +0 we get

h(f)  lim
"!+0

lim sup
n!1

1

n
logN(n, ")  h(f)

which completes the proof. ⇤

5. Topological Markov chains

An N ⇥ N matrix is called a transition matrix if all entries A
ij

, 1 
i, j  N , are either 0 or 1.

The matrix A is used to indicate which pairs of consecutive symbols are
admissible in a symbolic sequence: !

i

can be followed by !
j

if and only if
A

ij

= 1. We denote the space of all admissible sequences by

⌃A =
�

(!
n

)1
n=0 : !n

2 {1, . . . , N}, A
!

n

!

n+1 = 1 8n � 0
 

The restriction of the shift map �A = �|⌃A is called a topological Markov

chain associated with the matrix A.

Examples.

1) A =

✓

1 1
1 0

◆

. The shift space ⌃A consists of all sequences which

do not contain the word “22”.

2) A =

✓

1 1
1 1

◆

. The shift space ⌃A = ⌃.

Remark. The space ⌃A consists of all sequences which do not include
blocks of two symbols !

i

!
j

such that A
!

i

!

j

= 0. This space is an important
case of a more general notion of a subshift of finite type, where the shift
space is defined by excluding all sequences which contain a finite word from
a prescribed finite list. Naturally, such shift spaces are invariant under the
shift map.

Remark. A similar definition can be stated for bi-infinitive sequences.

Graphs. We can associate a directed graph with a shift space: vertices of
the graph are labeled 1, . . . , N ; vertex i is connected to vertex j i↵ A

ij

= 1.
Then every trajectory of the shift map can be considered as an infinite path
on the graph.

Let Nm

ij

be the number of paths from i to j which consist of m edges.

Lemma 39. Nm

ij

= (Am)
ij

.
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Proof. If m = 1, then Nm

ij

= A
ij

. We continue by induction:

Nm+1
ij

=
N

X

k=1

Nm

ik

A
kj

=
N

X

k=1

(Am)
ik

A
kj

= (Am+1)
ij

.

⇤
Taking into account that periodic points of the shift map correspond to

periodic sequences we arrive to the following proposition.

Corollary 40. Number of period m points of �A is equal to trace(Am).

A transition matrix A is called irreducible if for any i, j there is n such
that (An)

ij

> 0.
A transition matrix A is called aperiodic if there is n such that (An)

ij

> 0
for all i, j (all elements are positive).

Theorem 41. If transition matrix A is aperiodic, then the corresponding

topological Markov chain �
A

: ⌃
A

! ⌃
A

is topologically mixing and periodic

orbits of �
A

are dense in ⌃
A

.

Proof. The proof is similar to the previously considered case of the full
shift. ⇤
Examples.

(1)

✓

1 1
1 0

◆

is aperiodic.

(2)

✓

1 1
0 1

◆

is not aperiodic.

(3)

✓

0 1
1 0

◆

is not aperiodic.

5.1. Spectral radius (from linear algebra). In order to find the
topological entropy for a topological Markov chain we need to recall some
information from Linear Algebra.

Let A be an N ⇥ N matrix. It has at most N eigenvalues �
i

2 C:
Av

i

= �
i

v
i

for some v
i

6= 0, v
i

2 CN . The number

⇢(A) = max
i

|�
i

|

is called the spectral radius of A. Let kAk be a norm of A, then Gelfand’s
formula says:

⇢(A) = lim
k!1

kAkk1/k

If ⇢(A) 6= 0, then the continuity of the logarithm implies that

log ⇢(A) = lim
k!1

log kAkk
k

.

In the next section we will use the following norm for the matrix

kAk =
N

X

i,j=1

|A
ij

| .
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5.2. Entropy of a subshift of finite type. Let A be a transition
matrix, i.e., A

ij

2 {0, 1} for all i, j 2 {1, . . . , N}. The corresponding shift
space is

⌃
A

=
�

(!
n

)1
n=0 : !n

2 {1, . . . , N}, A
!

n

!

n+1 = 1
 

.

The shift space is a compact metric space. Let �
A

: ⌃
A

! ⌃
A

be the
restriction of the shift map on ⌃

A

.
The definition of the metric on ⌃

A

involves the constant � > 1. The
metrics with di↵erent values of � are equivalent (as the open balls are the
same). Consequently, the topological entropy of a shift map is independent
of the choice of the constant �.

Proposition 42. If the transition matrix A is aperiodic, then the topo-

logical entropy

h(�A) = log ⇢(A) ,

where ⇢(A) is the spectreal radius of the matrix A.

Proof. Let � > 1 be the constant from the definition of the metric d
on ⌃

A

. The metric d
n

from the definition of the topological entropy takes
the form

d
n

(!,!0) = max
0in

d(�i(!),�i(!0)) .

