
Homotopy type of some homogeneous spaces of simple Lie groups

of dimension 75

Dylan Johnston, supervised by Dmitriy Rumynin and Adam Thomas

Contents

1 Introduction and History 1

2 The theory of nilpotent orbits and the motivating example 2
2.1 The motivating example - nilpotent orbits in Lie algebras of type An. . . . . . . . . . . . . . 3
2.2 Nilpotent orbits in Lie algebras B6, C6 and E6 and the associated homogeneous spaces. . . . 5

3 The rational homotopy groups 6

4 Homotopy groups and the Dynkin index 10
4.1 First computations of the homotopy groups of homogeneous spaces . . . . . . . . . . . . . . . 10
4.2 The Dynkin index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 The K-theory of a homogeneous space 15
5.1 Defintions and terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2 The Kunneth spectral sequence in equivariant K-theory . . . . . . . . . . . . . . . . . . . . . 17
5.3 An example of calculating Tor groups and formation of a complex over Z. . . . . . . . . . . . 19

A Tables for B6, C6 and E6 orbits 23

B Code 28
B.1 Main code - finding the SL2 restricted polynomials for any orbit . . . . . . . . . . . . . . . . 28
B.2 Koszul complex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
B.3 Calculating Homology from complex over the integers. . . . . . . . . . . . . . . . . . . . . . . 28

1 Introduction and History

Work of Jacobson, Morozov, Kostant and Mal’cev showed that for every nilpotent element in a Lie algebra
g, there exists an sl(2) triple with this element as its “positive nilpotent element”. In fact it is shown that
there is a one-to-one bijection between nilpotent orbits in a Lie algebra and Lie algebra homomorphisms
ϕ : sl(2) → g up to inner automorphism by G, where g = Lie(G). Now, by considering the induced maps
Φ : SL2 → G given by these Lie algebra homomorphisms ϕ and taking the quotient of G by the image
Φ(SL2) of the induced map, we obtain a plethora of homogeneous spaces.

Given two simple Lie groups G and G′ and two copies of Φ(SL2), say H ⊂ G and H ′ ⊂ G′ induced from

nilpotent orbits of g = Lie(G) and g′ = Lie(G′) respectively, we may ask whether X = G⧸H and X ′ = G′
⧸H ′

are homotopy equivalent, that is, if there exists a map f : X → X ′ and a map g : X ′ → X such that g◦f and
f ◦g are homotopic to the identity map on X and X ′ respectively. In the case that G ̸= G′ this question can
almost always be answered via a dimension argument alone, since the homogeneous spaces will be compact
manifolds of differing dimension each with non-trivial cohomology in top degree. One interesting family of
exceptions is when G = Bn and G′ = Cn. In fact, the focus of this report will be when n = 6, as here we
have dim(B6) = dim(C6) = dim(E6) = 78, where E6 is the rank 6 exceptional Lie group.
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We begin our task of comparing homotopy types of these homogeneous spaces by computing the rational
homotopy groups, this will only have a chance of being successful in the case G ̸= G′, since the rational
homotopy groups of the homogeneous space will not depend on the chosen non-zero nilpotent orbit. Next,
we will compute some of the lower homotopy groups (with coefficients in Z), and it is here that we make use
of the so-called Dynkin index. These lower homotopy groups along with the Dynkin index will allow us to
determine that the majority of homogeneous spaces are not homotopy equivalent to any other.

However, for a small number of spaces the question of whether they are homotopy equivalent to any
other will still not be answered, and we will find ourselves solely in the case of comparing the homotopy
types of homogeneous spaces where the simple Lie group is equal, that is, comparing homogeneous spaces
where G = G′. To do this we will look to utilise the K-theory of each of the spaces, and use the fact that
two spaces with differing K-theory cannot be homotopy equivalent. This allows us to show that in all but
three cases, different homogeneous spaces of G = B6, C6 or E6 are not homotopy equivalent.

Homogeneous spaces have been the subject of study by many mathematicians, dating back as far as 1929
when Cartan developed the theory of (relative) Lie algebra cohomology as a tool to study these spaces. In
1958, Bott and Samuelson studied a more specific family of spaces called Symmetric spaces in their paper,
“Applications of the theory of Morse to Symmetric spaces”, [2]. In 1974 Aloff andWallach studied a particular

family of spaces, namely the 7−manifolds SU(3)⧸T 1, where T 1 is a closed connected 1 dimensional subgroup
of SU(3) in [1]. These spaces have since been named “Aloff-Wallach” spaces. Shortly after, although
completely unrelated, in 1975, Minami published his paper “K groups of symmetric spaces I”, [14], which
successfully calculated the K groups of symmetric spaces via use of a spectral sequence, which we will also
make use of.

2 The theory of nilpotent orbits and the motivating example

In this section we collect results on the theory of nilpotent orbits in (semi-)simple Lie algebras. This theory
will be a key component in producing the homogeneous spaces we wish to compare. We will then give the
motivating example of nilpotent orbits in type An = sln+1. This section follows [3], particularly chapters
3.5 and 8.4.

Throughout this section G is a simple Lie group with simple Lie algebra g. We let ad : g→ gl(g) denote
the adjoint representation of g and Ad : G → GL(g) denote the adjoint representation of G. We also let
sl(2,C) have standard basis {h, x, y} satisfying Lie bracket relations [h, x] = 2x, [h, y] = −2y and [x, y] = h.

Definition 2.1. Let X be a linear operator, then we say X is nilpotent if Xn = 0 for some n ∈ N.
Remark 2.2. It is well known by the preservation of the Jordan decomposition (see [10, Chapter 6.4]) that
X ∈ g is nilpotent if and only if ϕ(X) is a nilpotent operator as an element of gl(V ) for any Lie algebra
homomorphism ϕ : g → gl(V ). In particular when ϕ = ad, we have that X ∈ g is nilpotent if and only if
ad(X)n = 0 for some n ∈ N.

As g is the Lie algebra of G, there exists a natural action of Gad on g given by the adjoint representation
of G. Thus for any element X ∈ g we may define the orbit OX of this element with respect to the action of
Gad, that is OX =

{
X ′ ∈ g : gXg−1 = X ′ for some g ∈ G

}
. In particular, when X is nilpotent we say that

OX is a nilpotent orbit.

Definition 2.3. We say that {H,X, Y } ⊂ g is a standard triple in g if the relations [H,X] = 2X,
[H,Y ] = −2Y and [X,Y ] = H are satisfied.

Observe that a standard triple {H,X, Y } ⊂ g is equivalent to a non-zero Lie algebra homomorphism
sl2 → g, given by ϕ(x) = X,ϕ(y) = Y and ϕ(h) = H, letting Hom×(sl2, g) denote the set of non-zero
homomorphisms from sl2 to g we see that we have a bijection{

standard triples in g
}
←→ Hom×(sl2, g).

One sees that both of these sets are invariant under the obvious action of Gad, and to this end we define
the following set:

Atriple =
{
Gad-conjugacy classes of standard triples in g

}
=
{
Gad-conjugacy classes in Hom×(sl2, g)

}
.
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We now define the following map, and this leads to the crucial theorem.

Ω : Atriple −→
{
non-zero nilpotent orbits in g

}
; Ω

(
{H,X, Y }

)
7→ OX .

Theorem 2.4 (Theorem 3.2.10, [3]). The map Ω is a one-to-one correspondence between the set Atriple and
the set of non-zero nilpotent orbits of g. In particular we have a bijection of sets:{

non-zero nilpotent orbits in g
}
←→

{
Gad-conjugacy classes in Hom×(sl2, g)

}
Definition 2.5. For each sl2 triple {H,X, Y } ⊂ g, let OH = {H ′ ∈ g : gHg−1 = H ′ for some g ∈ G}. Then
OH is called a distinguished semi-simple orbit.

Corollary 2.6. There exists a one-to-one correspondence between the nilpotent orbits and the distinguished
semi-simple orbits of g.

By the above corollary, each nilpotent orbit OX comes with an associated semi-simple orbit OH . After
choosing a canonical element H̃ ∈ OH , which we will discuss in the specific cases of interest later, we may
label the Dynkin diagram of g by assigning the value α(H̃) to each simple root α, called a weighted Dynkin
diagram. Thus, we may view nilpotent orbits via their weighted Dynkin diagrams.

2.1 The motivating example - nilpotent orbits in Lie algebras of type An.

We now see the above theory in practice through the motivating example of nilpotent orbits in An. We
begin with the following definition:

Definition 2.7. Given a positive integer n, let P(n) denote the set of partitions of n. For example,
P(5) =

{
[5], [4, 1], [3, 2], [3, 12], [22, 1], [2, 13], [15]

}
.

For any positive integer i, we may construct the i× i matrix:

Ji =


0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 1
0 0 0 . . . 0 0


It’s easy to see that Ji is a nilpotent element of sli, now given any partition [d1, ..., dk] of n, define

X[d1,...,dk] :=


Jd1 0 0 . . . 0 0
0 Jd2

0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . Jdk−1

0
0 0 0 . . . 0 Jdk

 .

Ji is called the elementary Jordan block of size i, we see that X[d1,...,dk] is a nilpotent element of sld1+...dk
=

sln. We have (SLn)ad = PSLn. With this we define the nilpotent orbit O[d1,...,dk] by

O[d1,...,dk] = PSLn ·X[d1,...,dk].

Given two different partitions [d1, ..., dk] and [c1, ..., cl], observe that there orbits are different by the
uniqueness of the Jordan normal form. Moreover, we have that the GLn, SLn and PSLn conjugacy classes
in sln coincide (see [3, Chapter 1.2]), therefore if X ∈ sln is a nilpotent element then there exists a partition
[d1, ..., dk] such that X[d1,...,dk] ∈ OX , In this case, we write OX = O[d1,...,dk]. This gives us the very useful
result:
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Proposition 2.8. [3, Proposition 3.1.7] There is a one-to-one correspondence between the nilpotent orbits
of sln and the set P(n) of partitions of n. The correspondence is given by:

[d1, ..., dk]←→ PSLn ·


Jd1

0 . . . 0 0
0 Jd2 . . . 0 0
...

...
. . .

...
...

