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POLYNOMIAL DIFFEOMORPHISMS OF C2. VIII: QUASI-EXPANSION

By ERIC BEDFORD and JOHN SMILLIE

Abstract. We introduce the notion of quasi-expansion in the context of polynomial diffeomorphisms
of C2. Like hyperbolic diffeomorphisms, quasi-expanding maps have uniformly large multipliers
at saddle points. On the other hand, unlike the hyperbolic case, quasi-expanding maps can have
tangencies between stable and unstable manifolds. We characterize quasi-expansion in a number
of ways and develop some of the structure they possess. Quasi-expansion was motivated by the
study of real polynomial diffeomorphisms of maximal entropy, and our study of maximal entropy
diffeomorphisms relies on the results of this paper.

0. Introduction. This paper continues our investigation of the dynamics
of polynomial diffeomorphisms of C2 carried out in [BS1-7]. There are several
reasons why the polynomial diffeomorphisms of C2 form an interesting family
of dynamical systems. Not the least of these is the fact that there are connections
with two other areas of dynamics: polynomial maps of C and diffeomorphisms of
R2, which have each received a great deal of attention. The fact that these three
areas are linked makes it interesting to understand different dynamical notions
in these three contexts. One of the fundamental ideas in dynamical systems is
hyperbolicity. A lesson from the study of the dynamics of maps of C is that
hyperbolicity does not stand alone as a dynamical property, rather, it is one of
a sequence of interesting properties which can be defined in terms of recurrence
properties of critical points. These one-dimensional properties include the critical
finiteness property, semi-hyperbolicity, the Collet-Eckmann property and others.
In this paper we introduce a dynamical property of polynomial diffeomorphisms
that generalizes hyperbolicity in the way that semi-hyperbolicity generalizes hy-
perbolicity for polynomial maps of C. This paper was motivated in part by the
study of real polynomial diffeomorphisms of maximal entropy; these maps pro-
vide examples which can be analyzed by the techniques of this paper.

In one-dimensional complex dynamics, generalizations of hyperbolicity are
typically defined in terms of recurrence properties of critical points. Since we are
dealing with diffeomorphisms of C2 there are no critical points, and we must use
other methods. One way to approach expansion properties is via a certain canon-
ical metric which we define on unstable tangent spaces of periodic saddle points.
A mapping is said to be quasi-expanding if this metric is uniformly expanded.
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Although this metric is canonical, it need not be equivalent to the Euclidean met-
ric. It follows that quasi-expansion need not correspond to uniform expansion in
the usual sense. We will see in fact that quasi-expansion is strictly weaker than
uniform expansion. If both f and f−1 are quasi-expanding, we say that f is quasi-
hyperbolic. We will show in this paper that quasi-hyperbolic diffeomorphisms
have a great deal of interesting structure. Using this structure we develop a cri-
terion for showing that certain quasi-expanding diffeomorphisms are uniformly
hyperbolic. This criterion for hyperbolicity (as well as the general structure of
quasi-hyperbolic diffeomorphisms) plays an important role in the study of real
diffeomorphisms of maximal entropy which is carried out in [BS]. In Theorem
4.8 we show that a real mapping of maximal entropy is quasi-expanding. In Sec-
tions 5 through 8, we obtain more detailed properties of quasi-expanding maps
which are, in some sense, post-critically finite. In [BS] it is shown that real maps
of maximal entropy have this post-critical finiteness property; and the results of
Sections 5–8 are then used in [BS].

We now define the metric on which the definition of quasi-expansion is based.
This metric is “canonical” in the sense that its construction depends only on the
choice of a Green function which is unique up to a multiplicative constant. In
Theorem 4.5 we show that all of these metrics are equivalent. Let S denote the
set of saddle points of f , and we let J∗ denote the closure of S. For p ∈ S
we let Wu(p) denote the unstable manifold through p, and we let Eu

p denote its
tangent space at p. Wu(p) has the structure of a Riemann surface immersed in C,
and there is a conformal uniformization ψp: C → Wu(p) with the property that
ψp(0) = p. We may normalize ψp by the condition that max|ζ|≤1 G+ ◦ ψp(ζ) = 1.
We may define a norm ‖ · ‖# on Eu

p by the condition that the differential of ψp

with respect to the euclidean metric on C has norm 1 at the origin. A mapping
is said to be quasi-expanding if this metric is expanded by a constant κ > 1 for
all p ∈ S.

In Section 1 we describe several conditions which are equivalent to quasi-
expansion. One such condition is that the family of uniformizations {ψp : p ∈
S} is a normal family of entire functions. Quasi-expansion is a property of
diffeomorphisms. In Section 2 we consider related properties of individual
orbits.

Let Ψ denote the set of normal limits of {ψp : p ∈ S}, and let Wu =
{ψ(C) : ψ ∈ Ψ}. In Section 3 we consider ψ(C) purely as a variety, that is to
say without regard to its parametrization. For fixed r > 0 we let B(p, r) denote
the ball in C2 with center p and radius r. We let Wu(p, r) denote the connected
component of B(p, r) ∩Wu(p) containing p. We say that f satisfies the bounded
area condition if there exists r > 0 such that for all p ∈ S, Wu

r (p) is closed in
B(p, r), and the area of Wu(p, r) is bounded above. Every quasi-expanding map
satisfies the bounded area condition. By Bishop’s Theorem and Lemma 2.6, the
correspondence S � p �→ Wu(p, r) extends to a continuous family of varieties
J∗ � x �→ Vu(x, r) such that Vu(p, r) = Wu(p, r) for p ∈ S. We prove a Bounded
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Area Distortion Theorem for proper holomorphic mappings of planar domains
into Cn (Theorems 3.1–2). This is used to prove Theorem 3.4, which says that
the locally bounded area condition, together with a generalized transversality
condition, imply quasi-expansion. The bounded area condition also allows us to
prove that uniform hyperbolicity implies quasi-expansion.

The metric that we define is canonical, but it is not the only canonical met-
ric that can be defined. In Section 4, we consider various methods of defining
metrics on unstable tangent spaces Eu

p for p ∈ S. We consider the equivalence
of uniform expansion for various choices of metrics. In particular, we define the
metrics ‖ ·‖(L) and show that they are uniformly expanded by real mappings with
maximal entropy. We show that the uniform expansion of this metric implies
quasi-expansion.

For x ∈ J∗ we let Ψx denote the maps ψ ∈ Ψ with ψ(0) = x. Such a map
has the form ψ(ζ) = x + ajζ

j + O(ζ j+1), and we define the order of ψ to be j.
We use the notation τ (x) for the maximum order for a function ψ ∈ Ψx. We let
Jj = {x ∈ J∗ : τ (x) = j}. For x0 ∈ J1, every function ψ ∈ Ψ has nonvanishing
differential at the origin. Thus Wu is a lamination in a neighborhood of every
point of J1. (In Section 6, J1 will be shown to be a dense, open subset of J∗.) In
Section 5, we show that τ describes the local folding of Wu. In particular, Wu

is not a lamination in the neighborhood of x1 if τ (x1) > 1.
In Section 6, we define a metric ‖ · ‖#

x at all points x ∈ J∗. This metric (in
general not equivalent to the Euclidean metric) is uniformly expanded if f is
quasi-expanding. It follows (Theorem 6.2) that the largest Lyapunov exponent
of a quasi-expanding mapping with respect to any ergodic invariant measure is
strictly positive. In particular it follows (Corollary 6.3) that all periodic points
in J∗ are saddle points and that the Lyapunov exponents of periodic orbits are
uniformly bounded away from 0.

Starting with Section 7 our work applies to mappings for which both f and
f−1 are quasi-expanding. Regularity of the variety Vx at x is shown for points
x ∈ Jj such that α(x) ∩ Jj �= ∅. We also show that a tangency between Wu and
Ws at a point x ∈ J∗ causes τ (x̂) > 1 for x̂ ∈ α(x).

In Section 8 we examine uniform hyperbolicity more carefully. In Theo-
rem 8.3 we show that there are geometric properties of J± which imply hyper-
bolicity. In Theorem 8.3, we show that: If f , f−1 are quasi-expanding, and if f is
topologically expansive, then f is uniformly hyperbolic. Finally, if f and f−1 are
both quasi-expanding, we define the singular set C to be the points of J∗ where
max (τ s, τ u) > 1. Let T denote the points of tangency between Ws and Wu. In
Theorem 8.10 we show that if f is a mapping for which C is finite and nonempty,
then T ⊂ Ws(C) ∩Wu(C), and T̄ − T = C.

One of our motivations in studying quasi-expansion was to develop the two-
dimensional analogue of semi-hyperbolicity. In the Appendix, we work out these
ideas in dimension one, and we show that the one-dimensional analogue of quasi-
expansion is equivalent to semi-hyperbolicity.
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Notation Section

B(p, r), Wu(p, r), Eu
p §0,1

‖ · ‖#
x, ‖ · ‖# §1,4,6

mx, Lx, ψx, f̃ §1
λx, λ(ψ, n), m(r), ψS §1
λ̂x, λ̂(x, n), rx, Rx §2
Ψx, Ψ, V(x, ε), V(ψ, ε), Ṽx §2
conditions †, ‡ §2
forward contraction, backward expansion §2,7
Wu

ε (z) §3
‖ · ‖e, ‖ · ‖(L), a��, c�, ψ̃S §4
eventually positive, immediately positive §4
admissible §4
V(ψ,N ), τ (x), Ord(ψ), Jk §5

Ψk
x , γk(x), ‖ · ‖#,k

x , Λ(ν), J ′
k §6

homogeneous parametrization §6
Vu, Ψu, Eu, γu, τu, Vs, Ψs, Es, γs, τ s §7
Jj,k , τ ι, J i

j,k §7

ιx(V1, V2), µx(V), C, T §8
C, P(C), C′

x §A

Acknowledgments. We wish to thank the referee for reading the paper care-
fully and making several helpful comments.

1. Normal families of uniformizations. We say that a holomorphic map
φ: C → C2 is an injective immersion (or simply immersion if no confusion will
result) if it is injective and an immersion, which means that φ′(ζ) �= 0 for all
ζ ∈ C. In this section we explore the condition that a set of immersions has
uniform expansion; we show that, in the language of function theory, this is
equivalent to the set of immersions being a normal family of entire functions.
Let S ⊂ J∗ be a dense, f -invariant set. Suppose that for each x ∈ S there is a
holomorphic immersion ψx: C → C2 such that

x ∈ ψx(C), and ψx(C) ⊂ J−.(1.1)

In addition, suppose that the family of sets {ψ(C) : x ∈ S} is f -invariant, i.e.,

f (ψx(C)) = ψfx(C)(1.2′)

and satisfies: for x1, x2 ∈ S, either ψx1 (C) and ψx2 (C) are either disjoint, or they
coincide, i.e.,

ψx1 (C) ∩ ψx2 (C) �= ∅ ⇒ ψx1 (C) = ψx2 (C).(1.2′′)

For any holomorphic immersion φ: C → C2 with φ(C) = ψx(C), there are
constants a, b ∈ C, a �= 0 such that φ(ζ) = ψx(aζ + b). We may choose a and b to
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obtain the normalization properties:

ψx(0) = x, max
|ζ|≤1

G+(ψx(ζ)) = 1.(1.3)

The first condition in (1.3) may be achieved by a translation of ζ. To see that
the second normalization is always possible, we note that since x ∈ J∗, G+(x) =
G+(ψx(0)) = 0. Thus

mx(r) := max
|ζ|≤r

G+(ψx(ζ))

satisfies mx(0) = 0 and is a continuous, monotone increasing function which is
unbounded above. So after a scaling of ζ, we will have mx(1) = 1. We note that
this normalization defines the parametrization of ψx uniquely, up to replacing ζ
by a rotation eiθζ, θ ∈ R.

By ψS = {ψx : x ∈ S} we denote the family of these immersions, normalized
by (1.3). For x ∈ S there is a linear mapping Lx: C → C, Lx(ζ) = λxζ, and the
family {Lx : x ∈ S} has the property

f ◦ ψx = ψfx ◦ Lx.(1.4)

Changing the parametrization of ψx or ψfx by a rotation induces a rotation on Lx.
f induces a mapping f̃ of ψS to itself, given by

f̃ (ψx) = ψfx = f ◦ ψx ◦ L−1
x .(1.5)

For n > 0 set

λ(x, n) = λxλfx · · ·λf n−1x(1.6)

so that

f̃ n(ψx)(ζ) = f n ◦ ψx(λ(x, n)−1ζ) = f n ◦ ψx(λ(ψ, n)−1ζ),(1.7)

where we introduce and define the notation λ(ψ, n) in the right-hand side of (1.7).
This will be useful in the sequel in cases where ψ is not unique. For convenience
here we define λ(ψ, n) as a complex number, but it is actually the modulus of
λ(ψ, n) that plays an important role in what follows.

By the identity G+ ◦ f = d ·G+ and the transformation formula (1.2′), we have

d · mx(r) = mfx(|λx|r).(1.8)

Setting r = 1, we have d = mfx(|λx|) > 1, which gives |λx| > 1 for all x ∈ S.
For x ∈ S, we let Eu

x denote the subspace of the tangent space of TxC2 given
by the C-linear span of ψ′

x(0). If v ∈ Eu
x , then v is a scalar multiple of ψ′

x(0), so
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we define the norm

‖v‖#
x := |v/ψ′

x(0)|.(1.9)

It follows that the norm of Dfx, measured with respect to this family of norms is
given by

‖Dfx|Eu
x
‖# = max

v∈Eu
x−{0}

‖Dfxv‖#
fx

‖v‖#
x

= |λx|.

Similarly, ‖Df n
x |Eu

x
‖# = |λ(x, n)|.

For 1 ≤ r <∞ we define

M(r) = sup
x∈S

mx(r).

For each x ∈ S, mx(r) is a convex, increasing function of log r. It follows that
M(r) also has these properties on the open interval where it is finite. In particular,
M(r) is continuous from the right at r = 1, M(1) = 1, and M(r) > 1 if r > 1.

LEMMA 1.1. ψS is a normal family if and only if M(r) <∞ for all r <∞.

Proof. We set V = {|x|, |y| ≤ R} and V+ = {|y| ≥ |x|, |y| ≥ R}. It is
known that for R sufficiently large, K− ⊂ V ∪ V+, S ⊂ V , and G+|V∪V+ is a
proper exhaustion. Since ψx(0) = x ∈ S, it follows that no sequence in ψS can
diverge to infinity uniformly on compacts. Thus normality is equivalent to local
boundedness at every point. For fixed ζ ∈ C the sequence {ψxj(ζ)} is bounded
if and only if {G+(ψxj(ζ))} is bounded. Since M(r) is increasing in r, it follows
that if M(r) <∞, then Ψ is a normal family on {|ζ| < r}.

Conversely, if ψS is a normal family, then {G+(ψ(ζ)) : ψ ∈ Ψ, |ζ| ≤ r} is
bounded. Thus M(r) <∞.

The following result shows that the normal family condition is equivalent to
a number of “uniform conditions.”

THEOREM 1.2. The following are equivalent:
(1) ψS is a normal family.
(2) M(r0) <∞ for some 1 < r0 <∞.
(3) For all r1 < r2 <∞ there is a constant k <∞ such that mx(r2)/mx(r1) ≤ k

for all x ∈ S.
(4) There exists κ > 1 such that for all x ∈ S, |λx| ≥ κ.
(5) Condition (1.10) holds:

There exist C,β <∞ such that mx(r) ≤ Crβ for all x ∈ S and r ≥ 1.(1.10)

Proof. (1) ⇒ (2) is a consequence of Lemma 1.1.
(2) ⇒ (4). If M(r0) < ∞ for some 1 < r0 < ∞ then M(r) is a convex,

increasing function of ρ = log r on the interval ρ ∈ (0, log r0). It follows that
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M(r) is continuous at r = 1. Thus κ := inf{t ≥ 1 : M(t) ≥ d} > 1. Now for any
x ∈ S we have mfx(|λx|) = d · mx(1) = d. It follows, then, that M(|λx|) ≥ d, and
so |λx| ≥ κ > 1.

(4) ⇒ (5). For x ∈ S, let xj = f jx. Then by the transformation formula (1.8)

mx(κp) ≤ mx(|λx0λx−1 · · ·λx−p+1 |) = dpmx−p+1(1) = dp.

For any 1 ≤ r < ∞ we choose p such that κp−1 ≤ r < κp. If we choose
β = log d/ logκ, then κβ = d, and

mx(r) ≤ mx(κp) ≤ (κp)β = κβrβ .

Thus (1.10) holds with C = κβ .
(5) ⇒ (1). Condition (1.10) implies that M(r) ≤ Crβ , and thus ψS is a normal

family by Lemma 1.1.
(1) ⇔ (3). Let ψ̃S denote the set of scaled functions ψ̃(ζ) = ψ(r1ζ) for all

ψ ∈ ψS. By the equivalence (1)⇔(2) and Lemma 1.1, we have that ψ̃S is a normal
family if and only if

M̃(r) := sup
x∈S

m̃x(r)
m̃x(1)

= sup
x∈S

mx(rr1)
mx(r1)

<∞.

Finally, it is evident that ψS is a normal family if and only if ψ̃S is normal. Thus
(1) is equivalent to (3).

We say that f is quasi-expanding if the equivalent conditions in Theorem 1.2
hold. While these conditions are stated in terms of the family ψS, we will see in
Section 3 that they are independent of the choice of the particular family ψS. We
say that f is quasi-contracting if f−1 is quasi-expanding.

PROPOSITION 1.3. For n ≥ 1, f is quasi-expanding if and only if f n is quasi-
expanding.

Proof. Let ψS be a family satisfying (1.1–3) for f . For n ≥ 1, J∗ and K+

are the same for f n. It follows that ψS also satisfies (1.1–3) for f n. If f is quasi-
expanding, then ψS is a normal family; thus f n, too, is quasi-expanding.

