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0 Introduction 

Let f be a polynomial  diffeomorphism of C 2 which is not  conjugate to an affine 
map or a generalized shear. These are the polynomial  diffeomorphisms of C 2 with 
nontrivial dynamics. We write K • ~ C z for the set of points in C 2 bounded in 
forward/backward time, and we let K = K + ~ K  -. The sets K • and K are 
invariant, and K is compact.  The nontriviality of  the dynamics of  f is reflected in 
the fact that  the topological entropy o f f lK  is equal to logd  for some integer d > 2 
(see [ F M ]  and IS]). We call d the dynamic degree of f ( s ee  Sect. 1). 

In [BS1] we studied the stable/unstable currents p-~, which are defined by the 
formula 

/t+ 1 
= ~n ddCG +- 

where G ~ is the Green function for K+. These currents have support  equal to 
d • = ~K +- and satisfy 

f*/~-+ = d• • . 

The equilibrium measure # of K can be defined as p =/~+ /x p - .  This measure has 
finite total mass and is invariant u n d e r f  In  this paper  we consider the dynamics of  
f with respect to p. 

The results that  we prove in this paper for p parallel known results on the 
dynamical  properties of the equilibrium measure for polynomial  maps  of C, which 
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were first investigated by Brolin in [Br] (see also [Si; T; C]). Let fo denote 
a polynomial map of C which is neither constant nor affine. Let Ko denote the set of 
points with bounded (forward) orbits. Let/x o be the equilibrium measure of Ko. We 
prove (Theorem 2.1) that f i s  mixing with respect to/~. The analogous result for #o 
was proved in [Br]. 

The proof of this theorem is based on the following characterization of/x +, 
which is given in Sect. 1. I fS is a current of the form described in (1.1) then there is 
a constant c such that 

lim ( d - " ) f " * S  = clx + . (0.1) 
n ~ o o  

Results of this form for certain classes of currents S appear in [BS1, 2, 3] and [FS]. 
The result in this paper extends these previous results. 

There is a useful formula for the Lyapunov exponent 2o offo with respect to/~o- 
If d is the degree off0, then 20 can be described in terms of the rate of escape of the 
critical points. We have: 

1 + 
)~o = logd + ~ lim ~ log Ifo~(c)l (0.2) 

c:f'otc)=o , - ~  d 

(This is formula (1) in [Pr, p. 177] with uv replaced by Brolin's formula for the 
Green function.) The function 20 and related functions have proved useful in 
understanding how the dynamics offo vary with the polynomial. 

Since p is ergodic for f, there are two Lyapunov exponents of f with respect to p, 
which give the exponential growth rate of p almost every tangent vector under 
iteration. Let A denote the larger of the two exponents. We can think of A as 
a function on parameter space. We hope that A might prove useful in understand- 
ing the space of polynomial diffeomorphisms. We do not have a formula for 
A which is analogous to (0.2). In particular it is not clear what the analog of 
a critical point is for a polynomial diffeomorphism. On the other hand a number of 
properties of 2o as a function on parameter space follow from formula (0.2), and we 
have been able to prove analogs of these for A. 

For  instance, it follows from (0.2) that ,~o > log d. We prove that A > log d in 
Theorem 3.2 using a Jensen type inequality. This result lets us invoke a powerful 
result from smooth dynamical systems to derive information periodic points in 
Theorem 3.4. 

In Sect. 4 we prove that the measure theoretic entropy of ~ is equal to log d 
(Theorem 4.4). The analogous result for P0 was proved in [FLM]  and f ly ] .  This 
involves a characterization of p which is motivated by the construction of 

1 
a measure with maximal entropy. For instance, let O = ~ ddqog(l + }xl 2 + lyl 1) 

be the K/ihler form associated with the Fubini-Study metric, and let O, = f * " O  be 
the pullback under f" .  For any positive (1,1) current S, there is a measure 
v,:= S W O,, which acts on a continuous function ~o with compact support as 
~ q~dv, = (S ,  q~O,) .  In Sect. 4 we show that: I f  S is as in (1.1) and (S ,  I~- ) = c, then 
( d - " ) f ~ v , ~ e ~  a s j - - * o v  and n - j ~ .  

There is a well-known relation between Hausdorff dimension, Lyapunov ex- 
ponents and entropy. In our case, we apply a result of Lai-Sang Young to compute 
the Hausdorff dimension of the equilibrium measure (Corollary 4.6). 
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Another consequence of (0.2) is that 2o is a plurisubharmonic function on the 
space of the parameters and is pluriharmonic in the parameter region wheref is  an 
expanding map. In w we establish corresponding plurisubharmonicity and plu- 
riharmonicity results for A (Theorems 5.5 and 5.7). 

In Sect. 6 we extend the parameter space to include certain non-invertible maps. 
These maps are essentially 1-dimensional and conjugate to polynomial maps of C. 
We show that for diffeomorphisms fa converging to a 1-dimensional map fo, the 
measure #a converges to its 1-dimensional analogue, ~o and lim sup . . . .  An = 20, 
i.e. a ~ Aa and a ~ p~ are well behaved on the extended parameter space. Since the 
1-dimensional maps are relatively well understood, we are able to get some 
information about mapsfa which are close to singular. We note that this approach 
has been used by Fornaess and Sibony [FS] and Hubbard and Oberste-Vorth 
[HO] to describe the geometry and topology of J and K for certain perturbations 
of 1-dimensional maps. 

It also follows from (0.2) that 2o = log d for precisely those mapsfo for which Ko 
is connected. We prove a partial analog of this result in Theorem 6.7 and Corollary 
6.8. 

We have found the analogy between one and two dimensional complex dy- 
namics to be useful in guiding our investigations. The notation of [HO]  suggests 
J = J + ~ J - as the two-dimensional analogue of the Julia set J0 = 0Ko. The 
results given below suggest that J*  = support(#) may better carry through this 
analogy. By [BT], J*  is the Shilov boundary of K, which parallels the 1-dimen- 
sional case, since Jo coincides with both the topological and Shilov boundaries of 
Ko. Further, by Theorem 3.4, periodic saddle points are dense in J*.  This is 
consistent with the result of Fatou and Julia that expanding periodic points are 
dense in Jo- We know that J*  ~ J, but we do not have an example where equality 
does not hold. It is shown in [BS1] that J*  = J in the hyperbolic case. 

1 Characterization of the stable current 

We recall some useful results from earlier papers. By [FM] a polynomial dif- 
feomorphism is conjugate either to an affine map, to a generalized shear or to 
a map of the f o r m f = f m  ~ . . .  ~ where fj(x, y )  = (y, p j ( y )  - a:x) ,  a j e C ,  aj + O, 
and p j ( y )  is a polynomial of degree at least 2. We will consider maps of the last type. 
Without loss of generality we may assume that f is not simply conjugate to a map 
of this last form but actually equal to a map of this form. We let dj denote the 
degree of p j, and it follows that d = dl �9 �9  dm is equal to the (conjugacy invariant) 
dynamical degree d ( f )  = l i m , ~  (deg f , ) l / , .  The functions 

G+-(q)  = lim (degf)-"log(1 + [f-+"(q)[) 

give the exponential rate of escape of the point q in forward/backward time. We 
define the stable/unstable currents as 

1 
p • 1 7 7  . 

(This agrees with the definition given in [BS3] but differs from [BSI, 2] by a factor 
of 2ft.) 
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This section is devoted to proving equat ion (0.1) for a large class of currents. We 
consider currents of the form 

S = r T: T is a positive current on f2 c C 2, and 

is a test function on ~2 with spt r c~ spt ~T = ~5 , (1.1) 

and we will show (Theorem 1.6) that (0.1) holds for these currents. 
Let us establish some notat ion and terminology on currents. Recall that  a (1,1) 

current on C 2 acts as a linear functional on the (1,1) test forms. If T is a positive 
current, then it is representable by integration, i.e. there is a matrix of signed 
Borel measures (#~,;) such that if q) = ~ q)i,jdzl A d~; is a test form, then T(q)) 
= Y', [. ~o~,;dl4,;. Since we can multiply Borel measures by cont inuous functions we 
can make  sense of 0 A T where 0 is a form with continuous coefficients. We recall 
that the boundary  operator  is defined on (1,1) currents as ~(c?T) A q = --~ T A dr/, 
where d is the usual exterior differential operator  on 1-forms. 

