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1 Introduction 

The simplest holomorphic dynamical systems which display interesting behavior 
are the polynomial maps of C. The dynamical study of these maps began with 
Fatou and Julia in the 1920's and is currently a very active area of research. If we 
are interested in studying invertible, holomorphic dynamical systems, then the 
simplest examples with interesting behavior are probably the polynomial dif- 
feomorphisms of C 2. These are maps f:  C 2 ~ C 2 such that the coordinate functions 
o f f  and f - 1 are holomorphic polynomials. 

For  polynomial maps of C the algebraic degree of the polynomial is a useful 
dynamical invariant. In particular the only dynamically interesting maps are those 
with degree d greater than one. For  polynomial diffeomorphisms we can define the 
algebraic degree to be the maximum of the degrees of the coordinate functions. 
This is not, however, a conjugacy invariant. Friedland and Milnor [FM]  gave an 
alternative definition of a positive integer d e g f  which is more natural from 
a dynamical point of view. If d e g f >  1, then d e g f  coincides with the minimal 
algebraic degree of a diffeomorphism in the conjugacy class off. As in the case of 
polynomial maps of C, the polynomial diffeomorphisms f with d e g ( f ) =  1 are 
rather uninteresting. We will make the standing assumption that d e g ( f )  > 1. 

For  a polynomial map of C the point at infinity is an attractor. Thus the 
"recurrent" dynamics can take place only on the set K consisting of bounded 
orbits. A normal families argument shows that there is no expansion on the interior 
of K so "chaotic" dynamics can occur only on J = c3K. This set is called the Julia 
set and plays a major role in the study of polynomial maps. 

For  diffeomorphisms of C z each of the objects K and J has three analogs. 
Corresponding to the set K in one dimension, we have the sets K § (resp. K - )  
consisting of the points whose orbits are bounded in forward (resp. backward) time 
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and the set K := K + c~ K -  consisting of points with bounded total orbits. Each of 
these sets is invariant and K is compact. As is in the one dimensional case, 
recurrence can occur only on the set K. Corresponding to the set J in dimension 
one, we have the sets J • := &K • and the set J := J + c~ J - .  Each of these sets is 
invariant and J is compact. A normal families argument shows that there is no 
"forward" instability in the interior of K § and no "backward" instability in the 
interior of K - .  Thus "chaotic" dynamics, that is recurrent dynamics with instability 
in both forward and backward time, can occur only on the set J. 

The techniques that Fa tou  and Julia used in one dimension are based on 
Montel 's  theory of normal families and do not readily generalize to higher dimen- 
sions. A different tool appears in the work of Brolin [Br], who made use of the 
theory of the logarithmic potential. Potential theory associates to any compact 
subset of the plane a measure which is called the harmonic or equilibrium measure, 
and the "potential" of this measure which is called the Green function. Brolin 
showed that for a polynomial map of C there is an explicit dynamical formula for 
the Green function. He proceeded to show that the harmonic measure of the Julia 
set is an invariant measure with interesting dynamical properties. It was later 
observed that potential theory provides alternate proofs of many of the basic facts 
of Fatou-Julia theory (see [Si], [T], and [C]). 

Potential theory in one variable has a natural extension to several complex 
variables called pluripotential theory (cf. Klimek [K1]). In this context the analogs 
of the Green function corresponding to the sets K § and K -  are the functions G § 
and G - .  These functions were studied by J.H. Hubbard from a topological 
viewpoint (see [H] and [HO]) .  N. Sibony had the idea of introducing potential 
theory into the study of these two-dimensional mappings, he introduced the two 
(1,1) currents / t  • = (2n)- lddCG • and the measure/~ = (4n)- i = (ddC(G + v G - ))2. 
Bedford and Sibony established some properties of #• and #, the results they 
obtained are contained in w of [BS1]. (See also [Be].) Further results are con- 
tained in [BS2M, FS]. In the pluri-potential context, # is the analogue of the 
equilibrium (or harmonic) measure of the set K (and also of J). Hubbard and 
Papadopol  [HP]  have shown that a current like #+ also arises naturally from 
a (non-invertible) holomorphic mapping f:  P" ~ P". 

In this paper we combine potential-theoretic methods with tools from ergodic 
theory, especially Pesin's theory of non-uniform hyperbolicity. These tools allows 
us to describe the geometric structure of the currents tt +- and to give a geometric 
description of the relation between/~• and/~. The starting point for these results is 
a characterization of the measure/~ in terms of entropy which we now describe. 

We can associate to each invariant probability measure v its measure-theoretic 
entropy h,(f). The variational principle states that the supremum of h~(f) taken 
over the set of all invariant probabili ty measures is the topological entropy, htop(f). 
A measure v for which h,( f )  = htop(f) is called a measure of maximal entropy. For  
polynomial maps in one dimension the topological entropy is log d where d is the 
degree of the polynomial (see [G] and [Lyul] ) ,  and/~ is the unique measure of 
maximal entropy (see [Lyu2] and [Ma]).  In two complex dimensions the topologi- 
cal entropy is log degf(see [ F M ]  and I-S]), and hu(f) = log degf(see [BS4]). In w 
we prove: The harmonic measure is the unique measure of maximal entropy for 
a polynomial diffeomorphism of C 2 (Theorem 3.1). 

For  polynomial maps of C, Fatou and Julia used Montel 's theorem to show 
that expanding periodic points are dense in J. This result can also be proved using 
potential theory. A key observation in such a potential-theoretic proof is the fact 
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that the support of harmonic measure is the set J. For  polynomial diffeomorphisms 
of C 2 the situation is not so straightforward. If J*  = C z denotes the support of/~, 
then it follows easily that J* c J. For  polynomial diffeomorphisms which are 
hyperbolic, we have shown in [BS1] that J = J*.  But the question of whether 
equality holds in general seems to be very difficult. 

Periodic saddle points are the analogs of expanding periodic points for two 
dimensional diffeomorphisms. These are points of period n for which Df ~ has one 
eigenvalue outside and one eigenvalue inside the unit circle. It is relatively easy to 
show that every saddle orbit is contained in J. In w we prove the more difficult 
result: Every saddle orbit is contained in J*. It was shown in [BS4] that the closure 
of the saddle orbits contains J *. Combining these results gives: J* is the closure of 
the set of saddle orbits. Thus J * plays a role for polynomial diffeomorphisms of C z 
analogous to the role played by J for polynomial maps of C. 

Let p be a periodic saddle point. The stable/unstable manifolds of p are defined 
a s  

WS/"(p):= {q~CZ: lim dist(f•177 = O} . 
n ~ o o  

In w we show that for # almost every point p, the set WS/"(p) is conformally 
equivalent to C and is a dense subset of J 5. This result was obtained independently 
by Wu in [W]. 

For  distinct periodic saddle points, p and q, the intersections of W~(p) and 
W"(q) are called heteroclinic intersections. We show in w that J * can be character- 
ized in terms of heteroclinic intersections. For any pair of periodic saddle points 
p and q: J* = WS(p)n W"(q). It is interesting to contrast this description of J *  
with a similar description of J from [BS4]. For any pair of periodic saddle points: 
J = WS(p) c~ W"(q). The intersections of WS(p) and WU(p) other than p itself are 
called homoclinic intersections. It was observed in [BS4] that the set of periodic 
saddle points that create homoclinic intersections is dense in J*.  In w we prove the 
more delicate result that every periodic saddle point creates homoclinic intersec- 
tions. 

The harmonic measure # and the currents p• are related by the analytic 
equation # = p+ ^ # - .  This formula does not give much geometric insight into the 
relation between these objects. The results on periodic saddle points and stable 
manifolds are consequences of a geometric description of the currents p• and the 
way in which these currents "intersect" to give #. In order to explain the results of 
this paper about general polynomial diffeomorphisms it is useful to recall results 
from [BS1] about the special case of uniformly hyperbolic polynomial diffeomor- 
phisms. 

A polynomial diffeomorphism f is uniformly hyperbolic if there is a hyperbolic 
splitting of the tangent bundle over J. Hyperbolicity implies that for every point 
P e J the sets W ~/u are immersed submanifolds. In the uniformly hyperbolic case, 
the collection of stable manifolds has the following "laminar" structure. At a point 
P ~ J, we may let T u be a small complex disk transversal to WS(p). For  points q ~ J 
near p, the local stable manifold W~(q) will intersect T" in a unique point a E T ~. If 
we let A u c T u denote the set of such intersections, then we may parametrize the 
local stable manifolds by a ~ A ", and locally J § is topologically equivalent to the 
product of A" and a disk. Given two such transversals T1 and Tz and correspond- 
ing sets A~ ~ Tj, j  = 1, 2, there is a (continuous) holonomy map Z: A~ ~ A2, defined 



80 E. Bedford et al. 

by following a stable disk from its intersection point at cA1 to the point a2 ~ A2 
where it intersects 7"2. This gives a homeomorphism between the intersections with 
nearby transversals. In [BS1] we showed that the holonomy map preserves the 
slice measures p+ Irj. 

There is a corresponding theory, due to Pesin, of (non-uniform) hyperbolicity 
with respect to a measure v. An (ergodic) measure v is said to be hyperbolic if no 
Lyapunov exponent is zero. (See w for the relevant definitions.) The theory of Pesin 
for a hyperbolic measure v implies that for v almost every point p the sets W s/" are 
immersed submanifolds. It is shown in [BS4] that the measure # is ergodic and 
hyperbolic. In the case of a hyperbolic measure, we may define a holonomy map on 
a compact set of positive measure (but not necessarily everywhere). In w we show: 
The holonomy map preserves the slice measures #+ ]rj. 

In the uniformly hyperbolic case, we may take a similar transversal 
T s c WS(p), and we may parametrize the local unstable manifolds by A ~ c T s. It 
follows that a neighborhood in J is homeomorphic to A ' x  A'. In the case of 
a hyperbolic measure, it is possible to find product sets with positive measure, 
which we call Pesin boxes and denote again as AS x A'. The measure p induces 
conditional measures on each stable slice. As a byproduct of the characterization of 
# as the unique measure of maximal entropy in w we show: The conditional 
measures on the stable~unstable slices are given by #+1-. As a consequence of the 
holonomy invariance of #• and the identification with the conditional measures, 
we obtain in w the result: # restricted to a Pesin box is a product measure. This 
allows us to invoke results of Ornstein and Weiss which imply that # is Bernoulli. 
This is the strongest mixing property that a measure can possess. 

Now let us pass from the analysis of the slice measures of #• to the currents 
themselves. A closed manifold M defines a current of integration, denoted by [M ]. 
(See w for a general discussion of currents.) In the uniformly hyperbolic case, the 
laminar structure of ~r passes over to a laminar structure for #• That is, at 
a point p e J, we may choose an open set U and a transversal T" such that for each 
a eA,  the local stable manifold D'(a) is a closed submanifold of U, and the 
restriction of #+ to U is given by t 

~+ L_ V = S Z"(a) [DS(a)], ($) 

which is a direct integral of currents of integration with respect to 2 u, which is the 
measure obtained by restricting #+ to T'. A current of the form ({) is called 
uniformly laminar if the manifolds DS(a) are pairwise disjoint. With the family "/~1" 
given by Pesin theory, there is no uniformity to the size of the manifolds, i.e. we 
cannot choose U such that for M e r162 every component of M c~ U is closed in U. 
In w we define the more general class of laminar currents and show that a laminar 
current T is given as a countable sum, T = ~ Tj, where the Tfs have disjoint 
carriers, and T1 is uniformly laminar on some (possibly small) open set Us. The 
closed, laminar currents give a natural generalization of the current of integration 
and seem to be an interesting class in their own right. In w it is shown that #• is 
laminar. In w it is shown that #+ contains uniformly laminar "pieces" whose 

i Throughout this paper we use the following notation for integration. If2 is a measure on A, and 
iffis an integrable function on A with values in the space of currents, then we write the integral as 
S,,a 2(a) f (a) 
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structure is induced by the Pesin boxes. This allows us to show that the wedge 
product that defines the measure/~ is in fact given by an intersection product of 
stable and unstable manifolds. This yields further structure for the currents ~• 

Much attention has been paid to polynomial diffeomorphisms with real coeffi- 
cients. In this case the real subspace R 2 ~ C z is invariant and we may letfR denote 
the restriction of f to R 2. The (real) H6non map is a much studied example with 
deg = 2. In contrast to the complex case, where the topological entropy is log d, the 
topological entropy offR: R 2 ~ R 2 can be any real number in the interval [0, log d] 
(see [FM] and I-Mi]). In w we give several equivalent criteria for the entropy of 
fR to be equal to log d. One of these is that K c R 2, that is to say that every complex 
bounded orbit is actually real. A second criterion is that every periodic point of f is 
in R 2. A third is that: For any hyperbolic point p, all intersection points 
WS(p)c~ W"(p) lie inside R 2. These results may be used to show that, when 
topological entropy is maximal, the loss of a single periodic point or homoclinie 
intersection forces a decrease in the topological entropy. 

This paper is divided into different parts, according to the methods that 
predominate. In w167 the principal tools are Smooth Ergodic Theory, especially 
Pesin's Theory. In w167 the primary tools are the theory of currents and the 
Ahlfors Covering Theorem. These sections do not use Ergodic Theory. Finally, 
these methods are combined in w167 

The specific contents are as follows. w gives a summary of the part of Smooth 
Ergodic Theory that we will use. At the end of w it is shown that, for # almost every 
point p, the stable manifold of p is dense in J + and conformally equivalent to C. In 
w the conditional measures are shown to be induced by the current /~+. (This 
permits estimates on the Hausdorff dimension and Lyapunov exponent at the end 
of the section.) Then it is shown that # is the unique measure of maximal entropy. 
The holonomy map is discussed in w and it is shown that the holonomy of the 
Pesin stable manifolds preserves the restriction measures of/~ +. Finally, it is shown 
that # has a local product structure. In w we summarize the main ideas and 
definitions that we use from the theory of currents. Laminar currents are defined in 
w and the basic structure is developed. In w it is shown that /~• are laminar 
currents. In w we show that the laminar structure of #+ coincides with the 
structure induced by the Pesin manifolds and the conditional measures. And in w 
we apply the previous work to the study of saddle points. Real H6non mappings 
are discussed in w and several (equivalent) criteria are given fo r f to  be essentially 
real. w is an appendix which outlines an alternative sequence in which the results 
of this paper can be obtained. This alternate approach starts with results of Pesin 
theory and then proceeds to the theory of currents. The main difference is that the 
use of the methods of entropy theory is delayed until the end. 

2 Preliminaries from ergodic theory 

2.1 Measurable partitions and conditional measures 

The technique of measurable partitions developed by Rokhlin [Rol ]  is a powerful 
tool in measure theory. Somehow it is not widely known beyond ergodic theory. 
So, we will spend some time to define the main concepts and to establish notation. 

Let J be a compact metric space, and let v be a probability Borel measure on J. 
A partition r = ~)~, of J is a decomposition of J into disjoint, measurable subsets. 
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The element of the partition containing x will be denoted by ~(x), and will be called 
thefiber through x. Note that all fibers can have zero measure. For example we can 
consider a partition ~ into single points. Two partitions are considered to be 
equivalent if they coincide on a subset J '  of full measure. 

Each measurable function ~b generates a partition whose fibers are level sets of 
q~. Such partitions are called measurable. Any countable partition is measurable. An 
orbit partition of an irrational rotation of the circle (with Lebesgue measure) gives 
an example of non-measurable partition. More generally, one can consider an orbit 
partition of any ergodic transformation; see the discussion below. 

The basic property of measurable partitions is for any measure v there is 
a family of conditional measures v ('l ~(x)) on the fibers. This family is uniquely 
determined by the following properties: 

(i) Each v(.[~(x)) is a probability measure on ~(x); 
(ii) For any integrable function ~b, the function 

~br = ~ d~(y)v(yl~(x)) 

(constant along the fibers) is measurable and integrable, and 
(iii) 

I r162 = I r  

Remark. The above averaging of q~ over the conditional measures is equivalent to 
taking of the conditional expectation of ~b with respect to the a-algebra generated 
by 4. 

By "countable" set we will mean "at most countable". If we have a countable 
family of measurable partitions ~i then we can construct a partition V~i by 
intersecting fibers of ~, i.e. 