Since �
A

shifts the sequence to the left, we conclude that the ball with
respect to the metric d

n

takes the form:

B(↵, n,��k) = C
↵0,...,↵

n+k

= {! 2 ⌃
A

: !
i

= ↵
i

for 0  i  n+ k}

Now we can find the entropy of the subshift constructing an (n,��k)-separated
set of the largest cardinality. Let W

m

(A) be the set of all words on length
m which are compatible with the transition matrix A:

W
m

(A) = {(↵0, . . . ,↵m�1) : A↵

i

↵

i+1 = 1} .
Since A is aperiodic, there is n0 such that (An0)

ij

> 0 for all i, j. Then a
cylinder C

↵0,...,↵
n+k

with (↵0, . . . ,↵
n+k

) 2 W
n+k+1(A) is non-empty. More-

over such cylinders (of the same length) are pairwise disjoint and the union of
all these cylinders covers the whole shift space ⌃

A

. Let E ⇢ ⌃
A

contain ex-
actly one point from each of these cylinders. The set E is (n,��k)-separated.
Taking into account that any (n,��k)-separated set can have no more than
one point in each of the cylinders, we conclude that the maximal cardinality
of an (n,��k)-separated set equals to the number of cylinders:

N(n,��k) = #W
n+k+1(A) .

Then we use Proposition 38 to find the topological entropy. Let

h̃(�
A

,��k) := lim sup
n!1

log(N(n,��k))

n
= lim sup

n!1

log(#W
n+k+1(A))

n

= lim sup
n!1

log(#W
n+1(A))

n

Since the right hand side is independent of k we get

h(�
A

) = lim
k!1

h̃(�
A

,��k) = lim sup
n!1

log(#W
n+1(A))

n
.
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In order to complete the proof we find the limit. Lemma 39 implies that

#W
n+1(A) =

N

X

i,j=1

(An)
ij

= kAnk .

Taking the limit and using the corollary of Gelfand’s formula, we get

lim
n!1

log(#W
n+1(A))

n
= lim

n!1

log kAnk
n

= log ⇢(A) .

If a sequence converges, lim sup is equal to lim, so we get

h(�
A

) = log ⇢(A)

The proof is complete. ⇤
Additionally we proved that the topological entropy equals to the exponential

growth rate of the number of admissible words:

h(�A) = lim
n!1

log(#Wn(A))

n
.

This formula is interesting as it is more general and provides the topological entropy
not only for the topological Markov chain but also for any subshift of finite type.



CHAPTER 3

Smooth Dynamical Systems

1. Hyperbolic automorphisms of the torus

Let T2 = R2/Z2 be a torus and ⇡ : R2 ! T2 the natural projection,
which assigns an equivalence class to a point. The metric on T2 is defined
by

d(p, q) = min
⇡(x)=p,⇡(y)=q

kx� yk.

Note that T2 = S⇥ S.
Consider a matrix

A 2 SL(2,Z) =
⇢✓

a b
c d

◆

: a, b, c, d 2 Z, ad� bc = 1

�

Proposition 43. Let A 2 SL(2,Z). The map f(x, y) = (ax+by, cx+dy)
(mod 1) is a homeomorphism of the torus.

Proof. It is easy to check that the linear map x 7! Ax maps an equiv-
alence class to an equivalence class (i.e. if x ⇠ x̃ then Ax ⇠ Ax̃), so the
equality y = Ax (mod 1) defines a map from the torus to the torus.

The definition of the metric on the torus implies

d(f(p), f(q))  max{|a|, |b|, |c|, |d|}d(p, q)
for any p, q 2 T2. Thus f is continuous.

The inverse matrix is given by

A�1 =

✓

d �b
�c a

◆

.

So A�1 2 SL(2,Z) and also defines a continuous map T2 ! T2. Obviously,
this map defined by A�1 is the inverse to f . So f�1(x, y) = (dx� by,�cx+
ay) (mod 1) and f is a homeomorphism. ⇤

We say that f is hyperbolic if the matrix A does not have eigenvalues
with absolute value equal to 1. We also say that A is a hyperbolic matrix.
The corresponding automorphism f is called a hyperbolic automorphism of
the torus.

Exercises. Show that A 2 SL(2,Z) is hyperbolic i↵ |Tr(A)| > 2. (Recall
Tr(A) = a + d). Show that eigenvectors of a hyperbolic A are real. Show
that if A is hyperbolic, then An is hyperbolic for all n 2 Z \ {0}.

Example: The map f : T2 ! T2 defined by

f(x, y) = (2x+ y, x+ y) (mod 1)

is a hyperbolic automorphism of the torus.

45
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Let

Per
n

(f) =
�

p 2 T2 : fn(p) = p
 

, Per(f) =
[

n2N
Per

n

(f) .

