THE UNIVERSITY OF WARWICK

THIRD YEAR EXAMINATION: MAY 2016

ALGEBRAIC TOPOLOGY - MA3H60

Time Allowed: $\mathbf{3}$ hours
Read carefully the instructions on the answer book and make sure that the particulars required are entered on each answer book.

Calculators are not needed and are not permitted in this examination.

Candidates should answer COMPULSORY QUESTION 1 and THREE QUESTIONS out of the four optional questions $2,3,4$ and 5 .

The compulsory question is worth 40% of the available marks. Each optional question is worth 20%.

If you have answered more than the compulsory Question 1 and three optional questions, you will only be given credit for your QUESTION 1 and THREE OTHER best answers.

The numbers in the margin indicate approximately how many marks are available for each part of a question.

COMPULSORY QUESTION

1. a) Suppose that the map $f: S^{n} \rightarrow X$ extends to a map $F: D^{n+1} \rightarrow X$. Show that $f_{*}: \tilde{H}_{n}\left(S^{n}\right) \rightarrow \tilde{H}_{n}(X)$ is the zero map.
b) Let X be a torus with the interiors of two small disjoint discs removed, and let ∂X denote the union of the two circular boundaries of the discs. What is $H_{1}(X, \partial X)$? Make a drawing showing a minimal set of generators for this homology group. Do not justify your answer.
c) Let A_{\bullet} and B_{\bullet} be chain complexes, and let $f, g: A_{\bullet} \rightarrow B$ • be morphisms of chain complexes. What does it mean to say that f and g are chain-homotopic? Show that if f and g are chain homotopic then $f_{*}: H_{k}\left(A_{\bullet}\right) \rightarrow H_{k}\left(B_{\bullet}\right)$ and $g_{*}: H_{k}\left(A_{\bullet}\right) \rightarrow H_{k}\left(B_{\bullet}\right)$ are equal.
(i) State the excision property of homology
(ii) Let X be an n-dimensional manifold and $x \in X$. Use excision (with other techniques) to calculate $H_{n}(X, X-x)$.
(iii) Let X be the cone $\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}-z^{2}=0\right\}$. Compute the local
homology group $H_{2}(X, X-\{(0,0,0)\})$.
(iv) Show that the space X from (iii) X is not a 2-dimensional manifold.
e) Suppose that f and g are loops in X based at x_{0}, and suppose that they are end-point-preserving homotopic. Show that, considered as members of $C_{1}(X)$, they are homologous (they differ by a boundary).
f) It was shown in lectures that $\mathbb{R P}^{n}$ has a CW structure consisting of one k-cell for

$$
0 \longrightarrow \mathbb{Z} \xrightarrow{d_{n}} \mathbb{Z} \xrightarrow{d_{n-1}} \cdots \longrightarrow \mathbb{Z} \xrightarrow{d_{1}} \mathbb{Z} \longrightarrow 0
$$

$d_{k}=0$ when k is odd or $k=0$ and d_{k} is multiplication by 2 when $k>0$ is even. Use this to calculate $H_{*}\left(\mathbb{R} \mathbb{P}^{4}\right)$ and $H_{*}\left(\mathbb{R P}^{5}\right)$.

Abstract

each value of k between 0 and n, and that in the resulting cellular chain complex

Suppose that the diagram of abelian groups and homomorphisms

is commutative, with ϕ and ψ isomorphisms. Show that coker $f \simeq \operatorname{coker} g$.
h) Let X be a path-connected space. Suppose that $\varphi_{i}: S^{n-1} \rightarrow X, i=1, \ldots, k$, are homeomorphisms onto their images in X, which are disjoint from one another. Let Y be the space obtained from X by gluing in k copies of D^{n} using these maps. If Y is contractible, what can you say about the homology of X ? Justify your answer.