(V ~)(x) = N r 

One can check that this construction leads to a measurable partition. 
Finally, let us mention that for any arbitrary (non-measurable) partition r/there 

exists its measurable envelope, i.e. the finest measurable partition which is coarser 
than q. 

2.2. Elements of entropy theory 

The reader can see [Ro2] or [CFS] for the background in entropy theory. Our 
exposition will be adapted to our goals (in particular, it will not be as general as 
possible). 

Entropy of a countable (rood0) measurable partition ~ = {~i} is defined as 

1 
H,(~) := - ~ v(~i)log v(~i) = ~ log ~ v(x) (2.1) 

(it can be infinite). If the partition is not countable then its entropy is infinite by 
definition. 

If we have two measurable partitions ~ and q then we can restrict ~ on the fibers 
of q, thus we can calculate the entropy of ~ with respect to r/ in terms of the 
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conditional measures as H~ ~. I,(~))(~lq (x)). We then define the conditional entropy by 
averaging this with respect to v: 

H~(~lrt):= ~ H,el,~x~(4Jtt(x))v(x) . 

Let us consider now a homeomorphismf:  J --. J preserving a measure v. Then 
it naturally acts on the space of measurable partitions 4 ~ f 4 ,  where 
(f4)(x) = f(~ ( f  - ix)). 

A partition ~ is calledf-invariant if f4 is a refinement of 4. A partition 4 is called 
a generator if 

Given a partition 4, consider the f-1-invariant  partition 4" = V~= of"r Let us 
call the fibers of this partition r fibers. We can define the Jacobian JUfof 
f in the "4-unstable direction" as the Radon-Nikodym derivative o f f  with respect to 
conditional measures: 

df*v('l~"(fx)) 
J "f (x) = 

dv(-I ~"(x)) 

Since v is invariant, J"f is  constant on the fibers o f f - 1 r  and hence 

1 
d"f(x) = (2.2) p(x) 

where p(x) = v( f - l~"( fx)]~(x)) .  Now define entropy of f with respect to ~ as 

h~(f, ~) = n ~ ( f - ~ " l ~  ) = - ~.logp(x)v(x) = ~logJ"f(x)v(x) (2.3) 

(the middle equality follows from (2.1)). So, from the dynamical point of view 
entropy of a transformation with respect to a partition is just the logarithm of the 
gometric average of the Jacobian of f i n  the ~-unstable direction. 

Finally, the entropy of v with respect to f is defined as 

h~(f) = s u p h ( f  r 

where supremum is taken over all measurable partitions 4- Actually, one can take 
the supremum over finite partitions only. Moreover, it is enough to evaluate 
entropy of any generator with finite entropy: 

Proposit ion 2.1. I f  ~ is a generator with finite entropy then h , ( f )  = h(f, r 

In conclusion let us discuss the ergodic decomposition of the transformationf Let 
us consider the orbit partition 0 off(whose fibers are orbits off).  The transforma- 
t ionf is  ergodic if the measurable envelope of O is a trivial partition (whose only 
fiber is the whole space). 

In general, let us consider the measurable envelope E of O. The fibers of 
supplied with conditional measures are called ergodic components of p. Note that 

all ergodic components may have zero measure (consider the identity transforma- 
tion). However it makes sense to consider the whole space of these components 
rood0. Restrictingf onto ergodic components and then taking them together we 
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obtain a representation o f f  as a "direct integral" of ergodic transformations. It 
follows from (2.3) that 

h ( f )  = S h ( f l  E(x))v(x)  . (2.4) 

This formula gives a method for reducing entropy questions for arbitrary measures 
to the case of ergodic measures. If f is ergodic then it has a finite generator by the 
Krieger Theorem [Kr].  So, in the ergodic case we can always compute entropy 
according to Proposition 2.1. 

For  ergodic v let us say that a point x is v-equidistributed if for any continuous 
function ~b 

l n - - 1  
lim - ~ ~ ( f k x )  = ~ d~v . 
n ~  n k = 0  

By the Birkhoff Ergodic Theorem v almost every point is v-equidistributed. 

2.3 Measures o f  maximal  entropy 

For  the material of this section we refer to Bowen's book [Bo]. We will not define 
the topological entropy of f, but a basic property is given by the so-called 
Variational Principle, which asserts that the topological entropy h ( f )  is given as 

h ( f )  = sup h~(f)  (2.5) 

where v runs over all probabili ty Borel measures invariant with respect to f 
A measure # is called a measure of  maximal entropy if h ~ ( f ) =  h ( f ) .  This 

measure does not necessarily exist, but if it does, then by (2.4) all its ergodic 
components are measures of maximal entropy as well. Hence, existence/uniqueness 
of a measure of maximal entropy are equivalent to the existence/uniqueness of an 
ergodic measure of maximal entropy. 

The problem of uniqueness of the measure of maximal entropy is not handled 
yet in a general setting. The status of the existence problem is much better: 

Newhouse Theorem [Ne]. I f  f :  M ~ M is a C ~ diffeomorphism of  a compact C ~- 
manifold then f has a measure o f  maximal entropy. 

2.4 Stable and unstable manifolds 

Some basic references for the material in this section are [P1], [FHY],  JR2] and 
[PS]. Let M be a Riemannian C2-manifold, f :  M ~ M be a C2-diffeomorphism, 
J be an invariant compact subset of M. Let v be an invariant ergodic measure of 
f supported on J. As usual T~M denotes the tangent space at x. A measurable 
function r(x) is called e slowly varying if 

(1 + e)- l r (x)  < r( fx )  < (1 + e)r(x) .  

Oseledee Theorem. There exist  f initely many distinct real numbers gi, i = 1 . . . .  , s 
called characteristic exponents, an invariant set ~ o f  full  measure, and s invariant 
measurable distributions E~(x) c T~M, x ~ ~l, such that 
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(i) TxM = ~Ei(x);  
(ii) For any nonzero v~ Ei(x), 

lim -1 log [[ Df"(x)v [I = Zi �9 
n ~ •  n 

(iii) For i # j and e > 0 there is an e slowly varying function sit(x) > 0 which is less 
than the angle between El(x) and Ej(x). 

The points of the set ~ are called regular. We can also assume that ~ consists of 
v-equidistributed points. 

Let us state now the Pesin Theorem which says that the above distr ibutions 
are integrable. Denote by B(x,r) a ball of radius r centered at x, and 
Bs/~(x, r) = ES/~(x, r) • B(x, r), Now let us define stable and  stable-center distribu- 
tions 

ES( x ) =  @z,<oEi, E~'(x)= @z,<=oEi. 

Similarly one can define the unstable and unstable-center distr ibutions EU(x) and 
E"C(x). 

Pesin Theorem [P1] Let dim E s > 0, 2 = rain {[)~i[:Zi < 0}. Then for any e > 0 there 
are e-slowly varying positive functions C(x)= C~(x) and r(x)= r~(x) on ~l, and 
a family Wi~oc(x), x ~ ~, of smooth manifolds satisfying the following properties: 

(i) W~or is a graph of a function B~(x, r(x)) ~ E"~(x) tangent to E~(x) at x; 
(ii) For any y~ W~o~(X) and n = 1,2 . . . .  

dis t ( f ' x , f "y )  < C(x)exp ( - (2  - e)n) ; 

(iii) The f underflows the manifolds W~or fW~o~(X) = W~o~(fx). 

The manifolds W~o~(X) are called local stable manifolds. For  r < r(x) let W](x) be 
a part of W~o~(X) lying over B~(x, r), In order to obtain the theorem on local unstable 
manifolds 14q~o~(X ) we just  interchange the roles o f f  and f - 1. 

Let us indicate one immediate consequence of this result. 

Proposition 2.3. I f  the measure v is not supported on a periodic orbit then all 
characteristic exponents cannot be negative (positive). 

Proof. Otherwise W{o~(X)= B(x,r(x)). Since v-equidistributed points x ~  are 
recurrent, we can find a moment  n > 0 such that f "  maps B(x, r) into itself 
uniformly contract ing it. It follows that x is periodic, and v is supported on its 
orbit. [] 

The family of local unstable manifolds does not  form a partition. The following 
statement supplies us with a f -  ~-invariant measurable par t i t ion (called a Pesin 
partition) subordinate  to the family of manifolds. 

Theorem 2.4 (see [P2, LS]) There is a measurable f-1-invariant generator ~" whose 
fibers are open subsets of the local unstable manifolds, and such that 

h~(f) = h~(f ~ )  . 

Remark. W h e n f h a s  no zero characteristic exponents then the Pesin part i t ion ~ ~ is 
a ~-unstable part i t ion for some part i t ion ~ with finite entropy [LY]. So, in this case 
the above entropy formula follows from Proposi t ion 2.1. 
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Let us now define the global unstable manifold W~(x) at x as the set of points 
y whose backward orbits are asymptotic to the backward orbit of x. Clearly 
fWU(x) = W~(fx). One can prove that for x e ~  

WU(x) = U fnWU( f  -nx) . 

This implies the following two consequences: 

(i) The backward orbits y e W~(x) are exponentially asymptotic to the orbit of x. 
(ii) The set W~(x) is an immersed Euclidean space. 

The global unstable manifolds form the partit ion of the measure space (J,  v) 
which we will call the global unstable partition. This parti t ion is in general not 
measurable. 

A partit ion ~ is called hyperfinite if there is a sequence of measurable partitions 
~ such that 

~l(x) c ~2(x) ~ . . . .  and z(x) = U ~i(x) . 

Let us call a measure defined up to a scalar factor a projective measure class. On 
a fiber of a hyperfinite partition one can define a conditional projective measure 
class ~(-It(x)) as the class of the measure: 

v('r~,(x)) 
v(" Iz(x))) = lira 

~oo v ( ~ ( x )  l r  " 

Thus for any other sequence ~'n which generates z, the measure v'('l r(x)) obtained 
in this way will be a multiple of the measure above by a constant depending only on 
x. In fact, for any measurable partition r/subordinate to z, the conditional measures 
on the fibers of r /are  just the normalized projective measure classes of r. 

Proposition 2.5. The global unstable partition is hyperfinite. 

Proof. Take a Pesin parti t ion ~ ,  and represent the global unstable partition as the 
limit of measurable partitions f - ~ .  [] 

It is evident that the preceding discussion may be applied equally well to the 
stable direction instead of the unstable one. 

2.5 Relations between entropy and characteristic exponents 

The following inequality was discovered by Margulis in the case of an absolutely 
continuous measure. It was later generalized by Ruelle [R1]: 

Margulis-Ruelle inequality. 

hv(f) < ~ zidimEi , 
Zi>0 

and a corresponding inequality holds with the sum of negative characteristic ex- 
ponents. 

Corollary. I f  hv( f ) > 0, and if f has at most two characteristic exponents, then one of 
these exponents is negative, and another is positive. 
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In such a situation we will denote the negative and positive exponents Z ~ and Z ~ 
correspondingly. 

More recently a number of remarkable relations between entropy, character- 
istic exponents and Hausdorff dimension have been discovered (see Pesin [P1] and 
Ledrappier-Young [LY] and the references there.) The Hausdorff dimension of 
a measure v, written HD (v), is defined as the infimum of the Hausdorff dimension of 
X, for all Borel subsets X with full v measure. Clearly, the Hausdorff dimension 
depends on the measure class only. 

Lai-Sang Yoang's Formula [Yg] Assume that f has only one characteristic exponent 
~ < O. Then for v a.e. x, 

h~(f) 
Ho(~(. I W~(x))) = 

iZ~l " 

2.6 Complex analytic case 

Let M be a Hermitian complex analytic manifold and l e t f b e  analytic. Then E~(x) 
are complex subspaces in T~M, and all local manifolds are complex analytic. 

Assume now that dimc M = 2, and v be any invariant probabili ty measure with 
two non-zero characteristic exponents of opposite signs, Z ~ < 0 and X ~ > 0. (In 
particular, this will be the case if h~(f) > 0, see the corollary of the Margulis-Ruelle 
inequality). Hence dimc E ~/~ = 1, the global stable/unstable manifolds are regular 
complex curves. The following statement says that almost all of them are parabolic. 

Proposition 2.6. The stable and unstable manifolds W"(x) and W~(x) are conformally 
equivalent to the complex plane for v a.e.x.  

Remark. It is possible to prove Proposit ion 2.6 along the lines of the proof of 
Theorem 5.4 of [BS1]. That is, for x ~ l ,  WU(x) contains a sequence of disks 
D 1 c D2 c . . .  such that the modulus ofDi+ i - Di is bounded below. From this, it 
follows that WU(x) is equivalent to C. To sketch this argument, we note that 
W~i-kx)(f-kx) is a graph over a disk of radius r( f -kx)  > C(1 + O-kr(x). On the 
other hand, the derivative o f f - k  on W~x)(x) is approximately e - " r .  For  a small 
disk D~ containing x inside WU(x), we may choose n sufficiently large that the 
modulus of the annulus W~y- ,x ) ( f - "x ) - f - "D~ is at least 2. Then we may let 
Dj + 1 = f ~ Wr~y- -:,)(f -"x). 

Remark. The proof we give below uses a technique that will also be used in w Two 
measurable functions a and fl are called cohomologous if there is a measurable 
function o such that the following cohomology equation 

~ ( x )  - f l ( x )  = o ( f x )  - ~o(x)  

is satisfied v-almost everywhere. 

Usually, the cohomology equation comes up when we calculate the logarithm 
of the Jacobian (or norm) o f f  with respect to two equivalent measures (metrics). 
The following statement will be useful on several occasions. 
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Lemma 2.7. Let ~t be a measurable function bounded from below. I f  e is cohomologous 
to 0 then 

S0~V=0. 

This is trivial if ct is integrable. Otherwise, the proof is based upon the Birkhoff 
ergodic theorem (see, e.g., [LS, Proposition 2.2-].) 

Proof o f  Proposition 2.6 We consider the unstable manifolds WU(x). Let Fw~x~ de- 
note the Kobayashi metric on WU(x). This metric depends in a lower semicontinu- 
ous manner on x if WU(x) depends continuously on x. And since we may find 
compact subsets of J of measure arbitrarily close to 1 on which WU(x) depends 
continuously on x, the correspondence x ~ Fw~lx~ is measurable. WS(x) is conform- 
ally equivalent to either a plane or a disk, depending on whether Fwutx~(x, E") = 0 
or not. By ergodicity, the type of WU(x) is the same for almost all x. We assume that 
it is hyperbolic and derive a contradiction. 

Let ~(x)=logllOf(x)lEull, where the norm is taken with respect to the 
Hermitian metric on M. Similarly, for x ~  we define the function 
fl(x) = log IDf(x)lEul, where IOf(x)lE~l denotes the norm taken with respect to the 
Kobayashi metric. If we let p(x) denote the ratio of the Hermitian to the Kobayashi 
metrics in the unstable direction, then ~ and fl are cohomologous in the sense that 

a(x) - fl(x) = log p(fx)  -- log p(x) . 

But f is an isomorphism between WU(x) and W~(fx) and hence preserves the 
Kobayashi metric. So fl(x) = 0 almost everywhere, and ~ is cohomologous to 0. By 
Lemma 2.7, 

Z u =- ~ o~v = 0 

contradicting the assumption that X ~ > 0. [] 

Assume now that f is a polynomial automorphism of C 2, and 3 § J - ,  
J = J § c~ J - etc., be the sets introduced in w Consider also the currents/~+ and 
/a-. We can "slice" the current/~+ with any complex one dimensional variety W(see 
w The result can be interpreted as a measure on W which we denote by #+tw. In 
particular, we can consider the measure/~+ Iw~cx~ on the unstable leaf containing x. 
We will call it an unstable slice of/1 +. 

Lemma 2.8. Any v re#ular point x ~ ~ belongs to the support o f  #+ I w~t~). 

