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e AFFINE MAPS OF TRANSLATION SURFACES

Let S and S’ be translation surfaces and f : S — S’ a homeomorphism that is smooth
away from singular points. At each nonsingular point we have the map D fy, : T, — Ty(p),
and as T = Ty = R?, we can view Df, as an element of GLy(R).

If Df, does not depend on p, then f is said to be affine. If Df, is the identity for all p
then f is an equivalence of translation surfaces. If Df, € O(2) then f is an isometry. A
general affine map takes directional flows to directional flows, but as f does not necessarily
preserve lengths it may change the parametrization of the these flows.

When studying maps between surfaces in the topological or conformal category, it is useful
to consider a class of objects called half-translation surfaces, which are slightly more general
than the translations surfaces we have introduced so far. A half-translation surface is a
surface given by gluing polygons, but here the gluing maps are allowed to be maps of the
form v +— —v+c¢. These maps reverse the directions of the horizontal and vertical foliations
that the surface inherits from the plane, so directions on these surfaces are only defined
up to sign. Translation surfaces and half-translation surfaces are often referred to as flat
structures. An example of such a surface is shown below.

Notice that the cone angle at one corner of the pillowcase is 7, whereas for a translation
surface cone angles always come in multiples of 2. From the definition one can deduce that
the allowable cone angles for a half-translation surface are of the form nn where n > 1. For
half-translation surfaces Df is well defined modulo +1d, so we can define an affine maps to



be one in which Df is constant as an element of GL(R)/ £ Id. Recall that a translation
structure induces a conformal structure. The same is true for half-translation surfaces.
To go from a conformal structure to a flat structure, one needs an abelian differential in
the case of translation surfaces and a quadratic differential in the case of half-translation
surfaces.

Let Af f(S) be the group of affine transformations from a (half)-translation surface to itself.
Then we have a homeomorphism from Af f(S) — PSLs(R) given by f — [Df]. The image
of this map is called the Veech group of S, and its image in PSLy(R) is discrete. As an
example we can consider the Veech group of the square torus. The affine maps preserving
the torus are exactly the group SL2(Z), so its Veech group is PSLa(Z).

Because the Veech group is a subgroup of PSLs(R), the group of isometries of the hy-
perbolic plane, we can use some of the language of hyperbolic geometry in this setting.
We say an affine automorphism is elliptic, parabolic or hyperbolic depending on the type
of its image in PSLo(R). Elliptic affine automorphisms are finite order, for example the
automorphism given by rotating a glued regular octagon by an eighth of a turn. Hyper-
bolic automorphisms offer a nice class of examples of pseudo-Anosov transformations. In
fact, the first examples of pseudo-Anosov homeomorphisms were constructed by Thurston
using flat structures. Furthermore, every pseudo-Anosov homeomorphism is homotopic to
an affine automorphism of a flat surface.

For parabolic diffeomorphisms, we can think of Dehn twists on cylinders. For a single
cylinder, a Dehn twist can be realized as an affine automorphism of the cylinder. Unrolling
the cylinder, we see a glued rectangle with width ¢ and height A. The Dehn twist takes
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We can also do this simultaneously on a collection of cylinders. In order for this map to
be affine, the derivative of a Dehn twist on one cylinder has to equal the derivative of a
Dehn twist on any other cylinder, which will be the case provided that each cylinder has
the same modulus. One can also get a map with constant derivative by doing different
numbers of Dehn twists on different cylinders, provided that the moduli of these cylinders
are rationally related. The following illustration shows an example of a flat surface that



admits two different cylinder decomposition in which all cylinders have the same modulus.
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The gray and white cylinders on either
side may be cut up and reglued to form
these cylinders with equa! moduli

The above example shows that affine automorphisms are not always easy to read off from
looking at the surface.

o THE CONCEPT OF RENORMALIZATION

As a final topic, we will describe a billiards problem whose solution employs a technique
that is generally useful in dynamics. In the previous lecture, we discussed how billiard
trajectories are distributed in a topological sense. In this section we will discuss how
billiard trajectories are distributed in a different sense, namely how often they hit a given
side of the table.