Now suppose that ψS satisfies (1.1–3) for f n. It follows that S̃ := S∪ f S∪· · ·∪
f n−1S is f -invariant. Let ψ( j)

S denote the set of mappings {f j ◦ ψ ◦ Lλ : ψ ∈ ψS},
where Lλ(ζ) = λ(ψ, j)ζ is chosen so that f j ◦ ψ ◦ Lλ satisfies the normalization
(1.3). Let ψ̃S := ψ(0)

S ∪ · · · ∪ ψ(n−1)
S , so that ψ̃S satisfies (1.1–3) for f . Define

M( j)(r) = sup
ψ∈ψ( j)

S
sup|ζ|≤r G+ ◦ ψ(ζ). If f n is quasi-expanding, then ψ(0)

S is a

normal family. By Lemma 1.1 this means that M(0)(r) < ∞ for r < ∞. As in
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the line following (1.8) we have |λ(ψ, j)| ≥ 1. It follows that

M( j)(r) = sup
ψ∈ψ( j)

S

sup
|ζ|≤r

G+ ◦ ψ(ζ)

= sup
ψ∈ψ(0)

S

sup
|ζ|≤r

d · G+ ◦ ψ(|λ(ψ, j)|−1ζ) ≤ d ·M(0)(r).

Thus M( j)(r) < ∞ for all r < ∞. It follows from Lemma 1.1 that each ψj
S is a

normal family. Thus ψ̃S is normal, and f is quasi-expanding.

PROPOSITION 1.4. If f is quasi-expanding, then for x ∈ S, ψx(C) ⊂ Wu(x), i.e.,
if y1, y2 ∈ ψx(C), then limn→+∞ dist( f−ny1, f−ny2) = 0.

Proof. For j = 1, 2 there exist ζj ∈ C such that ψx(ζj) = yj. By (1.7) f−nyj =
f−nψx(ζj) = ψx−n(λ(x,−n)−1ζj). Now {ψx−n : n ≥ 0} is a normal family, so the
set of derivatives {|Dψx−n(ζ)| : |ζ| ≤ 1, n ≥ 0} is uniformly bounded by M <∞.
Thus

dist( f−ny1, f−ny2) = |ψx−n(λ(x,−n)−1ζ1)− ψx−n(λ(x,−n)−1ζ2)|
≤ |λ(x,−n)|−1M|ζ1 − ζ2|,

which tends to zero, since λ(x,−n) →∞ by (4) of Theorem 1.2.

We give two examples to show that families ψS satisfying (1.1–3) exist for
any map f . Let p be a saddle point, i.e., a periodic point of saddle type. The stable
and unstable manifolds Ws(p) and Wu(p) through p are conformally equivalent
to C. Let φ: C → Wu(p) denote a uniformization of the unstable manifold. It is
evident that p ∈ φ(C) = Wu(p), and by the argument of [BS1, Proposition 5.1]
we have Wu(p) ⊂ J−.

Example 1. Let p and q be saddle points, and set S = Ws(q) ∩ Wu(p). By
[BLS], S is a dense subset of J∗. Let φ denote the uniformization of Wu(p) as
above. For x ∈ S ⊂ Wu(p), we set βx := φ−1(x). Now we may choose αx �= 0
such that ψx(ζ) := φ(αx(ζ + βx)) satisfies (1.1–3).

Example 2. Let S denote the set of saddle (periodic) points. By [BLS], S is
dense in J∗. For p ∈ S the unstable manifold Wu(p) may be normalized to satisfy
the conditions (1.1–3) above.

If p is periodic of period n = np, then the multiplier Df n
p |Eu

p
is given by

λ(p, n). Then we have

dnmp(r) = mp(|λ(p, n)|r).
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Thus we conclude that for p ∈ S

mp(r) ≤ Cprβ(1.11)

holds with β = log d/( 1
n log |λ(p, n)|). This condition (1.11) allows both C and β

to vary with p and differs from (1.10) in this respect.
A variant of (1.10) is

There exist C,β <∞ such that inf
y∈S

my(r) ≥ rβ

C
for all 0 < r < 1.(1.12)

PROPOSITION 1.5. If f is quasi-expanding, then (1.12) holds.

Proof. If f is quasi-expanding, then there exists κ > 1 such that |λψ| ≥ κ for
all ψ ∈ Ψ. Given r, choose n such that κ−n ≤ r < κ−n+1. By the normalization
condition, mψ(|λ(ψ,−n)|) = d−n. Thus by the choice of n,

mψ(r) ≥ mψ(κ−n) ≥ mψ(|λ(ψ,−n)|) = d−n ≥ d
log r
log κ

−1.

Thus (1.12) holds with C = d and β = log d/ logκ.

COROLLARY 1.6. If f is quasi-expanding, there are C > 0, r0 > 0, and m <∞
such that maxB(x,r) G+ ≥ Crm for x ∈ J∗ and 0 < r < r0.

2. Expansion along individual orbits and unstable germs. While our
primary focus is the dynamics of quasi-expanding diffeomorphisms, some of the
results in the sequel are local results and depend only on information about the
behavior of a particular orbit. In this section we explore various orbitwise notions
of expansion and regularity. This section may be omitted on a first reading of
this paper. We define

Mx(r) = lim sup
S�y→x

my(r), λ̂x = lim inf
S�y→x

|λy|

rx = inf{r : Mx(r) > 0}, Rx = inf{r : Mx(r) = ∞},

where we admit +∞ as a possible value. It follows that λ̂x ≥ 1, Mx(0) = 0,
Mx(1) = 1, and Rx ≥ 1. Further, Mx is a convex, increasing function of log r for
r in the interval (0, Rx), and it is evident that x �→ Mx and x �→ rx are upper
semicontinuous; and x �→ λ̂x and x �→ Rx are lower semicontinuous.

For n ≥ 0, we define

λ̂(x, n) = λ̂xλ̂fx · · · λ̂f n−1x, and λ̂(x,−n) = λ̂−1
f−nx · · · λ̂

−1
f−1x = λ̂( f−nx, n)−1.



230 ERIC BEDFORD AND JOHN SMILLIE

LEMMA 2.1. For x ∈ J∗ and n ≥ 0 we have

dnMx(r) ≥ Mf nx(λ̂(x, n)r) and d−nMx(r) ≤ Mf−nx(λ̂(x,−n)r).(2.1)

Proof. By (1.8) we have

mf np(|λ(p, n)|r) = dnmp(r) and mf−nx(r) = d−nmx(|λ(x,−n)|r)

for p ∈ S and n ≥ 0. Let us fix r and choose a sequence of points pj → x such
that mf npj(λ̂(x, n)r) → Mf nx(λ̂(x, n)r). Since the mpj are convex in log r, then are

equicontinuous, so by the lower semicontinuity of x �→ λ̂(x, n), it follows that
Mf nx(λ̂(x, n)r) ≤ lim suppj→x mpj(λ(pj, n)r) = lim suppj→x dnmpj(r) ≤ dnMx(r).
The proof for the other inequality follows by a similar argument, with the only
difference being that x �→ λ̂(x,−n) is upper semicontinuous.

PROPOSITION 2.2. For x ∈ J∗ and n ≥ 0 we have λ̂(x, n)Rx ≤ Rf nx and
λ̂(x,−n)rx ≥ rf−nx. In particular,

rx ≤ λ̂(x, n)−1 ≤ 1 ≤ λ̂(x,−n)−1 ≤ Rx.(2.2)

Proof. If r < Rx, then by Lemma 2.1, we have Mf nx(λ̂(x, n)r) < ∞. Thus
λ̂(x, n)r ≤ Rf nx. The other inequality is similar.

THEOREM 2.3. The following are equivalent:
(1) f is quasi-expanding
(2) λ̂x > 1 for all x ∈ J∗.
(3) infx∈J∗ λ̂x > 1.
(4) Rx > 1 for all x ∈ J∗.
(5) Rx = ∞ for all x ∈ J∗.
(6) limn→−∞ λ̂(x, n) = 0 for all x ∈ J∗.

Proof. (1) ⇒ (2). If f is quasi-expanding then |λp| ≥ κ > 1 for all p ∈ S.
Thus λ̂x ≥ infp∈S |λp| ≥ κ > 1. (2) ⇒ (3). This follows because x �→ λ̂x is lower
semicontinuous. (3) ⇒ (1). By the definition of λ̂x and the compactness of J∗,
infp∈S |λp| = infx∈J∗ λ̂x. If κ := inf λ̂x > 1, then |λp| ≥ κ, so f is quasi-expanding.

(1) ⇒ (5). This is condition (5) of Theorem 1.2.
(5) ⇒ (4). This is trivial.
(4) ⇒ (1). Since x �→ Rx is lower semicontinuous, it follows that R := infx∈J∗

Rx > 1. Choose 1 < R′ < R. By the upper semicontinuity of x �→ Mx, it follows
that supx∈J∗ Mx(R′) <∞. Thus f is quasi-expanding by (2) of Theorem 1.2.

(1) ⇒ (6). If f is quasi-expanding, then λ̂(x, n) ≤ κn, so (6) holds.
(6) ⇒ (5). If (6) holds, then Rx = ∞ by Proposition 2.2, so (5) holds.
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We say that f has forward expansion at x if limn→+∞ λ̂(x, n) = ∞, and we say
that f has backward contraction at x if limn→−∞ λ̂(x, n) = 0. By Proposition 2.2,
if f has forward expansion at x, then rx = 0; and if f has backward contraction
at x, then Rx = ∞.

For x ∈ J∗ and R < Rx there is a neighborhood N of x in J∗ such that if
y ∈ N , then my(R) ≤ Mx(R) + 1 <∞. Thus the restrictions {G+ ◦ ψy|{|ζ| < R} :
y ∈ N} are uniformly bounded. Since ψy(C) ⊂ J−, it follows that the restrictions
of {ψy : y ∈ N} to {|ζ| < R} are uniformly bounded and are thus a normal
family. We let Ψx denote the set of analytic mappings ψ: {|ζ| < Rx} → C2

which are obtained as normal limits limyj→x ψyj |{|ζ|<Rx} for sequences yj → x.
We set Ψ =

⋃
x∈J∗ Ψx. In general it may happen that an element ψ ∈ Ψx may be

analytically extended to a domain strictly larger than {|ζ| < Rx}. The size of the
domain {|ζ| < Rx} assures that Ψ is a normal family.

Let us define a condition at a point x:

Ψx contains a nonconstant mapping.(†)

Suppose (†) holds, and choose a nonconstant ψ ∈ Ψx. We say that ψ is a maximal
element of Ψx if whenever ψ(αζ) also belongs to Ψx for some constant α ∈ C,
we have |α| ≤ 1. By the compactness of Ψx, each ψ ∈ Ψx is either maximal
or has the form ψ(ζ) = ψ̂(αζ) for some maximal ψ̂ and |α| ≤ 1. Passing to
convergent subsequences in (1.7) we see that if ψ ∈ Ψx is maximal, then there
are a unique (modulo rotation of variable) linear transformation L(ζ) = λψζ and
a unique maximal ψ1 ∈ Ψfx such that f ◦ ψ ◦ L−1

ψ = ψ1. This allows us to define

f̃ : Ψx → Ψfx, f̃ (ψ)(ζ) = f (ψ(λ−1
ψ ζ)).(2.3)

If ψ is not maximal, and if ψ(ζ) = ψ̂(αζ) is as above, then we set f̃ (ψ)(ζ) :=
f̃ (ψ̂)(αζ).

We use the notation ψj := f̃ j(ψ) and

λ(ψ, n) = λψ0λψ1 · · ·λψn−1

so

f̃ n(ψ)(ζ) = f n ◦ ψ(λ(ψ, n)−1ζ).

Since each ψ ∈ Ψ is a limit of elements of ψS, and λ̂x is a lim-inf, we have the
following.

COROLLARY 2.4. If (†) holds at x ∈ J∗, then for n ≥ 0,

λ̂(x, n) = inf
ψ∈Ψx

|λ(ψ, n)| = min
ψ∈Ψx

|λ(ψ, n)|,
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where the infimum and minimum are taken over all nonconstant elements of Ψx. In
particular, if x is a point of forward expansion, then for all ψ ∈ Ψ, |λ(ψ, n)| → ∞
and n → +∞; and if x is a point of backward contraction, then |λ(ψ, n)| → 0 as
n → −∞.

COROLLARY 2.5. Suppose that (†) holds at each x ∈ J∗. If f is not quasi-
expanding, then there exists a nonconstant ψ ∈ Ψ such that |λ(ψ, n)| = 1 for all
n ≤ 0.

Proof. If f is not quasi-expanding, then by Theorem 2.3, Rx = 1 for some
x ∈ J∗. By Proposition 2.2, we have λ̂(x, n) = 1 for all n ≤ 0. By Corollary 2.4,
there is a nonconstant ψ〈n〉 ∈ Ψx such that |λ(ψ〈n〉, n)| = 1. By the compactness
of Ψx, we may choose a subsequence such that ψ〈nj〉 → ψ ∈ Ψx, and ψ has the
desired property.

Let ψ denote the germ at ζ = 0 of a nonconstant holomorphic map from a
neighborhood of the origin in C to C2. Setting x = ψ(0), it follows that {|ζ| <
r,ψ(ζ) = x} = {0} for r > 0 sufficiently small. Let B(x, ε) denote the Euclidean
ball in C2 with center x and radius ε, and let V(ψ, ε) denote the connected
component of B(x, ε) ∩ ψ(|ζ| < r) containing x. If ε < min|ζ|=r |ψ(ζ)|, then
V(ψ, ε) is an analytic subvariety of B(x, ε).

LEMMA 2.6. If (†) holds, the nonconstant elements of Ψx define a unique germ
of a complex analytic variety at x.

Proof. Let ψ1,ψ2 ∈ Ψx be given, and let V1, V2 be the corresponding germs
of varieties, defined in some ball B(x, ε). If ψ j

1,ψ j
2 are sequences from ψS which

converge to ψ1,ψ2, respectively, then for j sufficiently large, ψ j
1,ψ j

2 define sub-
varieties Vj

1, Vj
2 (respectively) of B(x, ε). If V1 and V2 define distinct germs of

varieties at x, then V1 and V2 have a 0-dimensional intersection in B(x, ε). Thus
Vj

1 and Vj
2 also have 0-dimensional intersection in B(x, ε), which contradicts (1.2′′).

We will sometimes use the notation V(x, ε) for V(ψ, ε); and we will let Vx

denote the corresponding germ at x, which is independent of ψ by Lemma 2.6.
We may define

Ṽx =
⋃
ψ∈Ψx

ψ(|ζ| < Rx).(2.4)

By the proof of Lemma 2.6, there can be no 0-dimensional components of
ψ1(|ζ| < Rx) ∩ ψ2(|ζ| < Rx). Thus for y ∈ Ṽx, there is a unique irreducible
germ of a variety, W which is contained in Ṽx and which contains y. Thus there
is a Riemann surface R and an injective holomorphic mapping χ: R → Ṽx; this
Riemann surface is the normalization of the singularities of Ṽx (see [Ch, §6]).

PROPOSITION 2.7. Suppose that f does not preserve volume. If x ∈ J∗ has period
n, and if one of the multipliers of Df n

x has modulus 1, then (†) does not hold.
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Proof. We may assume that x ∈ J∗ is a fixed point of f . If µ1,µ2 ∈ C denote
the multipliers of Dfx, then we may suppose that |µ1| < |µ2| = 1. Let us suppose
that (†) holds at x, and let χ: R → Ṽx be as above. Set x̃ = χ−1x. Then f
induces a biholomorphic mapping F := χ−1 ◦ f ◦ χ: R → R, and F(x̃) = x. For
nonconstant ψ ∈ Ψx we may write ψ(ζ) = x +

∑∞
m=k amζ

m with am ∈ C2 and
ak �= 0. Given ψ′(ζ) = x +

∑∞
m=k′ a′mζ

m ∈ Ψx, there exists ψ ∈ Ψx such that

ψ′ = f̃ (ψ) = f ◦ ψ(λ−1
ψ ζ) = λ−k

ψ (Dfx · ak) ζk + O(ζk+1).

We conclude that k′ = k, and a′k = λ−k
ψ (Dfx ·ak). Thus ak is an eigenvector of Dfx,

so a′k = λ−k
ψ µjak for one of the eigenvalues µj. Since we may choose ψ such that

ak has maximal length, it follows that |a′k| ≤ |ak|, so |µj| ≥ |λk
ψ| ≥ 1, and so the

eigenvalue must be µ2.
We may also write χ(t) =

∑∞
m=k bmtk for bm ∈ C2, bk �= 0. We compute

that F′(x̃) = µ2. Thus F: R → R is an automorphism with a fixed point x̃ with
multiplier e2πiθ. Passing to covering spaces, we may assume that R is C or the
unit disk. If θ ∈ Q, then we may assume that µ2 = 1, and thus F is the identity.
But this is not possible, since this would mean that f is the identity on Ṽx; but the
fixed points of f are discrete. The other possibility, θ /∈ Q is also not possible.
For in this case it follows from [BS2, Proposition 2] that x is contained in the
interior of K+, so x /∈ J∗.

We consider the following condition on a point x ∈ J∗:

Every mapping in Ψx is nonconstant.(‡)

Note that if Rx > 1, then ψ is holomorphic on {|ζ| < Rx} ⊃ {|ζ| ≥ 1}, and
max|ζ|≤1 G+ ◦ ψ = 1. Since G+ ◦ ψ(0) = 0, it follows that (‡) holds. The failure
of (‡) thus implies that Rx = 1 and thus by Proposition 2.2 λ̂(x, n) = 1 for n ≤ 0.