Proposition 44. Let f be a hyperbolic automorphism of the torus as-

sociated to a matrix A 2 SL(2,Z). Then

(1) Per(f) = Q2/Z2
(periodic points=points with rational coordinates)

(2) #Per
n

(f) = |Tr(An)� 2|
(3) f is topologically mixing

Proof. (1a) any point with rational coordinates is periodic. Indeed,
take any point with rational coordinates. It can be written as x = (m1

l

, m2
l

)
with m1,m2 2 Z and l 2 N. Let m = (m1,m2). Then Akx = 1

l

Akm for
all k 2 Z. There are k1 < k2 such that Ak1m = Ak2m (mod l) (as there
is only l2 di↵erent values for the reminders when we divide by l). Then let
n = k2 � k1. So Anm = m (mod l) and Anx = x (mod 1). Thus x 2 Per

n

.

(1b) any periodic point has rational coordinates. Indeed, let p 2 Per
n

.
There is a unique x 2 � = [0, 1) ⇥ [0, 1) ⇢ R2 such that p = ⇡(x). Then
x = Anx (mod 1). So there is j 2 Z2 such that x�Anx = j. The coe�cients
of the matrix (I � An) are integer. Moreover det(I � An) 6= 0 (otherwise 1
would be an eigenvalue of An). So the coe�cients of (I�An)�1 are rational.
Hence x = (I �An)�1j 2 Q2.

(2) counting periodic orbits. We note that the number of periodic orbits
in Per

n

coincides with the number of x 2 � such that (I �An)x 2 Z2. The
number of di↵erent j 2 Z2 which belong to (I � An)(�) equals to the area
of the parallelogram (I � An)(�). Since � has the unit area, the area of
(I �An)(�) equals to | det(I �An)|. Then

| det(I �An)| = |(1� �n

+)(1� �n

�)| = |2� (�+ + ��)| = Tr(An)� 2

where �± are eigenvalues of A.

(3) topological mixing (sketch). Take U, V ⇢ T2 open, nonempty and
find N such that for fnU \ V 6= ; for any n > N . Let �+ and �� be
eigenvalues of A, and v+, v� be the corresponding eigenvectors. Consider
the straight lines `± = {tv± : t 2 R}. Each of these lines has an irrational
slope and consequently its projection on the torus, W± = ⇡(`±), is dense.

Take two small parallelograms with sides parallel to the eigenvectors,
the first one U 0 ⇢ U , the second one V 0 ⇢ V . Note that the density implies
that W� \ U 0 6= ; and W+ \ V 0 6= ;. Then check that there is N such that
fn(U 0)\V 0 for all n > N (the sides are parallel to eigenvectors, so fn maps
a parallelogram to a parallelogram. Draw a picture for the map A.).

⇤
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2. Symbolic dynamics for a linear automorphism of the torus

Theorem 45. The map f : (x, y) 7! (2x+ y, x+ y) (mod 1) is topolog-

ically semiconjugate to the topological Markov chain �
B

: ⌃
B

! ⌃
B

where

�
B

is a shift map on the space ⌃
B

of bi-infinite sequences compatible with

the transition matrix

B =

0

B

B

B

B

@

1 0 1 1 0
1 0 1 1 0
1 0 1 1 0
0 1 0 1 1
0 1 0 1 1

1

C

C

C

C

A

.

Remark 46. Since ⌃
B

⇢ ⌃ and ⌃ is homeomorhic to a Cantor set,

⌃
B

is not homeomorphic to the torus. Consequently, f is not topologically

conjugate to any subshift, only a semiconjugacy is possible.

Proof. Let R1 and R2 be two (closed) rectangles with the sides parallel
to the eigenvectors of the matrix A shown on the following illustration:

R1

R2

Let ⇡ : R2 ! T2 be the natural projection. Check (look for equal triangles
on the picture) that ⇡(R1 \R2) = T2.

Intersections f(⇡(R
i

)) \ ⇡(R
j

) with j = 1, 2 define rectangles S
k

with
k = 1, . . . , 5, which looks like strips with sides parallel to the eigenvectors of
A (see the next pictures), in particular R1 = S1 [S2 [S3 and R2 = S4 [S5.
In order to shorten the notation we introduce S0

k

= ⇡(S
k

) and R0
k

= ⇡(R
k

).
Then

R0
1 = S0

1 [ S0
2 [ S0

3, R0
2 = S0

4 [ S0
5,

f(R0
1) = S0

1 [ S0
3 [ S0

4, f(R0
2) = S0

2 [ S0
5.

