Lecture 6
We are trying to understand the local structure of $K_{n, s}$, in particular the links of vertices.
we had $I k(v)=l l_{2} v * l k_{+} v$
We identified le_ (v) with the g eometric realization of the posit $\Phi(G)$ of forests in G where $v=(g, G)$ and a forest is a union of internal edges with no cycles

Prop (1) If G has a separating edge then $|\phi(\theta)|$ is contr actible

Id If G has a loop ten

$$
|\Phi G|=|\phi(G-e)|
$$

(3) If G is connected with no loops or separating dyes ton

We use the Poset Lemma fran last time and induct on $v(G)+e(G)$
Five anedge of G. Last tine shored

$$
\left\{\begin{array}{l}
e \text { a loop } \Rightarrow \Phi(G)=\Phi(G-e) \\
e \text { separating } \Rightarrow|\Phi(G)| \text { contractible }
\end{array}\right.
$$

Left to consider G with no loops or sep. edges.
Let $\Phi_{e}=\Phi-\{e\}=$ all forests except $\{e\}$.
Defre $f=\Phi_{e}(G) \longrightarrow \Phi_{e}(G)$

$$
\varphi \stackrel{2}{\longrightarrow} \begin{cases}\varphi-e & \text { if eq } \varphi \\ \varphi & \text { if } \neq \varphi\end{cases}
$$

poses map: $\varphi_{1} \leqslant \varphi_{2} \Rightarrow f\left(\varphi_{1}\right) \subseteq f\left(\varphi_{2}\right)$

$$
f(\varphi) \geqslant \varphi
$$

image $=$ forests not contarnige
$=$ forests in $G-e \simeq V S^{v(\theta)-2}$ by induction

$$
\begin{aligned}
\operatorname{link}(e)= & \text { forests containing } \\
e & \text { forests in } G / e \simeq V(G)-3 \\
& \text { induction } \\
& |\Phi|=\left|\Phi_{e}\right| \cup|c(l l(e))| \\
& \left|\Phi_{e}\right| \cap\left|c\left(l l^{(e)}\right)\right|=\left|l_{e}(e)\right|
\end{aligned}
$$

Majer-Vietais + VanKampen \Rightarrow
$|\Phi|$ is $(v(a)-2)$-dimension and

$$
\Rightarrow \simeq V S^{v(\theta)-2}(v(G)-3)-\text { connected }
$$

That was tee lower link. What about the upper link?

Here it's useful to use the sphere-complex description: a vertex v is a complete sphere system S,
ie $M-S=$ union of punctured 3 -balls ("pieces" $P_{1}, \ldots, P_{k}, k \geqslant 1, P_{i}=S^{3}-\frac{11}{b i} B^{3}$)
Then be $(S)=$ sphere systems containing S Y ur cur add spheres independently in each piece.

$$
\text { so } H_{+}(S)=\left|\&\left(P_{1}\right)\right| * \ldots\left|\&\left(P_{k}\right)\right|
$$

Where $\delta\left(P_{1}\right)=$ sphere systeuns in P_{i} - So just have to understand $\delta(P)$ for P a punctured 3-bull with b boundary spheres:

$$
P=\partial_{1}^{\partial_{1}} \partial_{2} \partial_{0} \partial_{0}^{0} \quad \begin{gathered}
\partial_{0}-1 \\
\partial_{0}
\end{gathered} \quad \partial P=\left\{\partial_{1}, \ldots, \partial_{b}\right\}
$$

If a sphere $\Delta \subset P$ is not isotopic to a boundarysphore ∂_{i}, then s is determined up to isotopy by a partition of $\left\{\partial_{10} \ldots, \partial_{b}\right\}$ into 2 pieces:

$S=\left\{\infty_{1}, \ldots, \infty_{l}\right\}$ is a sphere system in $\&(P)$ iff the partitions are pairwise compatible ie, they have sides A, B st. $A \cap B=\varnothing$

$$
\frac{e y}{f}
$$

$$
S=\left\{\lambda_{1}, \Delta_{2}, \Delta_{3}\right\}
$$

A_{1}, s_{2} compatible: A_{2}, s_{3} compatible:
s_{1}, s_{3} compatible:

Let $S(P)=$ sphere systems in P, ordered by \subseteq

$$
\operatorname{Prop} P=S^{3}-\frac{11}{b} B^{3} \Rightarrow|\&(P)| \simeq V S^{b-4}
$$

Pf Induct on b. $\underline{b=4 \Rightarrow 0}|\Sigma|=S_{0}^{0}$
$\underline{b>4}:$ Let $s=\left(\partial_{1}, \partial_{2} \mid \partial_{3} \ldots \partial_{b}\right)$

Let $\sum_{s} c \Delta(p)=$ sphere systems compatible wis
Then $\& \stackrel{C}{\longmapsto}$ Sos $\stackrel{\rightharpoonup}{\longmapsto}$ are pose maps $\sum_{s} \rightarrow \sum_{s}$ satisfying the Poset lemma, showing $\Sigma_{s} \simeq p t$.
$S(P)-\sum_{s}=$ systems containing sone sphere \prime^{\prime}
that separates ∂_{1} fran ∂_{2} ie crosses \triangle

If s^{\prime} crosses s, Define te size of s^{\prime} to be to $\#$ of ells in tee side containing ∂_{2}
Note a system coucontain at most one sphere of each size, and size $\leq b-2$