Proof Let d be a disk with'x ~ A ~ W"(x). If # + (A) = 0 then G + is harmonic in A. 
Since the orbit of x is bounded G § (x) = 0 and by the minimum principle G § is 
zero in A. Thus A = K § It follows thatf"(A) ~ K § sof"(A) is uniformly bounded 
for all n. By the Schwartz Lemma tl D(f"ln)II  _<- c but this contradicts the fact that 
at a regular point the Lyapunov exponent is positive in the unstable direction. [] 

Proposition 2.9. For v a.e. x, W~(x) is a dense subset of  J - ,  and W~(x) is a dense 
subset of  J + 

Proof. For xe~ t  it is evident that W~(x) c K +. We show that W~(x) c J +. Let us 
suppose that ye  W ~ ( p ) n i n t K  +. Since the iterates f "  for n-> 1 form a normal 
family, it follows that IIDf~fl is bounded. The fact that y e  W'(x)  implies that 
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d( f" (x ) , f " (y ) )  < Cr" for r < 1. This in turn implies that ItDfi.~ ) - Off.~y~ll ~ C'p" 
with some p < 1. It follows from [R, Theorem 4.1] that the asymptotic behavior of 
Df2 and Dff is the same. In particular 

1 1 
lim < log I] Df~ II = lim -- log I[ Df2 II = z".  

n ~ o 0  n n ~ o O  n 

We see that [I Df~ [I is therefore not bounded. This completes the proof that 
W~(x) c J +. 

We now show that W*(x) is dense in J +. Let D ' denote a disk inside WS(x) with 
x ~ D ~ and such that #-Iw~l~)(t?D ')  = 0. By [BS3], d -"  [ f - " D  s] converges to e/2 + as 
n ~ o% with 

c = ~ -  I WS<x)(D S) . 

By Lemma 2.8 (in the "stable" setting) c > 0. 
Now let U be an open set with U ~ J + . 0 .  Thus u - t _ U 4  =0, and so 

( f - " D  ~) ~ U 4= 0 for all n greater than some large N. It follows that 

f -"W~(x)c~ U = WS( f  - " x ) n  U 4= O . 

Let SN = {xeN:  W~(f-"x)c~ U + 0 for n > N}. Clearly, $1 c $2 c . . . .  and by 
the previous remark U SN = N. Further, fSN = SN+ 1, and s incef i s  ergodic,  each 
SN has measure 0 or 1. Thus it follows that So has full measure, which completes the 
proof. [] 

Remark. If p is a (periodic) saddle point, then the average v of point masses over the 
orbit of p is a hyperbolic measure. Thus Theorem 1 of [BS3] is a consequence of 
Proposition 2.9. 

3 The unique measure of maximal entropy 

The goal of this section is to prove the following Uniqueness Theorem. Our  
approach is reminiscent of the proof of the uniqueness theorem for rational 
endomorphisms of C given in [EL] and also of Ledrappier 's proof of the "Varia- 
tional Principle" for absolutely continuous invariant measures [Le]. An important  
consequence of the proof is that the conditional projective measure class of # on the 
unstable foliation is induced by the current #*. At the end of the section we will 
derive estimates of Hausdorff dimension and characteristic exponents. 

Theorem 3.1. The measure p is the unique measure of  maximal entropy. 

Note that this result gives a characterization/z in terms of topological dynamics 
which makes no reference to potential theory. 

By Theorem 2.2 and the comment preceeding it, there is an an ergodic measure 
v of maximal entropy, h~(f) = logd. We are going to show that v =/~ which yields 
Theorem 3.1. In fact, this gives an alternative proof that # is a measure of maximal 
entropy, which was originally proved in [BS4] (yet another approach is outlined in 
w 

By the corollary of the Margulis-Ruelle inequality, v has two non-zero charac- 
teristic exponents of opposite signs, )~' < 0 and ff  > O. So, we can consider the 
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complex one dimensional unstable foliation and the projective measure class 
~(" I W~(x)) on its leaves (see Sect. 2.4). On the other hand, we can consider measures 
/~+ Iw-tx~ induced by the current/,+ (see Sect. 2.6). For an open set B c W"(x), we 
will use the notation #+ (B):= #+ I wu~)(B). 

Proposition 3.2. I f  v is a measure o f  maximal entropy then for v almost all x, the 
conditional projective measure class v('l W"(x)) is induced by the current i~ +. 

Proof  o f  Proposition 3.2 The Jacobian J~+ of f with respect to the family of 
unstable slices of p+ is equal to logd since for any B ~ W"(x) we have 

g + ( f B )  = f * p + ( B )  = d .  

Let ~u be the unstable Pesin partition for v. By Lemma 2.8 p(x) --/~+(~U(x)) > 0. 
So, we can normalize the above family of measures in order to get probability 
measures on the Pesin pieces: 

r/(BI ~"(x)) =/~+ (B) /p(x) .  

Then the Jacobian J,~ is multiplicatively cohomologous to the Jacobian J~§ that is: 

p(x) 
J~(x) = d p(fx~---]) " 

So, log Jg(x) is (additively) cohomologous to log d: 

log J~(x) - log d = log p(x) - log p ( f x ) .  

This formula and the following property of the function p(x) imply that 
log J~(x) is positive. 

Claim. p ( f ( x ) )  <= dp(x). 

By the increasing property of {", we have ( f - l r  c CU(x). So 

/2 + ( ( f -  lr < #+ ({"(x)). 

On the other hand f ( ( f - l r  = r So 

#+ (~"(f(x))) = d# + ( ( f  - lr 

Thus #+ (~"(f(x))) < d# + (~"(x)) as was to be shown. 
Hence log J,~ > 0, and Lemma 2.7 yields 

log S~(x)v(x) = log d, 

or 

-- ~ logq(x)v(x) = logd 

where q(x) is the r/-measure of ( f - l~)(x) .  
On the 

Theorem 2.4 

(3.1) 

other hand, set p(x )=v( f - l~" ( f x ) lCU(x ) ) .  Then by (2.3) and 

- Slogp(x)v(x)  = h,~(f, 3") = h,,(f) = logd .  (3.2) 



Polynomial diffeomorphisms of C 2. I V  91 

But 

From (3.1) and (3.2) we conclude 

~, q(x) v(x) = 0 log p - ~  

q(x) , ,  ( q(z) ) 
v xj = 2  p(z) v(y)= 1. 

~U(y)/s 1r 

By concavity of log, we get q(x)= p(x) almost everywhere. Thus conditional 
measures coincide on the partit ion f - l~UlcU(y)  for v almost all y. The same 
argument applied to f "  shows that they coincide on f - " ( u  I ~U(y). Since 

n=O 

we conclude that v(.l~"(y)) = ~/]~"(y) - U+(.l~"(y)). 
Sincef"~" is also the Pesin partit ion for any n, the conditional measures of v and 

#+ coincide on it. Passing to the limit as n ~ ~ ,  we get the required agreement of 
v and #+. [] 

Proof of Theorem 3.1 By the ergodic theorem v-almost every point p is equidis- 
tributed with respect to v, that is 

l n - - i  

lim n =~o alp(f "(p)) = S c~v (3.3) 

holds for any continuous function ~b on C 2 with compact support. Let 
v~ = v(']~"(x)) denote the conditional measure on the Pesin piece ~"(x). Then for 
almost every x we have that v~-almost every point in ~"(x) is equidistributed with 
respect to v. By bounded convergence we can average (3.3) over ~"(x): 

l n - - 1  

~bv = lim S -  Z ~(f~(p))vx(p) 
n ~  n i=0  

1"-1 \ 
) = lira ~b(p)  (~)  (p) .  

Since this holds for any continuous function we have: 

l n - - 1  
_ y '  ~ f~,(v~,) ~ v (3.4) 
/'/ i = 0  

in the weak topology of measures. 
On the other hand, let #+ = #+('l~"(x)) denote the normalized measure 

g+ I~"(x). Then it follows from [BS4] that 

f,~ (#+) ~ # .  (3.5) 

To see this we set S = ~"(x). By [BS1] d-"f~,[S] ~ c#- with c = #+(S). Wedging 
this with # +, and taking into account # + ^ S = #+ and the transformation rule 

n + 
f , #  = d - " g  +, we obtain (3.5) (compare Lemma 4.1 of [BS4].) 
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Since vx =/~+ by Proposition 3.2, properties (3.4) and (3.5) yield v = #. This 
completes the proof of the theorem. [] 

Corollary 3.3. The conditional projective measure class/2(- I W"(x) ) is induced by the 
current iz +. 

Remark. The Jacobian of f with respect to the conditional measures on the 
unstable manifolds is thus d. This can be considered as the natural analogue of the 
balanced property of the Brolin measure. 

It is known that for a polynomial endomorphism P of the complex plane the 
characteristic exponent X of the measure of maximal entropy (which coincides with 
harmonic measure of the Julia set J (P)) is greater or equal than log d. Moreover, 
X = log d if and only if J(P) is connected (see [Man, Pr]). Here we discuss related 
properties of polynomial automorphisms of C 2. 

It follows from the Lai Sang Young formula (see w and Corollary 3.3 that for 
# a.e. x, 

h , ( f )  log d (3.6) 
HD(#-IW~(x)) = izSl - IZ~I 

Let us consider for a moment the dissipative case, i.e. l al < 1, where a is the 
(constant) Jacobian determinant o f f  We have J Zs[ = Z" - log tal. It was shown in 
[BS4] that X" >= log d, so in this case, Young's formula gives 

HD(#-Iws~x)) < 1 (3.7) 

for # a.e.x. By Corollary 3.3 and the fact that the conditional measures are in the 
measure class of harmonic measure, we have: 

Corollary 3.4. I f f  is dissipative, then for # a.e. x the harmonic measure of  WS(x) n J - 
inside W~(x) has Hausdorff dimension strictly less than 1. 

In the following result, we relate the topological property of the connectedness of 
J to the rate of expansion o f f  

Theorem 3.5. I f  the map f is hyperbolic, and if J is connected, then X u = log d and 
Z s = log l al - log d. 

Proof. Sincef is  hyperbolic, J has a local product structure at any point p. That is, 
there are neighborhoods V ~ of p in W~(p) and V" in W"(p) such that 
(V ~ n J - ) c~ (V u n J + ) is homeomorphic to a neighborhood of p in J. 

We claim that either WS(p)n  J -  or W " ( p ) n  J + has the property: There is 
a neighborhood U of p such that every connected component of WS(p) n J - n U 
(resp. W"(p) n J + n U) is noncompact.  For  otherwise there are compact connec- 
ted components which are arbitrarily small and arbitrarily close to p inside both 
WS(p) n J - and WU(p) n J +. Thus the product neighborhood of p in J contains 
arbitrarily small compact, connected components. But in this case, J is not 
connected, which proves the claim. 
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Thus we may assume that W"(p)c~ J § has this property. If q ~ J is close to p, 
then by the local product structure, W"(q) r~ J + also has this property. It follows 
that U c~ W"(q)  - J + is simply connected. By a theorem of Makarov [Mak], the 
harmonic measure of W"(q) c~ J + has Hausdorff dimension 1. Now since this holds 
for a set of q of positive measure, we conclude from the formula of Young, with the 
stable manifolds replaced by the unstable manifolds, that X" = log d. [] 

4 Product structure of # 

In this section we will show that there are sets CPesin boxes") on which /~ has 
a local product structure, and the union of these sets has full/~ measure. The main 
step in doing this is to study the holonomy map along the stable/unstable mani- 
folds and to show that the conditional measures of p are preserved by the 
holonomy map. 

We consider a family Jg of complex manifolds. A complex manifold D is 
a transversal to J/g if D intersects each M ~J# in a unique point, and this 
intersection is transverse. Let 131 and Dz be two transversals to ~ ,  and set 

Xi  = U Dic~ M 
M~.gg 

for i = 1, 2. We define the holonomy map 

X : -  z(D1, D2, ,/#) : X1 -+ X2 

as )~(x~) = M ( x l ) c ~  D2, where M ( x l ) � 9  J [  is the unique manifold containing x l. 
Throughout this Section we will consider the case where ~ '  is a family of stable 

(or unstable) disks given by the Pesin theory (see the discussion in w If r > 0 is 
sufficiently small, and if x e ~ satisfies r(x) > r, then each stable (or unstable) disk 
W](x) (or W~x)) is given as a graph over the r-ball in the tangent space E~(x) (or 
E"(x)). More generally, we will work with complex disks that are graphs over E~(x), 
i.e. which have the form 

M = {(z, ~o(z)) : z ~ E",(x), qJ(z) ~ E~(x)} . 

We will say that two such graphs are C ~ close if their corresponding graphing 
functions ~0 are C 1 close. 

For any subset F c {xe~t: r(x) > r}, we write 

W(/o~(F) - W~/"(F) = U W]/"(x) and ~s/ ,  = { W ] / , ( x ) : x ~ F }  . (4.1) 
x~F 

For 0 < ~ < 1  and for x 0 e ~  with r ( x o ) > r ,  we let F = { x e ~ t c ~  
B(xo, ~r):r(x) > r}. We may choose • sufficiently small that if D1 and Dz be disks 
such that Dj is within ~r (in the C 1 topology) of ~ (x~) for some x s e F, then D s is 
transversal to the family ~-~ for j = 1,2. tt follows that the holonomy map 
)~(D1, D2, ~,~) is defined. 

For mo> 0, r0 = r/8 > 0, and x e N such that r(x) > r, we consider the property 

~+ Lw~(x)(W~/o(x)) >mo  �9 (4.2) 
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Now let 

where 

Q = { x e ~ :  r(x) > r, and (4.2), (4.3), (4.4) hold} . 

S = {x ~ J :f"(x) ~ Q for infinitely many n} . (4.6) 

By the Ergodic Theorem; #(S) = 1. In the sequel, we let Q denote the set Q n S, 
which differs from the original Q by a set of measure zero. Now let us fix Xo ~ Q and 
use the following notation: 

F = Q n B(xo, x r ) ,  (4.7) 

let D = I4~, (Xo), and let D' be a transversal which is within C 1-distance xr of D. The 
domain of the holonomy map x(D, D', ~- ' )  is given by 

x = D n W~,(F) 

and the range is 

X '  = D' n W ] ( F ) .  

We recall that the construction of the Pesin unstable manifolds (as given, for 
instance, in [PS])  may be carried out by applying the graph transform, starting 
with disks, called "trial disks," that are transverse to the stable direction. It is 
shown that these trial disks, under forward iteration, approach the stable manifolds 
in a semi-global C x sense. Now let us consider a large n such that f " x o  ~ Q. We 
define Yo = D' n W](xo) and view D' as a trial disk for the unstable manifold 
D = W~ (Xo). Let D'. denote the portion of f "D '  which can be represented as a graph 
over E~( f "xo )  and which containsf"yo.  By [PS, Corollary 3.11] D" converges to 
D. =- W~,(f"xo) in the C x topology, and the distance is bounded by Ce -"~. Let us 
define 

X .  = ( f " X  ) n W,~,(f"xo) . 

Evidently, f - " X .  c X. 
For  each x e f " X . ,  the local stable manifold W~(s.x)(f"x) intersects D'. transver- 

sally because r ( f " x )  > (1 + e)-"r, and the angle between W](s.:,)(f"x ) and D. is at 
least 0o(1 + e)-", whereas D; is exponentially close to D.. Thus D~ and D, are 
transversals to the family ~ .  = {W:r ) : x e X . } ,  and so the holonomy 

X. := z(O. ,  D'., ~ ' . )  (4.8) 

is defined. 
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For  C < ~ we also consider the properties 

d i s t ( f " ( x ) , f ' ( y ) )  < Ce -"~ for n > ! and y ~  W](x) (4.3) 

d i s t ( f - " ( x ) , f - " ( y ) )  < Ce -"~ for n > 1 and y~  W,"(x) . (4.4) 

Choosing m o >  0 sufficiently small and C < ~ sufficiently large, we have 

/~(J - Q) < e (4.5) 
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Lemma 4.1. I f  n is sufficiently large, and f " x E Q ,  then x . ( f " x ) = f ~ ( ( x )  for all 
x e X ~ .  Given ro < tcr, n may be taken sufficiently large that for a ~ f - " X .  

z~(S~ n B( f"a ,  ro - 2Ce- 'Z))  c (z ,X,)  c~ B(f"g(a), to) c 

z, (X.  n B(f~a,  ro + 2Ce-'Z)). 