OPTIONAL QUESTIONS

2. a) What is meant by the degree of a map $S^{n} \rightarrow S^{n}$? State the degree of
(i) the map $r: S^{n} \rightarrow S^{n}$ defined by reflection in a hyperplane
(ii) the map $f_{A}: S^{n} \rightarrow S^{n}$ defined by $f_{A}(x)=A(x) /\|A(x)\|$, where $A: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n+1}$ is a linear isomorphism.

Justify your answers.
b) Let $f: S^{n} \rightarrow S^{n}$ be a map, and suppose that $f^{-1}(y)=\left\{x_{1}, \ldots, x_{m}\right\}$ with $m<\infty$.
(i) Define the local degree of f at x_{i}, denoted by $\left.\operatorname{deg}(f)\right|_{x_{i}}$, carefully justifying the steps in your definition.
(ii) State (without proof) the relation between $\operatorname{deg}(f)$ and the local degrees $\left.\operatorname{deg}(f)\right|_{x_{i}}$.
c) The following diagram shows the image of a map $f: S^{1} \rightarrow \mathbb{R}^{2}$, with an arrow indicating the image under $f_{\#}$ of a generator of $H_{1}\left(S^{1}\right)$. It also shows S^{1} with another arrow indicating a generator of $H_{1}\left(S^{1}\right)$.

Let $r: \mathbb{R}^{2} \backslash\{0\} \rightarrow S^{1}$ be radial projection, and let $g=r \circ f$. What is the degree of g ? Make a drawing and use it to illustrate your answer.
3. a) Write down the long exact sequence of homology resulting from a short exact sequence of complexes $0 \longrightarrow A_{\bullet} \xrightarrow{i} B_{\bullet} \xrightarrow{j} C \bullet 0$
b) Explain the construction of the connecting homomorphism in this long exact sequence, and prove exactness of the sequence at the target of the connecting homomorphism.
c) Suppose that (X, A, B) is a triple. What is the long exact sequence of homology associated with the triple? What short exact sequence of complexes gives rise to it?
d) Given a commutative diagram of abelian groups and homomorphisms with exact rows,

show that there is an exact sequence
$0 \longrightarrow \operatorname{ker} f_{1} \longrightarrow \operatorname{ker} f_{2} \longrightarrow \operatorname{ker} f_{3} \longrightarrow \operatorname{coker} f_{1} \longrightarrow \operatorname{coker} f_{2} \longrightarrow \operatorname{coker} f_{3} \longrightarrow 0$.
e) Given a commutative diagram of abelian groups and homomorphisms

in which all three columns, and the first two rows, are exact, and the third row is a complex, show that in fact the third row is exact.
4. a) Describe a CW complex structure on the n-sphere S^{n}.
b) Let X be a CW complex. What is the cellular chain complex $C_{\bullet}^{C W}(X)$? Explain what are the groups and what is the differential.
c) The Klein bottle K is the quotient of the square with opposite edges identified as shown.

Find a CW structure on K, and use cellular homology to calculate the homology of K, carefully explaining your calculation.
d) Let M_{2} be the genus 2 oriented compact surface without boundary. In the following three pictures, the first shows curves $a_{1}, b_{1}, a_{2}, b_{2}$ whose homology classes give a basis for $H_{1}\left(M_{2}\right)$, and the second and third show three curves representing other homology classes.

Express $[c],[d]$ and $[e]$ as linear combinations of $\left[a_{1}\right],\left[b_{1}\right],\left[a_{2}\right],\left[b_{2}\right]$, justifying your answer with the help of suitable drawings.
5. a) Let X be the graph shown in the following diagram.