Let us define the expression # -  A C T ,  which generalizes the construct ion of 
# = #+ A # -  in [BS1]. Let G j  be a sequence of psh smoothings of G with 

1 
G~- --* G -  uniformly as e ~ 0, and let #2 = ~ ddCGj. Thus # [  is a smooth  form 

converging to # -  in the sense of currents as e --, 0. We have 

ddC(G~ - A ~T)  = ddCG~ - A ~ T  + d~G~ - A dO A T +  dG~- A dqk A T +  G~-dd"r A T 

The (1,1) parts ofdCGZ A de  /x T a n d  dG~- A d"O A Thave  opposite signs, so these 
terms cancel. Thus  we are left with 

# [  A C T =  dd~(G[ - A C T ) - -  G[-ddCr A T .  

Taking limits gives: 

t im#~ A CT=limddC(G~ - A ~ g T ) -  G~-ddCO A T=dd~(G - A C T ) -  G dd"t) A T .  
E~O ~ 0  

The terms in the r ight-hand side of this equat ion are well defined because T can be 
defined on continuous test forms and G - is continuous.  This limit is independent of 
the sequence G~-, and we may use the r ight-hand side of this equat ion to define 
#-/\  OT. 

If q~ is a test form, then [(Pl = sup~l~p(x)l, where Iq)(x)l denotes the euclidean 
norm of  the k-form ~o(x). The mass norm of a current T is then given by 

M I T ]  = sup T@) .  
I,pl =< 1 

If X is an open subset of an analytic manifold with finite area, and if T = [ X ]  is 
the current of integration on X, then M [ T ]  is the usual area of X. And if g, is 
a function with compact  support,  then 

M E E X ]  L 4,] = j" tkdA 
X 

is the integral of  0 with respect to area measure. 
For  a current T and a test form r we let T L r denote the current defined by 

(T L r = T( r  A ~o). If r is cont inuous function we write ~gT for T L 0. If S is 
a Borel set, and T is representable by integration, we will use the notat ion T[s to 
denote T L Zs, where Zs is the characteristic function of S. 
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The (1,1) form O = �89 + [x[ 2 
dard Kfihler form at every point  of C 2 
a positive constant  C such that  for any 

M [ T I u ]  

L e m m a  1.1. Let  q) be a test.function on 

M [( . f "*0T)  

4- ]y]2) dominates  a multiple of the stan- 
Thus for a bounded  set U c C 2 there is 
positive (1,1) current  T 

C ~ O  /x T .  

C 2. Then there is a constant C such that 

L ~p] ~ Cd".  

Proof. We may  assume that 0 > 0, for otherwise we may  write r = 01 - 02 as the 
difference of nonnegat ive  test functions and treat  the two terms separately. 

d - " M E ( f " * O T )  L ~p] < C d - "  S ~ f "* (OT)  /x O 

_-< Cll~ll ] ' O r d - % 0 .  

But by [BS1] we know that the functions 

d- '~f,  �89 + Ixl 2 + lyl 2) = d - "  �89 + l f"42) 

converge uniformly on compac t  subsets to G -  Thus in the last integral above we 
may  integrate by parts and pass to the limit to obtain 

lira CJl(pll ~OT(d-")�89 + If"l 2) 

= lim CIl~ll ~ddeO /, T(d-")�89 + I f"l z) 
n ~ c L ,  

= Girth ~dd'O A T A  G -  , 

which completes  the proof, 

Our  next result gives a relation between the mass  of a current  and the mass of 
its boundary.  Let us note that  there is an opera to r  J on 1-forms such that  for any 
function ~o, J dq) = dCq). J is an R-linear operator ,  which in coordinates  is given 
by J(dz;) = idfj, or J(dxj )  = dyj, J(dy;) = -dx~ .  This defines an inner product  
{~, r/> := ,[ ~ /~ Jq /x T on test 1-forms. The corresponding Schwarz inequality is 

L e m m a  1.2. Let  0 and T be as in (1.1), and let 01 > 0 be a test function on ~2 with 
01 = 1 in a neighborhood o f s p t  0. Then for any test function Z on C 2, 

M [(r  )f]2 < N d0 [I 2M I f " *  (01 T) k Z] M [( 01 T) L . f"*z]  �9 

Proof. By the definition of ~?, the mass norm on the left-hand side may be eval- 
uated as 

M[zf"*(c '~r = sup ~ Z / \ f " * a [ O T ]  A (p 
Ir -< 1 

= sup S Z~p /~.f"* [d0 /x T]  
I~1_-<1 

= sup j" (.fgZ~P)/~ dO A 0 1 T  
I,pl < 1 
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( ),/2( #2 
< sup 5 f ,  zq~ A J(fgz(o) A r  5dr A d ~  A r 

I,Pl_-< 1 

_--< sup 5f~zq~ Af,~J(z~o) A ~//1 r de  A d~O A r 
I~1<-1 

_-_ MEz2f"*(q,, T)] la II de II MEr ~]1/~ 
The third line follows because f ,  is the adjoint o f f* ;  the fourth line is the Schwarz 
inequality for the positive current r T; the fact that f is holomorphic gives us 
J(f,d~o) = f , ( J d @  in the fifth line; the sixth line follows because [d(0[ = [(0[ __< 1 
and usual estimations of integrals. The Lemma follows. 

Lemma 1.3. Let r T be as in (1.1), and let v denote any limit of a subsequence oJ" 
{(d-")f"*(tpr)} .  Then v is closed, i.e. (~v = O. 

Proof. Let Z be a test function on C 2, and let r be a test function on O such that 
tPl = 1 on spt~. By Lemma 1.1, the sequence (d - " ) f "* ( r  has locally bounded 
mass, so 

M [ f " * ( r  T) L Z] =< Cd". 

On the other hand, by Lemma 1.2, 

m [ ( 0 f " * ( ~ T ) )  L Z] --< (Cdn)l/ZM[~l T] 1/2 

< C'dn/2 

Thus we see that the mass norm of (d-")(c~f"*(r Z tends to zero as n-+ ~ .  
Thus ?v = 0. 

Our next step will be to show that these currents d-"f"*(tpT) actually converge 
to a multiple of/~+. Let 5P(r denote the set of all currents that arise as limits of 
subsequences of {d-"f"*(tpT)}. By Lemma 1.3, ( f ( r  consists of closed currents. 
It is evident that (d-~) f*SP(r  = ,cf(~T). Further ~pT has compact support in 
a large polydisk V =  {Ix[, [Yl < R}, and by Lemma 2.2 of [BSI]  we may choose 
R large enough t h a t f - " V  c Vvo {Ixl < ly[}. By [BS1, Lemma 2.41 the currents of 
5g(r are all supported in K +. 

We note that if 5~(~ T) consists of a single current, then by Theorem 1.6 of [FS] 
it follows that this current is a multiple of p+. And in the present case, our use of 
Lemma 1.5 was motivated by [FS]. 

Let us recall some results from Section 4 of [BS3]. We will let ~2  denote 
2-dimensional Lebesgue measure. For any v~,Cf@T), we may disintegrate the 

i 
measure v L ~ dx A ds with respect to Lebesgue measure. That is, for S 2 a.e. 

i 
x there is a measure vx on C with the property that v L ~ dx A d.f = v~y~2(x). Let 

us define the function 

U~(x, y):= 5 log lY - {I Y x ( ~ ) ~ P 2 ( X )  " 

A priori, the function U~ is defined only almost everywhere in x, but it may be made 
upper semicontinuous and psh on C 2 in a unique way via a smoothing argument. 
Further, U~ is the unique function satisfying ddr = v and 

U~(x, y ) =  clogly] + o(1) (1.2) 
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for Ix[ < R and tYl large (cf. [BS3, L e m m a  4], or  Lelong [L] and Skoda [Sk]). The 
c 

constant  c in this equat ion corresponds to the fact that  the total  mass  of vx is 2~ for 

a . e . x .  

L e m m a  1.4. The constant in (1.2) is (liven by c = ~ O T A t~-, and is independent of v. 

Proof. Let n j ~  oo be a sequence such that  l i m j ~ d - = ~ f " , * ( r  v, and let 
0 = �89 + Ix12). Then 

lira ~ d-"~f"~*(r A 0 = ~ V A 0 
j~oo 

C ~ 0-----C, 

= ~ c  

On the other hand, as in the p roof  of L e m m a  1.1, we have 

lim ~ d-"~f"~*(r T) A 0 = ~ d-"~r T A f,~O 
j ~  

= 5 0 T  A (d-"' �89 + I,f-',l 2) 

and so c is given as claimed. 

We may  now apply the p roof  of Propos i t ion  1 of [BS3] and conclude that  
U,(x, y) = cG +(x, y) for all (x, y ) e C  2 - K +. By the upper  semicontinuity of U,., it 
follows that  U~ > 0 on (?K +, and by the m a x i m u m  principle it follows that  U~ < 0 
on K +. We will show that  in fact U,, = 0 on K +. Let us suppose, to the contrary,  
that there is a current  v~ c f ( r  such that U,, < - 1  holds on a domain  co with 
d) c i n t  K +. Since co c K +, it follows that f"(~o) remains in a large polydisk 
{Ixl, lyl < R}. For  n > 0 there exists v , e~ f ( r  such that  v = (d-") f"*v , ,  and so 

Thus 

g " - n  , (d" )gv=  ~,,(/ ) 

f"((o) c {Ix[, lYl < R} c~ {U,. < - d " }  . (1.3) 

Let us recall the following fact abou t  potentials.  