Proof. For x e X~, let y = X(X), and let 7 be a path inside W~(x) connecting x to y. 
Then f*7 lies inside f~W~(x). Further, by (4.3), f"~ has diameter less than Ce -"~, 
and thusf"~ c W~s,x~(f"x ). Sincef~7 connectsf"x t o f " y  inside W~(f"x), it follows 
that z , ( f "x)  =fny .  This proves the first assertion. The required inclusions are now 
a consequence of (4.3). [] 

Remark. Sometimes abusing rigour we will write Z of  ~ = f ~ o  Z and say that f~ 
commutes with holonomy. Let us use the notation Yo = ~((x0), x. =f" (xo) ,  and 
Y, =f"(Yo). 

Lemma 4.2. Let {t/.} be a sequence of numbers decreasing to zero. Let us pass to 
a subsequence n = n]for which xn E Q, and let D'~ be a sequence o f  complex disks such 
that distc~ (D~, D'~) <= tl~. Then there exists p with ro/2 <- p <- ro such that 

l im'  [#+ [o- B(y , ,  P + 2Ce -"~) - ~t § Io.B(x,, p -T- 2Ce-~a)] = 0 ,  
n ~ o o  

where lim' means that the limit is taken through a further subsequence. 

Proof. Without loss of generality, we may assume that Q is compact, and a sub- 
sequence of {x. } converges to ~ ~ Q. Thus the unstable disks D. converge in C 1 to 
D = W~(~). Now choose ro/2 < p < ro such that p+ Ib puts no mass dB(~, p). The 
lemma then follows because the measures #§ ID; converge weakly to/~§ lb. [] 

Lemma 4.3. If, in addition to the hypotheses of  Lemma 4.2, we require that x~ ~ Q, 
then 

l im ' t t  § I~;,B(yn, p + 2Ce-nX)(# § Io.B(x~, p T- 2Ce-"~)) -1 = 1 . 
n ~ o o  

Proof. Lemma 4.3 follows from Lemma 4.2 by property (4.2). [] 

Lemma 4.4. Let F c Q, D = W~ (Xo), and D' be as above. With the notation v:=/~+ Io, 
v' = #+ Io,, and Z = z(D, D', ~ ) ,  we have 

g.(vlx) = v'lx,.  (4.9) 

Proof. It will suffice to show that (4.9) holds for X replaced by X n B(x, ~) for 
some small e > 0. Then we can add over a partit ion of X to obtain (4.9). We will 
define two coverings q?• of X and a covering cg, of X'.  The coverings will have the 
property that if a ~ X, there are elements C • (a) e cg • and C'(Z (a)) e cg, of arbitrarily 
small size containing a such that 

zC - (a) c C'(z(a)) c zC + (a). (4.10) 
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F o r  a e X we may  choose n arbi t rar i ly  large such that  f"a ~ Q. We define 

C,~(a) = f-"(W~(f"a)c~ B(f"a, p -+- 2Ce-"~)) 

with p as in Lemmas  4.2 and 4.3. In analogy with nota t ion  used earlier in this 
section, we let D', denote  the por t ion  off"D' which lies as a graph over E",(f"a'), 
a' = z(a), and which contains f"a'. Now we define 

C',(a') =f -" (D,  ~ B(f"a', p)). 

The inclusions in (4.10) are a consequence of Lemma 4.1. By Lemma 4.3, we have 

l im '  v(C + (a)) _ 1.  (4.11) 
. ~  v ' ( C ' ( a ' ) )  

By the overflowing proper ty  of the unstable disks, f - " :  W~(f"a) ~ W~(a). Since 
W," is a graph,  we may  identify it with the disk { I ~1 < r), and thus we may  consider 
h(~):=f-"(r() as a univalent  mapp ing  of the disk {l~l < 1} to C. By the Koebe  
Dis tor t ion  Theorem, 

f " ( 0  < (1 + ro/r) 4 
= (1 -- ro/r) s 

for I([<ro/r. The image of the disk { l ( l < p }  is a convex set if 
(1 + ro/r)4(1 - to/r) - s  < (2p) -1. We  conclude, then, since C+(a) is the image of 
such a disk, and since p < ro = r/8, that  C, ~ (a) is convex. Similarly, C'(a') is convex. 

N o w  let E c X be a compact  subset, and let E '  = zE. F o r  6 > 0, choose an 
open set (9 c ~r containing E such that  

v((9) < v(E) + 6 . 

The coverings cg • and  oK, are fine in the sense that  any point  is contained in an 
element of arbi t rar i ly  small  diameter.  Since the elements of the cover are convex, we 
may  apply  the Cover ing Theorem of Morse  [ M o ]  to conclude that  there is 
a dis jointed family {Cj: j = 1, 2 . . . .  } c c g ,  such that  

v ' ( E ' -  0 C j ) = O .  (4.12) 
j = l  

Each Cj is of the form C'~(x(aj)) for some aj and  n i. The corresponding sets C 7 in 
the cover oK- satisfy C 7 ~ Z-1 (Cj) by (4.10) and are thus pairwise disjoint. Since 
~(-1 is continuous,  and since the diameters  of the Cj may  be taken arbi t rar i ly  small, 
we may  assume that  C 7 c (9. Thus 

v((9) > ~, v ( C [  ) . 
)=1 

Since we may  take the diameters  arbi t rar i ly  small, it follows from (4.11) that  

v((9) > (1 + 6) -1 ~ v ' (Cj ) .  
j= l  

By (4.12), then, v((9) > v'(E'). It follows that  

v(E) >__ v'(E'). 
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Now if we cover E by a disjointed subcover of ~g+ and repeat the previous 
argument, we conclude that 

v(E) < v ' ( ~ ' ) .  

Thus v(E) = v'(E'), and this completes the proof. [] 

Theorem 4.5. Let F ~ Q, and ~ be as above. Let Di , Dz be two transversals, and set 
/~j:= #+ In, for j = 1, 2, Xj  = Dj c~ W](F). Then the holonomy X:= z(Da, D2, ~ s )  
satisfies 

X.(#l lxl )  = ~21x= �9 

Proof. We may assume that for each Xl ~X1,  there is a point  z e Q  such that x l ,  
Z(z)~ W~r(x'). For  otherwise we may apply f "  and use (4.3) and the fact that 
f " ~  = z ~  ". 

As in Lemma 4.4 we work locally on X1, so we may assume that W~(z) 
is a transversal to ~s .  Let us define •1 = x(D1, W ~ ( z ) , ~ )  and 
~z = x(Wf(z),  D2, ~ ) .  By Lemma 4.4, then, )~2 ~ Xl = 7~ takes #i  ]x~ to #2]x2. [] 

Let F = Q denote a compact  subset, and let W](F), ~ / "  be as in (4.2). If the 
diameter fi of F is sufficiently small, then we may assume that F is contained in 
a 6-ball about  the origin, and that every leaf W](x) (resp. W](x)) is a graph over the 
horizontal (resp. vertical) coordinate axis. Further,  for x e F, W~(x) is transversal to 
~" ,  and 14q~ (x) is transversal to ~-' .  Since the ho lonomy induces a homeomorphism 
on transversals, there is a fixed compact  set P" which is homeomorphic  to 
Wf(x) c~ W~,(F) for all x e F. Similarly, there is a fixed PS which is homeomorphic  to 
W~,(x)c~ Wf(F)  for all x e F .  We call the set P : =  W](F)c~ W](F) the Pesin box 
generated by F, and we note that P is natural ly  homeomorphic  to P~x P". It is 
evident that, up to a set of measure zero, ~ is a countable un ion  of (not necessarily 
disjoint) Pesin boxes. 

If P is a Pesin box, then the part i t ions ~/" of P, whose elements are W]/"(x) c~ P 
are measurable part i t ions of P. We let c := #(P) so that v := c -  1#1_/~ is a probabil-  
ity measure. It follows from Theorem 3.1 that the condi t ional  measures of v are 
given by 

v('l ~(x))  = c~(x)- ~ ~-  I w ~  t__ P 

where c~(x) is the total mass of/t-Iwr t__ P, and a similar expression for v('l ~"(x)). 
By Theorem 4.5 we see that c ~ = c'(x) is constant  for x e F. In  fact: 

Theorem 4.6. I f  P is a Pesin box as above, then the holonomy maps along o ~ / "  
preserve the conditional measures of  v = c-1#1__ P. 

To explore the product  structure further, we let E ~/~ c P~/" be Borel sets. For  x e F, 
we may define the measures 2 '/" on P~/" to be the measures induced by the 
conditional measures c'/"v(.I~'/"(x)) via the homeomorphism between ~/" and  P~/". 
By Theorem 4.6, the measures 2 ~/u are independent  of the point  x e F. By properties 
(ii) and (iii) of condit ional  measures, we have 

v(E ~ • P") = ~_ v(E~l ~'(x))v(x) 
x6P 

= ~ ( e ' ) - ~ , ~ ( E  ~) = ( e ~ ) - 1 2 ~ ( E , ) .  
x~P 
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Similarly, we have 

v(e" • e " )  = # v(e ' l r  
x e p s  x E u  

= # (c') -',~`(E ~) 
x E p  s x E u 

= (c ' ) -  1 2 " ( E ' ) v ( W  x E ~) = (c~c") - 12~(E~)2"(E"). 

Thus we have the following. 

Theorem 4.7. I f  P is a Pes in  box ,  then  there are measures  2 ~/" on P~/" such tha t  
# L P = 2 ~ | 2 ~ has the s t ruc ture  o f  a produc t  measure  

Corollary 4.8. The measure  # is Bernoull i .  

P r o o f  Ornstein and Weiss discuss invariant measures with nonzero Lyapunov 
exponents in [OW, p. 86]. Given such a measure which is mixing with respect to f, 
they remark that it is Bernoulli if it is locally equivalent to a product measure with 
respect to the stable and unstable manifolds. By Theorem 4.7, then, we conclude 
that # is Bernoulli. [] 

Since the entropy, log d, depends only on the degree off, and the entropy is the 
unique invariant for Bernoulli measures, it follows that any two polynomial 
automorphisms with the same degree are measurably conjugate with respect to 
their equilibrium measures. 

5 Uniformly laminar currents 

Let ~ = C" be an open set, and let ~P'~ denote the smooth (p,q)-forms 
ct = ~ ~ i s d z  t m d~ s, I I [ = p, [ J] = q, with compact support in #2. The dual space 
~p.q of ~P'~ is the set of (p, q)-currents  or currents  o f b i d i m e n s i o n  (p, q). A current of 
dimension 0 acts on test functions and may thus be considered as a distribution. C" 
itself may be identified with the 2n-dimensional current [C"], which acts on an (n, n) 
form q~ by integration: [C"] (~o) = S q~" If T is a (Pl, qx)-current, and r is a smooth 
(P2, q2)-form, then the con trac t ion  T L  ~b, defined by 

(TL~k)(qO-- T(~ A q~) 

is a (Pl -- P2, ql -- q2)-current. The space ~ " - P ' " - q  of smooth (n - p, n - q) forms 
on C" may be identified with a set of currents of bidimension (p, q) via the mapping 

~" -~ ' " -q~  ~ ~ [C"] L q, ~ ~ , ~ .  

The mass  norm of a current T is given by 

M [ T ]  = sup I T(~0)l �9 
I~oI~ 1 

If T is an (0, 0) current, then the mass norm is finite if and only if T is represented as 
a distribution by a finite, signed Borel measure v, and M [T]  is the total variation of 
v. A current Tis  represen table  by  in tegrat ion  if zT has finite mass norm for any test 
function X on f2. If T is representable by integration, then there is a Borel 
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measurable function t from f2 to the (p, q)-vectors (the dual of the (p, q)-forms) and 
a Borel measure v on I2 such that T = tv holds in the sense that 

T(q~) = ~ (tp(x),  t ( x )>v(x ) .  
XED 

We will require that It [* = 1 at v a.e. point. (L" [* denotes the norm on (p, q)-vectors 
which is dual to the norm on (p, q) forms.) In this case t and v are uniquely 
determined, and v = IT[ is the variation measure associated with the current T. We 
will call tv the polar representation of T. If T is representable by integration, and if 
S c O is a Borel subset, then we will use the notation 

T L  S = t v L  S 

for contraction, which coincides with restriction in this case. 
A (p, p)-current T is positive if T(icq /x ~1 /x . . . /x ictp A ~p) > 0 for all (1,0) 

forms ctj = 2 k  ctkdzk with compact support. This definition of positivity is analog- 
ous to the positivity of a distribution. And as in the case of distributions, a positive 
current is representable by integration. Further, if we let fl = ~, �89 dzj ^ d~j denote 
the standard KS, hler form on C", then for a positive (p, p) current T, the contraction 
T L  tiP~p! is a Borel measure, and the mass norm M [T]  is just the total variation of 
this measure. 

Let M be a k-dimensional complex manifold of f2. If either M is locally closed 
(without boundary) or if M is a smooth submanifold-with-boundary (or more 
generally, if the area of M is locally finite), then the pairing with test (k, k)-forms 
given by 

EM](<o) = ~ ~o 
M 

defines [M]  as a current of bidimension (k, k) on f2. We call [ M ]  the current o f  
integration associated to M. The mass norm of [M]  is the Euclidean 2k-dimen- 
sional area of M. It is evident that [M]  is representable by integration, and 

[M]  = t M a u ,  (5.1) 

where tM is the 2k-vector of norm 1 defining the tangent space to M (a vector which 
is uniquely defined, since M is an oriented submanifold of C"), and aM = ,r M 
is the Hausdorff 2k-dimensional measure restricted to M. The boundary OT of 
a current T is defined by 

8T(qg) = T(dqg). 

If 0M is regular, we may apply Stokes' theorem to obtain 8 [ M ]  (Q = ~0M ~. We say 
that T is closed if 8T = 0, and so [ M ]  is closed if M has no boundary. 

More generally, if V is a (closed) subvariety of f2, then the set Reg(V) of regular 
points (where V is locally a manifold) are a dense open set, and it may be shown 
that [ V] (~o) = SRe,(v) ~0 defines a positive, closed current. The device of studying the 
current of integration [V] has been useful in the study of metric properties of V, 
such as the area growth. For  instance, the fact that [V] is a current at all 
corresponds to the fact that the area of [Reg(V)] is locally bounded near singular 
points. And 8 [ V] = 0 holds because the amount of mass in a neighborhood of the 
singular set is small. 
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It is useful to apply similar considerations to the stable and unstable manifolds. 
However, since WS(x) (resp. WU(x)) is often dense in ~r (resp. ~r an individual  
stable manifold does not  define a current of integration, since the amoun t  of mass 
is not  locally bounded.  Thus we wish to consider the whole stable and un- 
stable laminat ions  as currents as was suggested by Ruelle and Sullivan [RS] and 
Sullivan [S]. 

Let us consider a family of graphs of analytic functions fa: A ~ A, a~A. We 
assume that the graphs Fa = {(x, fa(X)): X ~ A } are pairwise disjoint, i.e. if a l 4= a2, 
then fa,(x) *f ,z(x)  for all x~A.  We denote the set of graphs as f# = {Fa: a~A}.  
Without  loss of generality, we may take the parameter  space to be a closed subset 
of the uni t  disk, and we may take a = f(0). Further,  since the graphs are disjoint, it 
follows that a ~-~fa is continuous.  

A current T on A 2 is uniformly laminar if it has the form 

T =  ~ 2(a)EFa] (5.2) 
aEA 

where 2 is a positive measure on A, the parameter  space for the set (r of graphs. The 
action on a (1,1) form ~0 is given by 

r (~)  = ~ ~(a) S ~o. 
A Fa 

We say that a current S is locally uniformly laminar on an open set f2 if for each p ~ ~2 
there is a coordinate neighborhood equivalent  to A 2 on which S is uniformly 
laminar.  The currents of integrat ion [Fa]  are positive, closed currents on A 2, so T, 
too, is positive and  closed. 

For  a transversal M to the family aj, the set of all intersection points, AM, could 
equally well be taken as a parameter  space. Further,  let M~ and M2 be transversals. 
Then the ho lonomy map  ZMI,M2: AM, ~ AMz gives a homeomorphism between 
parameter  spaces. For  a point  p ~ C 2, we let [p ]  denote the 0-current which puts 
a uni t  mass at the point  p. For  each transversal, the current (measure) IF ,  n M ]  
depends cont inuously  on a. We define the restriction of T to M by 

TIM = ~ 2(a) Era ~ M ] ,  (5.3) 
A 

which is a measure on M. If M~ and M 2 a r e  transversals, then the restrictions are 
preserved by the ho lonomy map X = ~M~,M~, i.e. 