0 0 . . . Jdk−1
0

0 0 . . . 0 Jdk


Having now classified the nilpotent orbits of sln via partitions of n, we now wish to find explicit formula

for the sl2 triple {H[d1,...,dk], X[d1,...,dk], Y[d1,...,dk]} associated to the nilpotent element X[d1,...,dk]. Given a
fixed positive integer r, we define the map ρr : sl2 → slr+1 given by:

ρr(h) =


r 0 0 . . . 0 0
0 r − 2 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . −r + 2 0
0 0 0 . . . 0 −r



ρr(x) =


0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 1
0 0 0 . . . 0 0



ρr(y) =


0 0 0 . . . 0 0
µ1 0 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 0
0 0 0 . . . µr 0


where µi = i(r + 1− i) for 1 ≤ i ≤ r. We have the following standard result.

Lemma 2.9. [3, Lemma 3.2.6] ρr is the unique irreducible representation of sl2 of dimension r + 1.

Observe that for a given partition [d1, ..., dk] of n, we have

X[d1,...,dk] =

k⊕
i=1

ρdi−1(x)

and therefore we have

H[d1,...,dk] =

k⊕
i=1

ρdi−1(h), Y[d1,...,dk] =

k⊕
i=1

ρdi−1(y).

Example 2.10. Let [2, 2, 1] ∈ P(5) be a partition of 5, then we have an sl2−triple in sl5 given by:

X[2,2,1] =


0 1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0

 , H[2,2,1] =


1 0 0 0 0
0 −1 0 0 0
0 0 1 0 0
0 0 0 −1 0
0 0 0 0 0

 , Y[2,2,1] =


0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0


We conclude this section by discussing how to label the Dynkin diagram for nilpotent orbits of sln. From

the proceeding discussion we have that

H[d1,...,dk] = diag(d1 − 1, ...,−d1 + 1, d2 − 1, ...,−d2 + 1, ..., dk − 1, ...− dk + 1).
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We now define H̃[d1,...,dk] to be the diagonal matrix with the same entries as H[d1,...,dk], but with the entries
in rearranged into decreasing order. For example,

H[2,2,1] =


1 0 0 0 0
0 −1 0 0 0
0 0 1 0 0
0 0 0 −1 0
0 0 0 0 0

 gives H̃[2,2,1] =


1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 −1 0
0 0 0 0 −1

 .

It is very well known that a basis of simple roots for sln+1 is given by
{
αi

}n
i=1

, αi = Li − Li+1 where

Li




h1 0 0 0 0
0 h2 0 0 0

0 0
. . . 0 0

0 0 0 hn 0
0 0 0 0 hn+1



 = hi for all i ∈ {1, 2, ..., n+ 1}.

Then for a given H̃ ∈ sln+1 defined as above, we may label the Dynkin diagram of sln+1 as follows:

α1(H̃) α2(H̃) αn−1(H̃) αn(H̃)

We will denote the weighted Dynkin diagram as above by△
(
α1(H̃), ..., αn(H̃)

)
, and may writeO

△
(
α1(H̃),...,αn(H̃)

)
to denote the orbit with this weighted Dynkin diagram. We now see an example of a weighted Dynkin diagram
for the partition [2, 2, 1] of 5 i.e. the weighted Dynkin diagram associated to the orbit O[2,2,1] = OX[2,2,1]

Example 2.11. For the partition [2, 2, 1] of 5, we saw that H̃[2,2,1] =


1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 −1 0
0 0 0 0 −1

 and so the

weighted Dynkin diagram is

0 1 1 0

and therefore we have O[2,2,1] = O△(0,1,1,0)

2.2 Nilpotent orbits in Lie algebras B6, C6 and E6 and the associated homoge-
neous spaces.

In this section we give a classification of the nilpotent orbits in types B6, C6 and E6. This section closely
follows [3, Chatper 5]. We first give the following two results.

Theorem 2.12 (Theorem 5.1.2 [3]). Nilpotent orbits in Bn = so2n+1 are in one-to-one correspondence with
the set of partitions of 2n+ 1 in which even parts occur with even multiplicity.

Theorem 2.13 (Theorem 5.1.3 [3]). Nilpotent orbits in Cn = sp2n are in one-to-one correspondence with
the set of partitions of 2n in which odd parts occur with even multiplicity.

Example 2.14. For B2 = so5 we require partitions of 5 such that even parts appear with even multiplicity.
There are exactly four of these, namely

{
[5], [3, 12], [22, 1], [15]

}
.
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For Bn we obtain the weighted Dynkin diagram as follows; given a partition d = [d1, .., dk] of 2n+ 1, let
si = (di − 1, di − 3, ...,−d1 + 3,−di − 1). Form the list H by concatenating the si for each i ∈ {1, ..., k}.
Now let H̃ be the rearrangement of H such that a 0 comes first, follows by the remaining non-negative
terms in decreasing order, followed by their negatives, denote this list H̃ = (0, h1, ..., hn,−h1, ..., hn), then
the weighted Dynkin diagram of the orbit Od of Bn is

h1 − h2 h2 − h3 hn−2 − hn−1 hn−1 − hn hn

For Cn, the process is essentially the same; given a partition d = [d1, .., dk] of 2n, let si = (di − 1, di −
3, ...,−d1 + 3,−di − 1). Form the list H by concatenating the si for each i ∈ {1, ..., k}. Now let H̃ be the
rearrangement of H such that non-negative terms come first, in decreasing order, followed by their negatives,
denote this list H̃ = (h1, ..., hn,−h1, ..., hn), then the weighted Dynkin diagram of the orbit Od of Bn is

h1 − h2 h2 − h3 hn−2 − hn−1 hn−1 − hn 2hn

Example 2.15. The partition [5, 4, 4] ∈ P(13) corresponds to a B6 nilpotent orbit. We have s1 =
(4, 2, 0,−2,−4), s2 = s3 = (3, 1,−1,−3), and so H = (4, 2, 0,−2,−4, 3, 1,−1,−3, 3, 1,−1,−3). Rearranging
this as described above gives H̃ = (0, 4, 3, 3, 2, 1, 1,−4,−3,−3,−2,−1,−1), therefore the weighted Dynkin
diagram is

1 0 1 1 0 1

and we have O[5,4,4] = O△(1,0,1,1,0,1).

Nilpotent orbits in E6 do not have such a straightforward classification, it was nevertheless achieved
through work of Dynkin, Bala and Carter [3, Chapter 8] via the study of so-called parabolic subalgebras. In
particular, E6 orbits do not have a labelling by partitions, but are instead labelled by the isomorphism class
of the subalgebra. We merely give the table of nilpotent orbits of E6, which can be found in Appendix A,
or alternatively in [3, Chapter 8.4].

Now, we know that any nilpotent orbit O in g corresponds to a Lie algebra homomorphism ϕ : sl2 → g,

this induces a Lie group homomorphism Φ : SL2 → G which further produces a homogeneous space G⧸SL2
.

We now begin our attempts to determine the homotopy type of such spaces where G = B6, C6 and E6.

3 The rational homotopy groups

Rational homotopy theory was first discovered by Quillen and Sullivan, what makes the theory of rational
homotopy groups so appealing is that the groups are often very easily computed. However, it has the
disadvantage of losing some information about the homotopy groups, in particular, it removes all torsion
elements.

Given a topological space X, we define the rational homotopy groups to be π∗(X,Q) = π(X)⊗Q. One
immediately observes that for any two topological spaces X,Y we have

π∗(X,Q) ̸∼= π∗(Y,Q) =⇒ π∗(X) ̸∼= π∗(Y ).

Note that the converse need not hold. With this in mind, we show that for any nilpotent orbits of G = B6

or C6 we have G⧸SL2
̸∼= E6⧸SL2

by showing that the rational homotopy groups are different. To do this we

must first discuss the theory, which may be found in [5], particularly Chapter 12, and the article of Reeder
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titled ”On the cohomology of compact Lie groups”, see [17]. Given a smooth manifold M we may consider
the functor

AdR : smooth manifolds→ commutative cochain algebras

taking a smooth manifold to it’s cochain complex of differential forms with differential, d, given by the
exterior derivative. i.e. letting Ωi(M) denote the space of i−forms on M we have

AdR(M) = 0
d−→ Ω0(M)

d−→ Ω1(M)
d−→ Ω2(M)

d−→ ...

We now introduce a special type of commutative cochain algebra known as a Sullivan algebra.

Definition 3.1. A Sullivan algebra is a commutative cochain algebra of the form (
∧
V, d) where

• V = {V p}p≥1, that is V is positively graded, and where
∧
V denotes the free graded commutative

algebra on V .

• V =
⋃∞

k=0 V (k) where V (0) ⊂ V (1) ⊂ ... is an increasing sequence of graded subspaces such that

– d = 0 in V (0)

– d
(
V (k)

)
⊂
∧
V (k − 1) for all k ≥ 1

Definition 3.2. Let (A, d) be a commutative algebra, then

• A Sullivan model for (A, d) is a quasi-isomorphism (that is, a map inducing an isomorphism on
(co)homology groups) m : (

∧
V, d)→ (A, d) from a Sullivan algebra (

∧
V, d)

• If M is a smooth manifold then a Sullivan model for the commutative algebra AdR(M) is called a
Sullivan model for M .

• The model is called minimal if im(d) ⊂
∧+

V ·
∧+

V

We now give two examples and a theorem which will play a key part in determining the rational homotopy
groups of our spaces.

Example 3.3 (Minimal Sullivan model for odd dimensional spheres). Let k be odd, we have

H∗(Sk,R) = H∗(AdR(S
k)
)
=

{
R if ∗ = 0, k

0 else.

Let ϕ ∈ Hk
(
AdR(S

k)
)
be a generator, and let ω ∈ (AdR(S

k)
)
be a cochain representative of ϕ, that is

ϕ = [ω], where [−] denotes the class of a cochain in cohomology. Then

m :
(∧
{e}, 0

)
−→ AdR

(
Sk
)

where deg(e) = k andm(e) = ω is a Sullivan model for Sk. Note, im(d) = im(0) = 0 = e∧e ∈
∧+

V ·
∧+

V so
the model is minimal. We remark that via the use of a slightly modified functor (of which details are omitted)
we may obtain an almost completely analogous minimal Sullivan model for Sk in which the homotopy groups
are over Q, as opposed to R.

Example 3.4. Let (
∧
V, d) be a minimal Sullivan model for a path connected space X and (

∧
W,d) be a

minimal Sullivan model for a path connected space Y , then (
∧
V, d)⊗ (

∧
W,d) is a minimal Sullivan model

for X × Y .

We now turn our attention to determining minimal Sullivan models for compact connected Lie groups.
We begin with a definition, along with a couple of results from which the desired Sullivan models will follow.