L e m m a  1.5. I f  R > O, then there exists a constant CR > 0 such that fi~r any positive 
c 

Borel measure vx with total mass ~ ,  then the potential U~= satisfies 

cS2({U,. < - 2 } r ~ { , y  I < R } ) _ _ < C R e x p ( - ! ) .  

Proof. For  lYl large, c-lU~x = loglYl + o(1). Thus  the function c-lUg= + 2/c is no 
greater than the Green  function of the set {U~= < - 2 } .  It  follows that  the Robin 
constant  of this set is at  least as large as 2/c, and so the capaci ty is no greater than 
e x p ( - 2 / c ) .  The fact that  the area  of the set is domina ted  by the capaci ty (see [Tsuji, 
Theorem III .10])  completes the proof. 
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We may apply this inequality to the functions U,.(x, y) for x fixed, and integrate 
it with respect to AeZ(x) and obtain 

Volume({,x, ,  ]y] < R} ~ { U v  < - 2 } )  __< ~zR2CRexp (~)2)~) . 

By (1.3), then, Volume(f"(co)) < :zR2CRexp(-d"/c) .  On the other hand, the Jacobian 
of a polynomial  au tomorphism is a constant,  so it follows that the volume off"(~o) 
is ]6] 2" times the volume of co. This is a contradiction, so we conclude that U, = 0 
on int K + 

Recall that  a current Tis representable by integration if there are Borel measures 
Tts such that T = ~ THdz  I A d~ s. This is equivalent to the existence of a constant  
C~ for every compact  K such that ] T(q))l < C sup ](Pl for all test forms q~ supported 
on K. We say that a sequence {Tj} of such currents converges to T as currents 
representable by integration if l i m j ~  Tj((p) = T(q8 for all compactly supported 
forms (p with cont inuous coefficients. 

Theorem 1.6. I f  O T is as in (1.1), then 
(i) l i m , ~ ( d - " ) . f " * ( O T )  = c# + for c = ~ O T  A t t - .  

(ii) lim,,_~ (d " ) f " * ( T  A dO) = l im , .  ~ ( d - " ) f " * ( T  A dCO) = O. 
(iii) l i m , ~  ( d - " ) f " * ( T  A dd~O) = O. 
(iv) The limits in (i), (ii), and (iii) hold in the sense of  currents representable by 

integration. 

Proof. (i) It follows from the discussion above that  there is a constant  c such that 
U~ = cG + for all v e 5~(0T).  However,  c is determined by the total mass of any slice 

1 
v~, which is independent of v and x. Applying ~ dd ~, we have only one element, 

c 
- - d d ~ G  + in 5P(0T), and so the first limit exists and is equal to a constant  multiple 
2~ 
of #+. 

(ii) Let q~ be a test function. Then as in the p roof  of Lemma 1.3, we may bound 
the mass norm: ME(.f"*(d0 A T)) L ~p] < Cd ~/2. It follows that the masses of the 
currents in (ii) tend to zero locally on compacts  as n ~ ~ .  Thus they tend to zero as 
currents representable by integration. 

(iii) We observe that 

M[( f "* (dd~O A T)) L q~] = sup ~ ( f , @ ~  A T A dd"O 
I~I-<I 

< li ~ II M Edd~O A T ] .  

is bounded  independently of n. Thus the mass of the current in (iii) tends to zero on 
compact  sets as n ~ oo. 

(iv) It remains only to discuss (i). Wi thout  loss of general i ty ,  we may assume 
that 0 >--0. Thus the "currents in (i) are positive, and it is well known that if 
a sequence of positive currents converges, then it converges in the sense of  currents 
representable by integration. 

Remark. We can extend the class of currents for which the Theorem holds. 
�9 Theorem 1.6 continues to hold for finite linear combinat ions  of currents of  

the form (1.1). I f~  is a constant  (1,0)-form, and if 0 is a positive test function on (2, 
then i0a A ~ may be identified with a positive (1,1)-current of the form (1.1). Taking 
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linear combinat ions  we see that  (0.1) holds for all currents  that are represented by 
smooth  (1,1)-forms with compac t  support .  

�9 All points in {Ix] > R, IY] < Ixl}, e large, tend to infinity u n d e r / - 1 ,  so the 
part  of the current  S that  lies in this set plays no role. Thus it suffices to assume that  
sp t ( r  c~ { lyl < Ixl} is compac t  rather than assume that  sp t ( r  itself is compact .  

�9 If  S is a current, and if there are currents Sff of the form (1.1) such that  
S,- _< S _< S~ + and I ~ S, + A I~- - ~ S,/ A /~- I --, 0 then the (0.1) holds for S with 
c = lim ~ S, + A /~ . In part icular  the Theorem 1.6 holds for forms of the form 0 T 
where r is continuous.  Or  more  generally, it suffices that  r is bounded,  measurable ,  
and T A p -  a.e. point  is a point  of continuity of r 

Corollary 1.7. Let V be an open subset of C 2, and let S satisfy (1.1). I f  
(S A /~-)((? V) = 0, then 

lim (d-") f *"(S[v) = ct ~ + . 
n ~ s(:  

Example. Let X be a 1-dimensional complex submanifold  in C 2, and let ,@ ~ X be 
a relatively compac t  open subset. Then d - ' i f  *n [@] converges to a multiple of p+ if 
the measure  [~@] A ~ -  puts no mass  on ~?~. 

2 Mixing and applications 

We will show t h a t f i s  (strong) mixing, and we will use these results to prove  some 
topological  propert ies of  K and J* .  A measure  is (strong) mixing if for Borel sets 
A and B 

lim/~(A c~f -nB)  = p(A )it(B ) . 

This is equivalent  to the condit ion that 

lim ~ (,f"*qS)r = ~ @ dp ~ ~ dp (2.1) 
n ~  oo  

for all 4) and ~b in L2(~).  The following result was proved in [BS1] in the special 
case t h a t f i s  hyperbolic.  We now prove it for genera l f .  

Theorem 2.1. The mapping f is mixing on p. 

Proof. It  suffices to verify the condit ion (2.1) when @ and r are test functions 
because the set of test functions is dense in L2(p). 

We note that  for a test function r L 0 = (P+ t_ ~b) A /~-. Thus  what  we need 
to prove  is that  for any test function Z 

lim ~ L f . ( p L ~ ) = ~ z d p ~ r  
n ~  ~J 

However ,  the left-hand side of this equat ion is 

j" z f " * ( ,u  + L 0) A . f " * f f -  = .[ z (d - " ) f " * ( l  ,+ L 0) A dd~G- 

= ~ dd~z(d-n)f"*(p+ L 0) A G 

+ ~dz(d-")J'"*(I  J+ L d" 0 A G - )  

- ~ d " z ( d  " ) f " * ( p +  L d 0 )  A G -  . 
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The first equality follows from the functional equat ion f"*/~- = (d-")ddCG-, and 
the next one is an integration by parts. Now we pass to the limit as n ~ ~ and 
use Theorem 1.6. The second and third terms converge to zero. The first term gives 
the limit 

~ddCz A (c/~ +) /x G -  = c5z/~ + A /~- = ~ d l ~ z d l ~ ,  

which completes the proof. 

Recall that a mapping  f is ergodic if whenever E is a Borel set such that 
f - l ( E )  = E it follows that E is either of  full measure or of measure zero. Mixing 
implies ergodicity so we have the following corollary. 

Corollary 2.2. f is ergodic. 

The following proposi t ion gives a connection between measure theory and 
topology. 

Proposition 2.3. The measure # puts positive mass on any nonempty open and closed 
subset of  K. 

Proof. Let K1 be an open and closed subset of K and let K2 be the complement  of 
K1 in K. Let P(K) denote the function algebra obtained by taking the uniform 
closure of  the ho lomorphic  polynomials  on K. Since K is holomorphical ly  convex, 
it follows from the Oka-Weil  Theorem that P(K) coincides with the uniform 
closure of  the algebra of holomorphic  functions in a ne ighborhood  of K. Thus 
P(K) = P ( K 1 ) O  P(K2)  and so it follows that OsK = c~K~ u ~sK2. In particular, 
K1 intersects c?~K. On the other hand, it was shown in [BT]  that the support  of/x is 
the Shilov boundary  of  K, so we have/x(K~) > 0. 