We conclude that f(S0
j

) \ S0
k

= ; if B
jk

= 0, and f(S0
j

) \ S0
k

6= ; if B
jk

= 1.
(where B is the transition matrix)
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R1

R2

F (
R1)

F (
R2)

Figure 1. Rectangles R1 and R2 and their images (bold
boundary) under the linear map F : (x, y) 7! (2x+ y, x+ y).

S1

S2

S3

S4

S5

Figure 2. Images of R1 and R2 are split into smaller rect-
angles and translated by integer vectors back to R1 and R2.

For any sequence (!
k

)
k2Z, !k

2 { 1, 2, 3, 4, 5 }, the set

\

k2Z
f�k(S0

!

k

)

either consists of a single point which we denote h(!) (provided ! 2 ⌃
B

) or
is empty (otherwise). This can be shown by arguments very similar to the
ones used in the analysis of the Smale horseshoe. ⇤
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3. Shadowing

Quite often scientists explore trajectories of a dynamical system using
computer simulations. A computer usually uses only finite precision and
introduces a (small??) error at each time step. The errors can accumulate
very fast. For example, if you iterate the tent map f(x) = 1 � |1 � 2x| for
x 2 (0, 1), the computer will typically loose one binary digit per each iterate
as every multiplication by 2 doubles not only x but also any inaccuracy in
its value. Taking into account that modern computers usually use less than
64 binary digits to store a number, all precision will be lost after around 60
iterates.

We note that sometimes it is possible to prove that the computations
follow some true trajectory for long times.

Definition. Let (X, d) be a metric space and f : X ! X be a function.
We say that (x

i

)
i2Z ⇢ X is an "-pseudo orbit if

d(x
i

, f(x
i�1)) < " 8i 2 Z .

Theorem 47 (Shadowing property). Let A 2 SL(2,Z) be hyperbolic and

f : T2 ! T2
associated hyperbolic toral automorphism. Then for any " > 0

there is � > 0 such that for any �-pseudo orbit (x
i

)
i2Z ⇢ T2

there is p 2 T2

such that

d(x
i

, f i(p)) < " for all i 2 Z.
If " is su�ciently small, the point p with these properties is unique.

Definition. The trajectory of p is called a shadow orbit.

The proof of the theorem relies on the following lemma which describes
bounded solutions of an infinite system of linear equations.

Lemma 48. Let A 2 SL(2,Z) be hyperbolic. For any bounded sequence

(u
i

)
i2Z ⇢ R2

, there is a unique bounded sequence (w
i

)
i2Z ⇢ R2

, such that

(1) w
i

�Aw
i�1 = u

i

8i 2 Z .

Moreover, there is C0 > 0, which depends on the matrix A only, such that

sup
i

kw
i

k  C0 sup
i

ku
i

k.

Proof. Let �± be eigenvalues of A. Since A is hyperbolic we can assume
|�+| > 1 and |��| < 1. Then there is a matrix B such that detB = 1 and
A = B�1⇤B where ⇤ is a diagonal matrix: ⇤ = diag(�+,��). Then the
equation (1) is equivalent to

Bw
i

� ⇤Bw
i�1 = Bu

i

.

Let
✓

↵+
i

↵�
i

◆

= Bw
i

,

✓

�+
i

��
i

◆

= Bu
i

and plug these into the equation. We get the system

↵+
i

� �+↵
+
i�1 = �+

i

and ↵�
i

� ��↵
�
i�1 = ��

i

.
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These equations have an explicit solution given by

↵+
i

= �
1
X

k=i+1

�i�k

+ �+
k

and ↵�
i

=
i

X

k=�1
�i�k

� ��
k

as we can easily check (we demonstrate convergence of the series a bit later):

↵+
i

� �+↵
+
i�1 = �

1
X

k=i+1

�i�k

+ �+
k

+ �+

1
X

k=i

�i�1�k

+ �+
k

= �i

+�
+
i

,

↵�
i

� ��↵
�
i�1 =

i

X

k=�1
�i�k

� ��
k

� ��

i�1
X

k=�1
�i�1�k

� ��
k

= �i

��
�
i

.

Moreover, the series converge (using a convergent dominating geometric
series):

|↵+
i

| 
1
X

k=i+1

|�+|i�k|�+
k

|  sup
k

|�+
k

|
1
X

k=i+1

|�+|i�k

= sup
k

|�+
k

| |�+|�1

1� |�+|�1


sup
k

|�+
k

|
1� |��|

|↵�
i

| 
i

X

k=�1
|��|i�k|��

i

|  sup
k

|��
k

|
i

X

k=�1
|��|i�k

=
sup

k

|��
k

|
1� |��|

We used �+�� = 1 and |�+| > 1 to simplify the equations.
Then

kw
i

k =

�

�

�

�

B�1

✓

↵+
i

↵�
i

◆

�

�

�

�

 kB�1k
�

�

�

�

✓

↵+
i

↵�
i

◆

�

�

�

�

 kB�1k 2max
�

|↵+
i

|, |↵�
i

|
 

 2kB�1k
max

�

sup
k

|�+
k

|, sup
k

|��
k

|
 

1� |��|
 2kB�1k kBk sup

k

ku
k

k
1� |��|

.