Definition 3.5. A H-space is a topological space X, along with an element e ∈ X and a map µ : X×X → X
such that µ(e, e) = e and the maps x 7→ µ(x, e) and x 7→ µ(e, x) are homotopic to the identity map x 7→ x
through maps sending e to e. In particular, a Lie group is a H-space.
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Lemma 3.6. [5, Chapter 12, Example 3] Let X be a H-space, then X has minimal Sullivan model of the
form (

∧
V, 0).

Theorem 3.7. [6, Theorem 3C.4][H. Hopf] Let G be a compact connected Lie group. Then G has the

rational cohomology of a product of odd dimensional spheres, that is, H∗(G,Q) = H∗

(∏
i

S2di−1,Q

)
.

As promised, we obtain the following description of minimal Sullivan models of compact connected Lie
groups.

Corollary 3.8. G has minimal Sullivan model
(∧
{e2di−1}, 0

)
where deg(e2di−1) = 2di − 1.

Proof. We know by the lemma that G has minimal Sullivan model (
∧
V, 0) for some graded vector space V ,

so it remains to determine what V is. To begin, it is a standard result that

Hk

(
n∏
i

S2di−1,Q

)
=

{
I ⊂ {2d1 − 1, ..., 2dn − 1} :

∑
i∈I

2di − 1 = k

}
.

Now, one observes that
(∧
{e2di−1}, 0

)
shares the same cohomology, thus V must be

∧
{e2di−1}.

In fact, a stronger statement holds, namely that G has the same rational homotopy type as a product of
spheres, this is a well know result, and in our case is easiest to see as a consequence of the following result.

Proposition 3.9. [5, Chapter 17] We have a bijection

{rational homotopy types}
∼=←−→ {isomorphism classes of minimal Sullivan algebras over Q}.

In particular, G and
∏
i

S2di−1 are rationally homotopy equivalent.

Proof. For the in particular part, observe that for k, l odd we have
(∧

ek, 0
)
⊗
(∧

el, 0
) ∼= (∧

(ek, el), 0
)
,

thus G and
∏
i

S2di−1 have isomorphic minimal Sullivan models.

This immediately gives us the rational homotopy groups of G.

π∗(G,Q) = π∗

(∏
i

S2di−1,Q

)
=
∏
i

π∗
(
S2di−1,Q

)
=

{
Q if ∗ = 2di − 1

0 else.

We now wish to determine the di for G = B6, C6 and E6. We first recall some definitions from Lie
theory. Let G be a Lie group of rank l, with maximal torus T . Then T is acted on by the Weyl group W =
N(T )⧸Z(T ) via conjugation, where N(T ) and Z(T ) denote the normaliser and centraliser of T , respectively.

Let g = Lie(G) and t = Lie(T ) be the Lie algebras of G and T , and let S = S(t∗) be the symmetric algebra
on t∗, then there is a natural action of W on S induced from the action of W on T .

Example 3.10. Let G = SLn(C), then G has maximal torus T =



x1 0 . . . 0
0 x2 . . . 0
...

...
. . .

...
0 0 0 xn

 : x1x2...xn = 1


and W ∼= Sn acts by permuting the xi. That is, for σ ∈ Sn, σ · xi = xσ(i). Next, we have Lie algebra

g = sln(C) and t =



h1 0 . . . 0
0 h2 . . . 0
...

...
. . .

...
0 0 0 hn

 : h1 + h2 + ...+ hn = 0

 .We have thatW acts on t by permuting

the hi. Next, define linear functionals εi ∈ t∗ by εi · diag(h1, ..., hn) = hi, note that we have the relation
ε1 + ε2 + ...+ εn = 0. Observe that for σ ∈W , σ acts on εi by σ · εi = εσ−1(i).

Write S = S(t∗) = C[ε1, ..., εn]⧸(ε1 + ...+ εn)
, then we have σ ·

∑
i

ci ε
i1
1 ...ε

in
n =

∑
i

ci ε
i1
σ−1(1)...ε

in
σ−1(n).
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We now have the following result:

Theorem 3.11. [17] Let G be a compact connected Lie group, then the cohomology ring H∗(G,Q) has
generators in degrees 2di − 1, where di are the degrees of the fundamental invariant polynomials of S(t∗)W ,
the space of polynomials in S(t∗) which are invariant under the action of W .

Example 3.12. Continuing from our previous example, where S = C[ε1, ..., εn]⧸(ε1 + ...+ εn)
, we have

fundamental invariant polynomials given by

Fk = εk1 + ...+ εkn for 2 ≥ k ≥ n.

These can be readily checked to be W−invariant. To check that they form a complete set of fundamental
invariant polynomials takes more work, but nonetheless is true, as can be seen in [9, Chapter 3.9]. Thus we
have

π∗
(
SLn(C),Q

)
=

{
Q if ∗ = 3, 5, 7, ..., 2n− 1

0 else.

The degrees of the fundamental polynomials for G = B6, C6 and E6 are given as follows [9, Table 1,
Chapter 3.7].

Type Degree of fundamental invariant polynomials

B6 2, 4, 6, 8, 10, 12
C6 2, 4, 6, 8, 10, 12
E6 2, 5, 6, 8, 9, 12

Thus we have π∗(B6,Q) = π∗(C6,Q) ̸= π∗(E6,Q). Finally, observe from our example we have

π∗(SL2(C),Q) =

{
Q if ∗ = 3

0 else.

and so we conclude this section with the following result.

Proposition 3.13. For any nilpotent orbit of G = B6, C6 or E6 with induced copy of SL2(C) ⊂ G we have:

π∗

(
B6⧸SL2(C) , Q

)
= π∗

(
C6⧸SL2(C) , Q

)
=

{
Q if ∗ = 7, 11, 15, 19, 23

0 else.

π∗

(
E6⧸SL2(C) , Q

)
=

{
Q if ∗ = 9, 11, 15, 17, 23

0 else.

Therefore, for any induced copy of H = SL2(C) in B6 or C6, and any induced copy of K = SL2(C) in E6,
we have

B6⧸H ̸≃ E6⧸K or C6⧸H ̸≃ E6⧸K
where ≃ denotes the homotopy equivalence of two spaces.

Proof. The map Φ : SL2(C) → G induces a non-zero map Φ∗ : π3(SL2(C)) → π3(G), which gives an
isomorphism between π3(SL2(C),Q) and π3(G,Q). The result now follows from the corresponding long
exact sequence.

The computation of the rational homotopy groups has enabled us to distinguish between homogeneous
spaces of E6 and homogeneous spaces of B6 or C6. However, it does not help us compare homogeneous spaces
of B6 and C6, or indeed compare two homogeneous spaces arising from nilpotent orbits of the same G. Thus,
in the next section we compute some lower homotopy groups (with coefficients in Z) of our homogeneous
spaces in hopes of finding another invariant.
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4 Homotopy groups and the Dynkin index

In this section, we compute some of the lower homotopy groups for homogeneous spaces G⧸SL2
where

G = B6, C6 or E6. We will find a purely algebraic way to compute the third homotopy group of our
homogeneous spaces, which will turn out to depend on the nilpotent orbit.

4.1 First computations of the homotopy groups of homogeneous spaces

To begin, we recall some definitions and results from algebraic topology.

Definition 4.1 (Exact sequences). Given A,B,C groups/rings/modules over a ring and f : A → B and
g : B → C morphisms we may form the sequence

0→ A
f−→ B

g−→ C → 0.

We say this sequence is (short) exact if im(f) = ker(g), f is injective and g is surjective. Furthermore, given
objects A1, A2, ..., An and morphisms f0 : 0 → A1, f1, f2, ..., fn−1, fn : An → 0 between them we say the
sequence

0
f0=0−−−→ A1

f1−→ A2 → · · · → An−1
fn−1−−−→ An

fn=0−−−→ 0

is (long) exact if im(fi) = ker(fi+1) for 0 ≤ i ≤ n− 1.

Example 4.2. The following are examples of short exact sequences:

• 0→ Z n−→ Z 1−→ Zn → 0 for n ≥ 1 is exact, since ker(1) = im(n) = nZ.

• Let G be a Lie group and H ⊂ G a closed Lie subgroup. Then:

0→ H → G→ G⧸H → 0

is exact, where the maps are the obvious ones.

We now state a result on obtaining a long exact sequence of homotopy groups from certain short exact
sequences of spaces.

Lemma 4.3. Let p : E → B be a (Serre) fibration with B path connected and fiber F . Then we have a long
exact sequence of homotopy groups

· · · → πi(F )→ πi(E)→ πi(B)→ πi−1(F )→ πi−1(E)→ πi−1(B)→ · · · → π0(F )→ π0(E)→ π0(B)→ 0

where we note that the maps on π0 are not group homomorphisms, but are exact in the sense that the relevant
kernels and images are equal.

Remark 4.4. We merely remark that for G a Lie group and H ⊂ G a Lie subgroup, p : G → G⧸H with
fiber H is a fibration. Thus for H connected1 the conditions on the above lemma hold, in particular for
H = SL2(C) the conditions hold.

Finally, before we calculate homotopy groups of our homogeneous spaces, we give a table of the lower
homotopy groups of B6,C6 and E6. The fact that π2(G) = 0 and π3(G) = Z are standard results. Also
π∗(SL2), π∗(B6) and π∗(C6) are fairly standard, using that π∗(SL2) = π∗(S

3), B6 = SO(13) and C6 = Sp(2n).
Finally, the groups π∗(E6) can be verified in [2, Chapter III.2, Theorem V].

We also note that SL2(C) is simply connected, thus π1(SL2(C)) = 0. We now give an example of

calculating some homotopy groups of our homogeneous spaces G⧸SL2
before giving a table of results.

1For Lie groups, connected and path connected are equivalent.
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SL2(C) B6 C6 E6

π2 0 0 0 0
π3 Z Z Z Z
π4 Z2 0 Z2 0
π5 Z2 0 Z2 0
π6 Z12 0 0 0
π7 Z2 Z Z 0

Example 4.5. Let G = B6, then the projection p : B6 → B6⧸SL2
with fiber SL2(C) gives a long exact

sequence

· · · → π7(SL2(C))→ π7(B6)→ π7

(
B6⧸SL2

)
→ π6(SL2(C))→ · · · → π2(B6)→ π2

(
B6⧸SL2

)
→ ...