Corollary 2.4. I f  K is totally disconnected then J *  = J ( = K ) .  

If x is a point  in a topological  space X, we define the component of x to be the 
intersection of all sets U which are open and closed sets and contain x. Every 
component  is closed. We say a component  is isolated if it is also open. 

Theorem 2.5. Either K is connected or K has uncountably many components, none o[ 
which is isolated. 

Proof. I f  all components  of K have measure zero then K must  have uncountably  
many components .  If some componen t  were isolated it would be an open and 
closed set with zero measure but  this is prohibited by Proposi t ion 2.3. Assume now 
that some component  C has positive measure. Since C has positive measure, f " ( C )  
must meet  C for some positive n. Components  are either disjoint or  equal so we 
h a v e f " ( C )  = C. Since U f " ( c )  is invariant and of positive measure the ergodicity 
o f f  with respect to/~ implies that  its complement  must have measure zero. We will 
show tha t  the complement  is empty. 

Assume that x is a point in the complement  of U f " ( c ) .  There is some open and 
closed set U which contains x but not  U f " ( c ) .  The set U is an open and closed 
subset of  a set of  zero measure. The existence of such a U contradicts Proposi t ion 
2.3. 

The fact that  f i s  mixing with respect to/.L implies that C must have period 1. 
Thus C = U f " ( C )  = K, and K is connected. 
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Remark. The same argument  proves that either J *  is connected or has uncoun-  
tably many  components  none of  which is isolated. It is known (cf. [BT])  that # puts 
no mass on a pluripolar set, and thus J *  is a perfect set. 

It follows from the Theorem 2.5 that  K is either perfect or  consists of single 
point. In fact K must be perfect, since K is polynomial ly convex and regular, and 
thus no isolated part of  K can be polar. 

3 Lyapunov exponents  

Let p ~ C 2 and let v ~ Tp. The characteristic exponents, which determine the ex- 
ponential growth rate of  the vector v, are given by 

2(v,p) = lim 1-1og[Df"(v,p)l 
n ~ c  n 

when this limit exists. The theory of Oseledets describes the behavior of this 
exponent for/* a.e. point. The fact that/~ is ergodic makes the description of the 
theory simpler than it would be in the general case. Either there is a single exponent 
2 so that 2(v, p) = 2 for # almost  every point  p and for every nonzero v ~ T v or there 
are two exponents 21 > 22 and a measurable splitting of  the tangent bundle of C 2 
of the form Tp = E~ @ E2p at /~ almost every point p so that for v~ E i we have 
2(v,p) = 2i. In the single exponent  case it is convenient to define 21 = 22 = 2. 

In this section we will estimate 21. It is easier to work with the following 
integral than to work with 21 directly: 

1 
A = lim n 5 log N Df"(x)II mdx),  

n ~ o c J  

where II Df"(x)II denotes the operator  norm of the linear transformation Df"(x). It is 
easily seen that A = 21. Since f h a s  constant  determinant  6 we have the relation 
,~1 + )~2 = log161, so )~z is determined by 21. 

Here we will show that  in fact A > logd  for all choices of the parameter.  We will 
make use of the following identity which is related to Jensen's formula. 

Lemma 3.1. Let K c C be a compact subset, and let 

GK(y) -- loglYl + PK + O(lY1-1) 

1 
be the Green function of K, and let r ddCG~ be the equilibrium measure of K. I f  

2~ 
p(y) = yN + . . .  is a monic polynomial (?f degree N, then 

loglPl~K + NpK = 2 GK(c). 
K {c:p(c)-O} 

Proof. We will apply Green's formula several times. First, we note that we may 
assume that 0K is smooth,  so that  the effect of integrating the equilibrium measure 
dd~GK over K is the same as integrating the l-form d~GK over c~K. Thus we have 

1 
log IPl/~K -- ~ ~ (log IPl - NGK)dd~GK 

K r 

1 1 
(log Ipl - NGK)d~GK - ~ ( l o g l p t -  NGK)d~GK + ~ -l~l 

2re -o(C-K)+I~:I 
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1 1 
- ~ (NpK + O(lyl-'))dCGK 2nC_K ~ d(loglPl -- NGK) A dCGK - ~ - ~  

1 
- 2n ~ dGK/x d~(loglpl - NGK) - NpK 

C - K  

Since the function log IPl - NGK is smooth  at ~ ,  we may  integrate by parts to 
obtain 

1 
log [PIIXK = ~ ! (log [ P l -  NGK)dd~GK 

K 

1 
= 2~ ~ G K d d q o g l p l -  NpK 

C - K  

= ~ GK(C) -- NpK �9 
{c: p(c)  - O I 

Remark. We conclude from this L e m m a  that if OK = 0, and if p(y) is a monic  
polynomial ,  then 

Theorem 3.2. A > log d. 

Proof. Let vp = c?y(p) be the 

This gives 

lim 
n ~ o o  

5 loglplixK ~ 0 .  

vertical vector  at the point p. We have that  

1 log IIDf"(vp)ll = )~(vp) < 21 
n 

lim ! ~ log II Df"(vp)II dix(p) < 21 
n ~ ~c~ 

Let X = {x = 0} denote the y-axis. Let us write Ko ~ = X c~ K +. Thus  we also 
"n 0 have Ko ~ = {y : J  ( , y ) e K + } .  

By [BS1] we know that  ( d - " ) [ f " X ]  /x IX+ converges to IXK as n ~ oQ. Thus we 
see that  

1 
1 f (d -" ) log  IbDfk(oII [ . f "X]  A I x+ . # log II Dfk(v)II IXK = tim 

n ~ o o  

To est imate this integral f rom below, we note that  if f=(./il),./i2)), then 
IIDfk(v)ll > Ic~yf~)l. Further ,  ?~yf~l = dky d " - l +  . . . .  where the dots represent 
terms of lower degree. 

We note that  the current  [ f k X ]  /x tx + is the same as the current  it + restricted to 
the submanifold  [ f k x ] .  S i n c e f k X  is in fact tangent  at infinity to the y-axis, we see 
that  G + [y~x is the Green  function of K~- inside the variety)CkX. Thus [ f k x ]  /x IX+ 
is the same as the equil ibrium measure  #Kd of K~- in X pushed forward by f k  to 
f k x .  We use this now to evaluate our integral: 

log II ofk(vp)I] #K >= ~ log I~,f& IIx,, 
= lim ~ log I k -,, , IX + ~,f(2)l(d ) [ f  X ]  A 
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We observe further that 

lim 5log k ,. . + = 10yf~2)l J .  [ x ]  A f . ~  

= lira j ' f " * f l o g l 0 , , f ~ L I ) [ X ]  A FL + 
n~oo 

= l im ~ l o g  I ( e ~ f ~ , ) ~  �9 
n ~ o 6  X 

((?yf~)) of" = dky( ek- x,e, + . . .  

so that 

logl@,Jikz))of"l = k logd  + loglp(y)l , 

where p(y) denotes a monic polynomial. Thus we have 

1 
> log d + ~ ! log I pl/~K,; 

> logd 

by the Lemma above. The Theorem follows upon letting k ~ crs. 

Corollary 3.3. 21 > 0 > -'~2- 

Proof We have 21 > logd and 22 = log161 - 21 < - l o g &  
We say an ergodic measure/~ is hyperbolic if no Lyapunov exponent is equal to 

zero. Hyperbolic measures have some of the properties of hyperbolic sets. 

Theorem 3.4. Periodic saddle orbits are dense in J*. 

Proof Katok proves [K, Theorem 4.2] that for a non-atomic ergodic hyperbolic 
measure/~ the closure of the set of periodic saddle points contains the support of/~. 

Corollary 3.5. I f  K is totally disconnected then periodic points are dense in K. 

Proof This is Corollary 2.4 combined with Theorem 3.4. 

4 The entropy of # 

In this section we will show (Theorem 4.4) that the measure theoretic entropy of/~ is 
h~,(f) = log d and derive some consequences about the Hausdorff  dimension of the 
measure/~. 

We begin by defining topological and measure theoretic entropy and discus- 
sing the variational principle which relates the two quantities. We will discuss 
Misiurewicz's proof  of the variational principle and extract from this proof an idea 
which we will use in the proof of Theorem 4.4. We then introduce measures a, and 
~, which will be used in the proof. We prove two Lemmas which describe 
convergence properties of these measures, and then we give the proof of the 
Theorem. 