Z, T[n~ = TIM2 �9 (5.4) 

A family of measures {T]M}' on transversals induces a transversal measure on ~W * if 
it satisfies (5.4). T may be reconstructed from any transversal (or, equivalently, from 
any family of transversal measures) as 

T =  ~ T[M(a')EFa,]. (5.5) 
a 'EA M 

Equat ions  (5.4) and (5.5) are trivial if T = [ F , ]  is a current of integration,  and the 
general case is obtained by integrating with respect to 2. Let h be a holomorphic 
function on A 2 such that M = {h = 0} and  dh :4= 0 on M. Then log[hi is locally 
integrable on each Fa, and  

ddqog Ih[ [ F . ]  = [M c~ F . ]  



Polynomial diffeomorphisms of C 2. IV 101 

holds in the sense of currents. Thus 

1 
2~ TIM = dd~(log I hl T ) .  

We may ask, more generally, which positive, closed currents o n  C 2 may be 
represented in the form 

T =  ~ q(a)[V,] (5.6) 
aeA 

where A ~ a ~-~ V~ is a measurable family of varieties in C 2, and ~/is a Borel measure 
on A. This is closely related to the Choquet  representation of T as an integral over 
extremal rays on the cone of positive, closed currents. It  is known  that an 
irreducible subvariety V, ~ C 2 generates an extreme ray (see [D]  and [L]). On  the 
other hand,  not  all extremal rays are of the form c[V]. This will also be a conse- 
quence of the examples below. 

Examples. Let (x, y) denote coordinates on C z, and define 

ul = log + I(x, Y)I = max{0, �89 2 + lyl2)} 

u2 = max {log l x l, loglyl ,  O} . 

For o ~ C  2, w e  let L,  denote the complex line through 0 and ct, and we set 
L + = L,  c~ (C 2 - B2). Then we may compute 

T l : = d d C u l = 2 n  ~ [L+~]a(~)+ S1, 
~ep I 

where a is normalized spherical measure on p1, and $1 is a nonzero current, 
supported on OB 2. Similarly, 

2z~ 2n 2n 

T2:= ddCu2 = I [L~,e'~ dO + I [x = e i~ [Yl < 1]dO + I [Y = e'~ Ixl < 1]dO. 
0 0 0 

It is evident, then, that T~ is locally uniformly laminar  on  C 2 - 63B 2, and  T2 is 
locally uniformly laminar  on C 2 - {Ix[ = [y] = 1}. 

Now if T = t2 is any positive current  satisfying T < T1, then at 2 a.e. point  
e ~ C  2 _ ~2, the (1,I) vector t(c 0 must  be tangent  to L~. If, in addit ion,  T has the 
form (5.6), then it follows that for ~/a.e. a the variety V, must  be contained in L,  for 
some ~. Since V, is a subvariety, we must  have /I, = L,. On  the other hand, since 
7'1 = 0 on B 2, it follows that T = 0 on C 2 - OB 2. But now for/I a.e. a, we must  have 
V, ~ 0B 2, which is impossible, so T = 0. A similar a rgument  shows that if 
0 < T < 7"2 and T has the form (5.6) then T = 0. 

These examples then show that: There are extreme rays in the cone of positive, 
closed currents which are not generated by currents of integration over varieties. This 
observation was made  by Demailly in I-D], using the current  T2 written in 
a somewhat different form. 
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Sullivan conjectured in [S] that a positive, closed current might be written 
locally in the form (5.6) on a dense, open set. This cannot be the case, however, 
because of the following examples, which are taken from [BT2]. For  a number 
r > 0 let X,(z) = rz denote dilation, and for a point a e C  2 let za(z) = z + a denote 
translation. Let {ri: j = 1, 2, 3 . . . .  } be dense in R +, and let {aj: j  = 1, 2, 3 . . . .  } be 
dense in C 2. Then the currents 

T1 = ~ 2 - J z r j  * T1 (5.7) 

~2 = Y, 2 - % ,  ;r2 (5.8) 

are positive and closed, and both have the property of being nowhere locally 
uniformly laminar. From this it may be shown that neither current can be 
represented in the form (5.6) on any open set. 

We note that the manifolds of T, intersect correctly in the sense of }6, although 
T~ is not a weakly laminar current, even locally (cf. Proposition 6.2). In fact, if Lj is 
uniformly laminar on an open set Ui, and if ~ j ~ ,  Lj < T,, then in fact 
~,j%, L~ < T, - S,. Thus 

M [ ~ L j ]  < M[T1]  - M[S1]  , 

and so TI cannot be approximated from below by uniformly laminar currents, even 
in the sense of measure. 

6 Laminar currents 

The currents that arise in dynamical systems often derive their structure from the 
stable and unstable manifolds. The examples in w show that the category of 
positive, closed currents is too general for the dynamical context. Stable (or 
unstable) manifolds have no self-intersections and are pairwise disjoint, so a repres- 
entation (5.6) should involve the additional requirement that the varieties V be 
pairwise disjoint. In fact, the context in which currents have been constructed from 
dynamical systems has been the uniformly hyperbolic case, and the currents 
obtained in this case are uniformly hyperbolic. In the case of a hyperbolic measure, 
this uniformity is lost, and so we turn to the study of laminar currents. The 
philosophy behind the Sullivan conjecture is substantiated by Proposition 6.2 
below, which says: A laminar current is uniformly laminar outside a set of  small 
measure. 

We say that two manifolds M1 and M2 intersect correctly if either M1 n Ma 
= 0 or M t  n M2 is an open subset of M i f o r j  = 1, 2, i.e. they intersect in a set of 

codimension 0. We consider a measurable set A c C and a measurable function 
f :  A x A ~ C 2 such that f(~, a) is an analytic injection in ~ for fixed a. We assume 
that any pair of image disks 

Ma = {f(~,a): ~ A }  

intersects correctly. Let 3, denote a a-finite measure on A. If 

S 3,(a)M[M, n U]  < ~ (6.1) 
A 
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for all relatively compact open sets U c C 2, then 

T =  S 2(a) [M,]  
a~A 

defines a positive current on C 2. A current obtained in this way is called a weakly 
laminar current on C z. The current Tis  laminar if the disks M,  are pairwise disjoint. 
With suitable modifications, we can also define (weakly) laminar currents on an 
open set ~ c C 2. Thus if U is open, then Tt_ U is again (weakly) laminar. We will 
say that T is represented by the data ( d ,  ~g/, 2). We note that for fixed a ~ A, the 
function ~ ~--,f(~, a) in the definition of T is far from unique. If we fix [M,] ,  then we 
can replace f(. ,  a) by any holomorphic imbeddingf ' :  A ~ M,  such that Ma - f ' ( A  ) 
has zero area. 

The parametrizing function f in the definition is not, strictly speaking, neces- 
sary. If we consider M := U ~ t ~  M be a total space, then ~ / i s  a partit ion of/Q, and 
A = JQ/J//is the quotient. The essential point is the requirement that this parti t ion 
be measurable. We say that the families J / ' l  and J /2  intersect correctly if all of the 
component manifolds intersect correctly. 

A Borel set E is a carrier for T if Tt_ E = T, or equivalently, E carries all the 
mass of [ T[. A carrier for a (weakly) laminar current may be taken to be a union of 
complex disks. 

Lemma 6.1. Let Tj, j = 1, 2, 3 . . . .  be a sequence of weakly laminar currents with 
representations (A j, ~[g i, 2j). I f  the JZg j intersect correctly, and if for every bounded 
open U 

M[TjI__U] < oo , (6.2) 
j=l  

then ~ Tj is a weakly laminar current. I f  the Tj are laminar with pairwise disjoint 
carriers, and/f(6.2) holds, then ~ Tj is laminar. 

Proof. We let Jr '  (resp. A) denote the disjoint union of the dt'~ (resp. A j), and we 
define the measure 2 = Y~2~ by setting ,~t__A~ = 2j. By (6.2), it follows that (6.1) 
holds, so (A, J [ ,  2) represents a positive current, which must coincide with 
Err. [] 

Example. Weakly laminar currents are well behaved with respect to taking sum- 
mations, but for our applications we will need to take the supremum of an 
increasing family of laminar currents. To understand some of the technical points 
of the sequel, it may be helpful to note that although 7"1 and T2 are uniformly 
laminar currents, and T1 < T2, it may happen that the positive current T2 - Tt is 
not weakly laminar. Similarly, T~ + T2 and max(T2, 2T1) may fail to be laminar. 
For a simple example, consider T1 -= [ M t ]  = T2 = [M2], where M1 c M2 c C, 
but M2 c~ OMx has positive area. 

Let us discuss the polar  representation T = tv of a laminar current. From (5.1) 
we have [ M ]  = t~to~cg2 t__ M. Thus the underlying measure is 

v = S 2(a)o~ z k_ M,  = I Z l ,  (6.3) 
a~A 

and the set U.~a M,  carries full measure for v. By (6.3), v(E) = 0 holds for a Borel 
set E if and only if Area(M~ c~ E) = 0 for 2 a.e.a. Since the manifolds Ma intersect 
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correctly, it follows that for v a.e. x ~ Ua~A Ms, the 2-vector is t(x) = tuo(x). Thus t is 
a simple 2 vector at v a.e. point. In  other words, there are vectors tl  and t2 such that 
t = tl  A t2. The field of 2-vectors t and v depend only on T a n d  are independent  of 
the representation used to define them. 

We let ( denote a family of 1-dimensional complex manifolds ~ c C 2 such that 
each ~ ~ ~ defines a current  of integrat ion [~] with finite mass norm. We will say 
that ~ is a stratified carrier for a weakly laminar  current T if 

(i) E ' = ( )  . ~ i s a B o r e l s e t  
(ii) ~ is a measurable part i t ion of E. 
(iii) For  2 a.e. M ~ '  there is a countable  family {~i} = ~ such that M - L)i~i has 
zero area. 

If T is laminar,  then ~ is a stratified carrier. It is a consequence of (6.3) that if 
satisfies (i), (ii), and (iii), then E is a carrier for T. In  Corollary 6.7 it will be shown 

that condi t ion  (iii) is in fact independent  of the choice of representation (A, Jg, 2). 
We note that the main  difference between J r  and ~ is that the complex manifolds in 

are disjoint. We will say that two stratified carriers intersect correctly if the 
complex manifolds in the stratifications intersect correctly. We say that a repres- 
entat ion (A, Jr 2) is subordinate to ~ if for 2 a.e. a ~ A there exists ~ ~ ~ with Ms ~ a. 

The point  of considering a stratified carrier is as follows. Let us suppose that 
a laminar  current  T has a representation (A, ~ ' ,  2) which is subordinate  to a strat- 
ified carrier ~. (It will be shown in Lemma 6.8 that any representation may be 
refined to be subordinate  to a given stratified carrier ~.) For  ~ we set 
A~ = {a~A:Ma ~ c~}. We may let 2~ denote the measure 2 restricted to the 
(coarser) a-algebra which is generated by ~. For  2r almost every ~ ~ ( there is 
a condit ional  measure 2('1c0 on A,,  as in w Let us define a function on ~ by setting 

<p~:= ~ ZMo2(aI~), (6.4) 
a~A~ 

where ZM~ denotes the function which is 1 on the set M~ and 0 on c~ - M~. Since Ms 
is an open subset of ~, and since the condit ional  measure is positive, <p~ is lower 
semicont inuous on ~. It  is immediate that 

~o~[~] = j" [ M , ] 2 ( a l ~ ) .  
a~A~ 

It  follows from the defining property of the condit ional  measures that 

T =  ~ ~0"[c~]2r (6.5) 

This differs from the original representation of T as a direct integral in that the 
currents involved are not  locally closed, but  it has the advantage that the supports 
may be taken to be essentially disjoint. 

Proposition 6.2. Let T be a weakly laminar current. Then for ~ > 0 and any bounded, 
open set U, there exist uniformly laminar currents Tj with disjoint supports such that 

M [ ( T -  ~ T y ) L  U] < e .  (6.6) 

I f  T is a laminar current, then there exist uniformly laminar currents T~, Tz, �9 �9 
with disjoint supports such that T = ~ T~. Further, there is a compact K ~ U such 
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that M [ T I _  (U - K) ]  < e and T L  K is the finite sum of uniformly laminar currents 
with disjoint supports. 

Proof. Let T have a representation (A, ~ ' ,  )0. Let .~, denote the decomposi t ion of 
C into squares of side 2 - "  and  vertices at the points (j + ik)2-" for j, k e Z .  Let 
n(x, y) = x. We may assume that the set of a ~ A  such that n(Ma) is a point  has 
2 measure zero. For  each a ~ A, we call a component  M '  of M ,  c~ n -  1Q good if n[M,: 
M ' ~  Q is a homeomorphism.  We let M,(Q) be the un ion  of all of the good 
components  of M,  r~ n -  1Q, and we set 

T o = ~ 2 (a ) [ l~ , (Q) ] .  (6.7) 
a e A  

It is immediate  that 

TQ~ T .  

Let ~C denote the set of every disk which arises as a good component  of 
M a n 7z-tQ for some a ~ A. Thus there is a measure 2 o on ~"  such that 

r e = ~ ~o(N)EN] �9 
X 

We observe that if N1, N2 ~ JV', then the condi t ion of correct intersection implies 
that either N1 r N2 = 0, or N1 = N2. Thus each TQ is uniformly laminar.  

We let 

Tin= Z To, 
Q~.~ 

(1) so that T is the sum of uniformly laminar  currents with disjoint carriers. 
(J) 

Now we suppose that T~ have been constructed for 1 < j < n - 1 and Q ~ ~j.  
Each T~ j) is uniformly laminar,  and  T ~  ~ o T ~  ~ is laminar.  Further,  
T m + . . .  + T r ~) < T. Since T - T m - . . .  - T ~"- 1) is weakly laminar,  we may 
let 

T~") := ( T - -  T m - - . . .  - T~"-a~)Q 

be the uniformly laminar  current  obtained in the construct ion (6.7). 
We observe that if U = { I Re x I, ]Re y I, ]Im x I, Jim Y l < m} for some integer m, 

then ( T m  + . . .  + T~"))I_ U is a finite sum of uniformly laminar  currents with 
disjoint carriers. By the construct ion above, the mass norm in (6.6) is given by 

For fixed a ~ A, the area decreases to zero as n ~ ~ ,  so this integral tends to zero by 
monotone convergence. 

If Q~.~, ,  then ( T i n + . . .  + T I " ) )L (Q•  is uniformly laminar.  Thus the 
currents in the family {Tj} := {(T (1) + . . .  + T("))L(Q x C): QE.~,} are uniformly 
laminar and have disjoint carriers and satisfy (6.6) for n sufficiently large. If Tj is 
restricted to a smaller compact  inside its carrier, the supports  of {T~} will be 
pairwise disjoint. 
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Finally, let us observe that if T is laminar, then the carriers of T~ s) are already 
pairwise disjoint, and T = ~Q,s Tg ). By subdividing the support of each T~ j) into 
countably many compact sets, we have the first assertion. The existence of K with 
the required properties is a property of Radon measures. [] 

Remark. It follows that the currents 2~ and Tz defined in (5.7-8) are not locally 
weakly laminar on any open set. 

Lemma 6.3. I f  TI . . . .  , Tk are laminar currents with representations that intersect 
correctly, then there exists ~ which is a stratified carrier for Tj for 1 < j < k. 

Proof The proof of this lemma is a repetition of the proof of Proposit ion 6.2 with 
all' replaced by Jr u . . .  u ~r TO obtain a stratified carrier, we fix n and Q ~ ~, .  
We use the notation JV'~ for the set JV" defined above: the union over a ~ A of the set 
of disks which are good components of M,  n n- lQ.  We let ~1 = UQ~-~, JffQ' We 

JV'" - Finally, ~ = U ~, has the continue inductively, setting ~, = UQ~a~ Q ~,_~. 
desired properties. [] 

Given a representation (A, Jg, 2) of T, we may define a family of germs of 
complex manifolds as follows: for x ~ Gala Ma, we let ~t(x) be the germ of x of the 
manifold M,t~) containing x. The correspondence x ~ M(x) is thus well defined 
v a.e. in terms of the representation. By (5.1) and (6.3), we have 

T =  S 2(a)tMoau . 
a6A 

Since the M,  overlap correctly, it follows that if (A', J / ' ,  2') and (A", ~ ' " ,  2") are two 
representations, then 

Tx ~(-t ' (x) = T~ l~l " (x) (6.8) 

holds for v a.e. x (so the germs intersect tangentially). We now show that these 
germs coincide at v a.e. point. 