(i) Calculate the Euler characteristic $\chi(X)$.
(ii) Calculate $H_{1}(X)$ by any method you choose, briefly explaining your procedure, and give a basis for $H_{1}(X)$.
(iii) Let $f_{1}: X \rightarrow X, f_{2}: X \rightarrow X$ be anticlockwise rotation through π about the
centre O and reflection in the vertical line through the centre, respectively. Write down the matrices of $f_{1 *}: H_{1}(X) \rightarrow H_{1}(X)$ and $f_{2 *}: H_{1}(X) \rightarrow H_{1}(X)$ with respect to your chosen basis.
b) Let Y be the space obtained from S^{3} by identifying all pairs of antipodal points on
the equator $E:=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in S^{3}: x_{4}=0\right\}$. Calculate $H_{*}(Y)$. [Suggestion: Let Y_{+}and Y_{-}be the images in Y of the upper and lower hemispheres of S^{3}. Each is homeomorphic to $\mathbb{R P}^{3}$.]

MATHEMATICS DEPARTMENT

THIRD YEAR UNDERGRADUATE EXAMS - MAY 2016

Course Title: ALGEBRAIC TOPOLOGY - MA3H60

Model Solution No: 1
a), (c),(d)(i)(ii),(e),(f) are bookwork; (b) is unseen but close to a course exercise; (e)(iv) is a course exercise; (g) is material covered in lectures; (h) is unseen.
a) As $f=F \circ i$ so $f_{*}=F_{*} \circ i_{*}$. As $H_{n}\left(D^{n+1}\right)=0, i_{*}=0$ and so $f_{*}=0$.
b) $H_{1}(X, \partial X) \simeq \mathbb{Z}^{3}$. Generators are e.g. generators of $H_{1}\left(T^{2}\right)$ and a path from one boundary component to the other.
c) f and g are chain homotopic if there exists a collection of linear maps $h_{i}: B_{i} \rightarrow A_{i+1}$ such that $\partial h+h \partial=f-g$. If f and g are chain homotopic then given $a_{n} \in Z_{n}\left(A_{\bullet}\right)$, we have

$$
f\left(a_{n}\right)-g\left(a_{n}\right)=\partial h_{n}\left(a_{n}\right)+h_{n-1}\left(\partial a_{n}\right)=\partial h_{n}\left(a_{n}\right) .
$$

That is, $f\left(a_{n}\right)$ and $g\left(a_{n}\right)$ differ by a boundary. Thus $f_{*}\left(\left[a_{n}\right]\right)=g_{*}\left(\left[a_{n}\right]\right)$.
d) (i) Excision: If $\bar{Z} \subset \AA$ then the inclusion $(X-Z, A-Z) \rightarrow(X, A)$ induces an isomorphism $H_{n}(X-Z, A-Z) \rightarrow H_{n}(X, A)$.
(ii) Application: x has a neighbourhood U homeomorphic to a ball. The inclusion $(U, U-x) \rightarrow(X, X-x)$ induces an isomorphism $H_{n}(U, U-x) \rightarrow H_{n}(X, X-x)$ by excision - we are excising $X-U$, which is contained in the interior of $X-x$. The l.e.s. of reduced homology of the pair $(U, U-x)$ shows $H_{n}(U, U-x) \simeq H_{n-1}(U-x)$, as U is contractible. As $U-x$ is homotopy equivalent to $S^{n-1}, H_{n}(U, U-x)=$ $H_{n-1}(U-x)=\mathbb{Z}$.
(iii) As the cone is contractible, the boundary map in the l.e.s. of the pair ($X, X-x$) shows $H_{2}(X, X-x) \simeq H_{1}(X-x)$. Now $X-x$ consists of two path components, each homotopy equivalent to a circle. So $H_{2}(X, X-x) \simeq H_{1}\left(S^{1}\right) \oplus H_{1}\left(S^{1}\right) \simeq \mathbb{Z}^{2}$.
(iii) It follows that X is not a 2-manifold, since $H_{2}(X, X-x) \neq \mathbb{Z}$.
e) Let $F:[0,1] \times[0,1] \rightarrow X$ be an end-point-preserving homotopy. Define a singular 2-chain c_{2} in X by $c_{2}=F_{\#}([A, B, C]-[A, D, C])$. Then

$$
\begin{gathered}
\partial c_{2}=F_{\#}[B, C]-F_{\#}[A, C]+F_{\#}[A, B]-F_{\#}[D \cdot C]+F_{\#}[A, C]-F_{\#}[A, D] \\
=F_{\#}[B, C]+f-g-F_{\#}[A, D] .
\end{gathered}
$$