LEMMA 2.8. If (‡) holds, there exist ε > 0 and 0 < r < 1 such that for each
ψ ∈ Ψx there exists ρ ≤ r such that

dist(ψ(ζ),ψ(0)) ≥ ε

for all |ζ| = ρ. If (‡) holds for all x ∈ J∗, the ε and r may be chosen to hold for all
x ∈ J∗.

Proof. We expand each ψ ∈ Ψ in a power series about ζ = 0, ψ(ζ) =
x + α1ζ + α2ζ

2 + · · ·, with αj ∈ C2. For each j, ψ �→ αj is a continuous mapping
from Ψ to C2. Since ψ is not constant, there exist rψ, εψ > 0 such that |ψ(ζ)| > εψ
for |ζ| = rψ. This inequality continues to hold in a small neighborhood of ψ inside
Ψ. Thus we obtain r and ε by the compactness of Ψ.
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The following shows that if f is quasi-expanding, then each germ Vx is
contained in a variety V(x, ε) with uniformly large inner diameter and uniformly
bounded area. This is an easy consequence of Lemma 2.8 and the fact that
Area(ψ(D)) =

∫
D |ψ′|2.

PROPOSITION 2.9. If f is quasi-expanding, then there exist ε > 0 and A < ∞
such that for each x ∈ J∗, V(x, ε) is a (closed) subvariety of B(x, ε), the area of
V(x, ε) is bounded by A.

The following is a strong converse to Proposition 1.5.

THEOREM 2.10. If f is not quasi-expanding, then there exists a point x ∈ J∗

such that either (‡) fails, or rx > 0. In either case, (1.12) fails.

Proof. If f is not quasi-expanding, the by Corollary 2.5 there exists ψ ∈ Ψ
such that |λ(ψ, n)| = 1 for n ≤ 0. If we set ψn = f̃ nψ and mψn(r) = sup|ζ|<r G+ ◦
ψn(ζ), then mψn(|λ(ψ, n)|r) = dnmψ(r). Let ψ0 be a limit of ψnj for some subse-
quence nj → −∞. It follows that mψ0 (1) = 0. Set x = ψ0(0). If ψ0 is constant,
then (‡) fails at x.

Otherwise, if ψ0 is nonconstant, we set V0 := ψ0({|ζ| < 1}). Thus V0 is a
connected neighborhood of x in Ṽx ∩ {G+ = 0}, where Ṽx is as in (2.4). Note
that Ṽx ∩ {G+ < 1} ⊂ J− ∩ {G+ < 1} is bounded, and thus Ṽx ∩ {G+ < 1} is
Kobayashi hyperbolic. Let DK(c) denote the disk with center x and radius c in
the Kobayashi metric of Ṽx ∩ {G+ < 1}. We may choose c small enough that
DK(c) ⊂ V0. Now choose r small enough that the length of [0, r] with respect to
the Kobayashi metric of the unit disk is less than c. It follows that for any ψ ∈ Ψx

we have ψ({|ζ| < 1}) ⊂ Ṽx ∩ {G+ < 1}, and thus ψ({|ζ| < 1}) ⊂ DK(c) ⊂ V0.
Thus rx ≥ r.

3. Area bounds and distortion. In this section we establish a bounded area
distortion theorem and use it to give sufficient conditions for quasi-expansion.
Recall that if A ⊂ C is a doubly connected domain, then A is conformally
equivalent to a circular annulus {ζ ∈ C : r1 < |ζ| < r2}. The modulus of
this annulus, written Mod(A), is equal to log (r2/r1). We will use the notation
BR = B(0, R) for the ball centered at the origin in Cn.

THEOREM 3.1. Let D ⊂ C be a disk, let 0 < R0 < R1 be given, and let
φ: D → BR1 be a proper holomorphic map. Let A denote the area of the image
φ(D). The set φ−1(BR0 ) is a union of topological disks. Let C be any component of
φ−1(BR0 ). The set D− C is a topological annulus, and

Mod(D− C) ≥ log (R1/R0)
A
R2

1
(2 + 1

log (R1/R0) )
.

Proof. The modulus of the annulus D − C is equal to the extremal length
of the family of curves that connect the boundary components. We recall the
computation of extremal length (see Fuchs [F]). Given a conformal metric ρ(z)|dz|
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on the annulus, the length of a curve γ is Length(γ) =
∫
γ |dz|. We define the

extremal length L of the curve family by the formula

1
L

= inf
ρ

Area(ρ0)
m2 , where Area(ρ0) =

∫
ρ2(z) dA,

and m is the infimum of Length(γ) for all γ in the curve family.
Any particular choice of ρ = ρ0 gives a lower estimate: L ≥ m2/Area(ρ0).

Let ds be the Euclidean metric on Cn. Let r(z) = |z| be the radial distance of a
point z ∈ Cn to the origin, and let ρ0 be the pullback under φ of the metric which
is defined as ds/r on BR1 − BR0 and which is zero on BR0 .

We will estimate the minimal length of a curve and the area for the metric
ρ0. Define g(v) = log |v| = 1

2 log (v, v) for v ∈ Cn, so that ∇g = v/|v|2. Let γ(t)
be a path in D− C with γ(0) ∈ ∂C and γ(1) ∈ ∂D.

Length(γ) =
∫ 1

0

|(φ ◦ γ)′(t)|
|(φ ◦ γ)(t)| dt =

∫ 1

0

|(φ ◦ γ)′(t)| · |(φ ◦ γ)(t)|
|(φ ◦ γ)(t)|2 dt

≥
∫ 1

0
(φ ◦ γ)′ · ∇g dt = g(1)− g(0)

= log |φγ(1)| − log |φγ(0)| = log (R1/R0).

Let F(r) denote the area of φ(D) ∩ Br with respect to the standard metric on
Cn. By definition, F(R1) = A. The area of D− C with respect to ρ0 is

Area(ρ0) =
∫ R1

R0

F′(r)
r2 dr.

Now we integrate by parts and use the property (see [Ch, p. 189]) that F(r)/r2

is nondecreasing in r to obtain

∫ R1

R0

F′(r)
r2 dr =

(
F(R1)

R2
1
− F(R0)

R2
0

)
−
∫ R1

R0

F(r)
−2
r2

dr
r

=
F(R1)

R2
1
− F(R0)

R2
0

+ 2
∫ R1

R0

F(r)
r2

dr
r

≤ F(R1)
R2

1
+

2F(R1)
R2

1
log

R1

R0
.

Thus

Mod(D− C) = L ≥

(
log R1

R0

)2

A
R2

1
+ 2A

R2
1

log R1
R0

=
log R1

R0

A
R2

1

(
2 + 1

log
R1
R0

)

which is the desired estimate.
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Theorem 3.1 yields the following Bounded Area Distortion Theorem, which
is of independent interest. In dimension n = 1, the fact that the area is weighted
by the multiplicity of the mapping becomes crucial. For n = 1, the part of The-
orem 3.2 concerning the containment {|ζ| < ar} ⊂ D0 ⊂ {|ζ| < r} is given in
[CJY, Lemma 2.2].

THEOREM 3.2. Let A <∞andχ > 1 be given. Then there existρ > 0 and a > 0
with the following property: If D ⊂ C is a simply connected domain containing
the origin, and if φ: D → BR is a proper holomorphic mapping with φ(0) = 0 and
Area(φ(D)) ≤ A, then for some r the component D0 of φ−1(BρR) containing the
origin satisfies

{|ζ| < ar} ⊂ D0 ⊂ {|ζ| < r} ⊂ {|ζ| < χr} ⊂ D.

Proof. We define r > 0 to be the minimum value for which D ⊂ {|ζ| < r},
and we define κ > 0 to be the maximum value for which {|ζ| < κr} ⊂ D.
There are points ζ1 ∈ ∂D, |ζ1| = r and ζ2 ∈ ∂D, |ζ2| = κr. By Teichmüller’s
Theorem [A, Theorem 4–7], the modulus of the annulus D− D̄ is no greater than
the modulus of the complement in C of the segments [− r, 0] and [κr, +∞). By
Theorem 3.1 we have

Mod(C− ([− 1, 0] ∪ [κ, +∞))) ≥ log (R/ρ)
A
R2

(
2 + 1

log (R/ρ)

) .

The quantity on the left-hand side of this inequality has been much studied. The
estimate given by equation (4-21) of [A] shows that the modulus is less than
(2π)−1 log (16(κ + 1)). Thus if we take ρ sufficiently small then we can obtain
κ ≥ χ.

Now define a > 0 as the largest value for which {|ζ| < ar} ⊂ D. Then there
is a point ζ0 ∈ ∂D with |ζ0| = ar. Without loss of generality, we may assume
that ζ0 > 0. By the Cauchy estimate, we have |φ′(ζ)| ≤ R/((κ− 1)r) for |ζ| ≤ r.
Since φ(0) = 0 and φ(ζ0) ∈ ∂BρR, we have

ρR ≤
∫ ζ0

0
|φ′(t)| dt ≤ R

(κ− 1)r
|ζ0| =

Ra
κ− 1

.

We conclude that a ≥ (κ− 1)ρ, which completes the proof.

We consider the condition:

There exist ε > 0 and A <∞ such that for all x ∈ S,(3.1)

V(x, ε) is closed in B(x, ε), and Area(V(x, ε)) < A.
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If (3.1) holds, then by Bishop’s Theorem (see [Ch, p. 205]) the family {V(x, ε) :
x ∈ S} is pre-compact in the Hausdorff topology. By Lemma 2.8, there is a
unique extension to a family of varieties {V(x, ε) : x ∈ J∗}, with V(x, ε) ⊂ J−.
We also consider the related condition, in which S is replaced by J∗:

There exist ε > 0 and A <∞ such that for all x ∈ J∗,(3.1′)

V(x, ε) is closed in B(x, ε), and Area(V(x, ε)) < A.

Clearly (3.1′) ⇒ (3.1). By Proposition 2.9, conditions (3.1) and (3.1′) hold if f
is quasi-expanding.

THEOREM 3.3. (3.1) ⇒ ((‡) holds for all x ∈ J∗)⇒ (3.1′).

Proof. Suppose that (3.1) holds. For χ > 1, let ρ and a be the constants from
Theorem 3.2. We may assume that ε > 0 is small enough that maxB̄(x,ε) G+ ≤ 1
for all x ∈ J∗. For x ∈ S we let ψx ∈ ψS be the corresponding immersion. Let D
(respectively, D0) denote the connected component of ψ−1

x (B(x, ε)) (respectively,
ψ−1

x (B(x, ρε))) containing the origin. Since G+ ◦ ψx ≤ 1 on {|ζ| < rχ} ⊂ D it
follows that rχ ≤ 1, so r ≤ 1/χ. We note that dist(ψx(ζ), x) = dist(ψx(ζ),ψx(0)) =
ρε for all ζ ∈ ∂D0, and that ∂D0 ⊂ {|ζ| ≤ 1/χ}. It follows that if a sequence of
mappings ψxj converges to a map ψ, then there will be a point ζ with |ζ| ≤ 1/χ
and dist(ψ(ζ),ψ(0)) = ρε, and so ψ cannot be constant. Thus (‡) holds.

Next let us suppose that (‡) holds. We have already observed that with ε
as in Lemma 2.8, V(x, ε) is closed in B(x, ε). By the compactness of Ψ, C0 =
supψ sup|ζ|≤r |ψ′(ζ)| <∞, so

Area(V(x, ε)) ≤
∫
|ζ|≤r

|ψ′(ζ)|2 ≤ πr2C2
0,

so (3.1′) holds.

The germ Vx being contained in K is equivalent to G+ ◦ψ(ζ) = 0 for |ζ| < r;
by Proposition 1.5 this prevents quasi-expansion. The condition that no germ Vx

is contained in K+ = {G+ = 0} may be viewed as a weak form of transversality
between Vx and K+.

THEOREM 3.4. If (3.1) holds, and if no germ Vx, x ∈ J∗, is contained in K, then
f is quasi-expanding.

Proof. Let ε > 0 and A <∞ be as in (3.1). For χ > 1, let ρ be the constant
in Theorem 3.2, corresponding to the number A. By the continuity of G+, we
may shrink ε so that

max
x∈J∗

max
B̄(x,ε)

G+ ≤ 1.
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We set

c0 := min
x∈J∗

max
V(x,ρε)

G+.

We claim that c0 > 0. By Theorem 3.3, {Vx, x ∈ J∗} is a compact family of
varieties. If c0 = 0, then by compactness we would have G+ = 0 on V(x, ρε) for
some x ∈ J∗. This germ Vx would be contained in K, contradicting our hypothesis.
Thus c0 > 0, and we choose n such that dnc0 ≥ 1.

For x ∈ S, let D (respectively D0) be the connected component of ψ−1B(x, ε)
(respectively ψ−1B(x, ρε)) containing the origin. Thus

D0 ⊂ {|ζ| < r} ⊂ {|ζ| < rχ} ⊂ D.

Since G+ ◦ ψx ≤ 1 on D, it follows that rχ ≤ 1. We also have

c0 ≤ max
ζ∈D0

G+ ≤ max
|ζ|≤r

G+.

Now applying f n, the set Vx is mapped to Vf nx, which is unformized by ψxn . It
follows that

max
|ζ|≤|λ(x,n)|r

G+ ◦ ψxn ≥ c0dn ≥ 1.

By the normalization (1.3) on ψxn it follows that |λ(x, n)|r ≥ 1. We conclude that

|λ(x, n)|r ≥ 1 ≥ χr,

or |λ(x, n)| ≥ χ > 1. By Theorem 1.2, then, f n is quasi-expanding. Thus by
Proposition 1.3, f is quasi-expanding.

The following two Corollaries are just restatements of Proposition 2.3 and
Theorem 2.8 in terms of the families ψS given as examples at the end of Section 1.

COROLLARY 3.5. A necessary and sufficient condition for f to be quasi-ex-
panding is that there exist ε > 0 and A < ∞ such that for each δ > 0 there is
an η > 0 such that for each saddle point p we have: Wu

ε (p) is closed in B(p, ε),
Area(Wu

ε (p)) ≤ A, and supWu
δ

(p) G+ ≥ η.

COROLLARY 3.6. A necessary and sufficient condition for f to be quasi-ex-
panding is that there exist ε > 0, A <∞ and saddle points p, q such that for each
δ > 0 there is an η > 0 such that Wu

ε (z) is closed in B(z, ε), Area(Wu
ε (z)) ≤ A, and

supWu
δ

(z) G+ ≥ η for all z ∈ Wu(p) ∩Ws(q).

COROLLARY 3.7. The condition that f is quasi-expanding is independent of the
family ψS.



POLYNOMIAL DIFFEOMORPHISMS OF C2 239

A quasi-expanding mapping has a certain uniform contraction along backward
orbits, at finite scale.

THEOREM 3.8. If f is quasi-expanding, then there exist ε > 0 and θ < 1 such
that for all x ∈ J∗ and n ≥ 0, diam( f−nV(x, ε)) ≤ θn and Area( f−nV(x, ε)) ≤ θn.

Proof. Let A <∞ and ε > 0 be as in Proposition 2.9. Let c be the maximum
of G+ in an ε-neighborhood of J∗. Let M(r) be as in Theorem 1.2, and let rc be
such that M(rc) = c. We note that by choosing ε sufficiently small, we can make
c arbitrarily close to zero. By the continuity of M(r), then, the constant rc may
be taken arbitrarily close to zero.

Let a and ρ be as in Theorem 3.2. For x ∈ J∗, let Dx denote the connected
component of ψ−1

x V(x, ε) containing the origin. It follows from Theorem 3.2 that
there exists rx such that

{|ζ| < arx} ⊂ ψ−1
x V(x, ρε) ⊂ {|ζ| < rx}.

It is evident that arx ≤ rc. Define

M := sup
ψ∈Ψ

sup
|ζ|<a−1rc

|ψ′(ζ)| <∞

which is finite by the compactness of Ψ. By the transformation formula (1.4),
and by (4) of Theorem 1.2, we have

f−nV(x, ρε) ⊂ f−nψx(|ζ| < a−1rc) ⊂ ψf−nx(|ζ| < κ−na−1rc).

Thus we obtain the estimates

Area( f−nV(x, ρε)) ≤
∫
|ζ|<κ−na−1rc

|ψ′
f−nx(ζ)|2

≤ π(κ−na−1rc)2M2.

and

diamC2 ( f−nV(x, ρε)) ≤ ( max |ψ′|)diam{|ζ| < κ−na−1rc}
≤ M · 2κ−na−1rc.

Finally, it suffices to take rc sufficiently small that 2Ma−1rc < 1.

PROPOSITION 3.9. If f is uniformly hyperbolic on J∗, then f and f−1 are quasi-
expanding.

Proof. Let Wu = {Wu(x) : x ∈ J∗} denote the lamination defined by the
unstable manifolds through points of J∗. Since Wu contains the sets V(x, ε), it
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follows that (3.1′) holds. For x ∈ J∗ let ‖·‖#
x denote the metric on the tangent space

Eu
x , as well as the distance induced on Wu(x) by ‖·‖#

x . For x ∈ J∗, let 0 ≤ r(x) ≤ ∞
denote the largest number such that the ‖·‖#

x-disk D(x, r(x)) ⊂ Wu(x) is contained
in {G+ = 0}. Since |λψ| ≥ 1, we have r( fx) ≥ r(x).

By [BS7, §5], x �→ ‖ · ‖#
x varies continuously. It follows that J∗ � x �→ r(x)

is upper semicontinuous. We will show that r(x) = 0. Suppose, to the contrary,
that R := supx∈J∗ r(x) > 0. By upper semicontinuity there exists x0 ∈ J∗ with
r(x0) = R. If R = ∞, it follows that Wu(x0) is conformally equivalent to C, and
that Wu(x0) ⊂ K, which is a contradiction. If R < ∞, then we let X denote the
ω-limit set of x0, i.e., the set of limits of sequences {f njx0}, nj → ∞. Clearly
X is f -invariant and compact, so it is a hyperbolic set for f . Since r is upper
semicontinuous, we have r(x) = R for all x ∈ X. Thus for x0 ∈ X

Wu(x0) ⊃
⋃
n≥0

f n(D( f−nx0, r( f−nx0))) =
⋃
n≥0

f n(D( f−nx0, R)).

