MA424 Example Sheet 5 23 November 2015

- 1. Let f be a symmetric unimodal map. Let \mathcal{R} be the operator which takes a symmetric unimodal map f to a symmetric unimodal map $g = \mathcal{R}(f)$ for which the periods of periodic points are doubled. Show the sequence of maps $\mathcal{R}^n(f)$ converges to a limit uniformly as $n \to \infty$. Show that this limit is independent of f.
- 2. Let f_{∞} be the period doubling limit described in the first problem. Show that f_{∞} has periodic points with period 2^n for all n. Show that f_{∞} has an invariant Cantor set. Show that the limit set of every point is either a periodic point or the invariant Cantor set.
- 3. Let $f_A : \mathbb{T}^2 \to \mathbb{T}^2$ be a toral automorphism where A is an integral matrix. Show that a point $p \in \mathbb{T}$ is periodic if and only if the coordinates of p are rational.
- 4. Let \mathcal{G} be a finite directed graph and let $\Sigma_{\mathcal{G}}$ be the corresponding topological Markov chain. Define a metric on $\Sigma_{\mathcal{G}}$ by

$$d_{\lambda}(\omega, \omega') = \frac{\max \varepsilon(\omega_j, \omega'_j)}{\lambda^n}$$

where $\varepsilon(j,k) = 0$ if j = k and 1 otherwise and $\lambda > 1$. For $\omega \in \Sigma_{\mathcal{G}}$ describe the ball of radius r around ω in this metric. Show that the topology determined by the metric d_{λ} is independent of λ .

- 5. We say \mathcal{G} is irreducible if any two edges e and f there is a path of directed edges of some length starting at e and ending at f. Show that if \mathcal{G} is irreducible then periodic points of the shift map are dense in $\Sigma_{\mathcal{G}}$.
- 6. Show that if \mathcal{G} is irreducible then the shift map has a dense orbit.