Now $F_{\#}[B, C]$ and $F_{\#}[A, D]$ are both constant 1-simplices, and therefore boundaries (they lie in the chain complex of a point). Hence $f-g$ is a boundary.
f) For $\mathbb{R} \mathbb{P}^{3}$ the chain complex is

$$
0 \longrightarrow \mathbb{Z} \xrightarrow{0} \mathbb{Z} \xrightarrow{2} \mathbb{Z} \xrightarrow{0} \mathbb{Z} \longrightarrow 0
$$

so

$$
H_{3}\left(\mathbb{R P}^{3}\right)=\mathbb{Z}, H_{2}\left(\mathbb{R P}^{3}\right)=0, H_{1}\left(\mathbb{R} \mathbb{P}^{3}\right)=\mathbb{Z} / 2 \mathbb{Z}, H_{0}\left(\mathbb{R} \mathbb{P}^{3}\right)=\mathbb{Z}
$$

For $\mathbb{R P}^{4}$ the chain complex is

$$
0 \longrightarrow \mathbb{Z} \xrightarrow{2} \mathbb{Z} \xrightarrow{0} \mathbb{Z} \xrightarrow{2} \mathbb{Z} \xrightarrow{0} \mathbb{Z} \longrightarrow 0
$$

so

$$
H_{4}\left(\mathbb{R} \mathbb{P}^{4}\right)=0, H_{3}\left(\mathbb{R} \mathbb{P}^{4}\right)=\mathbb{Z} / 2 \mathbb{Z}, H_{2}\left(\mathbb{R} \mathbb{P}^{4}\right)=0, H_{1}\left(\mathbb{R} \mathbb{P}^{4}\right)=\mathbb{Z} / 2 \mathbb{Z}, H_{0}\left(\mathbb{R} \mathbb{P}^{4}\right)=\mathbb{Z}
$$

g) Define $\bar{\phi}: \operatorname{coker} B \rightarrow \operatorname{coker} D$ by $\bar{\phi}(b+f(A))=\phi(b)+g(C)$.

This is well defined because $b \in f(A) \Longrightarrow \exists a \in A$ s.t. $f(a)=b \quad \Longrightarrow \quad \phi(b)=$ $\phi(f(a))=g(\psi(a))$ so that $\phi(b)+g(C)=0$.
It is injective because $\bar{\phi}(b+f(A))=0 \Longrightarrow \phi(b) \in g(C) \Longrightarrow \exists c \in C$ s.t. $g(c)=$ $\phi(b) \Longrightarrow b=f\left(\psi^{-1}(c)\right)$.
It is surjective because φ is.
It is a homomorphism:

$$
\begin{gathered}
\bar{\phi}\left(\left(b_{1}+f(A)\right)+\left(b_{2}+f(A)\right)=\bar{\phi}\left(b_{1}+b_{2}+f(A)=\phi\left(b_{1}\right)+\phi\left(b_{2}\right)+g(C)=\right.\right. \\
=\left(\phi\left(b_{1}\right)+g(C)\right)+\left(\phi\left(b_{2}\right)+g(C)\right)=\bar{\phi}\left(b_{1}+f(A)\right)+\bar{\phi}\left(b_{2}+f(A)\right)
\end{gathered}
$$