Since ‖ · ‖# is comparable to euclidean distance, there exists r0 > 0 such that
D( f−nx0, R) contains a disk with Euclidean radius r0 in Wu( f−nx0). It follows,
then, as in [BS1] that Wu(x0) ⊂ {G+ = 0} and is conformally equivalent to C,
which is a contradiction. Thus we conclude that r = 0 on J∗. It now follows from
Theorem 3.4 that f is quasi-expanding. The argument for f−1 is the same.

PROPOSITION 3.10. Suppose f is quasi-expanding. Then there exist ε > 0 and
N <∞ such that f nV(x, ε) ⊃ V(f nx, ε) for x ∈ J∗ and n ≥ N.

Proof. By Lemma 2.8 and Theorem 3.2 there exist ε > 0 and L < ∞ such
that

ψx({ζ ∈ C : |ζ| < 1/L}) ⊂ V(x, ε) ⊂ ψx({ζ ∈ C : |ζ| < L})

for each ψx ∈ Ψx. Let κ > 1 be as in Theorem 1.2, and choose N such that
κN > L2. It follows, then that N has the desired property.

4. Equivalence of families of metrics. In this section we show (Theo-
rem 4.8) that real mappings of maximal entropy are quasi-expanding. By Theo-
rem 1.2, quasi-expansion is equivalent to uniform expansion with respect to the
metric ‖ · ‖#. We introduce a family of metrics ‖ · ‖(L), and we show that this
metric is uniformly expanded by real mappings of maximal entropy. Then we
show that this metric is equivalent to ‖ · ‖#, from which we obtain Theorem 4.8.
We also give an alternate proof of Proposition 3.9, which shows that (uniformly)
hyperbolic mappings are quasi-expanding (Corollary 4.13).

We will compare several norms on the unstable tangent space Eu
x . By ‖·‖e we

denote the norm on Eu
x induced by the euclidean metric on C2. If ‖ · ‖ denotes an

complex affine invariant metric on Eu
x , then ‖ · ‖ is determined by its value at the
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origin. Since Eu
x has complex dimension 1, it follows that all such affine metrics

are real multiples of each other, i.e., there exists α = α(x) such that ‖ ·‖ = α‖ ·‖e.
Now we define ‖ · ‖(L). For 0 < L < ∞, we let D(L) = D(L)

x denote the
connected component of {ζ ∈ C : G+ ◦ ψx(ζ) < L} which contains the origin.
Since G+ ◦ ψx is subharmonic on C, it follows from the maximum principle that
D(L) is simply connected. We will use ψx to transport the Poincaré metric of D(L)

at 0 to Eu
x . That is, let dsP denote the Poincaré metric of D(L) at ζ = 0, and for

any v ∈ Eu
x we define

‖v‖(L)
x := dsP((dψx)−1v).

One way to define the Poincaré metric is to let B1 = {ζ ∈ C : |ζ| < 1} and
let χ(L)

x : B1 → D(L)
x be the conformal equivalence such that χ(L)

x (0) = 0. Then if
1 denotes the tangent vector with unit length in the euclidean metric, we have
dsP(1) = |χ(L)

x (0)′|−1, so that

‖v‖(L)
x = |v/χ(L)

x (0)′|.(4.1)

If L ≤ L′, then D(L) ⊂ D(L′), and so the Poincaré metrics of the two domains have
the reverse inequality, so that ‖ · ‖(L) ≥ ‖ · ‖(L′). By the identity G+ ◦ f = d ·G+ it
follows that f maps the set D(L)

x to the set D(dL)
fx . Thus for v ∈ Eu

x we have

‖v‖(L)
x = ‖Dfxv‖(dL)

fx < ‖Dfxv‖(L)
fx .(4.2)

If ‖ · ‖�x and ‖ · ‖�x are families of affine metrics for x ∈ S, we define the
comparison function a��: S → R, which is given by a��(x) := log (‖v‖�x/‖v‖�x ) for
any nonzero v ∈ Eu

x . We say that ‖ ·‖� is equivalent to ‖ ·‖� if a��(x) is a bounded
function of x ∈ S. Note that this is an equivalence relation.

Let us compare ‖ · ‖# and ‖ · ‖(1). Recall from the definition of ‖ · ‖#
x that

the unit disk in C is the largest disk centered at the origin which is contained
in {G+ ◦ ψx < 1}, i.e., D(1) contains the disk {ζ ∈ C : |ζ| < 1}, and there is a
point ζ0 ∈ ∂D(1) with |ζ0| = 1. Since G+ ◦ ψx is subharmonic on C, it follows
that D(1) is simply connected. As above, we let χ = χ(1): {|ζ| < 1} → D(1) be a
conformal equivalence such that χ(0) = 0. It follows that the Poincaré metric dsP

satisfies: dsP(1) = |χ′(0)|. By the Koebe 1/4-Theorem, we have 1
4 ≤ |χ′(0)| ≤ 1.

It follows from (1.9) and (4.1) that

‖ · ‖#
x ≤ ‖ · ‖(1)

x ≤ 4‖ · ‖#
x .(4.3)

Thus

− log 4 ≤ a#
(1) ≤ 0,

and so these metrics are equivalent.
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When L < L′, we have the map

ρ := (χ(L′)
x )−1 ◦ χ(L)

x : B1 → B1.(4.4)

From the fact that D(L)
x is a strict subset of D(L′)

x , it follows that |ρ′(0)| < 1. Thus
by the definitions above

a(L′)
(L) = − log |ρ′(0)| > 0,(4.5)

which corresponds to the earlier observation that ‖ · ‖(L)
x < ‖ · ‖(L′)

x for all x. A
lower bound on a(L′)

(L) is equivalent to a lower bound on |ρ′(0)|, which is equivalent
to the existence of 0 < r < 1 such that {|z| < r} ⊂ ρ(B1) for all x ∈ S.

LEMMA 4.1. There exists 0 < L0 < ∞, (depending on f ), such that for L0 <
L′ <∞, ‖ · ‖(L0) is equivalent to ‖ · ‖(L′).

Proof. We let π denote the coordinate projection onto the second coordinate
axis. It follows that the restrictions of |π| and G+ to J− are proper exhaustions
of J−. Let us choose C1 such that

{G+ = 0} ∩ J− ⊂ {|π| < C1}.

For L0 sufficiently large, there exists C2 > C1 such that

{G+ > L} ⊂ {|π| > C2}.

Finally, for L′ <∞ we may choose C3 > C2 sufficiently large that

{G+ < L′} ⊂ {|π| < C3}.

Let s denote the distance between {|z| = C1} and {|z| = C2}, measured with
respect to the Poincaré metric on {|z| < C3}. Let 0 < r < 1 be chosen so that
the Poincaré distance from 0 to r inside B1 is equal to s. We will show that ρ(B1)
contains the disk of radius r about the origin. For if |z0| < r, then the Poincaré
distance between 0 to z0 is less than s. We consider A := π ◦ψx ◦ (χ(L′))−1(0) and
B := π ◦ψx ◦ (χ(L′))−1(z0). Since 0 ∈ J ⊂ J−∩{G+ = 0}, it follows that |A| < C1.
By the definition of D(L′) and C3, it follows that

π ◦ ψx ◦ (χ(L′))−1(B1) ⊂ {|z| < C3}.

Thus π ◦ ψx ◦ (χ(L′))−1, as a mapping from B1 to the disk {|z| < C3} decreases
the respective Poincaré metrics. Thus the distance between the points A and B
is less than s, so we conclude that B is contained in the disk {|z| < C2}. By
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the definition of C2, then, it follows that G+(ψx ◦ (χ(L′))−1(z0)) < L. Thus we
conclude that z0 is in the range of ρ, which gives the desired lower estimate.

Given a family of metrics ‖ · ‖ the effect of the differential Df is measured
by the function c(x, n) := log (‖Df n

x v‖fx/‖v‖x), where v is a nonzero element of
Eu

x . The chain rule gives the following cocycle condition for c:

c(x, n + m) = c(x, n) + c( f nx, m).(4.6)

Let c# = c#(·, 1) denote the cocycle corresponding to the metric ‖ · ‖#. Then
we have c#(x, 1) = log |λx|, so c# > 0.

The cocycle c(L) corresponding to the metric ‖ · ‖(L) satisfies

c(L)(x, 1) = log
‖Dfxv‖(L)

fx

‖v‖(L)
x

= log
‖v‖(L/d)

x

‖v‖(L)
x

= a(L/d)
(L) (x).(4.7)

By (4.5) we have c(L) > 0. Note that a priori c# and c(L) are not bounded below
by strictly positive numbers.

LEMMA 4.2. For all 0 < L, L′ <∞, the cocycle c(L) is bounded, and thus ‖·‖(L)

is equivalent to ‖ · ‖(L′).

Proof. For a point x0 ∈ S and v0 ∈ Eu
x0

, we set xj = f jx0 and vj = Df jx0.
Applying (4.2), we have

‖Df vn‖(L)
xn+1

= ‖vn‖(d−1L)
xn = ‖Df vn−1‖(d−1L)

xn = · · · = ‖Df v0‖(d−nL)
x1

.

This gives

c(L)(xn+1, 1) = log
‖Df vn‖(L)

xn+1

‖vn‖(L)
xn

= · · · = log
‖Df v0‖(d−nL)

x1

‖v0‖(d−nL)
x0

= c(d−nL)(x0, 1).

By Lemma 4.1 and the monotonicity of ‖ · ‖(L), there exists κ <∞ such that
0 ≤ aL0

L1
≤ κ for all L0 ≤ L1 ≤ L2. This gives 0 ≤ c(L1)(x, 1) ≤ κ for all x ∈ S.

Thus 0 ≤ c(d−nL1)(x, 1) ≤ κ for all x ∈ S.
Now choose n such that L < L′ ≤ dnL. It follows that

0 ≤ a(L)
(L′) ≤ a(L)

(dnL) = a(dn−1L)
(dnL) + a(dn−2L)

(dn−1L) + · · · + a(L)
(dL) = c(dnL) + · · · + c(dL) ≤ nκ,

which gives the equivalence between the metrics.
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Given two families of metrics ‖ · ‖� and ‖ · ‖�, the corresponding cocyles are
related by the coboundary equation:

c�(x, 1)− c�(x, 1) = a��( fx)− a��(x).

We say that two cocyles c� and c� are equivalent if they satisfy the coboundary
equation

c�(x, 1)− c�(x, 1) = α( fx)− α(x)

for some function α: S → R which is bounded. With these definitions, equivalent
families of metrics produce equivalent cocycles. Indeed the above equation can
be solved with the bounded function a�� for α.

LEMMA 4.3. A cocycle which is equivalent to a bounded cocycle is a bounded
cocycle.

Proof. If c� and c� are equivalent, then c�(x, 1)− c�(x, 1) = α( fx)− α(x) for
some bounded function α. If c� is bounded, then so is c�(x, 1) = α( fx)− α(x) +
c�(x, 1).

COROLLARY 4.4. The cocycle c# is bounded, i.e. there exists χ < ∞ such that
|λx| < χ for all x ∈ S.

Proof. By Lemma 4.2, the cocycle c(1) is bounded. And by (4.3) ‖ · ‖# is
equivalent to ‖ · ‖(1). By Lemma 4.3 it follows that c#(x, 1) = log |λx| is bounded.

Let us now discuss the sense in which the metrics ‖ · ‖(L) and ‖ · ‖# are
“canonical.” They are determined by the complex structure of C2 and the choice
of Green function G+. If G̃+ is another Green function, then it is a consequence
of [FS, Theorem 7.2] that there is a real number t > 0 such that G̃+ = t−1G+.
If we substitute G̃+ for G+ in the definition of ‖ · ‖(1), then we obtain the metric
‖ · ‖(t), which is equivalent to ‖ · ‖(1) by Lemma 4.2. Next let us substitute G̃+

for G+ in the normalization equation (1.3). By ψ̃x we denote the uniformizing
function with this new normalization, and we see that condition (1.3) may be
restated in terms of the original Green function as

ψ̃x(0) = x, max
|ζ|≤1

G+ψ̃x(ζ) = t.(4.8)

In analogy with (1.9), we may define the norm

‖v‖#̃
x :=

∣∣∣∣∣ v

ψ̃′
x(0)

∣∣∣∣∣
for x ∈ S and v ∈ Eu

x .
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THEOREM 4.5. The metrics ‖ · ‖# and ‖ · ‖#̃ are equivalent.

Proof. The connection between (1.3) and (4.8) is that there is a real number
τx such that a uniformization ψx is normalized according to (1.3) if and only
if ψ̃x(ζ) := ψx(τxζ) is normalized according to (4.8). The comparison function
between these two norms is thus

a#
#̃ = log τx.

We suppose that t ≥ 1; the opposite case t ≤ 1 may be treated in an analogous
fashion. If t ≥ 1, then it follows that τx ≥ 1 for all x ∈ S, and thus a#

#̃ ≥ 0.
It suffices to show that a#

#̃ is bounded above, or equivalently, that τx is bounded
above.

Let us choose k such that t ≤ dk. It follows from (4.8) that

1 ≥ d−k max
|ζ|≤1

G+ ◦ ψ̃x(ζ) = max
|ζ|≤1

G+ ◦ f−k ◦ ψ̃x(ζ) = max
|ζ|≤1

G+ ◦ f−k ◦ ψx(τxζ)

= max
|ζ|≤1

G+ ◦ ψf−kx(τxλ
−1
f−1x · · ·λ

−1
f−kx

ζ).

We conclude that |τxλ
−1
f−1x · · ·λ

−1
f−kx
| ≤ 1. So by Corollary 4.4, we have τx ≤ χk,

so τx is bounded independently of x.

A cocycle c is said to be eventually positive if for some n > 0 and some
K > 0 we have c(x, n) ≥ K for all x ∈ S. We first observe:

LEMMA 4.6. A cocycle which is boundedly cohomologous to an eventually pos-
itive cocycle is eventually positive.

Proof. If ‖ · ‖� is eventually positive, then c�(x, n) ≥ K for n ≥ k. If ‖ · ‖� is
equivalent, then

c�(x, 1)− c�(x, 1) = a( fx)− a(x)

for a comparison function a with |a| ≤ C for some C. Now

c�(x, n)− c�(x, n) = a( f nx)− a(x).

If nK > 2C, then

c�(x, nk) = c�(x, nk) + a( f nkx)− a(x) ≥ nK − 2C > 0.

A cocycle is immediately positive if c(x, 1) ≥ K > 0. We recall that one of
the equivalent conditions in the definition of quasi-expanding is that the cocycle
c# corresponding to the metric ‖ · ‖# is immediately positive. By Proposition 1.3
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and condition (4) of Theorem 1.2, it follows that c# is eventually positive if and
only if it is immediately positive.

We note that the definition of quasi-expansion in terms of the normalization
(1.3) is equivalent to the definition with the normalization (4.8).

THEOREM 4.7. The family ψ̃S := {ψ̃x : x ∈ S}, normalized according to (4.8),
is normal if and only if ψS is normal.

Proof. The proofs of Proposition 1.3 and Theorem 1.2 apply to the cocycle
c#̃, and so c#̃ is immediately positive if and only if it is eventually positive. By
Theorem 4.5, c# and c#̃ are boundedly cohomologous. Thus c# is immediately
positive if and only if c#̃ is immediately positive. By Theorem 1.2, these con-
ditions are equivalent to the normality of ψS and ψ̃S. This proves the Theorem.

Now we consider mappings f which are real. This means that the real sub-
space R2 is invariant under f , or in terms of coordinates, f commutes with com-
plex conjugation, i.e., f (x̄, ȳ) = f̄ (x, y). We let fR denote the restriction of f to R2.
We will say that f is a real mapping with maximal entropy if the real restriction
fR2 has entropy equal to log d. Several results from [BLS] apply to real mappings
with maximal entropy. In this case it follows that J ⊂ R2, that J = J∗, and the
periodic points are dense in J. Thus, if p is a (real) periodic point, we may further
normalize the uniformizing mapping ψp : C → Wu(p) so that ψp(R) ⊂ R2. In
this case, it follows that ψp(C) ∩ J ⊂ R2, and thus ψ−1

p (J) ⊂ R.

THEOREM 4.8. If f is a real mapping of maximal entropy, then the cocyle cor-
responding to the metric ‖ · ‖(L) satisfies c(L)(x, 1) ≥ log d. Further, f and f−1 are
both quasi-expanding.

Proof. We observed above that if f is a real mapping of maximal entropy,
then for each saddle point ψ−1

x (J) ⊂ R. Thus by Proposition 4.9 below, c(L) is a
positive cocyle. Since ‖ · ‖(L) is equivalent to ‖ · ‖# it follows from Lemma 4.6
that c# is eventually positive. By (4) of Theorem 1.2, some iterate f N is quasi-
expanding. By Proposition 1.3, then, f itself is quasi-expanding. The argument
for f−1 is similar.

PROPOSITION 4.9. If x ∈ S is such that ψ−1
x J is contained in a straight line in

C, then c(L)(x, 1) ≥ log d > 1. If, in addition, J ∩Wu(x) is not connected, then we
have c(L)(x, 1) > log d.

Proof. Without loss of generality, we may assume that the line is R ⊂ C. We
will estimate c(L) as in (4.7). To do this, we let h+ denote the unique continuous
function on D(L) with the following properties: 0 ≤ h+ < L, h+ = 0 on D(L) ∩ R,
h+ is harmonic on D(L) − R, and h+ takes the boundary limit L at all points
of (∂D(L)) − R. Since ψ−1

x J ⊂ R, it follows from the maximum principle that
h+ ≤ G+ ◦ ψx on D(L). Thus D+ := {h+ < L/d} ⊃ D(L/d). Let χ+: B1 → D+
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denote the conformal mapping such that χ+(0) = 0 and χ+(0)′ > 0. If we set
ρ+ := χ(L) ◦ (χ+)−1: B1 → B1, then as in (4.5), we have the estimate

c(L) = log |ρ′(0)| ≥ log |ρ+(0)′|.