First we need a lemma. 

Lemma 6.4. Let M1 and M2 be complex submanifolds of C 2 such that M1 n M2 
= {p}, and TpM1 = TvM2. IfM'l is sufficiently close to Mx, but M'I n M1 = O, then 
the intersection M'~ n M 2 is nonempty, and nontangential at all intersection points. 

Proof Let k be the multiplicity of the intersection of M1 and M2 at p. By the 
continuity of the intersection of complex manifolds, the intersection of M~ and M2 
(with multiplicity) near p is k. Thus it suffices to show that M~ n M2 contains 
k distinct points near p. 

Without  loss of generality, we may work in a small neighborhood of p = 0 and 
assume that { y = f ( x ) :  l x l < l + e } ~ M 2  for some holomorphic function 
f ( x ) = x  k + . . .  and { ] x [ < l + 5 ,  y = 0 } ~ M x .  We may assume that 
{ y ' = f ( x )  = 0: Ixl < 1 + e} = {0}. A manifold M] which is C 1 close to m l  is of the 
form {y = 9(x): Ixl < 1 + e}~M'~. The hypothesis that M1 n M] = 0 implies that 
9 ~ 0. By the Harnack inequalities there is a constant C, such that 

r  ~ Ig(O)l-< Ig(x)l ~ C~lo(O)l 
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for Ix] < 1. This implies that the higher order terms in g(O)/g(x)= 1 + . . .  are 
uniformly small. Since M~ n {y = f ( x ) :  Ixl < 1} is given by 

~ ,  , g(O) = xk g ( 0 )  = :~x~ ~ + . . . .  

and the higher order terms are uniformly bounded, this equation has k distinct 
solutions near x = 0 for g(0) sufficiently small. [] 

Lemma 6.5. Let (A', ~l', 2') and (A'S, JP[", 2") be two representations for the weakly 
laminar current T. Then M'(x) = M"(x) for v a.e.x. 

Proof Let B = { x : ~ i ' ( x ) #  M"(x)}. Removing a set of measure zero, we may 
assume that (6.8) holds at every point of B. We must show that v(B) = 0. Otherwise, 
we may choose ~ such that 0 < e < v(B) and let T = ~ Tj be the sum of uniformly 
laminar currents obtained in Lemma 6.2 corresponding to Jr If Tj L B = 0 for 
all j, then 

M [ T -  E T;] > M [ T L B ]  = v(B) 

so it follows that Tj L B # 0 for some j. Now the current T'  := Tj is uniformly 
laminar and has the form 

T ' =  f 2 '(a ' )[F~' ,] .  (6.9) 
a ' e A '  

Let us set 

B'= U r;,,nB. 
a ' ~ A '  

Since T 'LB  # O, we have 

IT'](B) = S 2 ' (a ' )Area(F ' ,  r iB)  > 0 ,  (6.10) 
A' 

as in (6.3). It follows that Area(F~, n B) > 0 for a set of positive 2' measure, so 
v(B') > 0. Now we let T = ~ 7 7 be as in Lemma 6.2 for ~ < v(B'). As before there 
exists k such that T~' L B' # 0 Now we set T" := 7~', and we represent T" in a form 
analogous to (6.9), By the analogue of (6.10), we know that there exists a" such that 

Area(F~', m B') > 0 .  

Now let b E F", n B' be a point of density with respect to area measure, thus 
there is a sequence {b~} c F.",c~ B' converging to b. Since b, bjeB', there exist 
a r a t i " t t t t r tt  �9 , j ~ A  with bEF,, and bj~F,,j. Let M1 = F,,,  Ma = F, , ,  and M2 = F, , .  Since 
b~B,. M1 and M2 define different germs of complex mamfolds,J " and we may 
intersect them with B(b, O, if necessary, to have M1 n M2 = {b}. Since (6.8) holds at 
b, M1, M~, and Mz satisfy the hypotheses of Lemma 6.3, so we conclude that all 
intersection points of M~ and M2 are transversal. But bj~M~ riM2, and the 
intersection at b~ is tangential by (6.8). By this contradiction we conclude that 
v(B)  = O. [ ]  

Corollary 6.6. Let (Jr 21) and (Jg2, 22) be two representations of a weakly laminar 
current T. Then for 21 a.e. MIeJ/[~ and 22 a.e. M2~/'[2, M1 and M2 intersect 
correctly. 
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In other words, the set of manifolds J / a s s o c i a t e d  with a weakly laminar current 
T are unique, up to subdivision or refinement. We say that weakly laminar currents 
T'  and T" intersect correctly if they have representations ( A ' , ~ " , 2 ' )  and 
(A", J [" ,  Z") such that the disks of ~r and ~ "  intersect correctly. By Corollary 6.6, 
this condition is independent of the representations Jg '  and J/g" chosen. Another 
consequence is the following. 

Corollary 6.7. I f 4  is a stratified carrier which satisfies condition (iii) for  ~ l  l , then (iii) 
holds for  any other representation ~/r 

Let (A, Jr 2) be a representation of a weakly laminar current, and let 4 be 
a stratified carrier. We will show how to subdivide the elements of dr' so that the 
representation is subordinate to 4. We set .4 = A x 4, and we define a measure ~. on 
A by setting 2(E x {~}) = 2(E) for any measurable E c A and any ~ ~ 4. In other 
words, Z = 2 x ~f(o is the product measure obtained from 2 and the counting 
measure ovfo on 4. We define ~ '  by setting )~(,,,) = M, c~ c< for any a e A and c~ e 4. 

Lemma 6.8. I f (A ,  ~[,  2) is a representation of  T, and i f4  is a stratified carrier o f  T, 
then (A, Jg, 2) is a representation o f  T which is subordinate to 4. 

Proof. By definition of/~, ~r and ~, we have 

~t~A (a, ~)~A x 

= ~ ~,(a) ~ E M o ~ ] ~ ~  
a~A c t~  

= ~ ;.(a) 7". [ M o  ~ ~3 
a~A o~e~ 

= ~ Z(a)EMa] = r 
a e~ A 

where the second line follows by the Fubini Theorem, and the fourth line is by (iii) 
of the definition of stratified carrier. [] 

Since we may subdivide any representation (A, J//, 2) to be subordinate to 
a given stratified carrier ~, it follows that T may be given as a direct integral over 
the elements of ~, as in (6.4) and (6.5). This yields the following: 

Lemma 6.9. I f  T is weakly laminar, and i f  4 is any stratified carrier, then T may be 
represented in terms o f  4 as follows: For ~ ~ 4, there exists a lower semicontinuous 
function cp ~ >= 0 on ct such that 4 ~ c~ ~ r is measurable, and 

T =  ~ ,~(~)~o~[~]. 

T is laminar i f  and only i f  ~p" is locally constant a.e. on {of > 0}. 

The maximum, written max(T1 . . . . .  T,), of the currents T1 . . . . .  T, (if it exists) is 
characterized by the properties: Ty < max(T1 . . . . .  7",) for j  = 1 . . . . .  n, and ifS is 
any current satisfying Tj < S , j  = 1 . . . . .  n, then max(T~ . . . . .  T,) < S. 

Lemma 6.10. Let  Tx . . . . .  T, be weakly laminar currents which intersect correctly. 
Then max(Ta . . . . .  I",) exists as a positive current and is weakly laminar. 
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Proof. By Lemmas 6.3 and 6.8, we may assume that the representations of Tj are 
subordinate to some carrier 4. By Lemma 6.9 

Tj ----- ~ (p~ [~]  Z~(cX) 

with the measurable family of lower semicontinuous functions rp~ on c~ being given 
by (6.4). Let us define 2 := 2 6 + . . .  + 2~, and let h~ be a measurable function such 
that 2 4 = hi2. It follows 

max(hi rp~ . . . . .  h,~p~) [c~]2(a) , 

defines a laminar current which has the properties of max(T~ . . . . .  T,). [] 

Lemma 6.11. Let T ~ , . . . ,  T, be uniformly laminar currents which intersect cor- 
rectly. Suppose that for any M~ ~ Jll~ and M i ~ JClj, M~ c~ ~Mj has zero area in M,.  
Then max(T1 . . . . .  T.) exists as a positive current and is laminar. 

Proof. The existence of max(Ta . . . . .  7",) follows from Lemma 6.10. Since the 
relative boundaries have zero area, this current is laminar by Lemma 6.9. [] 

Lemma 6.12. Let T1 < T2 ~ .  . . be an increasing sequence of  weakly laminar 
currents whose mass is locally bounded. Suppose that there exists ~ which is a strat- 
!fled carrier for all T,. Then sup, T, exists as a positive current and is weakly laminar. 

Proof. Each current T, may be written as 

T. = .f q ~ D ] , ~ ( ~ )  �9 

There exists a sequence of functions g, > 0 on ~ such that m = ~ 9,2~ is a probabil-  
ity measure. Clearly 2~ < m for each n, so there exist measurable functions h, such 
that 2~ = h,m, Further, since the currents T, are increasing, the functions q~,~h, are 
increasing in n for fixed e. Thus the function 

~ : =  lim q~h, 
n~oe 

is finite for m a.e. e (since the T, have locally bounded mass) and is thus lower 
semicontinuous. We conclude, then, that 

is a geometric current, which clearly has the property of sup. T,. [] 

Remark. Some of the properties of weakly laminar currents may be summarized as 
follows. Let T be weakly laminar, and let 5~(T) denote the set of weakly laminar 
currents 0 _< S < T. Then the subset of ~ ( T )  consisting of finite sums of uniformly 
laminar currents with disjoint supports is dense in the local mass norm (Proposi- 
tion 6.2). If 0 < qz < 1 is lower semicontinuous, then ~SP(T) c 5r (Lemma 6.9). 
Finally, 5"(T) is convex and closed under countable maxima (Lemmas 6.3 and 
6.12). 
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7 /l + is a laminar current 

In this section, we show that/~+ is laminar. 2 Let /9 denote a 1-dimensional complex 
submanifold of C 2, and let D c / )  be a relatively compact domain with smooth 
boundary. Let us suppose that 

# -  [~(D) = c > 0 and/~-1~(/9 - D) = 0 .  

It follows by [BS3], then, that 

lim d-"f*"[D ] = c# + . (7.1) 

Further, by general properties of the filtration (see [BS1, w we may choose 
R < oo such that for all n < oo 

f - " / 9  c {lYP < R}  w {lYl < Ixl} .  (7.2) 

Let Q c C be a connected open set. For  each n, we consider the connected 
components M of ( f -"D)c~(Q x C) and the preimage components D' in the 
domain D c~f"(Q x C). If a component D' of D is relatively compact in D, we say 
that D' is an island; otherwise, it is a tongue. Let n: C 2 ~  C be the projection 
n(x, y) = x. I fD'  is an island, we say that it is a good island if the projection n o f - ,  
is univalent on D'. 

We let i , ( .~)  denote the set of components M of ( f - "D)c~  Q x C which are 
graphs over Q. This corresponds to the set of good islands, and each good island 
may be identified with the graph of analytic function ~o: Q ~ C. If we fix a point 
xQ e Q, then each element of i , ( Q )  is uniquely determined by the value ~o(xQ), i.e. 
the intersection M c~ ({xQ} x C). 

By (7.2), the union Un i , (Q)  is a normal family, and we let t (Q)  consist of all 
graphs { y = ~o(x) : x e Q} which are obtained as limits of sequences ~on e i , (Q).  Since 
f is a diffeomorphism, the components of i , ( Q )  are disjoint. It follows from the 
Hurwitz Theorem, then, that any two different graphs in i ( Q )  are in fact disjoint. 
We let AQ c C denote the closed set of points {~o(xQ): ~o e if(Q)}. For  a e AQ we let 
Mj(a) denote the element of t (Q)  passing through (xQ, a). 

For  each n we define a measure ).~+ = d - n ~  6p, where the summation is taken 
over all p e {xQ } x C which are parameters of elements ~0 e fin(Q). For  each Q, we 
choose a subsequence {nk} such that the limit limk~oo 2+ exists. We let 2~ denote 
this limit, and it follows that 2~ supported on AQ. Now we define 

#~ = c -1 ~ 2~(a)[M(a)]  . (7.3) 
a~At2 

It is evident that 

d - n [ f - n D ] l _ ( Q •  -n ~ [ M ] .  (7.4) 
M~fg~(Q) 

Thus, passing to the limit through the subsequence {nk}, we have 

c/z + L (Q x C) > cp~ . 

2 We wish to thank Cliff Earle for telling us about the Ahlfors Covering Theorem, which is the 
principal tool in the proof 
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Let us use the following notation. For k > 0 we let -~k denote a dyadic 
subdivision of the complex plane C into open squares with vertices of the form 
r2-k + is2-k with r and s both odd. Let ~2), ~ka), and ~}4) denote the three different 
translates of .~k 1), SO that -~k = U~= 

~(o) As before, we construct families of graphs ~k(Q) for Q e~k , for each 
a = 1, 2, 3, 4. If we write 

then it is evident from (7.4) and (7.3) that 

#~- < /~-  < . . .  </~k + =<. . .  =< # + .  (7.5) 

NOW suppose that j > k, Q~.~, Q ' ~ k ,  and Q ~ Q'. If fC(Q')lQ denotes the 
restriction of the disks to Q, then it is evident that ff(Q')IQ = ~(Q). Similarly, 
making the natural identification via the holonomy for the transversal measures, it 
follows that 2~, < 2~. Thus if we set 

2~ := 2~ - max{2~,: Q' = Q, Q' + Q}, 

then ~.~ is a positive measure. For each Q, then, we set 

~lQ ~ 2~(a)[MQ.(a)J 
a~AQ 

and 

Thus by Lemma 6.1 we have shown: 

Lemma 7.1. The currents ~; are uniformly laminar over the squares of ~j and have 
disjoint carriers, and 

lim/~+ = ~ ~/f. 
k ~  j = l  

Further, this limit is a laminar current. 

In Theorem 7.4 we will show that this limit is equal to/~+. 
Let Q t . . . . .  Qq c C be simply connected, open sets such that Qi c~/lj = 0 for 

i # j. We let Q := Q1 w . . .  w Qq, and Io := Area(Q). We set Dr, ) := D n f " ( Q  x C), 
and we consider the map 

g, := n o f - ,  : D(,) - ,  C .  

We let I(,) denote the area (with multiplicity) of g.(D(.)). The mean sheeting number 
of the map g, is S(,):= I(,)/Io. The length of the relative boundary is defined by 

L(,) := Length(g,(OD) c~ Q).  

Fixing the number n of iterates, we write N(Qj) for the number of good islands over 
Qj, i.e. this is just the cardinality of the set (r We will use the following 
celebrated result of Ahlfors (see Nevanlinna IN, Chapt. XIII],  or Hayman [Ha]). 
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Ahlfors' Covering Theorem. There is a constant h depending only on Q such that the 
mappings gn, n = l, 2 , . . .  satisfy 

q 

N(Qj) >= ( q - 2)Sr - hLr . 
j = l  

We will use this inequality to estimate the amount of mass in ~ #+ By [BS1] we Qj. 

have 

lira d-"It,) = cArea(Q), or lira d-"St,) = c ,  (7.6) 
n~co n ~  

with c as in (7.1). Further, by [BS3], there is a constant C < ~ such that 

L~.) < Cd". (7.7) 

We note that for a current T, the mass norm of TL_ �89 ^ d~ on the set B • C is 
the same as M [~ ,  TL B]. Each Mj(a)~ ~,(Qj) is the graph of an analytic function 
on Q). Thus the mass norm is 

M [Mj(a)]  t_ ~ dx ^ d)~ = Area(Q~). 