First we define the topological entropy of a continuous m a p f o f  a compact set 
X. For each n set 

d,(x, y) = max d( f i (x ) , f i ( y ) )  . 
O < i < _ n - 1  
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A set E ~ X is (n, e)-separated if the distance between distinct points in E is at least 
e in the d, metric. Let s,(e) denote the cardinality of the largest (n, ~)-separated set. 
Define s(e) by the following formula: 

1 
s(e,) = l ira s u p  - l o g  s.(e,) 

n ~ c t  3 n 

The topological entropy is given as follows: 

htop(f) = lim s(e) 
t:~0 

Recall from [FM]  and [S] that the topological entropy off lK is equal to logd. 
We now define measure theoretic entropy. Let m be an invariant probability 

measure on X. Let ~ = {A1 . . .  Ak} be a partition of X, and let V~'-~ f ( 4  be the 
partition generated by ,~, f -  1~4, . . . ,  f -"+ 1~,. If we set 

k 

H(o~r = - ~ m(Ai)logm(Ai), 
i=1  

= , i m  
n ~  F/ \ i = 0  

then the measure theoretic entropy is given by hm(f) = sup.~/h(,~, f) .  
The variational principle states that 

htop(f) = sup hm(f), 
m 

where the supremum is taken over all invariant probability measures. Theorem 4.4 
thus states that tt is a measure of maximal entropy. 

Our proof of Theorem 4.4 will use some ideas from Misiurewicz's proof of the 
variational principle (see [W, p. 189]). We begin by reviewing his proof and 
extracting the results we will use. The proof of the equality htop(f) = sup., h, ,(f)  
follows from the proof of two inequalities. We will consider the proof  that 
htop ~ s u p r a  hm. 

For each n, choose an (n, e)-separated set E. of cardinality s.(e). Let 

1 
~176 s.(~) ~ 6x. 

x ff En 

For  any partition ~4 into sets of diameter less than e we have 

H~. ("~] f - ( 4 )  = logs~(e) 

n--1 This equality follows from the fact that each set in ~/~= 0 f - ~ 4  contains at most 
one element of E,. 

Now we write 

l n - I  

it, = -  E f~(a,)  
n i = 0  

and let n~ be a sequence of natural numbers so that l i m j ~  --1 logs,,(~O = s(e) and 
nj  

/% converges to #*. The definition of/~, insures that any such/~* is an invariant 
measure. Misiurewicz proves h,, > s(e). 
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In the course of the p roof  Misiurewicz proves that  for any sequence of  p robab i l -  
i ty measures  a ,  which satisfy 

H~"("V~f  \ /=o  ~ 4 )  > l o g c ,  

the l imit  measure  g* satisfies 

h, , ( f )  > l i m s u p  1 l o g c ,  . (4.1) 
t t ~  ~cJ 

It  is this fact that  we wish to use in the p roo f  of Theorem 4.4. 
F o r  our  measure  g we start  with a current  S as in (1.1). Let L denote  a C z, psh 

function on C 2 such that  

L(x,y)  = log ly l  + O(1) 

where the 0(1)  is uni formly bounded  for Ixl < O(lyl a/a') and y - ~  o's. Thus  
1 

0 : =  ~ddCL is a posit ive (1,1) form on C 2. F o r  each n we set O.  - . -  t '*"O, and we 

define a measure  

v,, = S L O ,, , 

where the integral  of a compac t ly  suppor ted ,  cont inuous  function q) is given by 

S  0dv~ = <S,  00~ 

L e m m a  4.1. Let {j ,}  be a sequence such that 1 < j , <  n, and j , ~  and 
n - jn ~ c~ as n ~ oQ. Then 

lim -n j . ,  d .f~ ~, = cl~, 
n ~  oo 

where 

Proof. We compute  

c =  ~ S A / x -  . (4.2) 

( d - " ) f ~v .  = (d- " ) ( f .JS L f ~ O . )  

= (d-J)f~S [_ (dJ-")f *~"-i)O 

1 
= (d-J)fgS L(d  i - " )  ~ dd "(L o f . - J ) .  

N o w  by w of [BS1] the functions G+_j := (d .i-")L o f , -J  converge uni formly to G + 
on compac t  subsets of C 2 as n - j  ~ ~ .  By Theorem 1.6 (d-J)f~S converges 
weakly  in the sense of  currents  to c/~ a s j  ~ co. W i t h o u t  loss of  general i ty we m a y  

1 
assume that  S is positive, so the p roduc t  ~ G+_j(d-:f,JS) converges weakly  in the 

c G+ sense of currents  to ~ /x . Apply ing  dd c, we ob ta in  the sum of four terms 

1 + . . c 1 + . 1 dd~G+_j(d_Jf~S ) + 2~ ~ dG"-j(d-J)f*~(d ~ /x T) ~ dCG._j(d-'),l~(dtp /x T) 

+ ~nl G+ j(d_j) f,J(ddC~ /x T) 
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The last three currents tend to 0 as n a n d j ,  ~ ~ .  To see this, we act upon them by 
a test function and integrate by parts to remove the d or d e from G + j .  The result 
then follows by (iv) of Theorem 1.6. Finally, the first term is equal to d - " f ,  iv,, which 
converges to cff + A p -  = Cg. This completes the proof. 

Now we set 

1 . ~ 1  d - "  . 
= -  L ~ -  fg(S L O,)  

#" n j=0 

with the constant  c in (4.2) being assumed to be nonzero.  

L e m m a  4.2 .  l i m . ~  # .  = #. 

Proof Choose a sequence k, ~ ~ such that k, /n  ~ O. Then 

= - + ~, + S L O , .  
JAn H ]=O j = k n +  1 j = n - k , , +  l 

The total mass of  the first and the third sums on a fixed compact  set vanishes as 

n ~ ~ .  We recall from the proof  of  Lemma 4.1 tha t f . JSL  O, = 2~ ddC(G+-J A JAr ). 
4 

Thus the middle summat ion is given by dd c of 

+ _ JAy + -  ~ ( d . + - j - G + ) J A ; .  G,_jJAj = G+ 1 
j = k n +  1 j = k n +  1 ;q .j=kn + 1 

Since on a compact  subset of C 2 the functions (G,+j - G +) converge uniformly to 
zero, and JA7 has uniformly bounded  mass, the last term on the right converges to 

l n - k  n 

zero as n - k, + 1 ~ n - j -~ o(3. The Lemma then follows since - ~ JAi- ~ JA-. 
11 kn+ l 

Now we construct the sequence of measures that will be used in the proof  of 
Theorem 4.4. Let us use the notat ion V - =  {(x,y): [ y [ > R  and [ y l > / x [ } ,  
V + = {(x, y): [x[ > R and [y[ < Ix[}, and V =  {(x, y): Ix1 < R and IY[ < R}. For  
R large, we have the filtration properties 

f ( V - )  c V - ,  f ( V -  w V) c V -  u V (4.3) 

f - * ( V + ) c  V +, f - t ( V + ~ V )  c V + u V  (4.4) 

(cf. [BS1, Section 2]). 
Let 9 = {x = 0, [y[ < R} denote the disk of  radius R in the y-axis, and let 

t : 9 -~ V denote the inclusion map. Let L be a smooth,  subharmonic  function of I Y[ 
1 

such that L(y)  = log[y[ for [y[ > R, and set O = ~ d d ~ L .  If we let %,(x, y) = y be 

the projection to the y-axis, then %, o f ,  o z' @ --* C, and we may define the measure 

~. = ( ~ o . f " o  ~ ) * 0 1 ~  = [~ , ]  LO. , 

where we first pull the form O back to C 2 and then restrict to @. By the choice of R, 
zryf"19 covers ~ with multiplicity d", so ~9~, = d" ~ .  Also by the choice of R, 
we have ~JA-A [ 9 ]  = 1, and thus the measure an = d -"~ ,  is a probabil i ty 
measure. If  we define 

l n - 1  

JA n = -  2 Jo" f , ~ , ,  
;~ j=O 

then 
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Corollary 4.3. l im,~ ~/~, =/~. 

The following result was proved for f a hyperbol ic  diffeomorphism in I-BS1]. 
We now prove  it for general f. 

Theorem 4.4. h~,(f) = logd. 

Proof, By the variat ional  principle we have h~,(.f) < log d. Thus it suffices to prove 
hu( f )  > logd. Let a ,  and/~,  be defined as above,  and let ,~r be a part i t ion of V so 
that  the tt measure  of the boundary  of each element of sr is zero and each element 
of ~r has diameter  less than e,. 

We will use a result of Yomdin  [Yd] to est imate H~ (\ /~-~ T-Jo~/). Yomdin 's  
n v J ~ U  

result implies that  the rate of area growth of pieces of  the disk which remain in 
e balls goes to zero as e goes to zero. 