We will show that ρ+(0)′ = 1/d, which gives c(L) ≥ log d. We note that
since f is real, the set D(L) is invariant under complex conjugation, and thus ρ+

commutes with conjugation. Thus the real function h+ ◦ ρ+ is invariant under
complex conjugation. Further, h+ ◦ ρ+ has the properties of being equal to zero
on the axis (−1, 1), harmonic on B1− (−1, 1), and taking boundary values L on
the nonreal points of ∂B1. Let ϕ denote the conformal mapping from B1 to the
strip {ζ ∈ C : −1 < #(ζ) < 1} such that the upper/lower portion of ∂B1 is taken
to {#(ζ) = ±1}. It follows that h+ ◦ ρ+ = L|#(ϕ)| for some L > 0. The image
of ρ+ is given by ρ+(B1) = {h+ ◦ ρ+ < L/d}. Thus ρ+ is given by ϕ−1 ◦ gd ◦ ϕ,
where gd(z) = z/d. We may assume that ϕ(0) = 0, so it follows from the fact that
g′d = 1/d that ρ+(0)′ = 1/d.

If J ∩Wu(x) is not connected, then h+ < G+ ◦ψx on D(L) because {h+ = 0} =
ψ−1

x (J) �= {G+ ◦ ψx = 0} = R. Thus c(L) = − log |ρ′(0)| > − log |ρ+(0)′| = d.

Next we give an improved estimate for one-sided points, which play an
important role in [BS].

PROPOSITION 4.10. If x ∈ S and ψ−1
x J is contained in a half-line, then c(L)(x, 1)

≥ 2 log d. If, in addition, ψ−1
x J is not connected, then c(L)(x, 1) > 2 log d.

Proof. Without loss of generality, we may assume that ψ−1
x J contains the

origin and is contained in the positive half-line [0,∞). The proof now proceeds
along the lines of the proof of Proposition 4.9 with the modification that the
function |#(ζ)| is replaced by |#(

√
ζ)|. Let S(t) = {ζ ∈ C : |#(

√
ζ)| < t}. We let

ϕ denote the conformal mapping from B1 to the set S(1). The factor of 2 enters
because d2 is the multiplier which maps S(L/d) to S(L).

An affine metric on Cx induces a distance function on Wu(x) via the mapping
ψx: Cx → Wu(x). The metric ‖ · ‖# induces the distance dist#(ψx(ζ1),ψx(ζ2)) =
|ζ1−ζ2|. Any other metric is of the form ‖ ·‖′ = a ‖ ·‖#, and the induced distance
is given as dist′(ψx(ζ1),ψx(ζ2)) = a(x)|ζ1−ζ2|. Given a metric, we let ∆x ⊂ Wu(x)
denote the unit disk in Wu(x) with center at x. We say that the metric is admissible
if there are constants 0 < c′ < c′′ < ∞ such that the diameter, measured with
respect to the Euclidean metric on C2 satisfies

c′ ≤ diamC2 (∆x) ≤ c′′

for all x ∈ S.
Admissibility of a metric is not a strictly local property since it involves the

immersions ψx. If we work with the metric ‖ · ‖#, then the boundary ∆x contains
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a point of {G+ = 1} ∩ J−. Since this is a compact set, we have an upper bound
on the diameter of ∆x. The lower bound on the diameter follows because this set
is at positive distance from J (which contains x). Thus ‖ · ‖# is admissible.

It need not be true that a metric equivalent to an admissible metric is itself
admissible. For 0 < τ ≤ 1, let us consider the scaled metric τ‖ · ‖#. With respect
to this metric, ∆x satisfies ψ−1

x ∆x = {ζ ∈ Cx : |ζ| < 1
τ }. It is evident that Ψ is

a normal family if and only if the functions ψx are bounded on this set for each
τ > 0. For fixed τ , this gives an upper bound on supx∈S diam(∆x). (The case
τ = 1 is already a lower bound.) Thus we see that f is quasi-expanding if and
only if τ‖ · ‖# is admissible for every 0 < τ < 1. In other words, if f is not
quasi-expanding, then τ‖ · ‖# is not admissible for some 0 < τ < 1.

LEMMA 4.11. Any two admissible metrics are equivalent.

Proof. Suppose that ‖·‖ and ‖·‖′ are admissible metrics. If they are not equiv-
alent, we may choose a sequence xk such that ‖·‖xk = εk‖·‖′xk

, and limk→∞ εk = 0.
Let Dk := {ζ ∈ Cxk : ‖ζ‖xk < 1}. Thus D′

k := {ζ ∈ Cxk : ‖ζ‖′xk
< 1} = εkDk ⊂

Dk. Let δk denote the diameter of D′
k, measured with respect to the Kobayashi

metric of Dk.
Since ‖ · ‖ is admissible, there is a bounded set B ⊂ C2 such that ∆k =

ψxk (Dk) ⊂ B for all k. Since the Kobayashi metric decreases under holomorphic
mappings, the diameter of ψxk (D′

k), measured with respect to the Kobayashi metric
of B is no larger than δk. Further, since B is bounded, the Kobayashi metric of B
dominates the Euclidean metric. Thus for some constant C < ∞, the Euclidean
diameter of ∆′

k = ψxk (D′
k) is no larger than δkC. But if εk → 0, it follows that the

relative diameter δk also tends to zero. Thus the Euclidean diameters of ∆′
k are not

bounded below, which contradicts the admissibility of ‖ · ‖′. This contradiction
shows that the two metrics must be equivalent.

THEOREM 4.12. If f is uniformly hyperbolic on J∗, then ‖ · ‖e is an admissible
metric.

Proof. Let Wu denote the lamination of Wu(J∗) by unstable manifolds. Each
unstable manifold is uniformized by C, and thus has a unique complex affine
structure. It was shown in [BS7] that this affine structure varies continuously. For
each p ∈ J, we may assign an affine metric on Wu(p) by using the metric ‖ · ‖e

p,
induced by φp: C → Wu(p). By the continuity of the affine structure, the sets
∆p = ψp{ζ ∈ C : ‖ζ‖e

p < 1} vary continuously. In particular, their diameters will
be bounded above and below in terms of the euclidean metric on C2.

We conclude with another proof of Proposition 3.9.

COROLLARY 4.13. If f is uniformly hyperbolic on J∗, then f and f−1 are quasi-
expanding.

Proof. Let ce denote the cocycle corresponding to the euclidean metric. If f
is uniformly hyperbolic, then ce is eventually positive. Further, since both ‖ · ‖#
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and (by Theorem 4.12) ‖ · ‖e are admissible, they are equivalent by Lemma 4.11.
By Lemma 4.6, the cocycle c# is eventually positive. By (4) of Theorem 1.2 and
Proposition 1.3 it follows that f is quasi-expanding.

5. Local folding. In this section we show how conditions (†) and (‡) ex-
press themselves in terms of local folding. In Section 2 we showed how (‡)
corresponds to a bound on the local area of the varieties V . Here we show
(Propositions 5.1–3) how it corresponds to a bound on the local folding of V .

For ψ ∈ Ψx, we define Ord(ψ) = min{n ≥ 1 : ψ(n)(0) �= 0}. Thus Ord(ψ) <
∞ if and only if ψ is nonconstant. If j = Ord(ψ) <∞, then ψ(ζ) = x + ajζ

j + · · ·,
where we set aj = ψ( j)(0)/j!. By Ex we denote the complex linear span of aj in
TxC2. Ex coincides with the tangent cone of the variety Vx at x (see [Ch §8]). By
Lemma 2.6, Ex is independent of the choice of ψ. In the following discussion
of folding, we will use the notation Ex to denote the complex affine line passing
through x in the direction of the tangent cone of Vx at x. Let π: C2 → Ex denote
a complex affine projection map. Let ψ ∈ Ψx be nonconstant. For an open set
N ⊂ Ex, we let ω denote the connected component of ψ−1(π−1N ) containing 0.
Since Ex is the tangent cone to V(ψ) at x, we may choose N sufficiently small
that ω is relatively compact inside ∆. For ψ̂ ∈ Ψ, we let V(ψ̂,N ) denote the
connected component of ψ(∆) ∩ π−1N containing ψ(0). If ψ̂ ∈ Ψ is uniformly
close to ψ in a neighborhood of ω̄, then V(ψ̂,N ) is a subvariety of π−1N , and
π|V(ψ̂,N ): V(ψ̂,N ) → N is proper. If y = ψ̂(0), then in analogy with Section 2,
we may write V(y,N ) for V(ψ̂,N ).

Let us define τ (x) := supψ∈Ψx
Ord(ψ). If τ (x) = ∞ then (‡) does not hold.

PROPOSITION 5.1. Suppose (†) holds at x and τ (x) = ∞. Then for each k <∞
and for an arbitrarily small neighborhood N of x inside Ex, there exists y ∈
J∗∩π−1N such that V(y,N ) is a nonsingular subvariety ofπ−1N , andπ|V(y,N ) :
V(y,N ) → N is proper with mapping degree ≥ k.

Proof. Since τ (x) = ∞, Ψx contains elements with arbitrarily high order. Thus
for each k, there exists ψ ∈ Ψx with m := Ord(ψ) ≥ k. Let us choose {pj} ⊂ S
such that limj→∞ φpj = ψ. As was observed above, we may choose j large and
N sufficiently small that π|V(pj,N ): V(pj,N ) → N is proper. Since φpj ∈ ψS,
the varieties V(pj,N ) are regular. The map ζ �→ π ◦ψ(ζ) is m-to-1 near ζ = 0. It
follows that m is the mapping degree of π|V(pj): V(pj) → N .

PROPOSITION 5.2. Suppose that x satisfies (†), and suppose that for each suf-
ficiently small neighborhood N of x inside Ex there exists y close to x such that
π|V(y,N ): V(y,N ) → N is a proper map of degree k. Then τ (x) ≥ k. Further
τ (x) is the smallest number with this property.

Proof. We choose a sequence of neighborhoods Nj decreasing to {x} and let
ψj be the corresponding functions. Passing to a subsequence, we may suppose that
ψj → ψ ∈ Ψx. For ε > 0, we may choose N small enough that ψ−1(π−1N̄ ) ⊂
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Figure 1.

{|ζ| < ε}. Thus for j large enough we have φ−1
j (π−1N̄ ) ⊂ {|ζ| < ε}. It follows

that π ◦ φj: {|ζ| < ε} → N is a k-to-one mapping. Thus ψ: {|ζ| < ε} → Nε is
k-to-one. Since this holds for all ε > 0, it follows that Ord(ψ) = k.

To establish the final statement, we suppose first that τ (x) = ∞. Then by
Proposition 5.1, there are ψ ∈ Ψx yielding branched covers of degree ≥ k. If
τ (x) <∞, we may choose ψ ∈ Ψx with Ord(ψ) = τ (x). Again, by the argument
of Proposition 5.1, there is a local branching of order k = τ (x).

For a positive integer k, we set Jk = {x ∈ J∗ : τ (x) = k}. Thus J1,J2, . . . is a
partition of {x ∈ J∗ : τ (x) <∞}. Since J∗ � x �→ τ (x) is upper semicontinuous,
the set

⋃
k≥m Jk is closed (and

⋃
k<m Jk is open) in {x ∈ J∗ : τ (x) < ∞} for

each m.
Figure 1 illustrates the case where τ (x) = k, and ψx(C) is a nonsingular

manifold. By Lemma 2.6, there is a neighborhood N of x inside Vx (π−1N is
shaded in Figure 1) with the following properties. If y ∈ J is sufficiently close
to x and ψ ∈ Ψy, then the variety Vψ(N ) is a j-fold branched cover over N . Also
highlighted is a regular point where ψ(C) has a vertical tangent. On compact sets
outside the shaded neighborhood, ψ(C) has the geometry of j distinct manifolds
which approach ψx(C) in the C1 topology as y → x.

We may interpret the mapping degree of π|Vψ(N ) as measuring the local
folding of the variety Vψ(N ) at x. The following result asserts that the maximal
amount of local folding at x is given by τ (x), which also measures the maximal
order of vanishing of the derivatives of the parametrizations.

PROPOSITION 5.3. If x ∈ J1, there are neighborhoods x ∈ U0 ⊂ U ⊂ C2 such
that {V(y, ε) ∩ U : y ∈ Ū0 ∩ J∗} is a lamination. If x ∈ J∗ − J1, then there is no
such lamination at x.

Proof. For x ∈ J1, every ψ ∈ Ψx has nonvanishing differential at ζ = 0.
Since Ψ is a normal family, it follows that the images V(x, ε) are regular and
form a lamination. Conversely, if x0 ∈ J∗ − J1, then for any open sets U0 ⊂ U
containing x0, there will be varieties V(x, ε), x ∈ U0 ∩ J∗ which project as in
Figure 1. Thus there is no lamination at x0.
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6. Expansion. For x ∈ J∗ and k < ∞, let us define Ψk
x = {ψ ∈ Ψx :

Ord(ψ) = k}, and

γk(x) := sup
ψ∈Ψk

x

∣∣∣∣∣ψ
(k)(0)
k!

∣∣∣∣∣ ,

which is finite by the normality of Ψ. We have Jk ⊂ {γk > 0}, and the set of all
points of J∗ where (†) holds coincides with

⋃
k≥1{γk > 0}. By Lemma 2.6 and

the normality of Ψ, it follows that {γk > 0} � x �→ Ex is continuous. For x ∈ J∗

with γk(x) > 0, we define

‖v‖#,k
x := |v|/γk(x) for v ∈ Ex.

Since Ψ is generated by the normal limits of elements of ψS, we have

‖ ‖#,1
x = lim inf

p∈S,p→x
‖ ‖#

p,

where ‖ ‖#
p was defined in Section 1. Since γk(x) is upper semicontinuous, we

have an upper bound mk := supx∈J∗ γk(x) < ∞, so we have a lower bound in
terms of the euclidean metric:

|v|
mk
≤ ‖v‖#,k

x , for v ∈ Ex.

If φ ∈ Ψk
x (resp. φ1 ∈ Ψk

fx) realizes the supremum defining γk at x (resp. fx), then

|λf̃−1φ1
|k ≤ ‖Df n

x ‖#,k :=
‖Df n

x v‖#,k
f nx

‖v‖#,k
x

≤ |λφ|k.(6.1)

If (‡) holds, then x ∈ Jk for k = τ (x), and we define a metric ‖ ‖#
x on Ex by

setting ‖v‖#
x := ‖v‖#,k

x for v ∈ Ex. A priori this could disagree with the definition
in (1.9) for x = p ∈ S, but we will show in Theorem 6.6 that these two definitions
coincide. If S is a compact subset of Jk, then c := infx∈S γk(x) > 0. Thus for any
compact S ⊂ Jk

m−1
k |v| ≤ ‖v‖#

x ≤ c−1|v|, for x ∈ S, v ∈ Ex(6.2)

gives an equivalence between ‖ ‖#
x and the euclidean metric.

PROPOSITION 6.1. Ifγk(x) > 0, then‖Df n
x |Ex‖e ≤ Cγ(x, n) for n ≤ 0. If nj →∞

is a sequence with f njx → x̂ ∈ Jk, then there exists c > 0 such that ‖Df
nj
x |Ex‖e ≥

cλ(x, nj).
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Proof. By the definition of ‖ ‖#,k, we have

‖Df n
x |Ex‖e = λ(x, n)

γk( f nx)
γk(x)

.

Thus C = m/γk(x) is our desired bound. If x̂ ∈ Jk, then η := lim infx∈Jk ,x→x̂ γk(x)
> 0. Thus if nj is sufficiently large, we have γk( f njx) > η/2, which gives the
desired estimate with c = η(2γk(x))−1.

Remark on expansion. We may interpret the proposition as follows. Df n
x |Ex

has uniform contraction along the backward orbit of a point x ∈ Jk. If there is
a sequence of times nj → ∞ such that dist( f njx, {τ (x) < k}) is bounded below,
then Df n|Ef nx has exponential growth during the times n = nj.

THEOREM 6.2. Let f be quasi-expanding, and let ν be an ergodic invariant
measure supported onJ . Then the Lyapunov exponent of ν satisfies Λ(ν) ≥ logκ >
0. If Jk has full measure for ν, then Λ(ν) ≥ k logκ > 0.

Proof. The Lyapunov exponent of the measure ν is given by the formula

Λ(ν) = lim
n→∞

1
n

∫
log ‖Df n

x ‖ ν(x).

Since the family Eu
x is invariant, it follows that

1
n

log ‖Df n
x ‖ ≥

1
n
‖Df n

x |Eu
x‖ =

1
n

n−1∑
j=0

log ‖Dff jx|Eu
f jx‖.

By the invariance of ν, we have
∫

log ‖Dff jx|Eu
f jx
‖ν(x) =

∫
log ‖Dfx|Eu

x‖ν(x), so

1
n

∫
log ‖Df n

x ‖ ν(x) ≥ 1
n

∫
log ‖Df n

x |Eu
x‖ ν(x) =

∫
log ‖Dfx|Eu

x‖ ν(x).

It will suffice to consider the case when all the mass of ν is on Jk. For x ∈ Jk

we have γk(x) > 0, so

‖Dfx|Eu
x‖ =

|Dfxv|fx
|v|x

= ‖Dfx‖# γk( fx)
γk(x)

.

By [LS, Proposition 2.2], we have

∫
log

γk( fx)
γk(x)

ν(x) = 0.
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It follows from (6.1) that

∫
log ‖Dfx|Eu

x‖ ν(x) =
∫

log ‖Dfx|Eu
x‖# ν(x) ≥ logκk,

and the last inequality follows from (6.1).