h) Mayer Vietoris for reduced homology: take $A=X, B=\coprod_{i=1}^{k} D^{n}$, so $A \cup B=Y, A \cap$ $B=\coprod_{i=1}^{k} S^{n-1}$. As $\tilde{H}_{i}(Y)_{\tilde{H}}=0$ for all i and $\tilde{H}_{i}(B)=0$ for $i>0$, the connecting homomorphism $\tilde{H}_{i}(X) \rightarrow \tilde{H}_{i-1}(A \cap B)$ in Mayer-Vietoris is an isomorphism for $\mathrm{i}_{\mathrm{i}} 1$. It is also an isomorphism for $i=1$, since moreover $\tilde{H}_{0}\left(\coprod_{i=1}^{k} S^{n-1}\right) \rightarrow \tilde{H}_{0}(X) \oplus$ $\tilde{H}_{0}\left(\coprod_{i=1}^{k} D^{n}\right)$ is injective. And $\tilde{H}_{0}(X)=0$ since X is path connected. Thus

$$
\tilde{H}_{i}(X)=\left\{\begin{aligned}
\mathbb{Z}^{k} & \text { if } k=n \\
0 & \text { otherwise }
\end{aligned}\right.
$$

MATHEMATICS DEPARTMENT
 THIRD YEAR UNDERGRADUATE EXAMS - MAY 2016

Course Title: ALGEBRAIC TOPOLOGY - MA3H60

Model Solution No: 2
(a) and (a)(i) are bookwork. (a)(ii) is course exercise. (b) is bookwork. (c) is unseen but similar to example done in class.
a) A map $f: S^{n} \rightarrow S^{n}$ induces a homomorphism $f_{*}: H_{n}\left(S^{n}\right) \rightarrow H_{n}\left(S^{n}\right)$. Conjugating by an isomorphism $H_{n}\left(S^{n}\right) \simeq \mathbb{Z}, f_{*}$ corresponds to a homomorphism $\mathbb{Z} \rightarrow \mathbb{Z}$, which must be multiplication by an integer. This integer is the degree of f. Because the two possible isomorphisms $H_{n}\left(S^{n}\right) \simeq \mathbb{Z}$ differ only by a sign, $\operatorname{deg} f$ is independent of the choice of isomorphism.
(i) S^{n} is homeomorphic to the union of two standard n-simplices σ_{1} and σ_{2}, glued along their common boundary. The mapping r interchanges them. $H_{n}\left(S^{n}\right)$ is generated by the class of $\sigma_{1}-\sigma_{2}$. Thus $r_{\#}\left(\sigma_{1}-\sigma_{2}\right)=\sigma_{2}-\sigma_{1}$ so $\operatorname{deg} r=-1$.
(ii) By the row operations of adding multiples of one row to another, and multiplying a row by a positive scalar, a real invertible matrix A can be reduced to a diagonal matrix B with 1's and -1 's along the diagonal. These row operations are homotopic to the identity map, so the resulting maps $f_{A}: S^{n} \rightarrow S^{n}$ and $f_{B}: S^{n} \rightarrow S^{n}$ are homotopic also, and so have the same degree. Moreover since A is deformed to B through a family of invertible matrices, $\operatorname{det} A$ and $\operatorname{det} B$ have the same sign. The map $f_{B}: S^{n} \rightarrow S^{n}$ is the composite of k reflections in hyperplanes, where k is the number of -1 's on the diagonal of B. Thus

$$
\operatorname{deg}\left(f_{A}\right)=(-1)^{k}=\left\{\begin{array}{cl}
1 & \text { if } k \text { is even } \\
-1 & \text { if } k \text { is odd }
\end{array}=\left\{\begin{array}{cl}
1 & \text { if } \operatorname{det} A>0 \\
-1 & \text { if } \operatorname{det} A<0
\end{array}\right.\right.
$$

b) (i) The local degree at x is defined as follows. Pick a neighbourhood V of y and neighbourhood U of x such that $f(U) \subset V$ and x is the only point of $f^{-1}(y)$ in U. Then f induces a map of pairs $(U, U-x) \rightarrow(V, V-y)$ and therefore a homomorphism $f_{*}: H_{n}(U, U-x) \rightarrow H_{n}(V, V-y)$. Each of these two groups is canonically isomorphic to $H_{n}\left(S^{n}\right)$, from which it follows that f_{*} is conjugate to multiplication by an integer. This integer is $\left.\operatorname{deg} f\right|_{x}$.
The canonical isomorphisms are as follows:

- by excision, $(U, U-x) \rightarrow\left(S^{n}, S^{n}-x\right)$ induces an isomorphism $H_{n}(U, U-$ $x) \rightarrow H_{n}\left(S^{n}, S^{n}-x\right)$.
- $S^{n}-x$ is contractible, so in the long exact sequence of reduced homology of the pair $\left(S^{n}, S^{n}-x\right)$, the morphism $H_{n}\left(S^{n}\right) \rightarrow H_{n}\left(S^{n}, S^{n}-x\right)$ is an isomorphism.
- Both these isomorphisms are induced by inclusions, so are independent of any choices. Thus $H_{n}(U, U-x) \simeq H_{n}\left(S^{n}\right)$ independent of choices. Similarly $H_{n}(V, V-y) \simeq H_{n}\left(S^{n}\right)$.
(ii) If y has $m<\infty$ distinct preimage points x_{i} then $\operatorname{deg} f=\left.\sum_{i} \operatorname{deg} f\right|_{x_{i}}$.
c)

$g^{-1}(y)=\left\{x_{1}, x_{2}, x_{3}\right\}$. We have $\left.\operatorname{deg} g\right|_{x_{1}}=-1, \operatorname{deg} g_{x_{2}}=\left.\operatorname{deg} g\right|_{x_{3}}=1$ so $\operatorname{deg} g=$ $-1+1+1=1$.

MATHEMATICS DEPARTMENT

THIRD YEAR UNDERGRADUATE EXAMS - MAY 2016
Course Title: ALGEBRAIC TOPOLOGY - MA3H60
Model Solution No: 3
(a), (b), (c) are bookwork. (d) and (e) are unseen, though (e) is in the textbook.
a) The l.e.s. is

b) Given a homology class in $H_{n}\left(C_{\bullet}\right)$, pick a cycle $c_{n} \in C_{n}\left(C_{\bullet}\right)$ representing it. By exactness of the s.e.s., $j_{n}: B_{n} \rightarrow C_{n}$ is surjective so there exists $b_{n} \in B_{n}$ mapping to c_{n}. By commutativity, $j_{n-1} \partial b_{n}=\partial j_{n} b_{n}=\partial c_{n}=0$ so by exactness, $\partial b_{n}=$ $i_{n-1}\left(a_{n-1}\right)$ for some a_{n-1}. Then a_{n-1} is a cycle. Define $\partial\left[c_{n}\right]=\left[a_{n-1}\right]$.
We have to show exactness at $H_{n-1}\left(A_{\bullet}\right)$. We have $i_{*} \partial\left[c_{n}\right]=i_{*}\left(\left[a_{n-1}\right]\right)$ where a_{n-1} is chosen as described above. But by construction, $i\left(a_{n-1}\right)=\partial b_{n}$, so is zero in homology. Conversely, if a_{n-1} is a cycle and $i_{*}\left[a_{n-1}\right]=0$ in $H_{n-1}\left(B_{\bullet}\right)$, then $i\left(a_{n-1}\right)=\partial b_{n}$ for some $b_{n} \in B_{n}$. Then $\left[a_{n-1}\right]=\partial\left[j b_{n}\right]$ according to the definition of ∂ above.
c) There is a l.e.s.