In particular we have:

•

π2

(
SL2(C)

)︷︸︸︷
0 −→ π2(B6) −→ π2

(
B6⧸SL2

)
−→

π1

(
SL2(C)

)︷︸︸︷
0 =⇒ π2

(
B6⧸SL2

)
= π2(B6) = 0

• · · · −→

π3

(
SL2(C)

)︷︸︸︷
Z d−−→

π3(B6)︷︸︸︷
Z −→ π3

(
B6⧸SL2

)
−→

π2

(
SL2(C)

)︷︸︸︷
0 =⇒ π3

(
B6⧸SL2

)
= Z⧸dZ

where d : Z→ Z will be discussed shortly.

It is a routine exercise involving short exact sequences to verify the following table:

B6⧸SL2
C6⧸SL2

E6⧸SL2

π2 0 0 0

π3 Z⧸dZ
Z⧸dZ

Z⧸dZ

π4 0

{
Z2 if b4 = 0

0 if b4 = 1
0

π5 Z⧸2Z


Z2 ⊕ Z2 or Z4 if (b4, b5) = (1, 1)

Z2 if (b4, b5) = (1, 0) or (0, 1)

0 if (b4, b5) = (0, 0)

Z⧸2Z

π6 Z⧸2Z

{
Z2 if b5 = 0

0 if b5 = 1
Z⧸2Z

where the values d, b4 and b5 are given as follows:

• d represents the map d : Z→ Z from π3(SL2(C)) = Z to π3(G) = Z for each of G = B6, C6 and E6.

• b4 represents the map b4 : Z2 → Z2 from π4(SL2(C)) = Z2 to π4(C6) = Z2.

• b5 represents the map b5 : Z2 → Z2 from π5(SL2(C)) = Z2 to π5(C6) = Z2.

Our first point of investigation will be the map d : Z→ Z, and as we will soon see this map does depend
on which nilpotent orbit we choose. Therefore this will provide us with our first tool to compare homogeneous
spaces internally, that is, compare homogeneous spaces of the same Lie group G. We will then investigate

b4 and b5, as this will give us a way to distinguish between the spaces B6⧸SL2(C) and
C6⧸SL2(C).
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4.2 The Dynkin index

The value of d : Z → Z turns out to be given by the so-called Dynkin index of a sl2(C) subalgebra in a
simple lie algebra g. We begin by discussing what the Dynkin index is how to compute it, before discussing
how it is related to the homotopy groups of our homogeneous spaces. This sections closely follows [16], as
well as [15].

Let g be a simple finite dimensional algebra of rank n, and let h be a Cartan subalgebra with set of roots
△ ⊂ h∗. Choose a set of positive roots △+ and a set of simple roots Π. We normalise a non-degenerate
g−invariant bilinear form (·, ·) on g by requiring that (β, β) = 2 for any long root β ∈ △ where, by abuse of
notation, (·, ·) denotes the induced non-degenerate bilinear form on h∗. We denote the normalised bi-linear
form on g by (·, ·)g.

Example 4.6. Let g = sl3(C). Then h = {diag(h1, h2, h3) : h1 + h2 + h3 = 0} and Π = {α1, α2} with
α1 = ε1 − ε2 and α2 = ε2 − ε3 where we define εi ∈ h∗ by

εi

h1 0 0
0 h2 0
0 0 h3

 = hi.

A g−invariant non-degenerate bilinear form on g gives an isomorphism from h to h∗. As we know, all roots
in △ ⊂ h∗ have the same length. Thus we require (α1, α1) = 2. This is equivalent, due to the isomorphism

εi ←→ hi to requiring that

1 0 0
0 −1 0
0 0 0

 ,

1 0 0
0 −1 0
0 0 0

 = 2, thus we see that (X,X)g = tr(X2).

Definition 4.7. Let ϕ : s → g be a homomorphism of simple Lie algebras. For any x, y ∈ s, the bilinear
form (x, y)to(ϕ(x), ϕ(x))g is proportional to (x, y)s, and the index of ϕ in g is defined as

ind(s
ϕ−→ g) =

(ϕ(x), ϕ(y))g
(x, y)s

.

In particular, when s ⊂ g is a subalgebra, we say the index of s in g is

ind(s ↪→ g) =
(x, y)g
(x, y)s

.

Finally, if (, V ) is a representation of g then we define the index of the representation to be

ind(g, V ) = ind(g
ρ−→ sl(V )) =

tr(ρ(x)2)

(x, x)g

The Dynkin index enjoys the following two nice properties:

• Multiplicativity: If s ⊂ h ⊂ g are simple Lie algebras then we have

ind(s ↪→ h) · ind(h ↪→ h) = ind(s ↪→ g).

• Additivity: If V1, V2 are two representations of g then we have

ind(g, V1 ⊕ V2) = ind(g, V1) + ind(g, V2)

Before stating how one computes the index for sl2 subalgebras of g, we state the following very useful
consequence of the multiplicative property. Let s ⊂ g be a subalgebra, and let V be a representation of g,
then we have

ind(s ↪→ g) =
ind(s, V )

ind(g, V )
.

Recall from Section 1 that sl2 subalgebras in g, up to conjugation by G, are in one-to-one correspondence
with nilpotent orbits in g. Moreover, for the classical Lie algebras these nilpotent orbits were classified by
partitions. Following [16], for a partition d = [d1, ..., dk], let A1(d) denote the corresponding Gad−orbit of
the sl2-subalgebra of g. We have the following result:
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Theorem 4.8. [16, Theorem 2.1] Let A1(d) ∈ g be an sl2-subalgebra with associated partition d =
[d1, ..., dk], then we have

• ind
(
A1(d) ↪→ sp

)
=

k∑
i=1

(
di + 1

3

)

• ind
(
A1(d) ↪→ so

)
=

1

2

k∑
i=1

(
di + 1

3

)
For the exceptional Lie algebras, and in particular for e6, the Jordan normal form of each nilpotent

element X is determined in [12, Table 5]. Using this, we may assign a partition to each sl2-subaglebra of
e6. Lastly, we have ind(e6 → so(27)) = 6, and this along with the previous theorem allows us to compute
the indices of the sl2-subalgebras of e6. The indices of all sl2 subalgebras of b6, c6 and e6 may be found in
Appendix A.

The following remarkable theorem relates the Dynkin index of a subalgebra to the third homotopy group
of the corresponding homogeneous space:

Theorem 4.9. [15] Let G and H be connected simple compact Lie groups with H ⊂ G and suppose
d = ind(h ↪→ g) is the index of h in g, where g = Lie(G) and h = Lie(H), then we have

π3

(
G⧸H

)
= Z⧸dZ.

Before applying the above theorem to our cases of interest, we first investigate the maps b4 and b5 from
the table of homotopy groups to conclude that for any H = SL2 ⊂ B6 and H ′ = SL2 ⊂ C6 we have
B6⧸H ̸≃

C6⧸H ′.
Let fprin : SL2(C) → C6 be the induced Lie group homomorphism given by the inclusion sl2 ⊂ b6 with

index 1, known as the principle map. Also define mn : SL2(C)→ SL2(C) by mn(A) = An for all A ∈ SL2(C).
Note that mn is not a group homomorphism, but it is a perfectly good map of topological spaces. We have
the following result

Proposition 4.10. Let Φ : SL2(C) → C6 be the induced Lie group homomorphism given by an inclusion
sl2 ⊂ c6 with index n, then we have homotopic maps (of topological spaces) Φ ≃ fprin ◦mn, that is

π∗(Φ) = π∗(fprin ◦mn) = π∗(fprin) ◦ π∗(mn) = n · π∗(fprin).

Moreover, we have πk(fprin) = 1 for k ≤ 5, so the maps on the 3rd, 4th and 5th homotopy groups are
determined by the Dynkin index.

Proof. We have two things to show, firstly that Φ ≃ fprin ◦mn, and secondly that πk(fprin) = 1 for k ≤ 5.
For the first, it is well known that any compact Lie group deformation retracts onto its maximal compact
subgroup K, in the case of G = SL2(C), we have K = SU(2) ∼= S3, the 3-sphere. We have by definition of
the index, that π3(Φ) = n = π3(fprin) · π3(mn), and by definition of π3 that Φ ≃ fprin ◦mn.

For the second part we reproduce the proof supplied by Michael Albanese, [8]. We begin by noting that

SL2(C) ∼= SU(2) ∼= Sp(1), so our induced map π∗(SL2(C))
fprin−−−→ π∗(C6) may be thought of as a map

π∗(Sp(1))→ π∗(Sp(6)). Also, note that since π4(Cn) = π5(Cn) = Z2, showing that π4(fprin) = π5(fprin) = 1
is equivalent to showing that the maps are isomorphisms. Now, Sp(n) is the quaternionic unitary group,
and so it acts transitively on S4n−1 ⊂ Hn, with stabiliser Sp(n − 1). Fix x = (0, 0, ..., 0, 1) ∈ Hn, let

in : Sp(n − 1) → Sp(n) be the inclusion given by i(A) =

(
A 0
0 I2

)
, and ρ : Sp(n) → Hn be given by

ρ(A) = Ax. Then we have a fiber bundle Sp(n− 1)→ Sp(n)
i−→ S4n−1 which induces a long exact sequence

in homotopy groups:

· · · → πk+1(S
4n−1)→ πk(Sp(n− 1))

(in)∗−−−→ πk(Sp(n))
p∗−→ πk(S

4n−1)→ πk−1(Sp(n− 1))→ . . .

One notices that we have πk(S
4n−1) = πk+1(S

4n−1) = 0 for k ≤ 4n − 3 and so it immediately follows that
(in)∗ : πk(Sp(n− 1))→ πk(Sp(n)) is an isomorphism for k ≤ 4n− 3.

13



Now let i = in ◦ ... ◦ i2, then i : Sp(1) → Sp(n) is the standard inclusion map A →
(
A 0
0 I2n−2

)
and

i∗ = (in)∗ ◦ ... ◦ (i2)∗. Observe that for m ≥ 2 we have 4, 5 ≤ 4m− 3 and so

(im)∗ : π4(Sp(m− 1))→ π4(Sp(m)) and (im)∗ : π5(Sp(m− 1))→ π5(Sp(m))

are isomorphisms, and since a composition of isomorphisms is also an isomorphism we have that

i∗ : π4(Sp(1))→ π4(Sp(n)) and i∗ : π5(Sp(1))→ π5(Sp(n))

are isomorphisms, as required.