COROLLARY 6.3. If f is quasi-expanding and quasi-contracting, then every pe-
riodic point in J∗ is a saddle point. Further, there is a κ > 1 such that if λ+ and
λ− denote the larger and smaller eigenvalues of Df n at a saddle point of period n,
then |λ−| ≤ κ−n < κn ≤ |λ+|.

Let us use the notation J ′
k = {x ∈ Jk : α(x) ∩ Jk �= ∅}, where α(x) is the

α-limit set, i.e., the accumulation points of sequences f njx with nj → −∞. By
the Poincaré Recurrence Theorem, J ′

k has full measure for any invariant measure
on Jk. If Jk is compact (which occurs, for instance, if k = supx∈J∗ τ (x) < ∞),
then J ′

k = Jk.

LEMMA 6.4. Let x ∈ J ′
k be a point of backward contraction. If ψ ∈ Ψx, then

the number of critical points of ψ, counted with multiplicity, is no greater than
k − 1; and for ζ ∈ C, the number of preimages ψ−1(ψ(ζ)), of a point ψ(ζ) is no
greater than k.

Proof. Let ζ1, . . . , ζj be critical points of ψ. Then f̃−n(ψ) has critical points at
λ(x,−n)ζi for 1 ≤ i ≤ j. Let ψ̃ ∈ Ψy denote any normal limit of a subsequence
of f̃−n(ψ). By the backward contraction, all the critical points converge to the
origin in the limit, so it follows that Ord(ψ̃) is one greater than the sum of
the multiplicities of the critical points ζ1, . . . , ζj. Since α(x) ∩ Jk �= ∅, we may
take the subsequence such that y ∈ Jk. Thus Ord(ψ̃) ≤ k, and thus the total
orders of the critical points must be less than k. A similar argument shows that
#ψ−1(ψ(ζ)) ≤ k.

In Figure 2 we suppose that p is a saddle point and that the unstable manifolds
Wu(pj) and Wu(qj) are smooth. Let φp: C → Wu(p) ⊂ C2, φpj : C → Wu(pj) ⊂
C2, and φqj : C → Wu(qj) ⊂ C2 be holomorphic embeddings. Let βj, γj ∈ C be
such that φpj(βj) = xj, φqj(γj) = yj, and φp(β) = x. It follows that φqj → φp ∈ Ψp,
γj → β, and φqj(ζ + γj) → φp(ζ + β) ∈ Ψx. If Wu(pj) and Wu(p) have a simple
(quadratic) tangency at pj, then φpj(ζ) → φp(αζ2) ∈ Ψp for some |α| = 1, and
φxj(ζ) → φp(α(aζ + b)2) ∈ Ψx, where a, b ∈ C are chosen so that (1.3) holds.
Figure 2 is consistent with the properties x ∈ J1 and p ∈ J2.

We say that ψ ∈ Ψ is a homogeneous parametrization if it has the form
ψ(ζ) = φ(cζk), where c ∈ C, and φ: C → C2 is an immersion. If ψ1,ψ2 ∈ Ψk

x
are two homogeneous parametrizations, then by (1.3) and Lemma 2.6, they differ
only by a rotation of the variable ζ.

LEMMA 6.5. Let x ∈ J ′
k be a point of backward contraction. If φ : C → C2

is an immersion which induces Vx, then there is a polynomial p(ζ) of degree no
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Figure 2.

greater than k such that p(0) = 0 and ψ(ζ) = φ(p(ζ)). In particular, every ψ ∈ Ψk
x

is a homogeneous parametrization.

Proof. If φ is an immersion, then we claim that p := φ−1 ◦ ψ: C → C is a
well-defined holomorphic mapping. It is evident that p is analytic on the domain
D := {ζ ∈ C : ψ(ζ) ∈ φ(C)}. Note that we must have p(ζ) → ∞ as ζ → ∂D.
Otherwise, if ζj → ζ0 ∈ ∂D and p(ζj) → c0 ∈ C we have p(ζ0) = φ−1(ψ(ζ0)) = c0,
so ψ(ζ0) = φ(c0), which means that ζ0 ∈ D. It follows that 1/p may be extended
to a continuous function on C by setting it equal to 0 on C − D. By Radó’s
Theorem, then, it follows that 1/p is holomorphic on C, which means that C−D
is a discrete set. By the argument above, p has a pole at each ζ0 ∈ C − D. But
if limζ→ζ0 p(ζ) = ∞, then limζ→∞ φ(ζ) = ψ(ζ0), forcing φ to be constant. This
completes the proof of the claim. By Lemma 6.4, ψ is at most k-to-one, it follows
that p is a polynomial of degree no greater than k.

If, in addition, Ord(ψ) = k, then the multiplicity of the critical point of the
origin is already k − 1, so we must have p(ζ) = αζk.

THEOREM 6.6. Let ψS be as in Example 2 in Section 1. Then the definition of
‖ ‖#

p as given in (1.9) coincides with the definition given after (6.1).

Proof. Let φ: C → Wu(p) denote the normalized uniformization. If φ(ζ) =
p + aζ + · · ·, then ‖v‖#

p = |v/a|, according to the definition (1.9).
For the seond definition, we let k be such that p ∈ J ′

k . If ψ ∈ Ψp, it follows
from Lemma 6.5 that ψ(ζ) = φ(cζk) for some scalar c with |c| = 1. Since any
two homogeneous parametrizations agree up to a rotation of parameter, a must
be maximal, so ‖v‖#

p = |v/a| according to the definition after (6.1).

THEOREM 6.7. If f is quasi-expanding, then J1 is an open, dense subset of J .
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Proof. Suppose that k is the minimum value of τ on J . It follows that
Jk = {τ < k + 1} is an open set. Since Jk is f -invariant, and since Jk is a
nontrivial open subset of the support of µ, it follows that Jk has full µ measure
and is thus dense in J = supp(µ). It will suffice to show that k = 1.

First we claim that for x ∈ Jk, each g ∈ Ψx with Ord(g) = k has the
form g = ψ(αζk). Let x ∈ Jk be a periodic point, and let φx: C → Wu(x)
denote the uniformization of the unstable manifold, normalized to satisfy (1.3).
Let gx ∈ Ψx be a map such that Ord(gx) = k. It follows from Lemma 6.5 that
gx(ζ) = φx(αxζ

k) with |αx| = 1. For general x0 ∈ Jk, we may let xj be a sequence
of periodic points converging to x0. Passing to a subsequence if necessary, we
have that gxj = φxj(αxjζ

k) converges to gx0 ∈ Ψx0 , and αxj → α. It follows that

φxj converges to a function φ: C → C with gx0 (ζ) = φ(αζk).
For x ∈ S, let ψx ∈ ψS. We know that ω(x) ⊂ J , so ω(x) ∩ Jm �= ∅ for some

m. By Lemma 6.5 there is a polynomial px(ζ) of degree no greater than m, with
p(0) = 0, such that φ(ζ) = ψx(px(ζ)). Thus gx = ψx(px(αζk)).

Now let h ∈ Ψx be an element with Ord(h) = k. There exist immersions
ψxi ∈ ψS which converge to h. For each i, let gxi ∈ Ψxi be an element such
that Ord(gxi) = k. Then as above we have a mapping φi such that gxi(ζ) =
φi(αiζ

k). Since φi and ψxi both have the normalization (1.3), we have gxk =
ψxi(pxi(αiζ

k)). Since Ψ is a normal family, we may extract a subsequence so that
gxi → G ∈ Ψx.

Next we claim that the polynomials {pxi} form a normal family. Since the
degree of pxi is bounded by m, it suffices to show that Ci := max|ζ|≤1 |pxi | is
bounded. For each i, let ri denote the radius of the largest disk centered at the
origin and contained in the image pxi(|ζ| < 1). Since φi and ψxi are normal-
ized according to (1.3), we must have ri ≤ 1. We suppose that Ci → ∞ and
derive a contradiction. We have C−1

i max|ζ|≤1 |pxi(ζ)| = 1, so we may extract a
subsequence such that C−1

i pxi → q, a polynomial of degree no greater than m.
Again we have q(0) = 0 and max|ζ|≤1 |q(ζ)| = 1, so that q is nonconstant. Thus
q(|ζ| ≤ 1) contains the neighborhood of the origin. On the other hand, the interior
radius ri for pxi is replaced by C−1

i ri → 0, which is a contradiction. Thus {pxi}
is normal family, and we may pass to a subsequence such that pxi → p.

Passing to further subsequences, we also have gxi = ψxi(pxi(ζ
k)) → h(p(ζk)).

Thus G = h(p(ζk)) has order k2 at ζ = 0. Since k is the maximal order on Jk, we
have k2 ≤ k, so k = 1.

7. Regularity. In the sequel we consider points x where (†) holds for both
f and f−1. We use the superscripts u and s to distinguish between the “unstable”
objects Vu, Ψu, Eu, γu, τ u, and the “stable” objects Vs, Ψs, Es, γs, τ s (i.e.,
the corresponding objects for f−1). With this notation, the backward contraction
condition is now written λ̂u(x, n) → 0 as n → −∞, and forward expansion
is written λ̂u(x, n) → ∞ as n → +∞. By forward contraction we will mean
λ̂s(x, n) → 0 as n → +∞, and by backward expansion we will mean λ̂s(x, n) →∞
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as n → −∞. Jk will now be written J∗,k, and the set Jj corresponding to f−1

will be written Jj,∗. We set Jj,k = Jj,∗ ∩ J∗,k.

PROPOSITION 7.1. If Vs
x and Vu

x exist at x, and if x is a point of forward expansion,
then Vs

x �= Vu
x , i.e., the germs cannot coincide.

Proof. As was noted after equation (3.1), Vu
x ⊂ J−, and furthermore, Vs

x ⊂ J+.
Thus if Vs

x = Vu
x , then Vu

x ⊂ {G+ = 0}. If ψ ∈ Ψu
x is nonconstant, then mψ(r) =

max|ζ|≤r G+(ψ(ζ)) vanishes for some r > 0. But by Proposition 2.2 we cannot
have λ(x, n) →∞ as n →∞.

We define J ′
j,k = {x ∈ Jj,k : α(x) ∩ Jj,k �= ∅}.

PROPOSITION 7.2. If x ∈ J ′
j,k is a point of backward contraction, then Eu

x �= Es
x.

Proof. Let us suppose Es
x = Eu

x , and let us write g = f−1. Then by (4.2)

‖Df−n
x |Es

x
‖#,s = ‖Dgn

x |Es
x
‖#,s ≥ 1

for n ≥ 0, where ‖ ‖#,s denotes the metric | · |/γs
j for f (or the expanding metric

for g), and

‖Df−n
x |Eu

x
‖#,u = λ(x,−n).

Let us select a subsequence −nj → −∞ such that f−njx → x̂ ∈ Jj,k. By (6.2) we
know that on the compact set {x̂}∪{f−njx : j = 1, 2, 3, . . .} the metrics ‖ ‖#,s and
‖ ‖#,u are comparable to the euclidean metric, which contradicts the backward
contraction.

Let V denote a 1-dimensional subvariety of C2 in a neighborhood of x.
Choose a holomorphic coordinate system (z, w) with the property that x = (0, 0),
and V ∩ {|z|, |w| ≤ 1} ⊂ {|w| ≤ |z|τ}. If V is regular at x, then τ may be
taken arbitrarily large, and we write τx(V) = ∞. Otherwise, if V is singular at
x, there is a maximal possible value of τ , which we write as τx(V). In fact, if
h is a local defining function for V at x, we may compute τx(V) in terms of
the Taylor expansion of h at x. If V1 and V2 are regular curves passing through
x, then we may choose local coordinates (z, w) such that V1 = {w = 0} and
V2 = {w = amzm + O(|z|m+1)}. It follows that τx(V1 ∪ V2) = m agrees with the
order of tangency of V1 and V2 at x in this case. If V1 or V2 is not regular, then
the geometric interpretation of τx is less clear to us.

For x ∈ Jj,k, we define

τ ι(x) = τx(Vs
x ∪ Vu

x ).

We define J i
j,k = {x ∈ Jj,k : τ ι(x) = i}.
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If f and f−1 are quasi-expanding, then by Theorem 6.7 J1,1 is a dense, open
subset of J∗. Since J1,∗ � x �→ Es

x and J∗,k � x �→ Eu
x are continuous, and since

J 1
1,1 contains the saddle points (where Eu

x �= Es
x) it follows that J 1

1,1 is a dense,
open subset of J∗.

It is useful to have the following quantitative version of Proposition 7.2.

THEOREM 7.3. Let x ∈ J ′
j,k be a point of backward contraction. Let τ = [τ ι(x)]

denote the greatest integer in τ ι(x). Then τ s(x̂) ≥ jτ for all x̂ ∈ α(x).

Proof. Let (A, B) denote a local holomorphic coordinate system such that x
corresponds to the point (0, 0), and

{|A|, |B| ≤ 1} ∩ (Vs
x ∪ Vu

x ) ⊂ {|B| ≤ |A|τ}.(7.1)

We may write

f n(A, B) = α0(n) + α1(n)A + · · · + ατ−1(n)Aτ−1 + O(|A|τ + |B|)

with αj(n) ∈ C2. Our first object is to show that αr(n) → 0 for 1 ≤ r ≤ τ − 1 as
n → −∞. Let us choose ψu ∈ Ψu

x such that

ψu(ζ) = (cζk, 0) + O(ζk+1)

for some c �= 0. If we set λ = λu(ψu, n) and αj = αj(n), then we have

f̃ nψu(ζ) = f n ◦ ψu(λ−1ζ) = α0 +
τ−1∑
r=1

αr

(
cλ−kζk + O(λ−k−1ζk+1)

)r
+ · · · .

The power series coefficients of f̃ nψu(ζ) are bounded as n → −∞. The coefficient
of ζk is α1cλ−k. By the backward contraction we have λ→ 0 as n → −∞; and
since c �= 0, it follows that α1 → 0 as n → −∞.

To proceed by induction, let us suppose that αt(n) → 0 for 1 ≤ t ≤ r − 1 as
n → −∞. The coefficient of ζrk is

(α1E1 + · · · + αr−1Er−1 + αrc
r)λ−kr.

Here the Et denote expressions in the coefficients of ψu which are independent
of n. Since αt → 0 as n → −∞ for 1 ≤ t ≤ r − 1, it follows that αrcrλ−kr is
bounded, so αr → 0 as n → −∞.

Now we write ψs(ζ) = (ψs
1(ζ),ψs

2(ζ)) = (cζ j, 0) + O(ζ j+1) for some nonzero
constant c. If we set λ = λs(ψs, n) and αr = αr(n), we have

f̃ nψs = f n ◦ ψs(λ−1ζ)

= α0 +
τ−1∑
r=1

αr

(
c(λ−1ζ)j + O((λ−1ζ)j+1)

)r
+ O(|ψs

1|τ + |ψs
2|).
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For x̂ ∈ α(x) there exists a sequence ni → −∞ such that f ni(x) → x̂. We may
pass to a subsequence so that f̃ niψs converges to an element ψ̂ ∈ Ψs

x̂. Now we
have αr → 0 for n → −∞ for 1 ≤ r ≤ τ − 1, and (always) |λs

n|−1 ≤ 1, so it
follows that all the coefficients of the terms

αr

(
cλ−jζ j + O(λ−j−1ζ j+1)

)r

tend to zero as n = ni → −∞. We conclude that the only nonvanishing terms
in ψ̂ arise from the expression O(|ψs

1|τ + |ψs
2|). However, (ψs

1)τ = O(ζ jτ ) by
definition, and |ψu

2| ≤ C|ψu
1|τ = O(ζ jτ ) by the tangency condition. It follows that

Ord(ψ̂) ≥ jτ .

If V is a germ of a variety at x ∈ C2 which is locally irreducible at x, then
there is a holomorphic coordinate system (w, z) in a neighborhood of x such that
x = (0, 0), and V is represented near (0, 0) in terms of a Puiseux series

w = ajz
j/m + aj+1z( j+1)/m + · · · =

∞∑
n=j

anzn/m.(7.2)

(See [Ch, §10] for details.) Choosing the z-axis to be the tangent cone, we have
j/m > 1. If j/m ∈ Z, we may replace w by w′ = w− ajzj/m. If V is regular at x,
i.e., if V is a complex manifold in a neighborhood of x, then we may continue
this procedure and obtain a coordinate system (w′, z′) such that V = {w′ = 0} in a
neighborhood of the origin. If V is not regular, we may continue this procedure
to the point where we have aj �= 0, j/m /∈ Z, and j/m > 1.

THEOREM 7.4. Let x ∈ J ′
jk be a point of backward contraction. Then Vu

x is a
(nonsingular) manifold in a neighborhood of x.

Proof. Suppose that Vu
x is not regular at x. Choose a holomorphic coordinate

system (z, w) at x = (0, 0) such that Vx has a Puiseux representation (7.2) with
aj �= 0, j/m /∈ Z, and j/m > 1. Now choose ψ ∈ Ψk,u

x . We may assume that ψ
has the form

ψ(ζ) = (ψ1(ζ),ψ2(ζ)) = (ζk + ck+1ζ
k+1 + · · · , ζ� + · · ·)

with �/k = j/m. Let us define coefficients αr,t(n) ∈ C2 such that

f n(A, B) =
∞∑

r,t=1

αr,t(n)ArBt.

If we set λ = λu(x, n) and αr,t = αr,t(n), then

f̃ nψ(ζ) = f n(ψ(λ−1ζ)) = α0,0 + α1,0(λ−kζk + · · ·) + · · · + α1,0(λ−�ζ� + · · ·).
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Since {f̃ nψ : n ≤ 0} is a normal family, all of its power series coefficients
are bounded. The coefficient of ζk is α1,0λ

−k. Now by backward contraction it
follows that α1,0 → 0 as n → −∞.

