EXERCISES FOR MA4J7 ALGEBRAIC TOPOLOGY II

WEEK 2

(1) Fix an abelian group G and let $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ be a short exact sequence of abelian groups. For any C, show that

$$
0 \rightarrow \operatorname{Hom}(C, G) \rightarrow \operatorname{Hom}(B, G) \rightarrow \operatorname{Hom}(A, G)
$$

is exact. (Compare with last week's exercise, where you assumed C is free).
(2) (a) Verify that a chain map $f: C \rightarrow C^{\prime}$ induces a homomorphism $H^{k}\left(C^{\prime} ; G\right) \rightarrow$ $H^{k}(C ; G)$.
(b) Show that if f and g are chain homotopic chain maps, they induce the same map on cohomology.
(3) Hatcher, Exercises 5 and 6, p. 205 (after Section 3.1).