Corollary 4.11. For all sl2-subalgebras of b6 and c6 with associated homogeneous spaces B6⧸SL2(C) and

C6⧸SL2(C) we have B6⧸SL2(C) ̸≃
C6⧸SL2(C).

Proof. From the proposition we have b4 ≡ b5 (mod 2) since b4 and b5 are determined by the parity of the

Dynkin index. In either case we have π5

(
C6⧸SL2(C)

)
̸= π5

(
B6⧸SL2(C)

)
and so B6⧸SL2(C) ̸≃

C6⧸SL2(C).

With this corollary we have now determined that no two homogeneous spaces with differing G, where G =
B6, C6 or E6 are homotopy equivalent. We now turn our attention to internal comparisons of homogeneous
spaces, and conclude this section with an immediate but sizable result following from the theorem relating
the Dynkin index and π3.

Proposition 4.12. Labelling homogeneous spaces by their associated weighted Dynkin diagram of the sl2
subalgebra we have:

• The only possibilities for homogeneous spaces of B6 to be homotopy equivalent are:

– △(0, 2, 0, 2, 0, 0) and △(1, 0, 1, 1, 0, 1)

– △(2, 0, 2, 0, 0, 0) and △(2, 1, 0, 0, 0, 1) and △(0, 1, 1, 0, 1, 0)

– △(2, 1, 0, 1, 0, 0) and △(0, 2, 0, 0, 0, 1)

– △(2, 2, 0, 0, 0, 0) and △(0, 2, 0, 1, 0, 0)

– △(0, 2, 0, 0, 0, 0) and △(1, 0, 0, 0, 1, 0)

– △(1, 0, 1, 0, 0, 0) and △(0, 0, 0, 0, 0, 1)

– △(2, 0, 0, 0, 0, 0) and △(0, 0, 0, 1, 0, 0)

• The only possibilities for homogeneous spaces of C6 to be homotopy equivalent are:

– △(2, 0, 1, 0, 0, 0) and △(0, 1, 0, 0, 1, 0)

– △(2, 1, 0, 0, 0, 0) and △(0, 1, 0, 1, 0, 0)

• No two homogeneous spaces of E6 are homotopy equivalent.

Proof. Compare Dynkin indices from the tables in Appendix A, the lists in the proposition are the only
nilpotent orbits with the same Dynkin index.

The Dynkin index has proven to be an excellent tool in distinguishing between our homogeneous spaces,
however we still have nine cases (including a triple comparison) to consider. Higher homotopy groups do not
appear to have a useful invariant in the same way π3 did, and so we turn our attention away from homotopy
groups in hopes of finding a new invariant, and thus begins our discussion and computation of the K-theory
of our indistinguishable orbits.
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5 The K-theory of a homogeneous space

We now introduce our final tool for distinguishing between homogeneous spaces, the K-theory of the space.
First we review the definition of a vector bundle. A nice reference for an introduction to vector bundles and
K-theory is [11].

5.1 Defintions and terminology

Definition 5.1. Let X be a topological space. A vector bundle on X is a space E with a surjective map
ρ : E → X such that ρ−1({x}) is a vector space for each x ∈ X and ρ satisfies a “locally trivial” condition,
that is, for each x ∈ X there exists an open neighbourhood Ux containing x such that ρ−1(Ux) ∼= V × Ux

for some vector space V .

Example 5.2 (The trivial bundle). Let X be a space and V a vector space, we may form the bundle
E = V ×X with projection ρ : V ×X → X the projection onto the second factor. This is clearly a vector
bundle, called the trivial bundle. If dim(V ) = n then we denote this bundle by εn.

Example 5.3. Let X = S1 ∈ R2, E = TS1 and ρ : E → S1 such that ρ(TxS
1) = x, that is, E is the tangent

bundle of S1. We show that E is a vector bundle. By definition of E, for each x ∈ S1, ρ−1({x}) is a vector
sapce, namely the tangent space at x. We must show that ρ is locally trivial. Let ⟨·, ·⟩ denote the usual inner
product on R2, and let Ux = {y ∈ S1 : ⟨x, y⟩ > 0}, roughly speaking, U consists of the points on S1 which
are less than a quarter of the circumference away from x in both directions. Now define ϕ : ρ−1(U)→ R×U
by projecting the tangent plane for each y ∈ U to the tangent plane TxS

1 of x. This gives the required
isomorphism, since TyS

1 and TxS
1 are not orthogonal for ⟨x, y⟩ ≠ 0.

Remark 5.4. One has direct sums and tensor products of vector bundles, which behave as one would expect.

We now introduce two separate equivalence relations on the set of vector bundles of a space X as follows,
let E1 and E2 be two vector bundles of a space X, we say E1 is stably isomorphic to E2, written E1 ≈S E2,
if E1⊕ εn ≈ E2⊕ εn for some n ∈ N, similarly, we say that E1 ∼ E2 if E1⊕ εm ≈ E2⊕ εn for some m,n ∈ N,
where ≈ denotes an isomorphism of vector bundles and we recall that εn is the trivial bundle of dimension
n.

Proposition 5.5. If X is a compact Hausdorff space, then the set of ∼ equivalence classes of vector bundles
on X forms an abelian group with addition given by the direct sum, ⊕. This group is called the 0th reduced
K-group of X, and denoted K̃0(X).

Given a compact space X we may also form the abelian group K0(X), called the 0th K-group of X,
consisting of formal differences E1 − E2 of vector bundles E1 and E2 on X, with the equivalence relation
E1 − E′

1 = E2 − E′
2 ⇐⇒ E1 ⊕ E′

2 ≈S E2 ⊕ E′
1. This group has the addition property

(E1 − E′
1) + (E2 − E′

2) = (E1 ⊕ E2)− (E2 ⊕ E − 2′)

with the zero element given by the equivalence class of E−E for any vector bundle E. Furthermore, K0(X)
can be given a multiplication, realising it as a ring, this multiplication is given by

(E1 − E′
1)(E2 − E′

2) = E1 ⊗ E2 − E1 ⊗ E′
2 − E′

1 ⊗ E2 + E′
1 ⊗ E′

2

with multiplicative identity ε1. Observe that every element of K0(X) can be expressed as E − εn for some
n, as given E′ −E′′, it is a fact that we can find a bundle F such that E′′ ⊕ F = εn. Set E = E′ ⊕ F , then
we have E′ − E′′ = E − εn in K0(X).

We now define a map K0(X)→ K̃0(X) by sending E − εn to the ∼-equivalence class of E. One checks
that this is well defined, surjective and has kernel {εm − εn} ∼= Z. In fact, if one chooses a base point
x0 ∈ X and considers the restriction of vector bundles K0(X) → K0(x0) ∼= Z, one obtains an isomorphism
K0(X) ≃ K̃0(X)⊕ Z.

We know have the following result, which gives us a key corollary in distinguishing homogeneous spaces
up to homotopy.
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Proposition 5.6 (Theorem 7.2 [11]). Let X be a compact space, and f0, f1 : X → Y be two homotopic
maps. If E is a vector bundle over Y , the the pullback bundles f∗0 (E) and f∗1 (E) are isomorphic.

Corollary 5.7. Let X and Y be homotopy equivalent compact spaces. Then K0(X) = K0(Y ) and K̃0(X) =
K̃0(Y ) .

Recall that given a space X, we may define the suspension of X, denoted SX, given as follows:

SX = X × [0, 1]⧸(X × {0}, X × {1})
We may then define, as in [11], K−1(X) = K̃0(SX). It is often useful to define the 1st K-group in

the unreduced case too, and in fact the correct defintion here is K−1(X) = K̃−1(X). Furthermore, these
K-groups are Z2 graded, so K2k+i(X) = Ki(X) for all k ∈ Z, and similarly for the reduced K groups. This
gives the following result.

Corollary 5.8. Let X and Y be homotopy equivalent compact spaces, then K1(X) = K1(Y ).

We now briefly discuss some definitions and results regarding equivalent K-theory, before turning our
attention to methods of computation of K-groups. For this part we follow [18, Section 1]. Let G be a group,
we say a topological space X is a G-space if X admits a continuous G-action G × X → X. To begin, we
define a G-vector bundle.

Definition 5.9. Let G be a group, and X a G-space then a G-vector bundle on X is a G-space E together
with a map ρ : E → X such that

• ρ is a G−map, that is, g · ρ(ξ) = ρ(g · ξ) for all g ∈ G, ξ ∈ E.

• ρ : E → X is a vector bundle, in the usual sense.

• for any g ∈ G and x ∈ X the group action g : Ex → Eg·x is a map of vector spaces, where Ey =−1 (y)
for all y ∈ Y .

Now comes a very significant example which will be at the heart of our computations of K-groups of
homogeneous spaces.

Example 5.10. [Homogeneous vector bundles, [18]] Let G be a group, H a closed subgroup (closed in

the topological sense) and let X = G⧸H, the coset space. Let ρ : E → X be a G-vector bundle, and let
E0 =−1 (eH), where eH ∈ X denotes the identity coset. Then one sees that E0 is a H-module, which turns
out to determine E completely.

The action of G on E gives a map α : G×HE0 → E, where G×HE0 is the space of orbits of G×E0 under
the H action given by (h, g, v) 7→ (gh−1, hv). If we define a G-action on G×H E0 by (g, g′, v) 7→ (gg′, v) then
one checks that α is a G-map. In fact, it is a homeomorphism, and we can explicitly construct it’s inverse.
For details see [18].

Conversely, if H is locally compact, and E0 is any H-module, then G×H E0 is a G-vector bundle on X,

thus H-modules are in correspondence with G-vector bundles over X = G⧸H.

Given a group G and a G-space X, we define the G-invariant K-theory of K0
G(X) (or just KG(X), since

we will have no need for high G-invariant K-groups) analogously to how we defined K0(X) of a space X,
except we use G-vector bundles in place of vector bundles.

In particular we have the following result, which follows immediately from example 5.10.

Lemma 5.11. Let G be a group, H ⊂ G a closed subgroup, then

KG

(
G⧸H

)
= R(H)

where R(H) = Z
[
V : V is a finite dimensional representation of H

]
and where V denotes the equivalence

class of V under the relations V ∼ W ⇐⇒ V ∼= W as H-representations and V + W ∼ V ⊕W . In
particular we have

• KG(G) = R
(
{e}
) ∼= Z with an isomorphism given by [V ] 7−→ dim(V ).