coming from the s.e.s. of complexes

$$
0 \longrightarrow \frac{C \bullet(A)}{C \bullet(B)} \longrightarrow \frac{C \bullet(X)}{C \bullet(B)} \longrightarrow \frac{C \bullet(X)}{C \bullet(A)} \longrightarrow 0
$$

d) Expand the diagram to

Then each column becomes a complex, and the diagram becomes a s.e.s of complexes. Indexing these complexes so that the A_{i} have index 1 and the B_{i} have index 0 , the homology of the i 'th column is $H_{1}=\operatorname{ker} f_{i}, H_{0}=\operatorname{coker} f_{i}$. So the l.e.s. we are asked for is simply the l.e.s. of homology coming from the s.e.s. of complexes (1).
e) The diagram is a s.e.s of complexes $0 \rightarrow A_{\bullet} \rightarrow B_{\bullet} \rightarrow C_{\bullet} \rightarrow 0$. Because the first two rows are exact, the homology of A_{\bullet} and B_{\bullet} is 0 , so in the l.e.s. of homology resulting from the s.e.s., the only possibly non-zero terms are the $H_{i}\left(C_{\bullet}\right)$. But each of these is flanked by 0 's, so $H_{i}\left(C_{\bullet}\right)=0$ also, i.e. the complex C_{\bullet} is exact.

MATHEMATICS DEPARTMENT

THIRD YEAR UNDERGRADUATE EXAMS - MAY 2016

Course Title: ALGEBRAIC TOPOLOGY - MA3H60

Model Solution No: 4
(a)(b) are bookwork, (c) was covered in class, (d) is unseen though close to class exercises.
a) S^{n} has CW structure with one vertex and one n-cell, glued to the vertex by the constant map on its boundary.
b) The cellular chain complex is the complex $\cdots \longrightarrow H_{n}\left(X^{n}, X^{n-1}\right) \xrightarrow{d_{n}} H_{n-1}\left(X^{n-1}, X_{n-2}\right)^{d_{n-1}} \cdots \longrightarrow H_{1}\left(X^{1}, X^{0}\right) \xrightarrow{d_{1}} H_{0}\left(X^{0}\right) \longrightarrow 0$. The differential d_{n} is the composite of the differential

$$
\partial: H_{n}\left(X^{n}, X^{n-1}\right) \rightarrow H_{n-1}\left(X^{n-1}\right)
$$

in the l.e.s. of homology of the pair $\left(X^{n}, X^{n-1}\right)$ with the morphism

$$
H_{n-1}\left(X^{n-1}\right) \rightarrow H_{n-1}\left(X^{n-1}, X^{n-2}\right)
$$

in the l.e.s. of homology of the pair $\left(X^{n-1}, X^{n-2}\right)$.
c) The identifications indicated in the diagram identify the four edges in two pairs, and identifies all vertices to one. So there is a CW structure with one 0-cell, two 1 -cells and one 2 -cell. Thus the cellular chain complex

$$
0 \longrightarrow H_{2}\left(K, K^{1}\right) \xrightarrow{d_{2}} H_{1}\left(K^{1}, K^{0}\right) \xrightarrow{d_{1}} H_{0}\left(K^{0}\right) \longrightarrow 0
$$

is

$$
0 \rightarrow \mathbb{Z} \rightarrow \mathbb{Z}^{2} \rightarrow \mathbb{Z} \rightarrow 0
$$

Taking as generators of $H^{1}\left(K^{1}, K^{0}\right)$ the two loops a and b, the boundary map $H_{2}\left(K^{2}, K^{1}\right)$ maps the generator e^{2} to $0 a+2 b$, since the two vertical edges in the diagram traverse b in the same direction whereas the two horizontal edges traverse a in opposite directions. Hence the differential d_{2} has matrix $\binom{0}{2}$. Thus d_{2} is injective and $H_{2}(K)=0$. The differential d_{1} must be 0 , since both ends of each edge glue to the unique vertex in K^{0}. So

$$
H_{1}(K)=H_{1}\left(K^{1}, K^{0}\right) / d_{2}\left(H_{2}\left(K, K^{1}\right)\right)=\mathbb{Z}^{2} /\left\langle\binom{ 0}{2}\right\rangle=\mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}
$$

d) The loop c is the boundary of the right-hand component of its complement in M_{2}. Thus $[c]=0$. Then $d=b_{1}-c$ so $[d]=\left[b_{1}\right]$.