Let

C0 =
2kB�1k kBk
1� |��|

Then

sup
i

kw
i

k  C0 sup
k

ku
k

k .

The sequence w
i

= ↵+
i

v+ + ↵�
I

v� satisfies the equation (1).

In order to complete the proof we need to demonstrate the uniqueness.
Suppose w̃

i

is another bounded solution of the equation (1) . Then z
i

=
w̃
i

� w
i

satisfies the equation z
i

� Az
i�1 = 0 for all i so z

i

= Az
i�1. Using

the induction we conclude that z
i

= Aiz0 for all i 2 Z. Then Bz
i

= ⇤iBz0 =
diag(�i

+,�
i

�)Bz0 for all i. This sequence is bounded if and only if z0 = 0.
Hence w̃

i

= w
i

. The uniqueness is proved. ⇤
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Corollary 49. Let � > 0 and (x
i

)
i2Z be a �-pseudo orbit of the linear

map F : R2 ! R2
defined by F (x) = Ax. Then there is a unique trajectory

(y
i

)
i2Z of F such that the sequence ky

i

� x
i

k is bounded. Moreover, ky
i

�
x
i

k < C0� for all i.

Proof. Let u
i

= F (x
i�1) � x

i

. The definition of the �-pseudo orbit
implies that ku

i

k  �. The previous lemma implies that there is a unique
bounded sequence w

i

such that w
i

� Aw
i�1 = u

i

. Let y
i

= x
i

+ w
i

. Then
ky

i

� x
i

k = kw
i

k  C0�. Since F is linear we get

y
i

= x
i

+ w
i

= F (x
i�1)� u

i

+Aw
i�1 + u

i

= F (x
i�1 + w

i�1) = F (y
i�1).

Consequently (y
i

)
i2Z is a trajectory of F . ⇤

Proof of the shadowing property. Let "0 = min{1
4 ,

C0
4 } where C0

is the constant from the corollary above. For any " 2 (0, "0) let � = "/C0.
Obviously, � 2 (0, 14). Let (xi)i2Z ⇢ T2 be a �-pseudo orbit of f .

Since � < 1
4 , there is a unique sequence (x0

i

)
i2Z ⇢ R2, such that ⇡(x0

i

) =
x
i

and kx0
i

� F (x0
i�1)k  � for all i. This sequence is a �-pseudo orbit for

F . Then the corollary above implies that there is a unique orbit (y0
i

) which
shadows (x0

i

) and ky0
i

� x0
i

k < ". The projection of this orbit on the torus
shadows (x

i

).

The shadow orbit is unique. Indeed, suppose that there is another tra-
jectory (ỹ

i

) of f which "-shadows (x
i

). Then the triangle inequality im-
plies that dist(ỹ

i

, y
i

) < 2". Then there is a sequence (ỹ0
i

) ⇢ R2 such that
ỹ
i

= ⇡(ỹ0
i

) and kỹ0
i

� y0
i

k < 2" for all i. We note that ỹ0
i

= Aỹ0
i�1. (Indeed,

ỹ
i

= Aỹ
i�1 + integer vector, but kỹ

i

� Aỹ
i�1k < 2" < 1

2 . So the integer
vector is the zero vector.) Then w

i

= ỹ0
i

� y0
i

satisfies w
i

� Aw
i�1 = 0 and

kw
i

k  2". Lemma 48 with u
i

= 0 for all i implies w
i

= 0 for all i. ⇤

4. Structural stability

Let (X, d
X

) and (Y, d
Y

) be compact metric spaces. Let Hom(X,Y ) be
the space of all homeomorphisms X ! Y . For any f, g 2 Hom(X,Y ) let

d(f, g) = sup
x2X

d
Y

(f(x), g(x)) + sup
y2Y

d
X

(f�1(y), g�1(y)).

Then d is a metric on Hom(X,Y ).

Theorem 50. Let A 2 SL(2,Z) be hyperbolic and f : T2 ! T2
be a

associated hyperbolic automorphism. Then there is � > 0 such that any

homeomorphism g : T2 ! T2
with d(f, g) < � is topologically semiconjugate

to f , i.e., there is a continuous surjective map h : T2 ! T2
such that the

diagram

T2 g����! T2

h

?

?

y

?