• KG

(
{e}
)
= R(G).
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5.2 The Kunneth spectral sequence in equivariant K-theory

We have now defined the K-groups and reduced K-groups for a space X and seen that if two spaces are
homotopy equivalent, then they have the same K-groups. This suggests a way to distinguish between our
homogeneous spaces, however to do this we need a way to compute these groups. This is achieved via the
so-called Kunneth spectral sequence in equivariant K-theory, first discovered by Hodgkin, [7].

We begin by stating the main result, which can be found in [14]. We note that “collapses” here means
that all differentials dr vanish for r ≥ 2.

Theorem 5.12. Let G be a compact connected Lie group such that π1(G) is torsion free and H a closed
subgroup of G, then the spectral sequence

E∗,0
2 = Tor∗R(G)

(
K0

G(G),K
0
G

(
G⧸H

))
= Tor∗R(G)

(
Z̃, R(H)

)
=⇒ K∗

(
G⧸H

)
collapses, where Z̃ is the R(G) module given by action R(G)× Z̃→ Z̃; [V ] · 1 = dim([V ]). We write Z̃ so as
not to confuse it with the trivial module.

By grading considerations we see that

K0
(
G⧸H

)
=
⊕
k=0

E2k,0
2

K1
(
G⧸H

)
=
⊕
k=0

E2k+1,0
2 .

Thus, we wish to compute the Tor groups above, we begin with the definition of a Koszul complex, details
of which can be found in [4]

Definition 5.13. Let R be a commutative ring and M a free R−module of finite rank r. Then given a
R−linear map s : E → R we define the Koszul complex of s as:

K(s) : 0→
r∧
E

Dr−−→
r−1∧

E
Dr−1−−−→ . . .

D2−−→
1∧
E

D1−−→ R→ 0

where Dk(e1 ∧ e2 ∧ ... ∧ ek) =
k∑

i=1

(−1)i+1s(ei)e1 ∧ · · · ∧ ei−1 ∧ ei+1 ∧ · · · ∧ ek.

Note that we have
∧r

E ∼= R,
∧1

E = E and d1 = s.

The following result is a specific case of [Theorem 16.5, [13]].

Proposition 5.14. Let R be a polynomial ring over a ring k with indeterminates x1, ..., xn. Let s : Rn → R
be given by s = (x1, ..., xn), then:

K(x1, ..., xn) := K(s) = 0→
n∧
Rn Dn−−→

n−1∧
Rn Dn−1−−−→ . . .

D2−−→ Rn s−→ R→ 0

is a free resolution of R⧸(x1, ..., xn).

It is well known that for compact simply-connected Lie groups G, the representation ring R(G) is a
polynomial ring in rank(G) indeterminates. Thus, for G = B6, C6 or E6 we have R(G) = Z[x1, ..., x6], where
xi are the fundamental characters and moreover we have R(SL2) = Z[t]. Observe that given a subgroup
H ⊂ G, R(H) is a R(G)−module via restriction, that is

R(G)×R(H)→R(H)

(χ, ψ) 7−→ χ|H · ψ
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where · denotes multiplication of characters in R(H). From now on, G is B6, C6 or E6, and H = SL2. Let
di = dim(xi), the i

th fundamental representation of G, then we have

Z̃ = Z[x1, ..., x6]⧸(x1 − d1, ..., x6 − d6)

as R(G) = Z[x1, ..., x6]−modules. Thus we have a free-resolution of Z̃ given by

0→
6∧
Z[x1, ..., x6]6

D6−−→
5∧
Z[x1, ..., x6]6

D5−−→ . . .
D2−−→ Z[x1, ..., x6]6

D1−−→ Z[x1, ..., x6]→ 0

where D1 = (x1 − d1, ..., x6 − d6) and Z[x1, ..., x6]k :=

k⊕
Z[x1, ..., x6].

We wish to find a canonical way to write the differentials Di, and for this we require a canonical basis of∧k Z[x1, ..., x6]6 as a Z[x1, ..., x6]-module. Firstly, Z[x1, ..., x6]6 has basis {e1, ..., e6}, and in order to use this
to define a canonical basis of the exterior powers we define a lexicographic ordering on the exterior powers.

Definition 5.15. Let ei1 ∧ .... ∧ eik and ej1 ∧ .... ∧ ejk be two elements of
∧k Z[x1, ..., x6]6, we say that

ei1 ∧ .... ∧ eik comes before ej1 ∧ .... ∧ ejk if ei = ji for i < m for some 1 ≤ m ≤ 6, and em < jm.

With this ordering we may give a canonical ordered basis to each exterior power, and this along with the

fact that
∧k Z[x1, ..., x6]6 = Z[x1, ..., x6](

6
k) gives us the following form of the free resolution:

0→ Z[x1, ..., x6]
D6−−→ Z[x1, ..., x6]6

D5−−→ . . .
D3−−→ Z[x1, ..., x6]15

D2−−→ Z[x1, ..., x6]6
D1−−→ Z[x1, ..., x6]→ 0

where, Di is viewed as a
(

6
i−1

)
×
(
6
i

)
matrix, for example

D1 = (x1 − d1, x2 − d2, ..., x6 − d6)

D5 =



x5 − d5 x6 − d6 0 0 0 0
−(x4 − d4) 0 x6 − d6 0 0 0

0 −(x4 − d4) −(x5 − d5) 0 0 0
x3 − d3 0 0 x6 − d6 0 0

0 x3 − d3 0 −(x5 − d5) 0 0
0 0 x3 − d3 x4 − d4 0 0

−(x2 − d2) 0 0 0 x6 − d6 0
0 −(x2 − d2) 0 0 −(x5 − d5) 0
0 0 −(x2 − d2) 0 x4 − d4 0
0 0 0 −(x2 − d2) −(x3 − d3) 0

x1 − d1 0 0 0 0 x6 − d6
0 x1 − d1 0 0 0 −(x5 − d5)
0 0 x1 − d1 0 0 x4 − d4
0 0 0 x1 − d1 0 −(x3 − d3)
0 0 0 0 x1 − d1 x2 − d2


Remark 5.16. One may view the full complex with explicit matrices given for all differentials on SageMath
with the following code. I was unable to name my indeterminates “xi −Di” without returning an error, so
one should read “xi −Di” instead of xi if they run the code below.

#SageMath ve r s i on 9.2
R.<x1 , x2 , x3 , x4 , x5 , x6> = ZZ [ ]
K = KoszulComplex (R, [ x1 , x2 , x3 , x4 , x5 , x6 ] )
a s c i i a r t (K)
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To compute Tor∗R(G)

(
Z̃, R(H)

)
= Tor∗R(G)

(
Z̃,Z[t]

)
, we apply the functor −⊗Z[t] to our free resolution

of Z̃. We observe that (− ⊗ Z[t])(Di) = Di|Z[t], that is, the functor applied to Di can be explicitly viewed
as replacing all xi inside the matrix by xi|Z[t], the restriction of xi to Z[t]. By an abuse of notation, we
also write Di for the restriction Di|Z[t], where there will be no confusion as to whether we mean Di or it’s
restriction. After applying the functor we have

0→ Z[t] D6−−→ Z[t]6 d5−→ . . .
D3−−→ Z[t]15 D2−−→ Z[t]6 D1−−→ Z[t]→ 0

with homology groups E0,0
2 = Z[t]⧸im(D1)

and Ei,0
2 = ker(Di)⧸im(Di+1)

for 1 ≤ i ≤ 6.

5.3 An example of calculating Tor groups and formation of a complex over Z.
We now calculate the Tor groups for a specific orbit to see how the calculation goes. Then compute various
modifications of the Tor groups for orbits in Proposition 4.12 to try distinguish them.

Example 5.17. For our explicit example, we will compute the complex for the Φ : SL2 → B6 with associated
Dynkin diagram △(2, 0, 0, 0, 0, 0). 2 We begin by finding the restriction of the fundamental characters xi of
B6 to SL2, using SageMath or otherwise, one obtains that the first fundamental character x1 is given by

x1 = h−1
1 + h−1

1 h2 + h−1
2 h3 + h−1

3 h4 + h−1
4 h5 + h−1

5 h26 + 1 + h5h
−2
6 + h4h

−1
5 + h3h

−1
4 + h2h

−1
3 + h1h

−1
2 + h1

The weighted Dynkin diagram △(2, 0, 0, 0, 0, 0) tells us how the torus T 1 ⊂ SL2 acts on the roots of B6,
to determine the action on the weights we apply C−1, where C denotes the Cartan matrix of B6, we have

C−1 ·


2
0
0
0
0
0

 =



2 −1 0 0 0 0
−1 2 −1 0 0 0
0 −1 2 −1 0 0
0 0 −1 2 −1 0
0 0 −1 2 −1 0
0 0 0 −1 2 −2
0 0 0 0 −1 2



−1

·


2
0
0
0
0
0

 =


2
2
2
2
2
1

 .

This now gives us a map

T 1 ⊂ SL2 −→ T 6 ⊂ B6

γ 7−→ (γ2, γ2, γ2, γ2, γ2, γ)

which in turn gives us x1|SL2
= γ−2 + 11 + γ2. Now we wish to write x1|SL2

in terms of the fundamental
character t of R(SL2) = Z[t], that is, the character of the fundamental 2 dimensional representation of
SL2. We begin by observing that t = γ + γ−1, and so x1|SL2 = t2 + 9. Next, evaluation of xi(h1, ..., h6) at
(1, 1, 1, 1, 1, 1) will give us the dimension of the character (note that setting γ = 1 or t = 2 in xi|SL2

also
gives the dimension), we obtain d1 = 13. Finally, we get x1 − d1 = t2 − 4. Below is a table giving all xi|SL2

,
Di and factored xi|SL2

−Di for 1 ≤ i ≤ 6, note that t− 2 is always a factor of xi|SL2
−Di, since evaluation

of xi|SL2 at t = 2 is precisely Di.

xi|SL2
Di xi|SL2

−Di

t2 + 9 13 (t− 2)(t+ 2)

11t2 + 34 78 11(t− 2)(t+ 2)

55t2 + 66 286 55(t− 2)(t+ 2)

165t2 + 55 715 165(t− 2)(t+ 2)

330t2 − 33 1287 330(t− 2)(t+ 2)

32t+ 32 64 32(t− 2)

2This orbit was chosen as it is the first on the list of comparisons, it is no easier or harder to compute than any other orbit.
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Thus, we have complex

0→ Z[t] D6−−→ Z[t]6 d5−→ . . .
D3−−→ Z[t]15 D2−−→ Z[t]6 D1−−→ Z[t]→ 0

where the Di are given by substituting expressions for xi|SL2
−Di from the table into the matrices, for

example

d1 =
(
(t− 2)(t+ 2), 11(t− 2)(t+ 2), 55(t− 2)(t+ 2), 165(t− 2)(t+ 2), 330(t− 2)(t+ 2), 32(t− 2)

)
.