Lemma 7.2. I fArea(QO . . . . .  Area(Qq), then 

[ ~  + i 1 q - 2 Area(Q) M #ej[_ ~dx/x d,2 > 
j=t q 

Proof. By the definition (7.3), it follows that the mass norm of # ~  is 

M #ejt__ ~dx  ^ d2 = c - lM[Xj+]Area (Qj ) .  (7.8) 

In order to estimate M[2 j  +], we count the number of components M that 
appear in the right hand side of (7.4). This is the same as the number of good islands 
over Qj. Thus we have 

M d -" ~ [M]k_ ~dx  ^ d~ > y'  #N,(Qj)Area(Qj)  
M e ~ . ( Q j )  j = 1 

> d_" Area(Q) ~ N(Qj) 
q j=1 

d - n  
_> - - A r e a ( Q ) ( ( q  -- 2)St,) - hLt,)), 

q 

where the middle inequality follows from the identity Area(Q;) = q -  ~Area(Q), and 
the last inequality follows from the Ahlfors Covering Theorem. Applying (7.7), we 
have 

M ~ d - "  }~ [ M ] t _  ~dx  ^ d i  > Area(Q)(d-"S~,~- O(d-~)) .  

Letting n ~ ,  we see from (7.6) that the right hand side tends to 
c ( q -  2)Area(Q)/q as the left hand side tends to ~ M [ A + ] A r e a ( Q j ) .  Combined 
with (7.8), this yields Lemma 7.2. [] 
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Lemma 7.3. Let B c C denote the unit square. Then 

M [ n , ( s t  + - S t~ )LB]  < 8 ' 4  -k . 

Proof We note that M [ n , # + L B ]  = A r e a ( B )  for any open set. And since 

St+ _->M, 
M [ n , ( / ~  + - Stk+) L B ]  = M [ n , #  + L B ]  -- M[n,/.tk+ L B]  . 

Thus the lemma follows by setting q = 4 k- ~ and adding the estimate of Lemma 7.2 
over the four parti t ions ~,~. [] 

Theorem 7.4. l imk~o StY- = St +, and #+ is a laminar current. 

Proof  If we show that the limit holds, then #+ is laminar  by Lemma  7.1. By (7.5), it 
suffices to show that 

l im M[~t~ m n -  1Bo] = M [St + L n -  1Bo] 
k ~ o o  

for any open Bo c C. Wi thou t  loss of generality, we may choose B0 to be relatively 
compact  in the unit square B. 

Fo r  a e C ,  we define the projection n ' ( x , y ) =  x -  ay. Let us choose a 4 : 0  
sufficiently small that  

( n - l B o )  n sptst + c n ' - l B .  

Following the procedure for constructing the current St#, except that  the project ion 
n' is used in place of n, we may construct  a current/Z, + . Thus we use the function 
g, := n' o f - , ,  and f~;(Qj) consists of manifolds which are graphs with respect to the 
coordinates x'  = x - ey and y' = y. Corresponding to L e m m a  6.2, we have 

M[n , ( /~  + - / ~ / ) L B ]  =< 8"4 -k . 

By Lemma  6.6 there is a geometr ic  current Tk such that  #~-, #~+ < Tk < St+. 
Thus we have 

i 
M [ ( #  + - Tk)LZ. - , (Bo) -~d(x -  7y) A d ( x -  ~y)] < 8"4 -k . 

Now we use the values ~ = 0 and ~ = _ a ~ R and the identity 

d(x - ay) A d(x - ay) + d(x + ay) A d(x + ay) - 2dx A dye = 2dy A dy 

to obtain 

la leM (st+ - Tk)t-Z~-,(ao) ~ dy A dy < 16"4 -k . 

Thus 

M [ ( #  + - Tk)mZ~-,(ao)fl] <- 8(1 + 2 1 a ] - 2 ) 4  -k 

i 
where fl = ~ (dx A dY. + dy A d~). Since #+ - Tk is positive, this gives 

M [ ( #  + - Tk)LZ,-,(Bo)] ~ 8(1 + 2 [a l -2 )4  -k . 

Thus limk~o~ Tk = $t +. 
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Now let us recall that Tk is obtained by taking #~- and adding all of the currents 
of integration that appear in /~+, after removing the sets where a manifold 
M~fg(QR) overlaps a manifold M'~ff'(Q~,). But let us consider such a mani- 
fold M'~fg'(Q'k). As we increase k to a larger index, say K, we subdivide it into 
the pieces n-I(Q)c~ M '  for Q ~ . ~ ) .  For  any point P ~ M', except at the (finite) 
set where n is branched, there is a square Q ~ . ~ )  for some large K such that 
a component of n -  1Q n M '  contains P, and this component belongs to if(Q). Thus 
it follows from monotone convergence that l imj .o~#f  => Tk. Thus 
limk~ o0/~" = p +. [] 

Let us denote the total space of the graphs in if(G) as g(G) = Ur~(a.F. We 
�9 ) . . 

may write p+ in the polar  form #+ = tl/~ + 1, where I~§ is the total variation 
measure, and for I~+1 a.e. point p, t(p) is the unit 2-vector tangent to M(p)~ ~g. 
Thus we may define 

Wenote, further, t ha t the in tegra lo f (~dx^d~ , t (p , )overacomplexmani fo ld  

M is just the area (with multiplicity) of the projection of M to the x-axis. Since p § is 

laminar, ands ince (~dx^dYc ,  t (p) ldoesnotvanishident ical lyonanys table  

manifold, it follows that m § and I~§ define the same measure class. 

Theorem 7.5. Let G1, Gz, and G3 be Jordan domains in C with disjoint closures. Then 
for some j, 

m § (8(Gj)) => 19 Area (Gj). 

Proof. Let us recall the current /~j ,  constructed above. The total variation measure 
associated with this current satisfies !/~j[ =< [#+[(with Gj = Qj). It follows that 

m+(g(Gj)) = tr(p),-~dx ^ dye [#+[(P) > M #ejl__~dx ^ d~ . 
8(a j) \ 

Without  loss of generality, we may enlarge Gj to a larger Jordan domain G j, so 
that the three domains have the same area�9 If we set q = 3 in Lemma 7.2, then we 
have 

m+(g(Gj)) > ] A r e a ( G ' ) ,  
j = l  

where Area(G') is the area of any of the Gj. It follows, then, that for some j, 

m+(g(Gj)) > 91Area(G j ) .  

Finally, since each F '  is a graph over the (larger) domain G j, this inequality remains 
after we shrink to the domain G~. [] 

Theorem 7.6 (Three islands) Let Gx, G2, and G3 be Jordan domains with disjoint 
closures. Then for some j, the total space of fg(Gi) has positive I~§ measure. 
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Remark. In w Corollary 8.8, it will be shown that (almost every) manifold making 
up the laminar structure of/~+ is in fact an open subset of one of the stable 
manifolds W ~ (p), p e ~ given by the Pesin theory. The utility of this theorem is that 
it gives the existence of stable manifolds that are graphs over arbitrarily large sets. 

A more general formulation is as follows. Let h be any polynomial, and let 
~(G, h) denote the set of all components M of manifolds obtained in the construc- 
tion of #+ such that h]u: M -~ h(M) is a conformal equivalence. Thus, with our 
previous notation, we have if(G) = fg(G, zt~). Thus we have: 

Corollary 7.7. Let Gx, G2, and G3 be Jordan domains with disjoint closures, and let 
h be any polynomial. Then for some j, the total space of f#(G i, h) has positive I#+l 
measure. 

8 Geometric intersection of/~ + a n d / l -  

By Sections 6 and 7 we know that bp+b almost every point lies inside a uniformly 
laminar current which makes up part of #+. In this chapter we will obtain 
a uniformly laminar structure for the currents #+ and # -  near any regular point for 
/~. This is possible due to a hyperbolic structure given by Pesin boxes. Given a Pesin 
box P, we can identify it with P~ x P" via an appropriate homeomorphism (see w 
Then by Theorem 4.7, # also has a product structure on this box, i.e. # L P is taken 
via this homeomorphism to 2 ~ | 2", where the measures 2 ~ and 2" are induced by 
the currents/~- and #+ correspondingly. Let us fix an "origin" o e P. For  any a e PU, 
b e P~, denote by F~(a) a piece of W{oc(a, b) which is projected onto the disk B~(o, r) 
parallel to E"(o, r) (it does not depend on b). Similarly we can define a family of 
disks F"(b). Now let us consider the following sets supplied with a uniformly 
laminar structure: 

r ' =  U r'(a), r"= U r"(a). 
aepu a~ps 

l fa  Pesin box P] is labeled byL we will use the same label for the corresponding sets 
F](a) etc. We let {P~, j = 1, 2 , . . .  } be a family of Pesin boxes such that U PJ has full 
measure, and we set 

+ .  q~ .= S 2y(b)[F](b)] 
b~Py 

, f : =  S ,~(a)[r;(a)],  
aeP~ 

which are uniformly laminar currents. Without  loss of generality, we may assume 
that these currents satisfy the hypotheses of Lemma 6.11. Thus the currents 

q~l = max(q~ . . . . .  r/~) and r/+ = lim ~/~j 
n ~ o o  

exist and are laminar. By the holonomy invariance obtained in ~4, it follows that 
r/,.~ is well defined independently of the transversal used in the definition. 

Lemma 8.1. The sets F]/" satisfy ~lf = l L+ L F] and qf  = # - L Y e .  Thus ~lf < I a+. 
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Proof  Let M be any transversal to the laminat ion  F]. Since the measure 2~ is 
induced by the current #+, 

~+ IM < ~+ IM �9 (8.1) 

Hence tt + < #+. 
Let tt + = r[tt+4 and #+ = t l#+l  be the polar  representations. Then Itt+l <__ l# + I. 

Since #+ is a laminar  current, t is a simple 2 vector I~+l a.e. Thus z = t It/+ I-a.e., 
and the Lemma follows. [] 

Lemma 8.2. I f  T is a closed current, 0 <= T <= #+, then locally there is a continuous 
function u with dd~u = T. 

Proof  Since Tis  closed, there is locally an integrable function u such that ddCu = T. 

If fl = �89 (dx A ds + dy A d~), then AuL_fl = ddr It follows that 0 < Au <__ AG +. 

Let v denote the positive measure AG + -  Au on some open set (9, and let 
s = - c 4 1 x l - 2 , v  denote the convolut ion with v, with cr chosen so that of 
- c r  -2  is the fundamental  solution of A on R r Thus s is subharmonic,  and the 

difference between G + and  u + s is harmonic  on (9 c R 4. A subharmonic  function 
v on (9 satisfies lira info~qo v(q) <= lim supq~qo v(q) = v(qo) for all qo e (9. Since s and 
u both satisfy this inequality, and since u + s is cont inuous  at qo, it follows that 
s and  u are cont inuous  at qo. [] 

We will define two different ways of taking the product  of two currents. First, 
we consider a continuous,  psh function u and a positive, closed (l,1) current T. We 
define the (2,2) current T A ddCu by its action on a test function ~0: 

(T  A ddCu)(~o) = T(uddr 

(This is essentially just  integrating the dd c by parts since T is closed.) It is evident 
from the right hand side of the defining equat ion that if uj converges uniformly to u, 
then T ^ ddCuy converges to T A ddCu. We refer the reader to [ B T l l  for further 
discussion of the ^ operation. 

If L1 and L2 are uniformly laminar  currents on A 2, then it is also natura l  to 
define 

L1 } ,  L2 = I ,~l(al)  ~ )~2(a2)[l'a, C~ Fa~] 

with [F, ,  c~ F,~] defined as the 0-current which puts unit  mass on each point  of 
F, ,  c~ F,~, with the exception that [F~  c~ F,~] = 0 ifF.~ = F~ .  This is analogous to 
the integrated version of (5.3), except that F~, n / ' a2  is not  necessarily transversal or 
finite. 

Lemma 8.3. Let  L and L' be uniformly laminar currents on A 2 such that there is 
a continuous, psh function u with dd~u = L. Then 

L ^ L ' = L A L ' .  

Proof  Without  loss of generality, we may assume that L and L' are represented in 
the form (5.2), and  

u = 1 S 2(a)log lY -- rPa(x)I �9 
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It will suffice to work over the relatively compact  set {Ixl < 1 - e}. Let us fix 
F '  = F,, .  Choos ing  a paramete r  ( = x for points  (x, y) = (~, cp,(0)~ F ' ,  we have 

Na 

l og ly  -- cp,(x)] = ~ l o g ] ( -  py(z)] + ha(O,  
i = t  

where h, is harmonic.  Since h, is harmonic  on {Ix] < 1}, it is bounded  on 
{Ix] < 1 - e}. Let us define 

AR = {a~A:  []h. llL~(IxI<l-~) < R, N .  < R} . 

If we set 

1 
UR(X, y) = ~ J 2(a)log lY - cp,(x)] , 

a E A  R 

then, as in Lemma 8.2, uR is continuous.  Fur ther ,  since the AR increase to A as 
R --* ~ ,  uR converges uniformly to u. Thus 

(ddCuR) A [ F ' ]  = (ddCS 2(a)log ]y - q~,(x)l /x [ F ' ]  

= ( ~ ; ~ ( a ) [ r a ] )  ^ [ r ' ]  

= j ~ (a) [ ro  n r ' ]  = dd~ue A [ r ' ] ,  

where the next to last equali ty follows from the Fubin i  Theorem, since the 
multiplicity of the intersection is uniformly bounded  for a ~ AR. Lett ing R ~ oo, we 
have 

L A I F , , ]  = L A [ F a , ] .  (8.2) 

Finally,  we integrate (8.2) with respect to 2'(a'). The right hand side yields 
L }, L' by Fubini ' s  Theorem. The left hand side, appl ied to a smooth  test function 
Z is 

j 2 ' (a ' ) (L A [Fa,])Z = j ;r = 

= L'(uddCs = (L' A ddCu)(x), 

which completes the proof. [] 

Lemma 8.4. We have 11 + A 11f = # L_ Py, and thus # -  n 11~ki > # L Uk= 1 Pj .  

Proof. By Lemmas  8.2 and 8.3, we have 11+ A 11f = 11j.+ A 11f . By the p roduc t  
structure of Theorem 4.7, we have that  under  the homeomorph i sm between P1 and 
P ] x P ~ ,  11+ A q f  is taken to 2~|  which in turn is equivalent  to # L P j .  
Similarly, since # -  => q f  and  11~1 = > 11s+, we have 

# -  ^ 11~ > , I  ^ 11; = .  ~ x 11; = # L Pj J �9 

Since this holds for all j ,  the Lemma follows. [] 

Lemma 8.5. lim.~oo d - " f  *"11 + = #+. 

Proof, Let ~0 be a test form. We will show that  

~o# + = lim J ~od-"f*"11 + . (8.3) 
n ~ o o  
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Wi thou t  loss of generality, we may assume that ~0 > 0. Let e > 0 be given. By 
Lemma 8.4, we may choose k large enough that the total mass o f /2 -  A t/t~] is 
greater than 1 - e. By Lemma 6.1, we may write qt~] as a sum of uniformly laminar  
currents ~ L: with disjoint carriers. We may take finitely many  terms from this 
summat ion  and  choose test functions 0 < Xj < 1 such that ~ )~jLj < r/t~], and the 
total mass of p -  ^ ~ x j L j  is c > 1 - e. 

Now by [BS3], we have l im,~|  = c/2 +. Since ~o >_ 0, we have 

S ~~ + >= J (Pd-"f*"rl + >= S (pd-"f*" (~,7,jLj) > (1 - e)~ (o/2 + 

for n sufficiently large. Since e may be made arbitrarily small, we have (8.2). [] 

Let us assume further that for 2 ~ a.e. a, the measure induced b y / 2 -  on the 
corresponding stable manifold puts no mass on t?F](a). Then we have the following: 

Lemma 8.6. Let ~1 be a 1-dimensional submanifold of C 2, and let M be a relatively 
compact submanifold such that/2+ hi(~M) = 0. Then 

lim (d-"f*"rl +) A [ M ]  = c/2 + A [ M ] ,  
n ~ c t 3  

where c := r/+ h i [ M ] .  

If we set G ~ = ~2~F], then by Lemma 8.1 we have 

d-"f*"q + =/2+ Lf -" (G~)  . 