Any element of \ / ' . ' -~  T - J , 4  is contained in an z-ball B in the d,-metric.  The v j ~ u  

measure  a ,  is given by 

= d - "  S f * ~  = d - "  O . 
B n ~/ . f " (B  (~ (J) 

It  is evident that  O is bounded  above o n  C 2 ,  and thus the right hand integral is 
domina ted  by C A r e a ( f " ( B  c~ ~)).  We let v~ l, n, e) denote the supremum of the 
area o f f " ( B r  ~ )  over  all z-balls B. Thus  the a,, measure  is bounded  above by 
Cd % o ( f  t, n, ~). This gives 

H~,, ( "~/1 T - J,r ) > - log C + n log d - log v~ ( J~ l, n, ~) . 
\ j = 0  

By Corol lary  4.3 t~, ~ ~, so the Misiurewicz result (4.1) gives: 

h~, > logd  - lira sup v ~  t, n, c) . 
tl ~ ~j 

Now let v ~  ~,) = lira sup,~  ~, v~ l, n, c). Yomdin  [Yd, Theorem 1.8] shows that  
v ~  e,) goes to zero as e --, 0 so that hu > logd. This completes  the proof. 

In IS] it was shown that the topological  en t ropy o f f  restricted to K is log d. 
Using Theorem 4.4 we can sharpen that  result. 

Corollary 4.5. The topological entropy o f f  restricted to J or J*  is log d. 

Proof. logd  = htop(fl~) > htop(,fla) > h,op(fb . )  > hu( f )  = logd. 

The Hausdor f f  dimension of a measure  m, written HD(m),  is defined to be the 
inf imum of the Hausdor f f  dimensions of  sets of  full m measure.  

Corollary 4.6. / f  I a] < 1, the Hausdorff  dimension of  the measure I~ is given by: 

H D ( # ) =  - l o g d =  + A - l o g ] 6 ]  l o g d .  (4.5) 

Proof. This follows f rom [Yg, Corol la ry  4.1]. 

Remark. The Hausdor f f  dimension of the set J *  is at least as large as (4.5). 

Corollary 4.7. HD(/~) < 2; in fact  HD(/ t )  < 2 unless 161 = 1 and A = logd. 
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Proof Without  loss of generality, we may assume that 161 ~ 1. Thus )< = A 
> logd and - ) . 2  = A + log(1/I61) > log& Thus the only way that HD(/t)  = 2 

can hold in (4.5) is if A = logd and log( I / I f [ )  = 0. 

5 Dependence of A on parameters 

Here we let A denote an open subset of C j, and we let f = fa depend holomorphi-  
cally on a e A. In  this case we will write A = A(a). We note that we have also used 
a to denote one specific parameter,  the complex Jacobian determinant  of f ,  but  
there should be no confusion when we use a to denote a general parameter.  

Let us write 

A, = 1 ~ log [I Df"(x)II ~(x).  
n 

We recall from the chain rule that 

Dfn(x) = ~I Df(xi-1) 
i = 1  

where xi = f i (x ) .  It follows from tile chain rule and the submultiplicativity of the 
operator  norm II /I that  

IlOf"+"(x) l[ < IlOf"(x) ll I/Of"(x,.-l)l l  �9 

Taking logari thms and using the invariance of the measure ~, we have 

(m + n)Am+, < mA,, + nA, . (5.1) 

Lemma 5.1. The limit defining A exists, and a v--. A~ is upper semicontinuous (usc). 

Proof It is well known (see [W, p. 87]) that the condit ion (5.1) implies that 
lim . . . . .  A, exists. It is also easily seen that k ~ Azk is monotone  decreasing. Now for 
fixed n, the map  

1 

is continuous. Taking the limit as n ~ oc through the values n = 2 k, we see that Aa 
is a decreasing limit of  cont inuous functions and is thus usc. 

N o w  we define the direct image of  a function under a proper  holomorphic  
mapping. We let X and Y be manifolds, and we let g:X-- ,  Y denote a smooth,  
proper  mapping, If q5 is a function on X, we define 

g,4,(O= O(x). 
x e o -  ~(0 

If ~b is cont inuous or has compact  support  then the same holds for g ,  qS. Since g is 
proper, g(X) = Y, and there is a positive integer p such that a generic point  y e  Y 
has p preimages. If we let U c X denote the points where g is a local diffeomor- 
phism, then there are disjoint open  subsets Uj ~ U, 1 <= j < p, with the properties 
that U - ~ Uj and Y -  g(Ui) have measure zero, and g: Uj ~ g(Uj) is a dif- 
feomorphism. Thus for any volume form 0 on Y, we may apply the change of 
variables formula to each Uj to  obtain 

p Cg*o : 9 , r  
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Lemma 5.2. Let ga(x) and ha(x) depend holomorphically on a ~ C j and x ~ C", and fi)r 
f ixed  a let g, map C" properly to itse(]] I f  tp(x) is continuous and psh on C", and if 

l(a) = y O(h~(x))(ddelog + jg,(x)l)", 

then I(a) is continuous and psh on C j. 

Proof  Let us consider a sequence of psh smoothings log~ of log. Then the currents 
/~"ddClog+lg,(x)[ which we write as (ddClog + I ga(x)j)" are pullbacks under g,, of the 
volume forms (dd ~ log + I (I)". It follows from the change of variables formula given 
above that 

Is(a) = S h*( O~ h,)(g,)(dd~l~ ~+ 1(1)" �9 

It is evident that  the direct image (g , ) , (O ,. ha) is psh as a function o fx  and a jointly, 
and thus it is psh in a. Thus we see that I~(a) is an average of psh functions and is 
thus psh itself. The result follows upon letting e tend to zero. 

We will need to use the following Lemmas 5.3 and 5.4, which are easy 
consequences of w of [BSI] .  

Lemma 5.3. The sequence G, :=  (d-") log + I,f" - f -"l converges uniformly on com- 
pact subsets o f  C 2 to the Junction G = max(G +, G ). 

Lemma 5.4. The mapping ga,, : = f "  - f -"  is a proper, holomorphic mapping of  C 2 to 
itself. 

Theorem 5.5. a~--~ A(a) is psh. 

Proof  Let us consider 

Am,.(a) := 1 y log II D f y  II ( d d C a n )  2 �9 

We let 0 be defined on C 4 = C 2 • 2 by ~'(0 = log II ~. I[, where we identify { with 
a 2 by 2 matrix, and II ~ II denotes the matrix (operator) norm. We let ha(x) = Dfa"(x) 
be the jacobian matrix of fT .  Since g.,.  is a proper  mapping  and G. has the correct 
form, we see from Lemma 5.2 that A,.,. (a) is psh in a for all m and n. 

If we take the limit as n --+ oo, we have by Lemma 5.4 that (ddCG.) 2 converges to 
#~, and so A,.,.(a) converges to the function Am(a) defined above. Now if a ~ A,. (a) 
is psh in a then if we take the limit m ~ oo the functions Am(a) decrease to A(a), and 
so aF--+A(a) is psh, which completes the proof  of the Theorem. 

Corollary 5.6. I f  t~ is psh o n  C 2, then a ~ ~ ~l~, is psh. 

Proof  Apply Lemma 5.2 with ha(x) = x and g,. ,  = f "  - f  ". Then take the limit as 
n ----r oo.  

We can derive a stronger conclusion if a is a value of the parameter  for w h i c h s  
is hyperbolic. Recall that  X c C 2 is a hyperbolic set for the map f if there is 
a cont inuous splitting of  the tangent bundle over X into subspaces E s and E" and 
constants c and 0 < 2 < 1 such that 

I[DT"IE, H < c 2 " ,  IIDf-"l~-II <c2"  n > 0 .  

In the terminology of [ B S I ]  f i s  said to be hyperbolic i f J  is a hyperbolic set f o r f  In 
[BS3] it is shown that this assumption is equivalent to the assumption that the 
chain recurrent set R ( f )  is a hyperbolic set for f Let 9 f  c A be the set of 
parameters  for which f ,  is hyperbolic. In [BS1] it is shown that 9 f  is open. 
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T h e o r e m  5.7. A (a) is pluriharmonic for  a ~ • .  

Proof. For  a hyperbolic mapping we can choose an adapted metric on the tangent 
bundle over J so that 

IIDTIE,~II < 2 ,  IbDf-XlE~ll < ,~' 

for some 2' < 1. We may also assume that E ~ and E" are perpendicular subspaces. 
With these hypotheses we have IIDf(p)ll = IIDfl~ II. 

