Lecture 2

Lost time we introduced two models for
automorphisms of free groups, haved on two
spaces
(D)
$$X = finite connected graph with $\pi(X) \cong F_n$
Aut(F_n) = $\pi_0 HE(X, L)$ Z Exercise, shetch
Out(F_n) = $\pi_0 HE(X)$ Z in notes from lacture L
(D) $X = doubled handlebody $M_n = \# S' \times S^2$
 $I \to (D/2)^n \to \pi_0(Diff(X_1,L)) \to Aat(F_a) \to I$
 $I \to (\mathbb{Z}/2)^n \to \pi_0(Diff(X_1)) \to Out(F_n) \to I$
 $I \to (\mathbb{Z}/2)^n \to \pi_0(Diff(X_1)) \to Out(F_n) \to I$
 $I \oplus (\mathbb{Z}/2)^n \to \pi_0(Diff(X_1)) \to Out(F_n) \to I$
 $I \oplus (\mathbb{Z}/2)^n \to \pi_0(Diff(X_1)) \to Out(F_n) \to I$
 $I \oplus (\mathbb{Z}/2)^n \to \pi_0(Diff(X_1)) \to Out(F_n) \to I$
 $I \oplus (\mathbb{Z}/2)^n \to \pi_0(Diff(X_1)) \to Out(F_n) \to I$
 $I \oplus (\mathbb{Z}/2)^n \to \pi_0(D)$
Used M_n to prove Whilehoad's theorem:
Defined the star graph of a set of words
 $T_n: W_{1,2-1}, W_n$ is a bossis for $F_n \to S_n$
star graph has a cut vertex other threen b$$$

an inner automorphism of $TT_1(M_n, b) = F_n$,

Instead of a basepoint b, can think of a tiny
hole, is remove a 3-ball B³ from Mn
$$A_{n,1} = Aut(fu) = \pi_0 HE(M_n > B^3, \partial B^3)$$

 $h.equivs fixing \partial B^3$.
The map $A_{n,1} \longrightarrow A_{n,0}$ is induced by
 $M_n > B^3 \longrightarrow Hn$
To get $A_{n,s}$, remove s balls:
 $M_{n,s} = M_n - \coprod B^3$
 $A_{n,s} = \pi_0 HE(M_{n,s}, \partial M_{n,s})/DT$
filling in any ball gives an inclusion
 $M_{n,s} \longrightarrow M_{n,s-1}$, inducing a map
 $A_{n,s} \longrightarrow A_{n,s-1}$
with keynel $F_n = \pi_1(M_{n,s})$
 $If s > 1$, there is a section (actually
 $s-1 \implies M_{n,s-1} \longrightarrow M_{n,s}$

Iterating, get $| \rightarrow (F_n)^{s-1} \rightarrow A_{n,s} \xrightarrow{l} Aut(F_n) \rightarrow l$ and $I \longrightarrow (F_n)^s \longrightarrow A_{n,s} \longrightarrow Out(F_n) \longrightarrow l$ But: there is no section at the last step $Aut(F_n) \rightarrow Out(F_n)$ (There are finite subgroups of Out (Fn) that do not lift to Aut (Fn)) In the graph model, take a rose with n petals and leaves Rn,s = ai an de univalent Vertizes b---,s

Define $A_{n_1s} = \pi_{o} HE(R_{n_1s}, \partial_s)$

Outer space On (with action of Out(Fi))
Do all
$$O_{n,s}$$
 (with action of $A_{n,s}$) at once:

Sphere systems in $M_{n,s}$
An embedded $S^2 \longrightarrow M_{n,s}$ is non-trivial
if it does not bound a B^3 and is not
isotopic to a boundary component
Isotopy classes of embedded 2-spheres are
compatible if they have disjoint representatives
The sphere complex $S_{n,s}$ is the simplicial
complex with
vertices = isotopy classes [5] of nontrivial
 2 -spheres
k-simplices σ_k = compatible collections of
 $(k+1)$ distinct isotopy classes.
 $= ([O_0 \dots, [O_k]) = sphere system$
A point in σ_k can be specified by giving its
barycentric coordinates, ie
 $p = w_0[O_1 \dots + W_k[O_k], \quad w_i \in \mathbb{R}_{>0}, \geq w_i = 1$
 $p \in interior(\sigma_k)$ iff all w_i are >0.

Exercise Find more 1-simplices with so as a vertex

A set of compatible isotopy clusses of 2-spheres is complete if there are representatives Jos---, Jr that cut Mn, s into punctured balls

So get an action of
$$T_0 HE(M_{n,s}, \partial)/DT = A_{n,s}$$

on $A_{n,s}$, $\Theta_{n,s}$

•
$$(g,G) \sim (g',G')$$
 if there is a label-
preserving isometry $(G,\partial G) \xrightarrow{f} (G',\partial G')$
s.t. fog $\approx g'$ by a $(G,\partial G) \xrightarrow{f} (G',\partial G')$
label-preserving homotopy $(G,\partial G) \xrightarrow{f} (G',\partial G')$
 $H_t^i(R_{n,s_1\partial_{n,s}}) \xrightarrow{f} (G,\partial G') \xrightarrow{f} R_{n,s}$

fi Anis acts by: realise f as a map
$$R_{n,s} \rightarrow R_{n,s}$$

Then $(g_1 G) \cdot f = (g_0 f_1 G)$.
Exercise: Show this gives a well-defined action
of Anis.
This was the original description of $O_n = Outer$
space of rank $n = O_{n,o}$
Relation between the descriptions (Hatcher):
complete
sphere systems —) marked graphs
one vertex in each component
one edge for each sphere

Marked graphs
* The red graph identifies
$$The (Mn,s)$$

* The red graph identifies $The (Mn,s)$
* The red graph identifies $The (Mn,s)$ with
 Fn , so loops in the green graph is homotopy equivalence
h: $(G, \partial G) \rightarrow (Ru, s, \partial s)$. We take its
homotopy inverse. for g.
* The red graph identifies $The (Mn,s)$ with
 Fn , so loops in the green graph with
elements of Fn .
Marked graphs
• Choose a point pe in each
internal edge e
• Fatten G to $H_n = \# S \times D^2$
 Pe be disk
leaf l_i but not the P_i

The resulting manifolds are diffeomorphic Choose a diffeomorphism realizing g, fixing d Pull back the spheres to get a sphere system in Mn,s.

Theorem. On, s is contractible. Ans acts properly (ie with finite stabilisers) Proof (A. Hatcher for s >0, using sphere systems)