In general, since Z[t] is not an Euclidean domain, or even a P.I.D, calculating the homology groups is not
a straightforward task. However, calculating E0,0

2 is usually manageable, albeit not so useful on it’s own. In
this example one sees that

E0,0
2 = Tor0 = Z[t]⧸im(D1)

= Z[t]⧸(32(t− 2), (t− 2)(t+ 2)
).

As alluded to in the example, calculation of the Tor groups over Z[t] would be a messy endeavor, and so
instead we look to modify the complex so as to make the homology groups easier to calculate, whilst still
ensuring that the resulting groups are a homotopy invariant. Our first modification is tensoring the complex

by −⊗Z[t]
Z[t]⧸(t− a), otherwise known as evaluation of the complex at t = a for some a ∈ Z. We observe

that if all Tor groups are isomorphic for two different orbits then their evaluations at any a ∈ Z will be

isomorphic. Letting K∗|t=a := K∗⊗Z[t]⧸(t− a) denote the resulting K-groups after evaluation at t = a, we

have

Lemma 5.18. Let H,H ′ ⊂ G be two copies of SL2 with associated Dynkin Diagrams △ and △′. Then
G⧸H ∼=

G⧸H ′ =⇒ K∗
(
G⧸H

)
∼= K∗

(
G⧸H ′

)
=⇒ K∗

(
G⧸H

)
|t=a
∼= K∗

(
G⧸H ′

)
|t=a for all a ∈ Z.

In particular, if there exists an a ∈ Z such that K∗
(
G⧸H

)
|t=a ̸∼= K∗

(
G⧸H ′

)
|t=a, then G⧸H ̸∼=

G⧸H ′

Remark 5.19. We know that the K-theories are isomorphic as rings, however for the lemma to hold we
would require that the Z[t]−module isomorphism sends t → t, this seems very likely since t represents the
2−dimensional irreducible representation of SL2, so it does hold some concrete significance.

Remark 5.20. Using lemma 5.21 below, which in fact holds for all Dedekind domains, in particular for
Fp[t], for some prime p, one could rephrase the lemma by instead applying − ⊗Z Fp[t], thus only requiring
the isomorphism between K-theories to be one of rings, not of modules. Through good choices of p, one can
arrive at similar conclusions to the ones found in the remainder of this section.

Given a complex 0 → Z[t] D6−−→ Z[t]6 D5−−→ . . .Z[t]6 D1−−→ Z[t] → 0 we write C(t = a) for the complex

0 → Z D6−−→ Z6 D5−−→ . . .Z6 D1−−→ Z → 0 given by evaluating at t = a. Once again, by abuse of notation, we
write Di for Di(t = a). This is a useful construction due to the ease of computing homology groups as given
by the following lemma.

Lemma 5.21. Let K(a1, ..., an), ai ∈ Z denote the Koszul complex of free Z-modules

0→ Z Dn−−→ Zn Dn−1−−−→ Z(
n

n−2) Dn−2−−−→ · · · → Z(
n
2) D2−−→ Zn D1−−→ Z→ 0

with differentials Di given by setting xi = ai in the differentials of K(x1, ..., xn). Setting D0 = Dn+1=0 we
have

ker(Di)⧸im(Di+1)
=

(n−1
i )⊕

j=1

Cgcd(a1,..,an),

the cyclic group of order gcd(a1, .., an), for all 0 ≤ i ≤ n. In particular, when n = 6, K∗|t=a is completely
determined by gcd

(
x1|SL2

− d1, ..., x6|SL2
− d6

)
|t=a.
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Proof. Let P = {p prime : p divides one of the ai}. Given p ∈ P , let Z(p) =
{

a
b ∈ Q : p does not divide b

}
denote the localisation of Z at p. Let K(a1, ..., an;Z(p)) be the Koszul complex over Z(p). It is clear that
for any units ui ∈ Z(p), we have that K(a1, ..., an;Z(p)) and K(u1a1, ..., unan;Z(p)) are quasi-isomorphic
via the obvious chain map, in particular, they share the same homology. Thus, by choosing the ui such
that uiai = pki for some ki, and without loss of generality assuming that k1 ≤ ... ≤ kn, we obtain that
H•
(
K(a1, ..., an;Z(p))

)
= H•

(
K(pk1 , ..., pkn ;Z(p))

)
.

By inspection of the differentials Di, and using that for indeterminates xi, K(x1, ..., xn)is exact to guide
us, we observe that ker(Di) is spanned by the columns of Di+1 containing a “pk1” term, and there are
precisely

(
n−1
i

)
of these, namely the number of ways to choose i values from {pk2 , ..., pkn}. Moreover, if

v ∈ ZN
(p) is such a column, we note that 1

pk1
· v ∈ ZN

(p) is in the kernel of Di.

Combining both of these observations gives us that

ker(Di)⧸im(Di+1)
=

(n−1
i )⊕

i=1

Z(p)⧸pk1Z(p)
=

(n−1
i )⊕

i=1

Z(p)⧸gcd
(
pk1 , ..., pkn

)
Z(p)

.

Finally, a direct sum of these local rings gives us the required result.

Remark 5.22. In fact, this holds for any Dedekind domain, the proof is very similar.

Example 5.23. Returning to our example of calculating the complex associated to the orbit with Dynkin
diagram △(2, 0, 0, 0, 0, 0) of B6, recall that we had

x1|SL2 − d1 = (t− 2)(t+ 2)

x2|SL2 − d2 = 11(t− 2)(t+ 2)

x3|SL2 − d3 = 55(t− 2)(t+ 2)

x4|SL2 − d4 = 165(t− 2)(t+ 2)

x5|SL2 − d5 = 330(t− 2)(t+ 2)

x6|SL2 − d6 = 32(t− 2).

We have

• For t = 2 the complex is C(t = 2) = 0→ Z 0−→ Z6 0−→ . . .Z6 0−→ Z→ 0 and so Ei,0
2 |t=a = Z(

6
i)

• For t = 3 we have

x1|SL2(t = a)− d1 = 3

x2|SL2(t = a)− d2 = 33

x3|SL2(t = a)− d3 = 165

x4|SL2(t = a)− d4 = 495

x5|SL2(t = a)− d5 = 990

x6|SL2(t = a)− d6 = 32.

The complex is C(t = 3) = 0→ Z D6−−→ Z6 D5−−→ . . .Z6 D1−−→ Z→ 0, we have gcd(3, 33, 165, 495, 990, 32) =
1 and so all Tor groups are trivial.

One may compute the homology groups for any K(a1, ..., a6) using Lemma 5.21 or more concretely using
SageMath with

#SageMath ve r s i on 9.2
K = KoszulComplex (ZZ , [ a 1 , . . . , a 6 ] )
K. homology ( )
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With Lemma 5.18 in mind, for each pair of orbits from Proposition 4.12 we look to find a ∈ Z such that

K∗
(
G⧸H

)
|t=a differ, thus showing that the two homogeneous spaces are not homotopy equivalent. One

can verify the following table.

B6 comparisons

Orbits being compared t = a gcd({xi|SL2 − di})
for LHS orbit

gcd({xi|SL2 − di})
for RHS orbit

△(2, 0, 0, 0, 0, 0) and △(0, 0, 0, 1, 0, 0) a = 4 4 8

△(1, 0, 1, 0, 0, 0) and △(0, 0, 0, 0, 0, 1) a = 5 27 9

△(0, 2, 0, 0, 0, 0) and △(1, 0, 0, 0, 1, 0) a = 3 5 1

△(2, 2, 0, 0, 0, 0) and △(0, 2, 0, 1, 0, 0) a = 4 4 8

△(2, 1, 0, 1, 0, 0) and △(0, 2, 0, 0, 0, 1) - - -

△(2, 0, 2, 0, 0, 0) and △(2, 1, 0, 0, 0, 1) a = 3 5 1

△(2, 0, 2, 0, 0, 0) and △(0, 1, 1, 0, 1, 0) a = 3 5 1

△(2, 1, 0, 0, 0, 1) and △(0, 1, 1, 0, 1, 0) a = 5 27 9

△(0, 2, 0, 2, 0, 0) and △(1, 0, 1, 1, 0, 1) a = 4 4 8

Thus, for all pairs of homogeneous spaces of B6 listed in Proposition 4.12, the only pair which cannot be
shown to not be homotopy equivalent via evaluation at t = a for some a ∈ Z is the pair △(2, 1, 0, 1, 0, 0) and
△(0, 2, 0, 0, 0, 1). For C6, from Proposition 4.12 we see that there are two pairs of spaces to compare, and
unfortunately these cannot be distinguished via evaluation at t = a for any t = a. We have a refinement of
Proposition 4.12:

Proposition 5.24. Labelling homogeneous spaces by their associated weighted Dynkin diagram of the sl2
subalgebra we have:

• The only possibility for two homogeneous spaces of B6 to be homotopy equivalent is:

– △(2, 1, 0, 1, 0, 0) and △(0, 2, 0, 0, 0, 1)

• The only possibilities for two homogeneous spaces of C6 to be homotopy equivalent are:

– △(2, 0, 1, 0, 0, 0) and △(0, 1, 0, 0, 1, 0)

– △(2, 1, 0, 0, 0, 0) and △(0, 1, 0, 1, 0, 0)

• No two homogeneous spaces of E6 are homotopy equivalent.