?

y

h

T2 ����!
f

T2

commutes.
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Proof. Let ", � > 0 be the constants from the Shadowing Theorem.
Take any x0 2 T2 and let x

i

= gi(x0) for all i 2 Z. Consequently, x
i

=
g(x

i�1) for all i and

d(x
i

, f(x
i�1)) = d(g(x

i�1), f(xi�1))  d(f, g) < �.

So the sequence (x
i

)
i2Z is a �-pseudo orbit for f . Then the Shadowing

Theorem implies that there is a unique sequence (y
i

)
i2Z such that y

i

= f i(y0)
and d(x

i

, y
i

) < " for all i. Let h(x0) = y0.

The map h has the following properties:

(i) d(x, h(x)) < " for all x 2 T2.
Let x0 = x, then h(x) = y0 and the property follows directly from
d(x0, y0) < ".

(ii) h(g(x)) = f(h(x)) for all x 2 T2.
Let x0 = x and use the definition of h to check that h(x

i

) = y
i

for
all i 2 Z. Then h(g(x0)) = h(x1) = y1 = f(y0) = f(h(x0)).

(iii) h is continuous.
Indeed, since g is continuous, then gn is continuous for every n. So
for any ⌘ > 0 and any N 2 N there is �1 > 0 such that

d(x0, x̃0) < �1 =) d(x
n

, x̃
n

) < ⌘ 8|n|  N

Then

d(fn(h(x0)), f
n(h(x̃0))) = d(h(gn(x0)), h(g(x̃0)))

= d(h(x
n

), h(x̃
n

))

 d(h(x
n

), x
n

) + d(x
n

, x̃
n

) + d(h(x̃
n

), x̃
n

)

 ⌘ + 2" .

Since f is obtained from a hyperbolic linear map, there is C > 0
with the following property: if the inequality d(fn(y0), fn(ỹ0)) < "̃
with "̃ 2 (0, 14) holds for all |n|  N , then

d(y0, ỹ0)  C
"̃

|�+|N
.

It follows that

d(h(x0), h(x̃0))  C
⌘ + 2"

|�+|N
.

Now fix ⌘ = ".
Take any ✏1 > 0 and choose N su�ciently large to ensure that

3C"

|�+|N < ✏1. Then choose �1 using these ⌘ and N . It follows that

d(x0, x̃0) < �1 implies d(h(x0), h(x̃0)) < ✏1. Hence h is continuous.
(iv) h is surjective.

If h : T2 ! T2 is continuous and d(x, h(x)) < 1
4 for all x 2 T2, then

h is surjective (see your notes from the lectures).

⇤
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Structural stability. Now let Di↵(T2) be the space of all di↵eomor-
phisms T2 ! T2. The following equation defines a metric on this space:

d
C

1(f, g) = sup
x2T2

d(f(x), g(x)) + sup
x2T2

kD
x

f �D
x

gk ,

where f, g 2 Di↵(T2) and D
x

f defines the derivative of f at the point x.
We say that a di↵eomorphism f is structurally stable if there is � > 0

such that any di↵eomorphism g with d(f, g) < � is topologically conjugate
to f .

Theorem 51. Linear hyperbolic automorphisms of the torus are struc-

turally stable.

We will not discuss the proof of this theorem.





CHAPTER 4

Complex Dynamical Systems

In the last part of these lectures we briefly discuss dynamical systems
defined by iterations of holomorphic (=analytic) maps. Let us start with
some definitions.

Let C be a complex plane (z 2 C, z = x + iy, x, y 2 R, i2 = �1)
and D ✓ C be an open non-empty subset. A map f : D ! C is called
holomorphic (or analytic) if it is di↵erentiable at every point of its domain
of definition, i.e., it has a derivative defined by

f 0(z) = lim
w!z

f(w)� f(z)

w � z

at every point z 2 D. Holomorphic maps have many remarkable properties.
In particular, a holomorphic map f has derivatives of all orders and its
Taylor expansion converges. Moreover, holomorphic maps are conformal ,
i.e., they preserve angles.

The Riemann sphere is the set Ĉ = C [ {1 } equipped with a metric
defined with the help of a stereographic projection. The stereographic pro-
jection establishes a bijection between a sphere without its north pole and
the plane C. Then the north pole is mapped to 1. In this way we get
a bijection between the sphere and Ĉ. The sphere is a metric space (the
distance between two points is equal to the length of the shortest arc which
connects the points). Then the distance between two points in Ĉ is defined
as the distance between their stereographic images on the sphere.

The definition implies that the stereographic projection is an isometry.
Hence, the Riemann sphere Ĉ is compact.

It is possible to describe this metric in a more direct way. Let � : [0, 1] !
C be a smooth curve. We can define its length by

length(�) =

Z

�

2|dz|
1 + |z|2 =

Z 1

0

2|�̇(t)|
1 + |�(t)|2dt .