Define q by the property kq < � < k(q + 1). We next show that αt,0 → 0 as
n → −∞, for 1 ≤ t ≤ q. We proceed by induction, assuming that αt,0 → 0 for
1 ≤ t ≤ r − 1. The coefficient of ζrk in f̃ nψ is

λ−rk[α1,0Er,1 + α2,0Er,2 + · · · + αr−1,0Er,r−1 + αr,0],

where Er,t denotes a polynomial in the coefficients of ψ. Now Er,t is independent
of n, and α1,0, . . . ,αr−1,0 → 0 as n → −∞, so we conclude that αr,0 → 0.
Similarly, the coefficient of ζ� is

λ−�[α0,1 + α1,0E�,1 + · · · + αq,0E�,q],

and we conclude that α0,1 → 0 as n → −∞.
We conclude, therefore, that Df n → 0 as n → −∞. But let x̂ ∈ α(x)∩Jj,k be

given, and extract a subsequence −nj → −∞ such that f−nj → x̂. We let g = f−1,
and apply Proposition 6.1 to g. We conclude that ‖Dgnj |Eg

nj x‖e is bounded below
by a constant (since we always have λ(x, nj) ≥ 1). Thus Df n cannot tend to zero,
and thus Vx cannot have a singular Puiseux representation.

COROLLARY 7.5. Let x ∈ J ′
k be a point of backward contraction. Then, mod-

ulo rotation, there is exactly one element of Ψk,u
x , and this is a homogeneous

parametrization. Further, for ψ ∈ Ψk,u
x ,

λ̂k
x = |λψ|k = ‖Dfx‖#.

Proof. Let ψ ∈ Ψk,u
x be given. By Theorem 7.4, Vx is a regular variety at x.

Thus we may define a branch of φ(ζ) := ψ(ζ1/k), which is holomorphic at ζ = 0.
Thus φ′(0) �= 0. By Lemma 6.4, ψ′(ζ) �= 0 for ζ �= 0, so it follows that φ is an
immersion. The uniqueness of ψ now follows from Lemma 6.5. The equation
now follows from (6.1).

We have noted earlier that J∗,k � x �→ Eu
x is continuous. It follows that the

points of J ′
∗,k are points of continuity of the metric J∗,k � x �→ ‖ ‖#

x on Eu.

COROLLARY 7.6. Let x ∈ J ′
j,k be a point of backward contraction. Then

‖ ‖#
x = lim

Jj,k�y→x
‖ ‖#

y .

Proof. For y ∈ Jj,k, we choose ψy ∈ Ψk,u
y such that ‖v‖#

y = |v/(ψ(k)
y (0)/k!)|. If

{yi} ⊂ Jj,k is any sequence converging to x, then ψyi converges to an element of
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Ψk,u
x . Since Ψk,u

x consists of homogeneous parametrizations, which are essentially
unique, limi→∞ ψyi exists (modulo rotation), and thus the norms must converge.

8. Hyperbolicity. In this section we explore conditions that imply that f
is (uniformly) hyperbolic, as well as ways in which hyperbolicity can fail. For
instance in Theorem 8.3 we show that purely geometric conditions on J± are suffi-
cient to guarantee hyperbolicity. We show in Corollary 8.4 if f is quasi-expanding,
quasi-contracting and expansive, then f is uniformly hyperbolic. Finally, we show
(Corollary 8.6) that for a special class of nonhyperbolic maps there are points of
tangency, i.e., points where Es

x = Eu
x .

In this section let us make the standing assumption that, unless otherwise
stated, f is quasi-expanding and quasi-contracting.

PROPOSITION 8.1. If S ⊂ J i
j,k is a compact, invariant set, then i = 1, and S is a

(uniformly) hyperbolic set for f .

Proof. Recall that Jjk � x �→ Es/u
x is continuous. By the compactness of S we

have α(x) ⊂ S ⊂ J i
jk for all x ∈ S. Thus by Proposition 7.2 Es

x �= Eu
x , and so i = 1.

This gives us a continuous splitting of TxC2 for x ∈ S, and so by compactness the
angle between Es

x and Eu
x is bounded below. The uniform expansion/contraction

of Df on Es/u follows from Proposition 6.1.

Consider the (finite) collection of index pairs ( j, k) for which Jj,k �= ∅. We
define a partial ordering on this collection of index pairs as follows. We say
( j, k) ≥ (a, b) if j ≥ a, k ≥ b, and Jj,k �= ∅. By the semicontinuity of τ s and
τ u, Jj,k is compact for a maximal pair ( j, k). By Proposition 8.1, then, Jj,k is a
hyperbolic set for all maximal pairs ( j, k).

Let us consider ways in which hyperbolicity can fail to hold for f . If f and f−1

are both quasi-expanding, then hyperbolicity (or the failure of hyperbolicity) along
an orbit is determined by the position of the orbit with respect to the strata J i

j,k. For
a point x ∈ J 1

j,k, there is always uniform contraction in the direction Es
x along the

forward orbit (apply Proposition 6.1 to f−1). If Df n|Eu
x is not uniformly expanding

for n ≥ 0, then there is a subsequence nl → ∞ for which f nlx → {τ u > k}. An
alternative is that hyperbolicity may fail along a forward orbit because the angle
between Es

f nx and Eu
f nx is not bounded below. In this case we have a subsequence

{nl} with f nlx → {τ ι > 1}. By similar reasoning, we see that the failure of
hyperbolicity along a backward orbit is caused either by f−nmx → {τ s > j} or
by f−nmx → {τ ι > 1}, or both.

Theorem 8.3 gives a criterion for hyperbolicity for general polynomial dif-
feomorphisms (that is to say we make no a priori assumption that f is quasi-
expanding and quasi-contracting) which refers only to the geometry of J+ and J−

and makes no direct reference to f . For this we will need a preliminary result.
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LEMMA 8.2. Let N ⊂ C2 be an open set, and let L be a Riemann surface
lamination of N ∩ ∂K+. If T is a smooth 2-dimensional transversal to L at p ∈
N ∩ ∂K+, then p is in the closure of T − K+.

Proof. Since L is a lamination, there is a neighborhood U of p such that the
restriction L|U is homeomorphic to the trivial lamination of S × ∆, where ∆ is
the unit disk, and S ⊂ ∆ is closed. By Slodkowski [S], L may be extended to a
lamination L∗ of U . Shrinking U , we may suppose that the restriction L∗|U is
homeomorphic to the (trivial) lamination of ∆× ∆, whose leaves are {q} × ∆.

Since L∗ extends a lamination of U ∩ ∂K+, there are sets S0, S1 ⊂ ∆ such
that the leaves corresponding to {q}× ∆ fill out U ∩K+ as q ranges over S0 and
they fill out U −K+ as q ranges over S1. Further, the leaves corresponding to ∂S0

fill out U ∩ ∂K+.
For x ∈ ∆, we define χ(x) as the intersection point of T and the leaf corre-

sponding to {x}×∆. Since T is transversal, χ is defined and continuous (possibly
after shrinking U). Let p̂ ∈ ∂S0 be such that χ(p̂) = p. Now there are points q ∈ S1

arbitrarily close to p̂, and so the points χ(q) ∈ T − K+ are arbitrarily close to p.

In the following theorem we make no a priori assumption about quasi-
expansion or quasi-contraction.

THEOREM 8.3. A polynomial diffeomorphism of C2 is hyperbolic on J∗ (resp.
J) if and only if there is a neighborhood N of J∗ (resp. J), and Riemann surface
laminations L± ofN ∩ J± such that L+ and L− intersect transversely at all points
of J∗ (resp. J).

Proof. We start by working with J∗. The fact that this lamination structure
exists for a hyperbolic set of a diffeomorphism is standard. We will prove the
converse. For a saddle point p, it follows from (7) of [BS6, Theorem 2.1] that
Wu(p) is a leaf of L−. The lamination hypothesis implies that the leaves of L−

may be written locally as a family of graphs of holomorphic functions. Since
bounded analytic functions have locally bounded first derivatives, this implies
that the bounded area condition (3.1) holds. For each p ∈ J∗, whether or not
p is a saddle, the variety Vu(p, ε) is a manifold which is transversal to L+ at
p. By Lemma 8.2, Vu(p, ε) intersects C2 − K+ arbitrarily close to p. In particu-
lar the function G+ is positive on Vu(p, ε). Compactness of the set of varieties
Vu(p, ε) gives a positive lower bound for the maximum of G+ on Vu(p, ε) which
is independent of p. Thus by Theorem 3.4, f is quasi-expanding. By Proposi-
tion 5.3, J1 = J∗. By similar arguments, f−1 is quasi-expanding, and J∗ = J1,1.
By Proposition 8.1, then, J∗ is a hyperbolic set for f .

Now let us deal with J. Under our hypotheses the currents µ± supported
on J± are given by transverse measures. Thus the wedge product, µ, can be
interpreted locally as a product measure. It follows that the support of µ, which
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is a priori a subset of J, is actually equal to J. But the support of µ is J∗.
According to the previous paragraph, J = J∗ is a hyperbolic set for f .

Let ψ = (ψ1,ψ2) = (z(ζ), w(ζ)): (C, 0) → (C2, x) be a germ of a holomorphic
mapping, and let V(ψ) denote the induced germ at x. Then V(ψ) has a Puiseux
representation (7.2) with j > m, so that V(ψ) is tangent to the z-axis. Since V(ψ)
is locally irreducible at x, we may assume that gcd (m, n1, n2, . . .) = 1, where ni

is a listing of all the numbers such that ani �= 0.
Let us recall some facts about complex varieties. (See [Ch, §10, §12] for

details). For a point y ∈ V , we let µ(V , y) denote the multiplicity of V at y. This
number is defined by the property that for a generic complex line L passing near
y, L ∩ V contains exactly µ(V , y) points near y. V is regular at y if and only if
µ(V , y) = 1. If V is written as a Puiseux expansion (7.2), with gcd (m, n1, n2, . . .) =
1, then any line L transversal to {w = 0} and passing near (0, 0) will intersect V
in m points near the origin. Thus µ(V , x) = m.

If Ord(ψ) = k, then Ord(ψ1) = k ≥ m, and Ord(ψ2) = kj/m > k. Let
ξ(ζ) = ζ + · · · be a germ of a holomorphic function such that ψ1(ζ) = cξk

near ζ = 0. We may assume that c = 1. We may write ψ2(ζ) =
∑

cnξ
n. This

gives another Puiseux representation for V: w =
∑

cnzn/k. On the other hand,
the Puiseux representation is essentially unique. So m divides k, and we may
set p := k/m ∈ Z. Thus we may write ψ(ζ) = φ(ξp) = (φ1(ξp),φ2(ξp)), where
φ1(t) = tk/p, and φ2(t) =

∑∞
n=j antn/p, where n is divisible by p whenever an �= 0.

To summarize, if Ord(ψ) = k > m, then m divides k, and ψ covers the variety
V exactly p = k/m times. The relation between the multiplicity (order) of the
parametrizing function and the multiplicity of the variety is thus

Ord(ψ) = p · µ(V , x).(8.1)

In the sequel we will treat V(ψ) as the variety V , but counted with multiplicity
p. One reason for introducing multiplicities is that it makes it easier to view
varieties as currents: if φj is a sequence of nonsingular mappings which converge
to φ in some neighborhood of the origin, then the corresponding germs V(φj)
converge as currents (in some neighborhood of x) to the current defined by V(ψ)
counted with multiplicity p.

If V1 and V2 are 1-dimensional varieties which intersect only at x, we may
define ιx(V1, V2), the intersection number at x. This number has the property that
for almost every small τ1, τ2 ∈ C2 the translates Vj + τj, j = 1, 2, intersect in
ιx(V1, V2) points near x. In general, we have

ιx(V1, V2) ≥ µx(V1)µx(V2).

Equality holds if the tangent cones of V1 and V2 at x are distinct. The intersection
number behaves continuously: if Vj

1 (resp. Vj
2) are sequences of varieties that
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converge in the sense of currents to V1 (resp. V2), then for j ≥ j0, we have

ιx(Vj
1, Vj

2) = ιx(V1, V2).

Now let ψj, j = 1, 2 be a germs of a mapping that define the varieties Vj,
j = 1, 2. If x is an isolated point of intersection of V1 and V2, then

ιx(V(ψ1), V(ψ2)) = p1p2 · ιx(V1, V2)(8.2)

≥ p1p2 · µx(V1)µx(V2) = Ord(ψ1)Ord(ψ2).

These properties of varieties give us the following:

LEMMA 8.4. Let ψj: {|ζ| < 1} → C2, j = 1, 2 be nonconstant mappings with
ψ1(0) = ψ2(0). Set mj = Ord(ψj), and let r > 0 be given. Then for ψ̂j sufficiently
close to ψj, there are sets Xj ⊂ {|ζ| < r} such that

∑
a∈Xj

ι(V1, V2, ψ̂j(a)) · Ord(ψ̂j, a) ≥ mj,

where Ord(ψ̂j, a) = Ord(ψ̂j(ζ − a)) denotes the order of ψ̂j at ζ = a.

An important topological dynamical consequence of hyperbolicity is the shad-
owing property. The following result gives us a quantitative measure of the failure
of uniqueness of shadowing.

THEOREM 8.5. Suppose that f is quasi-expanding and quasi-contracting. IfJj,k

�= ∅, then for ε > 0 there is a set X ∈ J∗ containing jk elements such that

sup
n∈Z

max
a,b∈X

dist( f na, f nb) < ε.

Proof. By hypothesis, there is a point x ∈ Jj,k. Choose ψs ∈ Ψs
x with

Ord(ψs) = j and ψu ∈ Ψu
x with Ord(ψu) = k. If {pi}, {qj} ⊂ S are sequences

converging to x with φpi → ψs and φu
qi
→ ψu, then by Lemma 6.4 of [BLS], we

may assume that φs
pi

(|ζ| < 1) (resp. φs
pi

(|ζ| < 1)) intersects ψu(|ζ| < 1) (resp.
ψs(|ζ| < 1)) transversally.

Let M = supψ∈Ψ max|ζ|≤1 |ψ′(ζ)|, and set r = ε/M. Let Xs, Xu ⊂ {|ζ| < r} be
the sets given by Lemma 8.4. Since φs

pi
and φu

qi
are immersions, the order at each

point is equal to 1. And since the immersions are transversal for i sufficiently
large, the intersection numbers are 1. Thus each set Xs and Xu contains at least
jk points.

Let X = {φs
pi

(ζ) : ζ ∈ Xs} = {φu
qi

(ζ) : ζ ∈ Xu}. Thus for n ≥ 0 we have

maxa,b∈X dist( f na, f nb) = maxζ′,ζ′′∈Xs dist( f nφs
pi

(ζ ′), f nφs
pi

(ζ ′′))

= maxζ′,ζ′′∈Xs dist(φs
pi

(λ′nζ
′),φs

pi
(λ′′nζ

′′)) ≤ max|ζ|≤κ−nr |φs
pi

(ζ)′| ≤ κ−nrM ≤ ε.
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For n ≤ 0, we use φu
qi

instead, and we conclude that the diameter of f nX is no
greater than ε for all n ∈ Z.

Note that if the varieties Vs
x and Vu

x are tangent, then the set X may be taken
to have strictly more than jk elements.

COROLLARY 8.6. Suppose that f is quasi-expanding and quasi-contracting, but
f is not hyperbolic on J∗. Then f is not expansive.

Proof. If f is not hyperbolic, it follows from Proposition 8.1 that Jj,k �= ∅ for
some index pair ( j, k) �= (1, 1). By Theorem 8.5, then, f is not expansive.

Since hyperbolic mappings are expansive, and expansivity is preserved under
topological conjugacy, we have the following.

COROLLARY 8.7. If f is quasi-expanding and quasi-contracting but not hyper-
bolic, then f is not topologically conjugate to a hyperbolic map.

We will use the following result, which is a special case of Proposition 5.1
of [V].

LEMMA 8.8. Suppose that V is a subvariety of the bidisk {|z|, |w| < 1}, and
suppose that the projection to the z-axis is proper and has degree bounded by
m <∞. For any ε > 0 there is a δ > 0, depending only on ε and m, such that if Ṽ
is a connected component of V ∩ {|z| < δ}, then the diameter of Ṽ is less than ε.

We refer to C := J∗−J1,1 as the singular locus of f . In the following results,
we consider f for which C is finite. This is parallel to the critical finiteness
condition in one complex dimension. Note that if C is finite, then C consists of
saddle points, and Vs/u are regular on J∗ and form laminations on J1,1 = J∗−C.
Further, Es and Eu are transverse at C. Thus the set of tangencies, written T =
{x ∈ J∗ : Es

x = Eu
x}, is a subset of J1,1 = J∗ − C.

PROPOSITION 8.9. Let f be quasi-expanding and quasi-contracting, and let C
be finite. Then for each tangency r ∈ T , there are points p, q ∈ C such that
r ∈ Ws(p) ∩Wu(q).

Proof. If r ∈ T , then α(r) ⊂ C by Theorem 7.3. Thus r ∈ Wu(q) for some
q ∈ C. Similarly, ω(r) ⊂ C, so r ∈ Ws(p) for some p ∈ C.

THEOREM 8.10. If f is quasi-expanding and quasi-contracting, and if C is finite,
then T is a discrete subset of J1,1, and the closure of T is T ∪ C.