The loops b_{1} and b_{2} can be homotoped to contain the segment $B A$ and $D C$ as shown. Then up to homotopy $b_{1}+b_{2}+\partial([B, D, A]-[B, D, C])$ is the loop e shown. So $[e]=\left[b_{1}\right]+\left[b_{2}\right]$.

MATHEMATICS DEPARTMENT

THIRD YEAR UNDERGRADUATE EXAMS - MAY 2016
Course Title: ALGEBRAIC TOPOLOGY - MA3H60
Model Solution No: 5
(a) is unseen, (b) is unseen.
a) (i) X is a graph with 5 vertices and 8 edges. So $\chi(X)=5-8=-3$.
(ii) As X is connected, $H_{0}(X)=\mathbb{Z}$ and so it follows that $H_{1}(X)$ has rank 4. Give X a Δ-complex structure with 0 -simplices O, A, B, C, D, and 1-simplices a, b, c, d, p, q, r, s, oriented as shown. Then $H_{1}(X)$ has basis the classes $z_{1}=$ $[p+a-q], \quad z_{2}=[q+b-r], \quad z_{3}=[r+c-s], \quad z_{4}=[s+d-p]$.

We have

$$
f_{1 \#}\left(z_{1}\right)=z_{3}, \quad f_{1 \#}\left(z_{2}\right)=z_{4}, \quad f_{1 \#}\left(z_{3}\right)=z_{1}, \quad f_{1 \#}\left(z_{4}\right)=z_{2}
$$

so the matrix of $f_{1 *}$ with respect to the chosen basis is

$$
\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1
\end{array}\right)
$$

For any 1-simplex σ, if we define $r:[0,1] \rightarrow[0,1]$ by $r(t)=1-t$ then $\sigma \circ r$ is homologous to $-\sigma$. Hence,

$$
f_{2 *}\left(z_{1}\right)=-z_{2}, \quad f_{2 *}\left(z_{2}\right)=-z_{1}, \quad f_{2 *}\left(z_{3}\right)=-z_{4}, \quad f_{*}\left(z_{4}\right)=-z_{3}
$$

and so $f_{2 *}$ has matrix

$$
\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

b) Each of Y_{+}and Y_{-}is homeomorphic to \mathbb{R}^{3}. Use Mayer Vietoris for reduced homology. We have $Y_{1} \cup Y_{2}=Y, Y_{1} \cap Y_{2}=\mathbb{R} \mathbb{P}^{2}$, so it gives

which is

So $H_{3}(Y) \simeq \mathbb{Z}^{2}$.
To calculate $H_{2}(Y)$ and $H_{1}(Y)$, we use the result that if X is a CW complex with k-skeleton X^{k} then the inclusion $X^{k} \hookrightarrow X$ induces isomorphisms on H_{i} for $i<k$. As $\mathbb{R} \mathbb{P}^{2}$ is the 2-skeleton of both copies of $\mathbb{R} \mathbb{P}^{3}\left(Y_{+}\right.$and $\left.Y_{-}\right)$, so $H_{1}\left(\mathbb{R} \mathbb{P}^{2}\right) \rightarrow H_{1}\left(Y_{+}\right)$ and $H_{1}\left(\mathbb{R P}^{2}\right) \rightarrow H_{1}\left(Y_{-}\right)$are isomorphisms. Thus the first arrow in the penultimate row is injective, and $H_{2}(Y)=0$. Finally the last rows become

$$
0 \longrightarrow \mathbb{Z} / 2 \mathbb{Z} \xrightarrow{\binom{1}{1}}(\mathbb{Z} / 2 \mathbb{Z})^{2} \longrightarrow H_{1}(Y) \longrightarrow 0
$$

so $H_{1}(Y)=\mathbb{Z} / 2 \mathbb{Z}$. Since Y is conncted, $H_{0}(Y) \simeq \mathbb{Z}$.