Then the distance between two points z0, z1 2 C is defined by

d(z0, z1) = inf
� : �(0)=z0, �(1)=z1

length(�) .

In other words, the distance is equal to the length of the shortest curve which
connects the points. This metric coincides with the one obtained via the
stereographic projection (if the radius of the sphere is chosen appropriately).

The definition of a holomorphic function can be extended to the Riemann
sphere. Let D ✓ Ĉ be open and f : D ! Ĉ. We say that f is holomorphic
in D if f has a derivative at every point of D, i.e. there is f 0 : D ! Ĉ.

55
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The definition of the derivative requires some explanations as Ĉ in-
cludes 1. We will not discuss the formal definition but provide a tool
which can be used to test if a function is holomorphic or not by mapping 1
to 0 with the help of the function z 7! z�1.

Take a point z0 2 D.
If z0 6= 1 and f(z0) = 1, then f is holomorphic in a neighbourhood

of z0, i↵ 1/f(z) is holomorphic in a neighbourhood of z0.
If z0 = 1 and f(1) 6= 1, then f is holomorphic in a neighbourhood

of 1, i↵ f(z�1) is holomorphic in a neighbourhood of 0.
If z0 = 1 and f(1) = 1, then f is holomorphic in a neighbourhood

of 1, i↵ 1/f(z�1) is holomorphic in a neighbourhood of 0.

Remark. A holomorphic functions f : C ! C can be extended onto the
Riemann sphere by setting f(1) = lim

z!1 f(z) provided the limit exists.

Examples of holomorphic functions f : Ĉ ! Ĉ:
(1) f(z) = zd, d 2 N;
(2) f(z) = z + 1;
(3) f(z) = 1

z

. This function maps a neighbourhood of 1 to a neigh-
bourhood of 0 on the Riemann sphere.

Example. f(z) = ez is not holomorphic on the Riemann sphere (the limit
z ! 1 does not exists).

1. Rational maps

Let P (z), Q(z) be polynomials:

P (z) = a0 + a1z + · · ·+ a
n

zn, Q(z) = b0 + b1z + · · ·+ b
m

zm

where a
k

, b
k

2 C. A map f is called rational if it can be written as a quotient
of two polynomials:

f(z) =
P (z)

Q(z)
.

We assume that the polynomials are coprime (i.e., no common zeroes). We
note that Q has exactly m roots (counting with multiplicity). So assume
Q(z

k

) = 0 for k = 1, . . . ,m and P (z
k

) 6= 0.
The di↵erentiation rule for a quotient implies that f is di↵erentiable at

every point z such that Q(z) 6= 0. So

f : C \ {z1, . . . , zm} ! C

is analytic. The degree of f is defined by

deg(f) = max{deg(P ), deg(Q)} .

We say that z 2 C is a critical point of f if f 0(z) = 0. If z is a critical
point of f then w = f(z) is called a critical value of f . If w is not a critical
value, then w is called a regular value. If z is not a critical point, then z is
called regular. In a neighbourhood of a regular point the map f is a local
di↵eomorphism.

Exercise. How many critical points and critical values can a rational map
have?
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Remark: A rational map can be extended to a map Ĉ ! Ĉ by setting
f(z

k

) = 1 and f(1) = lim
z!1 f(z). The extended map is continuous. It

can be checked that f is not only continuous but also holomorphic on Ĉ. On
the other hand, any holomorphic map on the Riemann sphere is rational.

Exercise. Let w 2 C be a regular value of a rational map f and f(1) 6= w.
Show that the number of preimages of w,

#{ z 2 C : f(z) = w } = deg(f) .

2. Möbius transformations

A rational map of degree one is called a Möbius transformation. It can
be written in the form

f(z) =
az + b

cz + d
where a, b, c, d 2 C and ad� bc 6= 0. The last inequality is equivalent to the
requirement that f is not constant.

The Möbius transformations is an invertible map Ĉ ! Ĉ (each point has
exactly one preimage). It can be checked directly that the inverse map is also
a Möbius transformation. Moreover, the set of all Möbius transformations
form a group under composition. It is called the Möbius group.

It is an automorphism group of the Riemann sphere. In particular, every
Möbius transformation is a homeomorphism Ĉ ! Ĉ.
Exercise. Show that the map

✓

a b
c d

◆

7! az + b

cz + d
.

defines a homomorphism from GL(2,C) to the Möbius group.

We note that if f, h are two Möbius maps, then g = h � f � h�1 is also
a Möbius map. Since h is a homeomorphism of the Riemann sphere, the
maps f and g are topologically conjugate.

2.1. Dynamics of a Möbius map. Suppose that f(z) = az+b

cz+d

is a
Möbius map and f is not the identity. A fixed point of the map satisfies the
equation f(z) = z:

az + b

cz + d
= z .