Unfortunately, as remarked, Lemma 5.21 extends to complexes over F[t], for fields F. This, along with
the fact that computing homology of the original Z[t]-complex is much too messy, means that distinguishing
the remaining 3 pairs of homogeneous spaces has not been possible using any methods discussed thus far.
Therefore, despite making significant progress in distinguishing the homogeneous spaces of B6, C6 and E6,
a complete result has not been achieved.
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A Tables for B6, C6 and E6 orbits

B6 orbits

πi(B6)⊗Q =

{
Q i = 3, 7, 11, .., 23

0 otherwise

}
=⇒ πi

(
B6⧸SL2

)
⊗Q =

{
Q i = 7, 11, .., 23

0 otherwise

}

Partition Dynkin diagram

1 2 3 4 5 6

Dynkin index

[13] △(2, 2, 2, 2, 2, 2) 182

[11, 1, 1] △(2, 2, 2, 2, 2, 0) 110

[9, 3, 1] △(2, 2, 2, 0, 2, 0) 62

[9, 2, 2] △(2, 2, 2, 1, 0, 1) 61

[9, 1, 1, 1, 1] △(2, 2, 2, 2, 0, 0) 60

[7, 5, 1] △(2, 0, 2, 0, 2, 0) 38

[7, 3, 3] △(2, 2, 0, 0, 2, 0) 32

[7, 3, 1, 1, 1] △(2, 2, 0, 2, 0, 0) 30

[7, 2, 2, 1, 1] △(2, 2, 1, 0, 1, 0) 29

[7, 1, 1, 1, 1, 1, 1] △(2, 2, 2, 0, 0, 0) 28

[6, 6, 1] △(0, 2, 0, 2, 0, 1) 35

[5, 5, 3] △(0, 2, 0, 0, 2, 0) 22

[5, 5, 1, 1, 1] △(0, 2, 0, 2, 0, 0) 20

[5, 4, 4] △(1, 0, 1, 1, 0, 1) 20

[5, 3, 3, 1, 1] △(2, 0, 0, 2, 0, 0) 14

[5, 3, 2, 2, 1] △(2, 0, 1, 0, 1, 0) 13

[5, 3, 1, 1, 1, 1, 1] △(2, 0, 2, 0, 0, 0) 12

[5, 2, 2, 2, 2] △(2, 1, 0, 0, 0, 1) 12

[5, 2, 2, 1, 1, 1, 1] △(2, 1, 0, 1, 0, 0) 11

[5, 1, 1, 1, 1, 1, 1, 1, 1] △(2, 2, 0, 0, 0, 0) 10
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[4, 4, 3, 1, 1] △(0, 1, 1, 0, 1, 0) 12

[4, 4, 2, 2, 1] △(0, 2, 0, 0, 0, 1) 11

[4, 4, 1, 1, 1, 1, 1] △(0, 2, 0, 1, 0, 0) 10

[3, 3, 3, 3, 1] △(0, 0, 0, 2, 0, 0) 8

[3, 3, 3, 2, 2] △(0, 0, 1, 0, 1, 0) 7

[3, 3, 3, 1, 1, 1, 1] △(0, 0, 2, 0, 0, 0) 6

[3, 3, 2, 2, 1, 1, 1] △(0, 1, 0, 1, 0, 0) 5

[3, 3, 1, 1, 1, 1, 1, 1, 1] △(0, 2, 0, 0, 0, 0) 4

[3, 2, 2, 2, 2, 1, 1] △(1, 0, 0, 0, 1, 0) 4

[3, 2, 2, 1, 1, 1, 1, 1, 1] △(1, 0, 1, 0, 0, 0) 3

[3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] △(2, 0, 0, 0, 0, 0) 2

[2, 2, 2, 2, 2, 2, 1] △(0, 0, 0, 0, 0, 1) 3

[2, 2, 2, 2, 1, 1, 1, 1, 1] △(0, 0, 0, 1, 0, 0) 2

[2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1] △(0, 1, 0, 0, 0, 0) 1

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] △(0, 0, 0, 0, 0, 0) 0

24



C6 orbits

πi(C6)⊗Q =

{
Q i = 3, 7, 11, .., 23

0 otherwise

}
=⇒ πi

(
C6⧸SL2

)
⊗Q =

{
Q i = 7, 11, .., 23

0 otherwise

}

Partition Dynkin diagram

1 2 3 4 5 6

Dynkin index

[12] △(2, 2, 2, 2, 2, 2) 286

[10, 2] △(2, 2, 2, 2, 0, 2) 166

[10, 1, 1] △(2, 2, 2, 2, 1, 0) 165

[8, 4] △(2, 2, 0, 2, 0, 2) 94

[8, 2, 2] △(2, 2, 2, 0, 0, 2) 86

[8, 2, 1, 1] △(2, 2, 2, 0, 1, 0) 85

[8, 1, 1, 1, 1] △(2, 2, 2, 1, 0, 0) 84

[6, 6] △(0, 2, 0, 2, 0, 2) 70

[6, 4, 2] △(2, 0, 2, 0, 0, 2) 46

[6, 4, 1, 1] △(2, 0, 2, 0, 1, 0) 45

[6, 3, 3] △(2, 1, 0, 1, 1, 0) 43

[6, 2, 2, 2] △(2, 2, 0, 0, 0, 2) 38

[6, 2, 2, 1, 1] △(2, 2, 0, 0, 1, 0) 37

[6, 2, 1, 1, 1, 1] △(2, 2, 0, 1, 0, 0) 36

[6, 1, 1, 1, 1, 1, 1] △(2, 2, 1, 0, 0, 0) 35

[5, 5, 2] △(0, 2, 0, 1, 1, 0) 41

[5, 5, 1, 1] △(0, 2, 0, 2, 0, 0) 40

[4, 4, 4] △(0, 0, 2, 0, 0, 2) 30

[4, 4, 2, 2] △(0, 2, 0, 0, 0, 2) 22

[4, 4, 2, 1, 1] △(0, 2, 0, 0, 1, 0) 21

[4, 4, 1, 1, 1, 1] △(0, 2, 0, 1, 0, 0) 20
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[4, 3, 3, 2] △(1, 0, 1, 0, 1, 0) 19

[4, 3, 3, 1, 1] △(1, 0, 1, 1, 0, 0) 18

[4, 2, 2, 2, 2] △(2, 0, 0, 0, 0, 2) 14 -

[4, 2, 2, 2, 1, 1] △(2, 0, 0, 0, 1, 0) 13

[4, 2, 2, 1, 1, 1, 1] △(2, 0, 0, 1, 0, 0) 12

[4, 2, 1, 1, 1, 1, 1, 1] △(2, 0, 1, 0, 0, 0) 11

[4, 1, 1, 1, 1, 1, 1, 1, 1] △(2, 1, 0, 0, 0, 0) 10

[3, 3, 3, 3] △(0, 0, 0, 2, 0, 0) 16

[3, 3, 2, 2, 2] △(0, 1, 0, 0, 1, 0) 11

[3, 3, 2, 2, 1, 1] △(0, 1, 0, 1, 0, 0) 10

[3, 3, 2, 1, 1, 1, 1] △(0, 1, 1, 0, 0, 0) 9

[3, 3, 1, 1, 1, 1, 1, 1] △(0, 2, 0, 0, 0, 0) 8

[2, 2, 2, 2, 2, 2] △(0, 0, 0, 0, 0, 2) 6

[2, 2, 2, 2, 2, 1, 1] △(0, 0, 0, 0, 1, 0) 5

[2, 2, 2, 2, 1, 1, 1, 1] △(0, 0, 0, 1, 0, 0) 4

[2, 2, 2, 1, 1, 1, 1, 1, 1] △(0, 0, 1, 0, 0, 0) 3

[2, 2, 1, 1, 1, 1, 1, 1, 1, 1] △(0, 1, 0, 0, 0, 0) 2

[2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] △(1, 0, 0, 0, 0, 0) 1

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] △(0, 0, 0, 0, 0, 0) 0
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E6 orbits

πi(E6)⊗Q =

{
Q i = 3, 9, 11, 15, 17, 23

0 otherwise

}
=⇒ πi

(
E6⧸SL2

)
⊗Q =

{
Q i = 9, 11, 15, 17, 23

0 otherwise

}

Orbit name Dynkin diagram

1

2

3 4 5 6

Dynkin index

E6 △(2, 2, 2, 2, 2, 2) 156

E6(a1) △(2, 2, 2, 0, 2, 2) 84

D5 △(2, 2, 0, 2, 0, 2) 60

E6(a3) △(2, 0, 0, 2, 0, 2) 36

D5(a1) △(1, 2, 1, 0, 1, 1) 30

A5 △(2, 1, 1, 0, 1, 2) 35

A4 +A1 △(1, 1, 1, 0, 1, 1) 21

D4 △(0, 2, 0, 2, 0, 0) 28

A4 △(2, 2, 0, 0, 0, 2) 20

D4(a1) △(0, 0, 0, 2, 0, 0) 12

A3 +A1 △(0, 1, 1, 0, 1, 0) 11

2A2 +A1 △(1, 0, 0, 1, 0, 1) 9

A3 △(1, 2, 0, 0, 0, 1) 10

A2 + 2A1 △(0, 0, 1, 0, 1, 0) 6

2A2 △(2, 0, 0, 0, 0, 2) 8

A2 +A1 △(1, 1, 0, 0, 0, 1) 5

A2 △(0, 2, 0, 0, 0, 0) 4

3A1 △(0, 0, 0, 1, 0, 0) 3

2A1 △(1, 0, 0, 0, 0, 1) 2

A1 △(0, 1, 0, 0, 0, 0) 1

0 △(0, 0, 0, 0, 0, 0) 0

27



B Code

Unless stated otherwise, all code should be executed in SageMath (version 9.2).

B.1 Main code - finding the SL2 restricted polynomials for any orbit

This may be found at https://github.com/DylanJohnston. Note that this code works for all compact
simple Lie groups G, and any orbit/weighted Dynkin diagram, not just B6, C6 and E6.

B.2 Koszul complex

To find the Koszul complex K(x1, x2, ...x6) use the below code, to find the complex in a different amount of
variables, add or remove variables on both the first and second line.

#ve r s i on 9 .2
R.<x1 , x2 , x3 , x4 , x5 , x6> = ZZ [ ]
K = KoszulComplex (R, [ x1 , x2 , x3 , x4 , x5 , x6 ] )
a s c i i a r t (K)

B.3 Calculating Homology from complex over the integers.

First define a complex over the integers, for example.

K = KoszulComplex (R, [ 2 , 4 , 6 ] )
a s c i i a r t (K)

Output:

[−4 −6 0 ] [ 6 ]
[ 2 0 −6] [−4]

[ 2 4 6 ] [ 0 2 4 ] [ 2 ]
0 <−− C 0 <−−−−−−−− C 1 <−−−−−−−−−−− C 2 <−−−−− C 3 <−− 0

Now to calculate homology:

K. homology ( )

Output:

{0 : C2 , 1 : C2 x C2 , 2 : C2 , 3 : 0}

Remark B.1. One notices that homology groups only consist of copies of Cgcd(2,4,6) = C2.
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