Proof. Since C = J∗−J1,1 is finite, it consists of periodic points, which must
be saddle points by Corollary 6.3. Saddle points are not points of tangency, so
T ⊂ J1,1. The families of varieties Vs and Vu are laminations in a neighborhood
of J1,1. Thus any tangency must be isolated by Lemma 6.4 of [BLS].
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Now let us fix a saddle point x ∈ C; and passing to a higher iterate of
f , we may assume it is a fixed point. It follows that x ∈ Jj,k for some index
pair ( j, k) �= (1, 1). We may assume that k > 1. Consider a coordinate system
(z, w) such that x = (0, 0), and f is essentially linear on B := {|z|, |w| < 1},
with uniform expansion in the horizontal direction and uniform contraction in
the vertical direction. Given ρ > 0, we may choose small r > 0 and 0 < ρ1 <
ρ2 < 1 such that for any point q of {|z| < 1, |w| < r} there is an n > 0
such that f−nq belongs to S := {|z| < ρ, ρ1 < |w| < ρ2}. For ρ, ρ2 and B, let
Vs(B) and Vu(B) denote the set of varieties in B corresponding to Vs/u(x) for
x ∈ {|z| < ρ, |w| < ρ2}. We will choose ρ, ρ2 and B small enough that for
x ∈ J∗ ∩ {|z| < ρ, |w| < ρ2}, Vu

x is a subvariety of {|z| < 1, |w| < 1}, with
proper projection to the z-axis and a uniform bound on the mapping degree of
the projection.

Let us choose ψ ∈ Ψk,u
x , and let {pi} ⊂ S be a sequence such that φpi

converges to ψ. For i sufficiently large, we have V(pi) ⊂ {|z| < 1, |w| < r},
and we may choose the first ni such that f−nVu(pi) ∩ S �= ∅. Let us choose a
subsequence of {f̃−niψpi} which converges to a limit ψ̃ ∈ Ψy for some y in the
closure of S. Since Vu(y) �= Vu(x), it follows that y ∈ J∗,1.

Given ε > 0, let us choose δ > 0 as in Lemma 8.8. For i sufficiently large,
Ṽi := Vu(pi)∩{|z| < δ} is connected. Since ni was chosen for the first time f−niVi

intersects S, it follows that f−ni Ṽi ⊂ B. Since f is contracting in the z-direction,
it follows that the projection of f−ni Ṽi to the z-axis has diameter less than δ. By
Lemma 8.8, then the diameter of f−ni Ṽi is less than ε.

To see that V(y) intersects Ws
loc(p) tangentially, we recall that Vu(ψpi) ∩

Vs(x) ∩ B consists of k points, which are also contained in f−ni Ṽi. By Lemma
8.8, the set of intersection has diameter no greater than ε > 0. Since these points
remain inside a compact subset of B, it follows that the intersection multiplicity
of Vu(y) and Ws

loc(p) is also k, and the diameter of the set of intersection is ≤ ε.
Since ε may be taken arbitrarily small, Vu(y) intersects Ws

loc(p) in a single point
of multiplicity k. Since k > 1, this is a tangency.

Taking into account the multiplicity k in the last paragraph of this proof, we
have the following.

COROLLARY 8.11. Suppose that f is quasi-expanding and quasi-contracting but
is not hyperbolic. If C is finite, then C �= ∅, and there are points of tangency. More
precisely, if p ∈ Jj,k, k > 1, then there is a point y ∈ Ws(p) where Wu(y) is tangent
to Ws(p), and the order of contact is k. Conversely, if y ∈ Ws(p) is a point of
tangency between Ws(p) and Wu(y), then the order of contact is no greater than k.

A. Appendix: One-dimensional mappings. In this paper we have devel-
oped an approach to the study of a dynamically well-behaved family of maps
of C2 via a family of immersions from C into C2. In this Appendix we explore
a similar approach to one-dimensional mappings. Our purpose is to justify the
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analogy between semi-hyperbolicity in C and quasi-hyperbolicity in C2. This is
achieved in Theorem A.5.

Let us consider a polynomial mapping g: C → C of degree d > 1. Let J = Jg

denote the Julia set, and let K = Kg denote the filled Julia set, so J = ∂K. Let
G = GK denote the Green function of C − K with pole at infinity. Let S ⊂ J
denote the set of repelling periodic points. For each x ∈ S we let n denote the
period of x, so that gnx = x. We define λ(x, n) := gn(x)′ and Ln(ζ) = λ(x, n)ζ.
There is a (linearizing) function φx: C → C such that

φx(0) = x, and gn ◦ φx(ζ) = φx(λ(x, n)ζ) = φx ◦ Ln(ζ)(A.1)

(see Milnor [M]). The linearizing function is the analog of the unstable manifold,
and the functional equation is the analogue of (1.4). The function φx also satisfies

φx = gn ◦ φx ◦ L−1
n = g jn ◦ φx ◦ L−j

n(A.2)

for every j ≥ 0. If φ′x(0) = 1, we may define φx simply as

φx(ζ) = lim
j→∞

gnj ◦ L−j
n .(A.3)

For k ≥ 0, gkφx: (C, 0) → (C, gkx) is a linearizing function at gkx. For α ∈
C, α �= 0, φx(αζ) is also a linearizing function. We fix 0 < t < ∞, and we
define ψx to be the linearizing function ψx: ζ �→ φx(αζ), with |α| determined by
condition (4.8). Thus we have a family of maps ψS = {ψx : C → C : x ∈ S}.

As in Section 1 we may take normal limits and obtain the family Ψ, where
each ψ ∈ Ψx is defined and holomorphic on a domain Ωx with {|ζ| < 1} ⊂
Ωx ⊂ C. We may define the transformation g̃ : Ψx → Ψgx as in Section 1, and
if ψx is nonconstant, we may define the multiplier λ = λψx by the condition
g̃(ψx)(ζ) = ψgx(λ−1ζ).

We will say that g is quasi-expanding if Ψ is a normal family of entire
functions. By Proposition 4.7, quasi-hyperbolicity is independent of normalizing
constant t; it will be convenient for us to choose a specific value of t just before
Lemma A.4. By Proposition 1.5, quasi-expansion implies that (‡) holds at each
x ∈ J. By Theorem 1.2, it is equivalent to |λx| ≥ κ > 1 for all x ∈ S.

If g is quasi-expanding, we define τ as was done just before Proposition 5.1.
There is a natural stratification J = J1+· · ·+Jk, where Jm = {τ = m}. We define
the infinitesimal metric ‖ ·‖#

x on the tangent space TxC for x ∈ Ji as in Section 6.
Note that x �→ ‖ · ‖#

x is not globally continuous, but it is continuous on each
stratum Ji. This metric is uniformly expanded by g′. And as in Corollary 6.3,
there is a κ > 1 such that |gn(x)′| > κn holds for each point of period n. While
it was known earlier that a semi-hyperbolic map has a (singular) metric which is
uniformly expanded (see [Ca]), this construction for quasi-expanding maps seems
more direct, in addition to defining an (infinitesimal) metric at each point of J.
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Let C = {z ∈ C : g′(z) = 0} denote the set of critical points of g. For c ∈ C,
let P(c) = {g j(c) : j ≥ 1}, let P(C) =

⋃
c∈C P(c), and let P̄(c) denote the closure

of P(c).

LEMMA A.1. If c ∈ C be a critical point, then τ ≥ 2 on P̄(c). If c ∈ ω(c), then
τ = ∞ on ω(c).

Proof. If ψ ∈ Ψc is constant, then g̃ j(ψ) ∈ Ψg jc is constant. Thus τ (g jc) = ∞
for all j ≥ 0. Since τ is upper semicontinuous, it is equal to ∞ on the closure of
{g j(c) : j ≥ 1}. Now let ψ ∈ Ψc be a nonconstant function. It follows that g̃ j(ψ)
has a critical point at the origin for j ≥ 1, i.e., τ > 1 on {g j(c) : j ≥ 1}. Again,
by upper semicontinuity, τ > 1 on the closure of this set.

Now suppose that c ∈ ω(c). If Ψc consists only of the constant function, then
τ (c) = ∞. If there is a nonconstant ψ ∈ Ψc, then Ord(ψ) <∞. Let nj →∞ be a
sequence such that gnjc → c. By the chain rule, Ord(g̃njψ) > Ord(ψ). Passing to a
subsequence of {nj}, we may assume that g̃njψ → ψ̂. By the upper semicontinuity
of τ , we have Ord(ψ̂) > Ord(ψ). Thus τ (c) = ∞.

We let C′x := {ζ ∈ C : ψ′
x(ζ) = 0} denote the set of critical points of ψx.

LEMMA A.2. If x ∈ S is a repelling periodic point, then ψx(C′x) ⊂ P(C).

Proof. Suppose ζ ∈ C′x. Since x is a repelling periodic point, |λ(x, n)| > 1, so
it follows from (A.1) that ψ′

x(0) �= 0. Let U be a neighborhood of the origin in C
where ψ′

x �= 0. Choose j such that ζ̃ = L−j
n ζ ∈ U, and set z̃ = ψx(ζ̃). By (A.2) and

the Chain Rule,

ψ′
x(ζ) = (gjn ◦ ψx ◦ L−j(ζ))′ = g′(gjn−1(z̃)) · · · g′(g(z̃)) · g′(z̃) · (ψx ◦ L−j)′(ζ) = 0.

It follows g′(gkz̃) = 0 for some 1 ≤ k ≤ jn− 1, which means that gkz̃ ∈ C. Thus
ψx(ζ) = gjn−k(gkz̃) ∈ P(C).

PROPOSITION A.3. If g is quasi-expanding, then J1 = J − P̄(C).

Proof. By Lemma A.1, J1 is disjoint from P̄(C). Conversely, let y /∈ P̄(C)
be given. Choose 0 < δ < dist(y, P̄(C)). Let x be a repelling periodic point
sufficiently close to y that B(x, δ)∩P̄(C) = ∅. By Lemma A.2, there are no critical
values of ψx in the disk B(x, δ). Thus there is an analytic function φ: B(x, δ) → C
such that ψ ◦ φ(z) = z. By the Koebe Distortion Theorem, {|ζ| < δ|φ′(x)|/4} ⊂
φ(B(x, δ)).

Now let χ(x) = inf{|ζ| ∈ C′x}. Since φ(B(x, δ))∩C′x = ∅, we have δ|φ′(x)|/4 ≤
χ(x), or δ/4 ≤ χ(x)|ψ′

x(0)|. Since |ψ′
x(0)| is bounded above, it follows that χ(x)

is bounded below.
To show that y ∈ J1, we need to show that ψ′

y(0) �= 0 for every ψy ∈ Ψy.
Let us take a sequence x → y, such that ψx → ψy. Since χ(x) is bounded below,
there is an open neighborhood U of the origin in C where ψ′

x �= 0 on U for all x.
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The limit ψ′
y is then either nonvanishing on U, or it vanishes identically. By (‡),

then, ψ′
y does not vanish on U.

For a domain D and y ∈ g−nD, we let (g−nD)y denote the connected com-
ponent of g−nD containing y. A mapping g is said to be semi-hyperbolic (see
[CJY]) if there are numbers ε0 > 0 and M < ∞ such that for every n ≥ 0,
0 < ε < ε0 and x ∈ J, the mapping degree of

g|(g−nB(x, ε))y : (g−nB(x, ε))y → B(x, ε)

is bounded by M for each y ∈ g−nx. If g is semi-hyperbolic, then by the two
left-hand containments in Theorem 3.2, there is an a > 0 such that for ρ1 > 0
sufficiently small, depending only on M, such that for all x ∈ J, all n ≥ 0, and
all y ∈ g−nx, we have

B(y, as) ⊂ (g−nB(x, ρ1ε))y ⊂ B(y, s)

for some s > 0. Set

t := min
x∈J

max
B(x,ρ1ε)

G.

LEMMA A.4. Let g be semi-hyperbolic, and let ε, ρ1, t, a > 0 and M < ∞
be as above. Then there is a number B < ∞ such that for any periodic point x,
ωx := (ψ−1

x B(x, ρ1ε))0 satisfies

{|ζ| < B−1} ⊂ ωx ⊂ {|ζ| < B}

and ψx: ωx → B(x, ε) is a proper mapping of degree ≤ M.

Proof. Let n denote the period of x, and assume that x = 0. For 0 < ρ < 1,
let t̄ := maxx∈J maxB(x,ρρ1ε) G. Choose ρ small enough that t̄ < t.

For each j ≥ 0 we have {|ζ| < ar} ⊂ ω ⊂ {|ζ| < r} for some r = rj

corresponding to ω = (Lj
ng−jnB(0, ρρ1ε))0 and for some r = r̃j corresponding

to ω = (Lj
ng−jnB(0, ρ1ε))0. We may take the limit as j → ∞ in (A.3) so that

gjn ◦ L−j
n → φx, and we may pass to a subsequence to have rj → r and r̃j → r̃. If

we write ω̃′
x = (φ−1

x B(0, ρ1ε))0 and ω′
x = (φ−1

x B(0, ρρ1ε))0, then we have {|ζ| < r}
⊂ ω′

x ⊂ {|ζ| < r} and {|ζ| < r̃} ⊂ ω̃′
x ⊂ {|ζ| < r̃}. Thus

ω̃′
x − ω̄′

x ⊂ {ar < |ζ| < r̃}.

Thus the moduli satisfy

log (r̃/(ar)) ≤ Mod({ar < |ζ| < r̃}) ≤ Mod(ω̃′
x − ω̄′

x).
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Let us remark that φx: (φ−1
x B(0, ε))0 → B(0, ε) is a proper mapping with

degree bounded by M since each g jn ◦ L−j
n was also a proper mapping with

degree bounded by M. It follows that φx: (ω̃′
x − ω̄′

x) → (B(x, ρ1ε) − B̄(x, ρρ1ε))
is a proper map. The modulus of an annulus is defined as the extremal length of
the family of curves connecting the two boundaries (cf. [A, Chapter 4]). Under a
proper map, this family pulls back to a family of curves which connect the two
boundaries; thus the modulus cannot decrease, so we have

Mod(ω̃′
x − ω̄′

x) ≤ Mod(B(x, ρ1ε)− B̄(x, ρρ1ε)) = log (1/ρ).

We conclude that r̃/(ar) ≤ ρ−1.
Finally, let us consider ψx and ωx, which are obtained from φx and ω̃′

x by a
scaling by a linear factor λ > 0. Thus {|ζ| < λar} ⊂ ωx = λω̃′

x ⊂ {|ζ| < λr̃}.
By the definition of t, we have maxB(x,ρ1ε) G = maxωx G ≥ t. By the Maximum
Principle, we have max|ζ|<λr̃ G ≥ t. It follows by (4.8) that λr̃ ≥ 1. Similarly,
we have maxB(x,ρρ1ε) G = maxλω′

x
G ≤ t̄ < t. Again by the Maximum Principle,

max|ζ|<λar G ≤ t. Thus by (4.8) we have arλ < 1. By our previous inequality, it
follows that ρ ≤ λar ≤ λr̃ ≤ ρ−1, so we may take B = ρ−1.

Finally, the mapping degree of the restriction of ψx to (ψ−1
x B(0, ε))0 is the

same as the degree of restriction of φx, so it is bounded by M.

We will use the following estimate on the Green function (see [CJY, §3]): If
g is semi-hyperbolic, then there exist η > 0 and A <∞ such that

max
B(x,r)

G ≥ ηrA(A.4)

for all x ∈ J, 0 < r < 1. Note that (1.12) and (A.4) are similar but different;
the estimate (A.4) takes place on dynamical space while (1.12) concerns the
uniformizations.

THEOREM A.5. Quasi-expansion⇔ semi-hyperbolicity.

Proof. Suppose first that g is quasi-expanding. By Corollary 6.3, any periodic
point is expanding. Thus there are no parabolic points. Now suppose that c ∈ J is a
critical point. By quasi-expansion, we must have τ <∞ on J, so by Lemma A.1
this means that c is not contained in ω(c), its ω-limit set. It follows by [CJY,
Theorem 1.1] that g is semi-hyperbolic

Now suppose that g is semi-hyperbolic. Let B be as in Lemma A.4, and
choose χ > B2. By Theorem 3.2, we may choose ρ2 > 0 sufficiently small that
for any y ∈ J there is a number s = sy such that

(ψ−1
y (B(y, ρ2ρ1ε))0 ⊂ {|ζ| < s} ⊂ {|ζ| < χs} ⊂ (ψ−1

y (B(y, ρ1ε))y.

By the right-hand inclusion in Lemma A.4, we have χs < B.
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Let us set

t̄1 := max
x∈J

max
B(x,ρ1ε)

G.

Choose k such that

(
t̄1d−k

η

)1/A

≤ aρ2ρ1ε.

By Theorem 3.2, there is an r > 0 such that B(y, ar) ⊂ (g−k(B(x, ρ1ε))y ⊂ B(y, r)
for y ∈ g−kx. By the definition of t̂1 and the maximum principle, we have that
G ≤ t̂1d−k on B(y, ar). It follows from (A.4) that

t̄1d−k ≥ η(ar)A.

By the choice of k we conclude that r ≤ ρ2ρ1ε. Thus

ψ−1
y (g−k(B(x, ρ1ε))0 ⊂ (ψ−1

y B(x, ρ2ρ1ε))0 ⊂ {|ζ| < s}

with s as above.
Let L: ζ �→ λζ denote the linear map such that gk ◦ ψy = ψx ◦ L. By this

functional equation, L maps (ψ−1
y g−kB(x, ρ1ε))0 ⊂ {|ζ| < s} to (ψ−1

x (B(x, ρ1ε))0.
This last set contains {|ζ| < 1/B} by the left-hand containment in Lemma A.4.
Thus λ ≥ (sB)−1, which is no smaller than χB−2 since χs < B. We conclude
that |λ| is uniformly bounded below by κ := χB−2 > 1, so by Theorem 1.2, gk

is quasi-expanding. By Proposition 1.3, then, g is quasi-expanding.

A consequence of Corollary 6.3 is:

COROLLARY A.6. If g is semi-hyperbolic, then the repelling periodic points are
uniformly repelling.

Questions dealt with in this Appendix also arise naturally in connection with
the study of the structure of leaves in the induced inverse limit system. See [LM]
for this approach.
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