A solution of this equation is either given by z = 1 (if c = 0) or satisfies
the equation

cz2 + (d� a)z � b = 0 .

This is a quadratic equation. Its discriminant D = (d � a)2 + 4bc can be
rewritten in the form

D = Tr(A)2 � 4 detA .

The number of fixed points of f depends on the value of D:

(1) If D = 0 the Möbius transformation f has exactly one fixed point
z1 2 Ĉ. Then there is a Möbius transformation h such that h(z1) =
1 and g = h � f � h�1 takes the form

g(z) = z + 1 .
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(2) If D 6= 0 the Möbius transformation f has exactly two fixed points
z1, z2 2 Ĉ. Then there is a Möbius transformation h such that
h(z1) = 1, h(z2) = 0 and g = h � f � h�1 takes the form

g(z) = �z ,

where � 2 C, and � 62 {0, 1} as f is neither constant nor identity.

We see that a Möbius map is conjugated either to a translation or to
multiplication by �. The maps are classified according to the value of �.

3. Periodic points

Let f : C ! C be a holomorphic map. Let p 2 C be a periodic point
of f of prime period n: p = fn(p). The number � = (fn)0(p) is called a
multiplier of the periodic point p.

Periodic points are classified according to the value of their multiplier:

|�| > 1 p is repelling;
0 < |�| < 1 p is attracting;

� = 0 p is super-attracting;
|�| = 1 p is neutral

If p is attracting (or super-attracting) we can define its basin of attrac-

tion:

B(p) =
�

w 2 C : fm(w) converges to the set { p, f(p), . . . , fn(p) }
 

.

Proposition 52. Let f : C ! C be a holomorphic map and p an at-

tractive periodic point of f . Then B(p) is a non-empty open set.

Proof. Let |�| < c < 1. Since |(fn)0(p)| = � and the derivative is
continuous, there is r > 0 such that |(fn)0(w)| < c for all w 2 B

r

(p) (an
open ball centered at p). Then

|fn(w)� p| = |fn(w)� fn(p)| =
�

�

�

�

Z

w

p

(fn)0(z)dz

�

�

�

�

 c|w � p| < cr < r .

Consequently, fn(w) ⇢ B
r

(p). Moreover, using induction we see that
|fmn(w)� p|  rcm ! 0 as m ! 1. Thus B

r

(p) ⇢ B(p).
Finally, if w 2 B(p) then there is m 2 N such that fm(w) 2 B

r

(p).
Then B(p) =

S

m2N f�m(B
r

(p)) is open as the preimage of any open set is
open. ⇤

4. Fatou set and Julia set

Definition. Let U ⇢ Ĉ be open. A family of functions f
n

: U ! Ĉ is
called normal (or equicontinuous) if 8" > 0, 9� > 0 such that z, w 2 U with
d(z, w) < � implies d(fn(z), fn(w)) < " for all n 2 N.

Let f(z) = P (z)/Q(z) be a rational map.

Definition. The Fatou set F ⇢ Ĉ of f is the set of all z 2 Ĉ for which
there is a neighbourhood V of z, such that the family f

n

:= fn, n 2 N, is
normal.

Definition. The Julia set J (f) is the complement of the Fatou set F(f).
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Proposition 53. If f is a rational function then J (f) is closed. More-

over, if deg(f) � 2, then J (f) 6= ;.

Proof. The definition implies that F(f) is open, so J (f) is closed.
Suppose F(f) = Ĉ. Then fn : Ĉ ! Ĉ is normal. Arzelá-Ascoli theorem

implies there is a uniformly convergent subsequence fn

k . Montel’s theorem
implies the limit of fn

k is an analytic function g : Ĉ ! Ĉ. Hence g is a ratio-
nal function and has a finite degree. On the other hand, deg(fn

k) = deg(f)nk

is strictly increasing and unbounded, which leads to a contradiction. So
J (f) 6= ;. ⇤

Example: f(z) = �z, |�| < 1. Then J (f) = {1}.

Recall that a subset E is called completely invariant if f�1(E) = E. A
set E is completely invariant i↵ its complement is completely invariant.

We list some elementary properties of the Fatou and Julia sets:

• J (f) is completely invariant.
• For any m 2 N, J (f) = J (fm).
• Every attracting periodic point belongs to F(f).
• Every repelling periodic point belongs to J (f).
• If p is an attracting periodic orbit then its basin of attraction B(p) ⇢
F(f).

Example: f(z) = zd, d � 2. J (f) = { z 2 C : |z| = 1 }.
Exercise: Find Fatou and Julia sets for a Möbius transformation. How
many di↵erent cases are there?

Exercise: Let f(z) = z2 + z. Show that 0 62 F(f).
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