Consider a billiard trajectory in the square torus whose initial slope is irrational. We would
like to describe the sequence of edges that this trajectory hits. Labeling the vertical sides
with a 0 and the horizontal sides with a 1 (without regard to top and bottom, left and
right), we can associate a sequence of zeros and ones to a billiard trajectory.
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For concreteness we will study the trajectory whose initial slope is ¢! = ig—\/g Unwrap-
ping the torus, this trajectory becomes a straight line in the plane and the sequence of



ones and zeros records the order in which our trajectory hits vertical and horizontal lines
between lattice points.
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trajectory but scales it by the eigenvalue ¢. Thus the billiard flow in this direction is taken
to itself by L but with a change of parameter. Using iteration of the map L to rescale the
system exhibits one instance of a renormalization technique.

¢! is the slope of an eigenvector for the matrix L = so L preserves this

Because L maps the billiard trajectory to itself with a change of parameter, to find the
position of the billiard ball at a later time we can either continue the flow or apply the
map L. More explicitly, if at time ¢ we are at the point ¥(t), then Li(t) = ¢(¢t). One
way in which we can use this fact is to compute the symbol sequence given by a segment
of a billiard trajectory. We may color the plane gray and white according to whether the
trajectory has just hit a horizontal or vertical side. The symbol sequence of a point in the
gray region will have just added a zero to its symbol sequence, and a point in the white
region will have just added a one. If we add a transversal to the flow as shown below, we
see a pattern of L-shaped tiles.
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It’s not hard to see that if we look at the L-shaped tiles, the part shown in gray on the right
hand side of the above diagram corresponds to a collision with a horizontal side (as any time
you cross a horizontal edge must enter this box) and likewise the white box corresponds to
a collision with a vertical side. We can therefore recolor the plane as indicated on the right
of the above diagram, and adding a one to the symbol sequence each time the trajectory
enters a white box and a zero each time it enters a gray box we get the same symbol
sequence.



The following illustration shows how this tiling transforms under the map L.
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The L-shaped tiles have been flipped and stretched, but remarkably return to their original
shape, with the gray and white parts reconfigured. The following illustration shows the
image under L of one of these tiles as it sits in the original tiling.

The above diagram shows that a segment of the billiard trajectory that traverses a white
box is mapped under L to a trajectory that traverses both a white and a gray box in the
original tiling, and a segment of the trajectory that traverses a gray box is mapped to a
trajectory that traverses a white box in the original tiling. Given the symbol sequence
of a segment of a billiard trajectory, we can get the symbol sequence for the image of
this segment under L (which is some extension of the segment by the billiard flow) by
replacing digits via the rules 0 +— 1 and 1 — 10. For example, starting with a segment [ of
a trajectory traversing a white box, we derive the symbol sequences of its iterates under L
as follows:

(I; 1), (L(I); 10), (L2(1); 101), (L3(1); 10110),(L*(1); 10110101),(L3(1); 1011010110110),
(L5(1); 101101011011010110101),(L7({); 1011010110110101101011011010110110)...

Using this process we can very efficiently give the symbol sequence to a specified number
of digits, as the number of digits grows exponentially in the number of times we apply L.
The rule for replacing zeros and ones also tells us the frequency with which a given digit
appears in this sequence, and moreover one can deduce from this rule the frequency with



which any finite sequence will appear.

In the above discussion, we only looked at a single direction on the torus, but this analysis
will also work for any trajectory on the torus. Given a direction and a perpendicular
transversal, we can find a matrix L that preserves these directions. By rotating the entire
picture, we can ensure that the billiard trajectory is vertical, at the expense of changing
the lattice that gives us our torus. This will have the effect of making the matrix L a
diagonal matrix.
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Teichmiller flow.

The Teichmiiller flow as a flow on the space of lattices, which can be thought of as the
moduli space of translation structures on the torus or as SL2(R)/SLy(Z). This space
is the unit tangent bundle of the moduli space of Riemann surfaces of genus 1, and the
Teichmiiller flow is precisely the geodesic flow on this space. The fact that L preserves the
lattice shows that L? corresponds to a closed geodesic on moduli space (we square to get
an orientation preserving transformation).

It turns out that a concrete analysis of billiard orbits is possible whenever the Teichmiiller
flow corresponding to our trajectory returns to a compact set in moduli space. For details
see

Arnoux, Pierre. Le codage du flot godsique sur la surface modulaire. Enseign. Math. (2)
40 (1994), no. 1-2, 29-48.

There are other billiard tables on which a complete analysis of billiard orbits is possible.
This analysis relies on being able to understand the SLo(R) orbit of the flat surface cor-
responding to the billiard table. Such an understanding is possible in the case when the
Veech group is a lattice. An example of a surface whose Veech group is a lattice is the one
shown above, corresponding to billiards in a right angled triangle with an angle of 7/5.





