Lecture 4
We have $K_{n, s}=$ spine of $\theta_{n, s}$, ur action of $A_{n, s}$

- contractible cube complex
- cocompact
- stabilizers are finite (proper action)
- $\operatorname{dim}=2 n-3+5$
vertices of $K_{n, s}=$ complete sphere systems in $M_{n, s}$
Thu (Culler, Khrants ow) Every finite subgroup of $A_{n, s}$ stabilizes some vertex v

$$
\text { of } K_{n, s}
$$

Cor Anis has only finitely many conjugacy classes of finite subgroups
pf: Since $K_{n i s} / A_{n i s}$ is compact, there is a finite subcomplex $D \subset K_{n i s}$ whose images corer $K_{n, s}$ (a fundamental domain).
So $v=v_{0} \cdot h$ for sore $h \in A_{n} s, v_{0} \varepsilon D$ and stab $v=h^{-1}\left(\operatorname{stab} v_{0}\right) h$

Next Ill give sone applications to homology:
Tum (Hurewicz) If G acts freely on a contractible
(ω-complex X
Then $H^{*}(X / G)\left(H_{*}(X / G)\right)$ is an invariant of G write $H^{*}(G)\left(H_{*}(G)\right)$
X / G is culled a $\nless(\pi, 1)$ for $G(\operatorname{ora} K(G, 1))$ Every group hus a $K(\pi, 1)$.
$A_{n, s}$ does not act freely on $K_{n, s}$, bat any torsion- free subgroup does. Claim: $A_{n, s}$ has tffi subgroups:
The (Baumslag-Taylor) The kernel of the map Out $\left(F_{n}\right) \longrightarrow G L_{n} \mathbb{Z}$ is torsion-free.
Thu $G L_{n}(\mathbb{7})$ has torsion-free subgroups of finite index (tffi subgroups)
Pf Let $K_{n}=\operatorname{Ker} G L_{n}(\mathbb{Z}) \rightarrow G L_{n}(\mathbb{z} / p \mathbb{Z})$ for some $p \geqslant 3$ is prime.
If K_{n} is not tersion-free, ten there is sone $A \varepsilon K_{n}$ of prime order l ie $A \equiv I \bmod p, A^{l}=I$
so $A={ }_{p}^{\alpha} B+I, \quad\left(I+p^{\alpha} B\right)^{l}=I$
$B \neq 0 \bmod p$

$$
\begin{equation*}
\left(I+p^{\alpha} B\right)^{l}=I+l p^{\alpha} B+\binom{l}{2} p^{2 \alpha} B^{2}+\cdots+\binom{l}{l} p_{p}^{\alpha} B^{l} \tag{x}
\end{equation*}
$$

so $\ell p^{\alpha} B=-\sum_{i=2}^{l}\binom{l}{i} p^{i \alpha} B^{i}$
If $l \neq p$, ten α is the exact poner of p dividing $\ell p^{\alpha} B$. But RHS is divisible by $p^{2 a d} *$.
If $l=p, p_{\alpha}^{\alpha+1}$ is the exact paver of p dividmy $l_{p} \alpha B$, hat $p^{2 \alpha+1}$ divides te RHS:

$$
\begin{aligned}
& p \text { divides }\left(l^{p}\right) \text { it } i \geqslant 2, i<p \\
& p \geqslant 3 \Rightarrow p^{2 \alpha+1} \text { divides } p^{p \alpha}
\end{aligned}
$$

Cor: $A_{n, s}$ has tffi subgres
If ker $\mathrm{Cu} \mathrm{F}_{n} \longrightarrow G L(\mathrm{n} \mathbb{Z})$ tersiun free Ker $A_{u, s} \longrightarrow \operatorname{Out}\left(F_{n}\right)$ torsion-fuel

So take $\Gamma=$ any tffi subgrup of $G L(n, \mathbb{Z})$. The inverce inage in $A_{n, s}$ is tffie in $A_{n, s}$.