Since G s c Ux~e W'(x), where N is the set of all regular points (see w it follows 
from Lemma 8.5 that we have: 

Corollary 8.7. UxEe W~(x) is a carrier for I/2 + 1. 

By Corollary 6.6, we have: 

Corollary 8.8. If(A, Jg, 2) is a representation of~2 +, then 2 almost every M ~ J [  is an 
open subset of a stable manifold W~(x), x e ~l. 

Here we give a slightly different formulat ion of ho lonomy invariance. This is more 
general than the one given in ~4 because it applies to all stable manifolds. Let 
~t' = {M,: cteA} be a family of stable manifolds. Let @ = {Dr: 0 < t <_ 1} be 
a cont inuous  family of manifolds such that each Dt is a transversal to Jr We define 
X~ = D i n  ~ , M , , j  = 1, 2. The holonomy map  X: Xo ~ X~ is defined by at a point  
x e Xo by following the intersection point  with Dt from t = 0 to t = 1. 

Theorem 8.9 (Holonomy invariance) The holonomy map preserves the slices of~2 +, 
i.e. 

~,(/2+ IVo L Xo) =/2+ ID, L X1 �9 

Proof If the family ~ / c o n s i s t s  of leaves of G ~ = w j / ' ] ,  then holonomy is preser- 
ved. In  general, we consider the compact  sets 7, = {Dt n M , :  0 _< t < 1 }. For  each 

the curve 7, is contained in a stable manifold, so there is an n such that f "y ,  is 
contained in one of the leaves of G ~. Thus for e > 0 there exists an  n such that 
{x e Xo: f"7 ,  r G ~ } has measure less than  e. Since the ho lonomy is preserved on the 
complement  of this set, we see that the lemma holds. [] 
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9 Saddle points and the support of/l  

Questions about saddle points have motivated much of the preceding work on 
currents, and we are grateful to J.H. Hubbard for several discussions on this 
subject. In this section we show that there is a homoclinic/heteroclinic intersection 
between any pair of stable and unstable manifolds. The general idea is that if D ' is 
a stable disk through a saddle point p, then the normalized pullbacks d - "  I f - " D  ~] 
converge to a nonzero multiple of #+. By the results of w it follows that the 
product d - " [ f - " D  ~] Ix # -  converges to a nonzero multiple of the measure 
# = #+ ^ # - .  Since this is also equal to the intersection wedge product, it follows 
that d - " [ f - " D  ~] 2, # -  must be nonzero for some n. This produces intersections 
between stable and unstable manifolds. 

Lemma 9.1. Let P be a Pesin box, and F" be the corresponding lamination defined in 
w I f  p is a saddle point, then W~(p) must intersect 2 s almost every disk ofF", and the 
tangential intersections are an isolated subset of WS(p). 

Proof Let D c W*(p) be a relatively compact open set. If D contains p, then 
#-[D 4: 0, SO d - " [ f - " D ]  ~ c# + for some c > 0 as n ~ oo. Let us suppose that there 
is a subset E c P" such that the corresponding unstable disks are disjoint from 
WS(p). Let us define 

vi  = ~ 2~(a)[r"(a)]. 
acE 

By Lemma 8.2, it follows that vi. ^ d - " [ f - " D ]  --* cvi  ^ #+. By Lemma 8.3, the 
left hand side must be zero. But #+ > v + - # + L F  ~, and 

M[v{  ^ v + ] = ),S(E)2"(P~) 4: 0 .  

Thus we must have 2~(E) = 0, which completes the proof of the first part. The 
tangential intersections are isolated by Lemma 6.3. [] 

Theorem 9.2. I f  p is a saddle point o f f  then p e J * 

Proof Let P be a Pesin box. By Lemma 9.1, there is a compact subset K" c W~(p) 
and a subset fr of the leaves of F ~ such that (i) #" (ff~) > 0, (ii) for each a"e  K" there 
is a leaf F ~(x) of F ~ such that {a"} = K" n F ~(x), and (iii) the angle of intersection of 
F~(a ") and W"(p) is greater than 00 > 0. Similarly, we may find subsets 
K ~ c WS(p) and the family of leaves fr with analogous properties. 

Let us choose a coordinate system in a neighborhood U of p so that p = 0, 
U = {Ix[ < 1, lYl < 1}, {y = 0} n U is the component of W~(p) n U containing 0, 
and {x = 0} n U is the component of W"(p) n U containing 0. By the Lambda 
Lemma (see e.g., [PdM]) ,  we may take n sufficiently large t h a t f - " K "  c {x = O, 
L yl < e}, and for each a"e  K" the portion o f f - "  W~(a ") c~ U passing through f - " a "  
(denoted W~(f-"a")),  is uniformly C 1 close to {y = 0, Ix[ < 1}. Similarly, for each 
a s e K ~, the portion of f"  W"(a ~) n U passing th roughf"a  ~ (denoted W~l(f"a~)), is C 1 
close to {x = 0, lY[ < 1}. 

Thus we may choose n large enough that every pair of manifolds W~(f-"a")  
and W~(f ,a  ~) have nonempty intersection. Finally, since 2"(K") > 0, it follows that 

2~:= f , " (2UL K") = #+ [~=0.1yl< l~r~f--r- 4 :0  . 
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Thus 

v2 := ~ ~ ( a ) [ W ~ ( a ) ] ,  O. 
a ~ f  - " K  ~ 

With an analogous definition for v~-, we have/~ U U > v + /x v-  4: 0. Thus p is in 
the support of/~. [] 

Combining Theorem 9.2 with the density of saddle points proved in [BS4] gives 
the following characterization of J *. 

Corollary 9.3. J* is the closure of the set of saddle points. 

Corollary 9.4. Any hyperbolic measure has support contained in J *. 

Proof According to Katok  [K, Theorem 8], periodic saddle points are dense in the 
support of any hyperbolic measure. Thus the corollary follows from Theorem 
9.2. [] 

Corollary 9.5. I f  p is a saddle point for f, then every transverse intersection of W~(p) 
and W"(p) is in J*. 

Proof By the Birkhoff-Smale theorem every transverse homoclinic intersection is 
the limit of saddle points. So the corollary follows from Theorem 9.2 and the fact 
that J*  is closed. [] 

Theorem 9.6. I f  p and q are saddle points for f then the set of transverse intersections 
of WS(p) and W"(q) is dense in J*. 

Proof Let U be an open set with U n J *  4: 0. Then there exists a Pesin box P c U. 
Every pair of points x l ,  x2 e P have the property that W](xl) intersects W2(x2) in 
a unique point in P and the intersection is transverse. Further, there exists e > 0 
such that for any smooth manifolds M '  and M" such that distcl(M S, W~(x)) < 
and distc, (M", W](x)) < e, then M s intersects M" in a unique point in U and 
the intersection is transverse. By Lemma 9.1, there exist x l , x 2 ~ P  and 
Yl ~ W' (P)n  W](xl) and Y2 ~ W"(q)n  W~(x2). For  infinitely many values n~-~ oo 
we have f - " J x l  eP .  By the Lambda Lemma, there is a portion D~ o f f - ' W S ( p )  
which contains f -"JYl and lies as a graph over W](f-"Jxl).  Further, D~ ap- 
proaches W~(f-"Jxl)  in C 1. Similarly, fmky 2 e p  for infinitely many mk --+ ~ ,  and 
there is a port ion O~ c fmkW"(q)  = W"(q) which approaches WU(fm~x2) in C a. 
For  j, k large, this C 1 distance is less than e, and it follows that D~ and D~, have 
a transverse intersection. Since WS(p) n W~(q) c~ U ~ D~ n D~ c~ U 4: O, it follows 
that the set of transverse intersections of W~(p) and W"(q) is dense in J*.  [] 

A saddle point p is said to generate a homoclinic intersection if WS(p) and 
W~(q) intersect in points other than p. 

Corollary 9.7. Every saddle point generates a homoclinic intersection. 

Proposition 9.8. I f  p is a saddle point for f then every point in the intersection of 
W~(p) and W"(q) is a limit of transverse intersections of W~(p) and W"(q). 

Proof Let x e  W*(p) n W"(q). Choose a coordinate system at p as in the proof of 
Theorem 9.2. Replacing x by f ' ( x )  we may assume that x e { y = 0} n U. Now by 
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Theorem 9.4 W"(p) has a transverse intersection with WS(p). The Lambda Lemma 
implies that there are components of W"(p) c~ U arbitrarily close to {y = 0} ~ U. 
Lemma 6.4 then completes the proof. [] 

Theorem 9.9. I f  p is a saddle point for f then every intersection of W~(p) and W"( q) is 
in J*. 

Proof This follows from Theorem 9.6 and the previous proposition. [] 

10 Applications to real Henon mappings 

Consider a polynomial diffeomorphism f with real coefficients, f leaves invariant 
the real subspace R 2. In this section we will denote f :  C 2 ~ C 2 by fc  andf la2  byfR. 
Recall that if d > 1, then d can be defined as the minimal degree of any map 
conjugate t o f  This number can be computed from fa without making reference to 
fc. In [ F M ]  it is shown that htop(fR) < log d. In this section we investigate maps for 
which equality holds. 

Hyperbolic "d-fold" horseshoes (see [FM]  and [HO])  are examples of maps of 
maximal entropy but these are not the only examples. The set of horseshoes is open 
in parameter space and continuity of the entropy function [-Mi] shows the set of 
maps of entropy log d is closed. Thus the set of parameters of maps with entropy 
log d contains the closure of the set of horseshoe parameters. It would be interesting 
to know whether it contains other maps as well. 

Theorem 10.1. The following are equivalent: 

(1) htop(fR) = logd. 
(2) ,u(R 2) > O. 
(3) J*  ~ R 2. 
(4) K c R 2. 
(5) Every periodic point of fc is contained in R 2. 
(6) l f  p is a periodic saddle point then WS(p, fc) c~ WU(p, fc) is contained in R E. Any 
of these conditions implies: 
(7) J * = J = K .  

Proof The result of Newhouse, (Theorem 2.2), shows thatfR possesses a probabil-  
ity measure v of maximal entropy. If (1) holds then the entropy of v is log d so v =/~ 
by the uniqueness result, Theorem 3.1. Thus (1) implies #(R 2) = 1. 

Assume that (2) holds. Since # is ergodic and R 2 is and invariant set of positive 
measure we have ~(R 2) = 1. Since R 2 is a closed set of full measure the support of 

is contained in R 2. But the support of # is J*  so (2) implies (3). 
We will show that if J*  is real then K is real. Recall that J*  is the Shilov 

boundary of K which is the minimal closed set S c K with the property that for 
any polynomial P the maximum value of IPI on K is equal to the maximum value 
of I PI on S. It is a general fact that if the Shilov boundary of a set is real then the set 
is real. We recall the proof. Assume that K is not real. Say p = (zl, z2) is in K but 
not in R 2. Either zl or z2 is not real. For  definiteness assume that zl CR. Let J~ be 
the projection of J*  onto the first coordinate. Runge's theorem assures the 
existence of a complex polynomial P~(z) so that [PI(J1)[ < 1/10 and [P,(zl)l > 1. 
Thus the polynomial P(zl, z2)= Pa (z~) takes its maximum vlaue outside of J*  
contradicting our assumption. Thus (3) implies (4). 
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If (4) holds then p is supported in R 2 so fR  has a measure of entropy log d so (4) 
implies (1). This demonstrates the equivalence of conditions (1) through (4). 

We prove the equivalence of (5). Since every periodic point is in K, (4) implies 
(5). Since periodic points are dense in J *, [BS3, Theorem 3.4], we have (5) implies 
(3). 

We prove the equivalence of (6). Since every point in WS(p,fc) c~ W~(p, fc) has 
a bounded orbit this set is contained in K, thus (4) implies (6). Since 
W~(p, fc) n WU(p, fc) is dense in J *, (Corollary 9.3), we have (6) implies (3). 

To show that these conditions imply (7) we argue as follows. By (4) K c R 2. The 
Stone-Weierstrass theorem implies that any continuous function on K c R 2 can be 
approximated by a polynomial function. This implies that the Shilov boundary of 
K i s a l l o f K .  T h u s J * = K .  S i n c e J * ~ J ~ K w e h a v e J * = J = K .  [] 

The following result gives some consequences of the equivalent conditions 
described in Theorem 4.1. Note that all these results can be stated in terms of 
fa without reference to fc  or C 2. Nevertheless our proofs of these results require 
complex techniques. 

Theorem 10.2. Let fR be a polynomial diffeomorphism o f R  2 with entropy log d then: 

(1) fk  has a unique measure of maximal entropy. 
(2) falK is topologically mixing. 
(3) fR has no sinks. 
(4) Periodic points are dense in the set of bounded orbits. 
(5) For any periodic saddle point W~(fR, p ) ~  Wu(fR, p) is dense in the set of 
bounded orbits. 

Proof Since fc  has a unique measure of maximal entropy it follows that fR has 
a unique measure of maximal entropy when h(fa) = h(fc). 

We prove (2). By [BS3] f is mixing for the measure #. It follows that f is 
topologically mixing on the support of # which is J *. By assertion (7) of Theorem 
4.1 J*  = K. 

To prove (3) we note that a sink orbit is in K but not in J (a sink is in the interior 
of K § but J = c'~K § c~OK-. So (1) implies that f has no sinks. In the volume 
preserving case the same argument shows that f h a s  no linearizable elliptic points. 

Assertion (4) follows from assertion (7) of Theorem 10.1 because periodic points 
are dense in J*  and the set of bounded orbits is K. 

Assertion (5) follows from (1) because homoclinic intersections are dense in J*  
(Corollary 9.3) and J*  = K from assertion (7) of Theorem 4.1. This completes the 
proof of the theorem. [] 

Remark. Let us mention the real quadratic mapping h: R 2 ~--~R 2 given by 
(X, y) --~ (1 - -  ax  E + y, bx) with a = 1.4 and b = 0.3, which was considered in detail 
by H6non. There are eight solutions of { (x, y)~ C2: h~(x, y) = (x, y)}, two of which 
are real fixed points, and the other six lie in two cycles of period 3. Numerical 
computation suggests that the 3-cycles consist of nonreal points. Paul Pedersen 
gave a mathematical proof that this is indeed the case [P]. It follows from Theorem 
10.1 that h has entropy strictly less than log 2. And for any saddle p, WS(p) c~ WU(p) 
contains points outside R 2. 
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11 Appendix: Concluding remarks 

Some remarks on the logical inter-relationships between the various sections of this 
paper are in order. This paper was organized so that the first methods used were 
Pesin theory and entropy; and the first main results obtained were the identifica- 
tion of the conditional measures and the uniqueness of the measure of maximal 
entropy. The logical progression we have adopted was not the only one possible. 
What follows is an outline of a different order in which arguments from this paper 
could be presented. In this scenario, the use of entropy comes only at the end. And 
this organization leads to new proofs both that the entropy of# is log d and that the 
topological entropy o f f  is log d. 

Step 1 Let P be a Pesin box, F s be the corresponding stable lamination as defined 
in w First prove the hotonomy invariance of measures induced by Ft § along this 
lamination (Lemma 4.4). Thus p+ induces a transversal measure on F s. 

Step 2 From Lemma 4.4 we deduce that p + L  F s is a uniformly laminar current 
(Lemma 8.1). Next we prove Lemmas 8.2 and 8.3, and it follows that 

/~LP=(#+LF s) A (#-L/ 'U), 

Thus p k P has a product structure. 

Step 3 The product structure of/~ on sets P of positive measure, and especially the 
fact that the wedge product is equal to the intersection ~,, allows us to prove the 
results of w concerning saddle points. 

Step 4 The product structure of p on the sets P also implies that the conditional 
measures of # on the unstable leaves are induced by p+. 

Step 5 Up to this point, these arguments have not involved entropy. But now the 
facts obtained in the previous steps may be used to calculate the entropy of # via 
the formula: 

hu(f) = S log J~/~ = tog d .  

Step 6 The argument in w shows that hv(f) < logd for any invariant measure 
v +/~. Hence, /t is the unique measure of maximal entropy. By the Variational 
Principle, this also gives us an alternative proof of the Friedland-Milnor-Smillie 
formula for the topological entropy: h(f)  = hu(f) = log d. 
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