For  a ~ ~ and a positive integer N, we set 

S ( N )  = {(a, p)~24 ~ xCZ: f J ( p )  = p} , 

and we let S(N,  ao) = S (N)c~  {a = ao}. It is shown in [BS1] that, for a ~  "~, #, is 
the limit of the average of the point masses over the periodic saddle points. Thus 
if we set 

N . 1 too.= #S(N, ao)- Z ~,, 
p �9 S ( N ,  ao) 

we have 

For  p E S ( N ,  ao), we have 

/~.o = lira /~.N o . 
N ~ o ~  

k 

log IIDZ)(p)II = ~ loglDf,  lE~<f,-l<p))l �9 
i = 1  

The pi(a) depend algebraically on a. Away from those values where periodic points 
coalesce the p~(a) depend holomorphical ly  on a. To any periodic point  p of period 
N we can assign a multiplicity which is just the multiplicity of p as a root  of the 
fixed-point equat ion f " ( x )  - x = 0. The sum of the multiplicities of points in 
S(N,  a) is constant. When distinct points coalesce they yield a point of multiplicity 
greater than one. For  asoVg the pi(a) are in saddle orbits thus one eigenvalue of 
D f ( p )  is greater than one in absolute value and one eigenvalue is smaller. This 
shows that  D f " ( p )  - I is nonsingular.  D f " ( p )  - I is the differential of the function 
f " ( x )  - x. Since it is nonsingular  p is a regular point for the funet ionf"(x)  - x. This 
implies that p~(a) has multiplicity one. We conclude that for a s , ~  the p~(a) depend 
holomorphical ly  on a. 

Since for p ~ S (N ,  a), the expanding subspaces are determined by the condit ion 
Df~(E~,) = E~,, we see that E~,<,) varies holomorphical ly  in a. By the formula above, 
then, a~--~log IIDf)(p(a))[] is plur iharmonic on A. Thus we conclude that 

1 k 

i = 1 p �9 S ( N ,  a) 

is pluriharmonic. The Theorem then follows by letting k ~ oo and then letting 
n --* O O .  

6 D e g e n e r a t i o n  to  1 - d i m e n s i o n a l  m a p p i n g s  

Fix integers dl . . . . .  d,, where di > 2. We consider the family of mappings 
f =fm ~ �9 �9 �9 ~ such that f,(x, y)  = (y, p j (y )  - ajx)  where pj is a monic  polynomial  
of degree dj. When  we wish to stress the dependence on  parameters we write 
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f ,  =fm,a  ~ �9 . .  ~  where  a = (a l  . . . . .  am, Pl . . . . .  p,,). W e  will  cons ide r  a to be 
a p o i n t  in C J. As  6(a) = a~ . . . a,,  ~ 0,fa a p p r o a c h e s  a m a p p i n g  of  r ank  1, which is 
essen t ia l ly  1 -d imens iona l .  In  this  sec t ion  we show t h a t / ~ +  a n d / z  c o n v e r g e  to the  
c o r r e s p o n d i n g  one d i m e n s i o n a l  objects .  W e  also show tha t  the L y a p u n o v  e x p o n e n t  
is well b e h a v e d  as a func t ion  on  e x t e n d e d  p a r a m e t e r  space.  

If 6(a) +- O, fa is inver t ib le ,  and  the inverse  is g iven  by  f - 1 = . f l -  1 ,~ . . . ~-'fm- 1, 
where  

f j -  1 (X, fl) = (a f  1 pj(x) -- a 7 1 y, x) . (6.1) 

By r epea t i ng  the p roo f s  of L e m m a s  2.1 a n d  2.2 of  [BS1] ,  we see t ha t  for  any  
c o m p a c t  subse t  Ao c C J there  exists  R such t ha t  (4.3) a n d  (4.4) ho ld  f o r f = s  such 
tha t  a ~ Ao a n d  6(a) :4= 0. W e  m a y  also r epea t  the p r o o f  of  P r o p o s i t i o n  3.4 of  [BS 1 ] 
to see t ha t  (a, x, y) ~ G + (x, y) is c o n t i n u o u s  for  a ~ C s and  (x, y) e C 2. 

W e  will be in t e re s t ed  in the b e h a v i o r  o f f ,  as a -~ a ~ (a o, . . o = . ,  a . . . . .  ), where  
a j~ = 0 for s o m e  j wi th  ! =< j =< m. W e  no te  tha t  the m a p p i n g  a ~--~f, is in ject ive  on  
the set where  ~(a) :4= 0 b y  [ F M ]  bu t  it is no t  inject ive in genera l .  N o w  f,  is c o n j u g a t e  
to  the m a p p i n g f j  o . . . ~ ~ ~ �9 - �9 ~)fj+ 1 via  qo = f l  <~ �9 �9 �9 'ofj-1- Thus ,  w i t h o u t  loss  

0 of genera l i ty ,  we m a y  a s s u m e  tha t  a,, = O. W e  def ine 

r = { ( ( , p m ( ( ) ) :  ~ f fC}  = {y = pro(X)} . 

Thus  f~o(C 2) = F,  a n d  in fact  s  is c o n j u g a t e  to  the p o l y n o m i a l  m a p p i n g  
q : C ~ C, whe re  q(() is def ined  by 

Jao(~, Pm(~)) = (q(~), Pm(~))) �9 

W e  let Jq d e n o t e  the  Jul ia  set of q, a n d  we let J,,o = {((, Pro(()): (~Jq}  d e n o t e  i ts 

g r a p h  in F. If  Gjq(~) is the  G r e e n  func t ion  of  Jq in C, and  if (~j~ is the lift to  F,  then  

G],  = Gj~ OJ~o. (6.2) 

L e m m a  6.1. L e t / t o  c C J be compact. Then for a compact subset S c V - F, there 
exists ~ > 0 such that K 2  c~S = f25 .for a ~ A o  such that lalt < 6. 

Proof  Let  e : =  rains  Ip,,(x) - Yt > 0 a n d  set 6 = R/e. T h e n  by  (6.1), J ] -~ (x ,  y ) e  V +. 
A p p l y i n g  e q u a t i o n s  (4.3) and  (4.4) to  f j -  1 for  2 < j =< m, we have  f - 1  (x, y ) ~  V +. By 
[BS1,  L e m m a  2 . 4 ] f - a ( x ,  y ) r  -, so (x, y) ( : -K- .  

F r o m  (6.1) it is eas i ly  seen tha t  

f -- I (X  ' y )  = (~X d ~_ O(X d- 1), O(xd/d. , )) ,  (6.3) 

where  

m 

= a ( l  H a f  d~'''a' , 
j = 2  

W e  w o u l d  l ike to use the  resul t s  of [BS1,  Sec t ion  2] d i rec t ly  on  f - l .  The  on ly  
difference is t h a t  the p o l y n o m i a l s  in. / )-  ~ are  no t  monic ,  so there  is an  ex t ra  c o n s t a n t  
to  keep  t r ack  of. A p p l y i n g  C o r o l l a r y  2.6 of  [BS1]  in this  case,  we have:  For any 
5 > 0 there exists R sufficiently large such that 

I(l  - -  6)~]]X[ d < ]7~x,f - l ( x ,  y)] < I(1 -t- 6)~ l l x [  d 

holds for  all (x, y ) e  V +. I t e r a t i ng  this i n e q u a l i t y  we get  

[(1 - 6)&I d " - ' +  "" +d2+a+ ~lxla~ < [~rxf-"(x,  y)j < I(1 + 6)al  d~  " + d 2 + a +  l lxld, 
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Taking logarithms and dividing by d" gives: 

§  + ~ log I(1 -- 6)~1 + log  txl < ~ log  I ~ ,-,  Y)I 

(, ,) < ~ + . .  + ~  log[(1 + 6 ) & l + l o g l x [  

Thus  

1 
G ( x , y ) = l o g l x  + ~ L ~ l o g l ~ l  +o (1 )  

where the o(1) tends to 0 uniformly on V + as Ixl ~ oo. 

L emma  6.2. Taking limits through values a ~ C  J such that c3(a) 4: 0, we have 

lira G a ( x , y ) -  logl~I = ~ l o g l p m ( x ) - y l ,  
a~,O 

where the converyence is uniform on compact subsets of C 2 - F, and 

lira/~,, = [F ] 
a ~ a  o 

in the sense of  currents on C 2. 

Proof By (6.1) we see that for Xo fixed 

f -  l(Xo, y) = ( (_  1)a .... a . . . .  ~:ya/a,,, + O(ya/am- ~), O(y~/(a~d,,~)), 

and the O terms are uniform for I xol _-< R. Thus by (6.4) we have 

1 1 1 
G,- (Xo, y) - ~ log ]&l = ~ G~- ( f  -1 (Xo, y)) - ~ log I~1 

(6.4) 

1 a/a d ~  1 = ~ ( l o g l ~ y  ~ [ +  l o g l ~ l ) - ~ - ~ l o g [ ~ t + o ( 1 )  

= d  logly[ + logiC[ - loglfi[ + o(1) 

1 
-- ~ l o g l y l  + o(1).  