Since $A_{n, s}$ acts properly on $X=\theta_{n, s}, X_{n, s}$ any $t f_{i} \Gamma<A_{n, s}$ acts freely, so by

Hurewicz, $H^{*}(X / \Gamma)=H^{*}(\Gamma)$
Cor: $\cdot H^{i}(\Gamma)=0$ for $i>2 n-3+s$

- $H^{i}(\Gamma)$ is finitely generated for all i

Def: G virtually has a given property if it has a finite - index subgroup with that property.
$A_{n, s}$ has virtual cohomological dimension (VCD) $\leqslant 2 n-3+s$

Prop if $\Gamma \geqslant \Gamma^{\prime}$ then $\operatorname{CD}(\Gamma) \geqslant \operatorname{cD}\left(\Gamma^{\prime}\right)$ (pf: Any chain complex computing $H^{*}(r)$ is also a chain complex for Γ^{\prime}) or: X / T_{1} is a covering space of X / T, so has sane dimension.
$A_{n, s}$ contains a free abelian subgroup of rank $2 n-3+s$
eg: The subgroup of $A_{n, 1}$ generated by $p_{i 1}: x_{i} \longmapsto x_{i} x_{1}$ and $\lambda_{i 1}: x_{i} \longmapsto x_{1} x_{i}$ is free abelian of rank $2 n-2$.

Exercise: Find a free abelian subgroup of rank $2 n-3+s$ for any s.

Since the r-torus T^{r} is a $K\left(\mathbb{Z}^{r}, 1\right)$, $\operatorname{cd}\left(T^{r}\right)=r$.

Cor $\operatorname{vCD}\left(A_{n, s}\right)=2 n-3+s$

If you use (colhomology with trivial rational coefficients the cohomology of any finite group is trivial. The proof uses the transfer map:
G acts freely on contractible X,
$H<G$ finite index $\leftrightarrow X / H \xrightarrow{P} X / G$ finilecver
P induces $H^{*} G \rightarrow H^{*} H$, induced by $C_{k} H \hookrightarrow C_{k} G$
But there's also a map $H^{*} H \rightarrow H^{*} G \quad C_{k} G \longrightarrow C_{k} H$ $\sigma \longrightarrow \sum_{p \tilde{\tau} \sigma} \tilde{F}$
composition is $\sigma \longmapsto[G: H] \sigma$, which is an isomorphism if $H^{*}(G), H^{*}(H)$ are ratimal vector spaces

So if G is finite, con take $H=\langle 1\rangle$, get

$$
H^{*}(G ; Q) \rightarrow H^{*}(\langle 1\rangle, \mathbb{Q}) \longrightarrow H^{\prime \prime}(G ; \mathbb{Q})
$$

Heuristics: If G acts on contractide X properly' (with finite stabilizers) ton rational cohomology thinks it's a free active, so $H^{*}(X / G ; \mathbb{Q})=H^{*}(G ; \mathbb{Q})$

Formally: There is a spectral sequence

$$
\begin{aligned}
E_{1}^{p q} & =\notin\left[\sigma_{p}\right] \\
& \Rightarrow H^{q}\left(\operatorname{stab} \sigma_{p}\right) \\
& H^{p+q}(G)
\end{aligned}
$$

For Q-cults this collasses to the lIne $q=0$, where it in just the cellular co chains of X / G.

So we can canpute the ratimul (co)honology of Out $\left(F_{n}\right)$ by computing the quotient $K_{n} /$ out (F_{a})

This is feasible for (very) small x.
Easier with the graph picture

Cake of K_{n} : $S \subset S^{\prime}$ complete sphere systems
$c\left(S \subset S^{\prime}\right)=$ all chains you can make from S to S^{\prime}

$$
\begin{aligned}
& S^{\prime}=S \cup s_{1} \cup \ldots \cup s_{k} \\
& S \subset S_{1} s_{1} \subset S_{1} s_{1} s_{2} \subset \cdots \subset S_{s_{1} \cdots s_{k}}=S^{\prime}
\end{aligned}
$$

In terms of graphs
$M_{n, k} \geqslant S=s_{1} \ldots s_{r} \quad \longleftrightarrow$ graph G with r internal edges, k leaves, $\pi_{1}(G) \cong F_{a}$
S\sis graph obtained by collapsing e_{i}

So

You can only remove s_{i} if all components of M,S $\backslash s_{i}$ are still 1-connected
This corresponds to:
You can only collapse e_{i} if it is not a loop. You can only collapse e_{1}, \ldots, e_{i} if they form a forest in the graph G
ie in the graph picture, a cube in $K_{n i s}$ is a marked graph together with a forest $\Phi \subset G$.