Gs y) is dm 1 times the Green  function of K~-c~{x = Xo}. 
K2 ~ {x = Xo} c {lY - p,,(Xo)l < r(xo, a)}, and r(xo, a)-*O as 

It follows that 
By Lemma 6.2 
a --* a ~ Thus G,7 (Xo, y) converges uniformly on compact  subsets of C 2 - F to 

l 
d~ log [p,.(x) - y] as a ~ a ~ 

In fact, as a ~ a ~ G~-(Xo, y) is a family of (normalized) potentials of mea- 
sures whose supports  decrease to the point  (xo, p,,(xo)). Thus Go converges to 

1 
d~ log ]y - pm(X)] locally in L 1. The second statement then follows by applying dd" 
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1 
to 2~ G~-, taking the limit in the sense of currents, and using the Poincard-Lelong 

21 ddClog ]p,,(x) -- y[ = [F] .  formula  

N o w  let vq denote the equil ibrium measure  of  Jq, and let P,o be the lift of % to F. 
We let Aq denote the Lyapunov  exponent  of q with respect to Vq. Since the 
L y a p u n o v  exponent  is a conjugacy invariant,  this is the same as the Lyapunov  
exponent  o f s  with respect to/~aO. 

Propos i t ion  6.3. l i m . . . o / ~  =/2.o, and lim sup.~.o A(a) = Aq.  

Proof By (6.2) we have /Z~+o =f,*/2.o, where we identify the measure  /1.o with 
a (1,1)-current suppor ted  on F. Since G~ + converges uniformly on compacts  to G],, 
we may  apply [BS1, L e m m a  5.8] and L e m m a  6.3 to obta in  

lim #. = lim p,+ /x ff~ 
a ~ a  o a ~ a  o 

=.f.*/~.o A [ r ]  = ~.o .  

N o w  we observe that  

1 
Aq = lira n ~ log H Dq" ]1 dvq 

n ~ c o  

1 
= lim - ~ log H Df~, I1 d/t,o . 

n ~ o o  n 

Thus we may apply  L e m m a  5.1 to conclude that  lira sup,~ooA(a) = Aq. 

Corollary 6.4. I f  we set A(a ~ = Aq, then a~--~ A(a) is psh on C m x A. 

N o w  let us consider the case where the m a p  q is hyperbolic, i.e. q is uniformly 
expanding on Jq. It  follows that a sufficiently small per turbat ion  is hyperbolic,  i.e. 
J,  is a hyperbol ic  set for f , .  This was shown by H u b b a r d  [H]  and Fornaess  and 
Sibony [FS]  in the case where m = 1, i.e. f = f l .  We include here a proof  in our 
somewhat  more  general context  for the sake of the completeness of  our exposition. 

Proposition 6.5. I f  f~o is hyperbolic, then there exists 6 > 0 such that f~ is hyperbolic: 
as a 2-dimensional mapping if la - a ~ < 6. 

Proof A convenient  way to prove hyperbolici ty is to show the existence of 
invariant  cone fields cd ~ and ~"  such that  f is uniformly expanding on ~'" and 
uniformly contracting on ~,s (cf. IN,  Theorem 2.2]). Tha t  is, for a point  p ~ J,, there 
are proper ,  open cones ,W~ and ~'~, in the tangent s p a c e / ' p C  2, varying cont inuously 
with p, such that  

Df(~'p) c (@(v), and D f - l ( ~ , )  c ~ )  ,(p), 

and such that there is a constant  2 < 1 such that  

[Df-"(v)[ <= 2]v[ for v~DJ'Cd~-,~vl, and (6.5) 

]Df(v)[ < 2[v[ for v~D[ ' - l (6  ~ (6.6) 
f ( p )  

where the length is taken with respect to some Riemannian  metric in a neighbor-  
hood of  J. 
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Let us show first that  for any ne ighborhood U of Jq we will have J ,  c U 
if ] a - a ~  is small enough. For  6 > 0 we may  assume by L e m m a  6.2 that  
K~- c~ {Ixl < R} is contained in {Ip,,(x) - Yl < 6}. Since q is hyperbolic,  there are 
finitely many  periodic sinks {s~ . . . . .  s j}, and intKq is the basin of a t t ract ion 
of {sl . . . . .  s j}. In fact, for any e > 0 and any open set co ~ Jq there is a num- 
ber n such that  if k > n, then dist(fk(~), {Sl . . . . .  sj}) < e for ~ e K q - - ~ ) ,  

and Ifk(~)l > _1 for ~ E C  2 - -  (Kqwo.)). Thus f,o has at tracting periodic orbits 

{gl . . . . .  g ] } c F ;  and for l a - a  ~ small, J~ has periodic sink orbits 
{gl(a) . . . . .  gj(a)}, whose basins contain e-balls abou t  ,gj(a). Fur thermore ,  for 
k > n, we have  d is t ( f~(x ,y) ,  { g l ( a ) , . . . ,  ,gj(a)}) < e for {(x, y): x e K q -  ~, 

l 
I p,.(x) - y l < 5 }, and I f~(x,  y)l > - for { (x, y): x e C - (Kq u o)), I Pro(x) - -  y I < ~ }.  

The points satisfying the first inequality are clearly in the interior of K +, and the 
ones satisfying the second inequali ty are in the complement  of K +, so J,  c {(x, y): 
x~co, ]pro(x) -- yl < 6}. Clearly we may  take o) and ~ small enough that this open 
set lies inside U. 

T o  construct  the cone fields, we note that  mapping  f,o is degenerate, and so for 
peF,  Df, o(TpC 2) = TId, lp)F. For  peF ,  we may  let ~ be a small ne ighborhood  of 
TpF, and we extend cg~, cont inuously  to a ne ighborhood  U of Jp. Thus  we will have 
Df,~p c cg,fo(v) for p, f ( p ) ~  U if l a -  a~ is small. If  we let ~ be any conical 

ne ighborhood of the vector  D(f, ,  - 1 ~  o f f  1) ( ~ ) ' " ' ~?x ' then Dr,- 1(@ c ~'}.(p) holds 

whenever p , f ( p ) e  U if la - a~ and  thus la~l, is small. 
Since q is hyperbolic,  we m a y  choose an adapted  metric on F such that  

IDq(v)l > 2-11vl for all p s F  and tangent  vectors v~TpF. We may  extend this 
metric  to the tangent  space TC z IJ, by  defining it in an arbi t rary  way on the normal  
bundle to F, and then we may extend this Riemannian  metric cont inuously to 
a ne ighborhood  U of Jq in C 2. Since we extended an adapted  metric, (6.5) will hold 
on U n J, if l a - a~ is small. P roper ty  (6.6) holds wi thout  hyperbolicity. F r o m  the 
existence of the cone fields on a ne ighborhood of J ,  we conclude that  f ,  is 
hyperbolic. 

W e  let Jt~l denote the set of parameters  a~ C s for which f,o is singular and 
corresponds to  1-dimensional hyperbolic mapping,  and we will let ,~r = , ~  u ,~'1 
denote  the pa ramete r  values a ~ C s such that  f ,  is a hyperbolic d i f feomorphism or 
a singular hyperbol ic  mapping.  By Proposi t ion 6.5, oY{~* is an open  subset of the 
paramete r  space C J, and as in Corol lary  6.4, we have 

Corollary 6.6. a ~ A(a) is pluriharmonic on ~ * .  

Proposition 6.7. Let o;4 "~' be a connected component of extended hyperbolic parameter 
space ~ *  such that there is a point a~ ~ ~ '  ~ ~ l. Then the Julia set of s is 
connected if and only if A(a) = log d for all a ~ 9f'. Otherwise, A (a) > log d Jor all 
a ~ .  '. 

Proof. We have  seen that  a ~ A ( a )  is p lur iharmonic  on H ' .  By Theorem 3.2 
A(a) > logd so by the min imum principle for ha rmonic  functions, either A is 
identically equal  to log d on ~ ' ,  or  it is everywhere greater than  logd on H ' .  
Mann ing  [ M ]  showed that  Jq is connected if and only if A, = log d = A(a ~ which 
completes the proof. 
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We may view Proposition 6.7 as a characterization of when certain components 
~'~' of hyperbolic parameter  space have the property that A = logd on JY". In the 
case ofm = 1, [HI  and [FS] showed that if a~ ~ J4 '~' ~ ~-~1, then the topology o f J  + 
is related to the topology of Jq for q corresponding tof ,  o. In fact, the intersection of 
J + with a transversal is locally connected if and only if Jq is connected. Sinces  is 
hyperbolic, it follows from the local product structure that J + is itself locally 
connected in this case. Combined with Proposition 6.7, this gives the result: 

Corollary 6.8. I f  m = 1, and i f  .Zt ~' c~ oF1 4 = ~ , then A is equal to log d at some point 
in J{" i f  and only i f  J + is locally connected. 
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