To compute the quotient, need to understand the stabilizer of a cube

$$
\begin{aligned}
K_{n, s} & \longrightarrow K_{n s} / A_{n s} \\
\text { marked cube } & \longrightarrow \text { cube/stab(cube) }
\end{aligned}
$$

In sphere picture, we have $\operatorname{stab}(S)=$ ditteos mapping SSS (may permute the spheres \&. conp.components) In graph picture this is combinatorial autos of G (may permute the edges and rentices of G) $\operatorname{stab}\left(S \subset S^{\prime}\right)$ permutes the spheres in S^{\prime}, but must send S b

$$
\operatorname{stab}(g, G, \phi) \cong \operatorname{Aat}(G, \phi)=\text { autos sending } \phi \zeta
$$

$$
\begin{aligned}
& \text { eg } \operatorname{stab}(g, 刃) \cong \mathbb{Z} / 2 \times \Sigma_{3} \quad K_{2,0} / A_{2,0}=\left.\frac{0}{0}\right|_{0=0} ^{\infty} \\
& \operatorname{stab}\left(g_{1}(D) \cong \mathbb{Z} / 2 \times \mathbb{Z} / 2\right.
\end{aligned}
$$

Exercise :1 Compute the stabilizers of all cubes in K_{211} and the cell structure of $K_{2,1} / \operatorname{Aut}\left(F_{2}\right)$

2 Compute the stabilizers in Out $\left(F_{3}\right)$ of the cubes
 and

where u, r, w is a basis for F_{3}. Draw the innayes of these cubes in $K_{3,0} / \operatorname{Cut}\left(F_{3}\right)$

3 Compute $H_{*}\left(\operatorname{Out}\left(F_{3}\right) ; Q\right)$

It's more tedious to compute $H_{*}\left(\mathrm{Out}_{\mathrm{u}}\left(\mathrm{F}_{4}\right) ;\right.$ Q $)$ and that's about the limit of hand calculation The answer turns out to be very interesting:

$$
\begin{aligned}
& H_{0} \cong \mathbb{Q} \\
& H_{4} \cong \mathbb{Q} \\
& H_{i}=0 \quad i \neq 0,4
\end{aligned}
$$

The nontrivial class in dimension 4 can be represented by a cycle consisting of the images of six cubes:

Homology is hard to compute. Easier is the Euler characteristic $X=\sum(-1)^{i}$ rank H_{i} because you can compute it on the chain level

$$
\begin{aligned}
x & =\sum^{(-1)^{i} \operatorname{ravk} C_{i}} \\
& =\sum_{\sigma}(-1)^{\operatorname{dim} \sigma}
\end{aligned}
$$

The Euler characteristic of a group is the Euler characteristic of a $K(\pi, 1)$ for G
(But we dort have a $K(\pi, 1)$ for $A_{n, s}$)
Y has nice features: eg if $Y \rightarrow X$ is a covering map of fine $C W$-complexes, of degree d, ten $X(Y)=d \cdot X(x)$

So, if G acts freely andcelluarly on X with finite quotient, and $H<G$ has finite index d, ten $X / H \rightarrow X / G$ is a covering map and

$$
\begin{aligned}
& X(H)=d \cdot X(G) \\
& X(G)=\frac{X(H)}{[G: H]},
\end{aligned} \quad \text { independent of te choice f } H .
$$

If G only acts properly on X wi finite quettait but has a tffi subgroup H,
defoe $\bar{X}(G)=\frac{X(H)}{[G: H]}$
Since the intersection of any two Eff subgroups is tffi, this is independent of the choice of H.
Its called the rational Euler chavacteristir of θ
Cunfortunate name, because replacing \mathbb{Z} by \mathbb{Q} and raul by dimension gives the usual Euler characteristic)