If s^{\prime} has size >2, define p(s^{\prime}) by "pushing s^{\prime} off of 01 "

Let $\sum_{s}^{b-2}=\sum_{s} u$ (systems cuntainny sore s^{\prime} of maximal size $b-2$)
Now $\sum_{d}^{b-2} \rightarrow \sum_{s}^{b-2} \rightarrow \sum_{s}^{b-2}$

$$
\Delta \stackrel{\leftrightarrows}{\longmapsto} \Delta \cup p\left(s^{\prime}\right) \stackrel{\rightharpoonup}{\mapsto} \operatorname{Aup}\left(s^{\prime}\right) \backslash s^{\prime}
$$

ave pose maps satisfying te Pose lem ma, with image in \sum_{s}

$$
\text { so } \sum_{d}^{b-2^{0}} \text { is contractible, too }
$$

Now for each $k \geqslant 3$

$$
\begin{aligned}
& \sum_{s}^{k}=\sum_{s}^{k+1} v(\text { systems containing } \\
& \text { Then } \begin{aligned}
\sum_{s}^{k} & \longrightarrow \sum_{s}^{k} \xrightarrow{s^{\prime} \text { of size } k} \sum_{s}^{k} \\
S_{s} & \left.\longrightarrow \operatorname{Sup}^{\prime}\left(s^{\prime}\right) \longrightarrow \text { Sup }^{\prime}\left(^{\prime}\right)-s^{\prime}\right)
\end{aligned}
\end{aligned}
$$

has image $\sum_{s}^{k+1} \simeq p^{t}$
What's left?

$$
\begin{aligned}
& \Delta(P)-\sum_{s}^{3}=\text { Systems containing } s^{\prime} \text { of size } 22 \\
& \text { cross sing } \Delta^{\prime}
\end{aligned}
$$

There are $n-2$ such $A^{\prime}: \begin{array}{lll}0 & D_{2} & \partial_{i}^{d i} \\ 0 & 0 & 0\end{array}$

$$
\begin{array}{rlc}
\Delta_{i} & =\left(\partial_{2}, \partial_{k} \mid \partial_{1}, \ldots\right) & \\
\text { Let } P_{i}^{\prime} & =\text { outside of } A_{i} & 0, \partial_{2} \partial_{2} \partial_{i} \dot{D}_{i} \\
& =S^{3}-\frac{11}{b-1} B^{3} & 0
\end{array}
$$

Then

$$
\begin{aligned}
\text { lle }\left(s_{i}\right) & =\text { splere systams conpativle uy } v_{i} \\
& =\text { sphar systers in } P_{i}^{\prime} \\
& \simeq V S^{b-5} \text { by induction }
\end{aligned}
$$

\therefore Van Kampen + Mayer-Vietoris

- gire $|S(P)| \simeq V S^{b-4}$

Now put this all together to determine the lonk of $S=K_{n, s}$

Prop $\operatorname{lle}(S) \simeq V S^{n-2+S}$
pf

$$
\operatorname{le}(s)=\operatorname{le}_{-}(s) * \operatorname{le}_{+}(s)
$$

If S cuts M into le pieces, it corresponds to a graph with le internal vertices and IS1 internal edges, with

$$
\begin{aligned}
& k-|S|=1-n \\
& \simeq V S^{V(b)-2} *\left(V S^{b\left(P_{1}\right)-4} * \cdots V S^{b\left(P_{k}\right)-4}\right) \\
& =V S^{k-2} *\left(V S^{b_{1}-4} * \cdots * V S^{b_{k}-4}\right)
\end{aligned}
$$

Exercise Finish the proof.
use: $\quad b_{1}+\cdots+b_{k}=2|s|+s$

$$
k-|s|=1-n
$$

and $V S^{a} \times V S^{b}=V S^{a+b+1}$

Next: The spine encodes $A_{n, s}$ in a very strong way if $n \geqslant 3$.
We will continue to think of $K_{u, s}$ as a simplicial complex (instead of a cubecplex)
Any elf of A_{n}, s gives a simplicial automorphisin $K_{n, s} \longrightarrow K_{n, s}$
so we get a map

$$
A_{n, s} \longrightarrow \operatorname{Aut}\left(K_{u, s}\right)
$$

Theorem: This map is an is ancophism.
This is a combinatorial analog of Royderis theorem for Teichmüller spare:
(Royden) Mod ${ }^{ \pm}\left(S_{g, s}\right) \rightarrow \operatorname{Isom}\left(J_{g, s}\right)$ is an is onershism, where te metric on Igs is the Teichmuiller metric.

For simplicity we will stick to $s=0$ Observe:

- If $l k_{2}(s)$ and lb+ (s) are bots nonempty, ten $\operatorname{diam}(\operatorname{ll}(s))=2$.
(since le $(s)=h_{-}(s) *$ le $_{+}(s)$)
- If S is minimal ten le $(s)=$ le_(s) has diameter 6 .
proof:

$$
\operatorname{ll}(s)=\ln _{+}(s)
$$

Since S is minimal, $M-S$
is connected, ie has one piece

$$
P \approx S^{3}-\frac{11}{2 n} B^{3}
$$

$$
\begin{array}{llll}
\partial_{10} 0 & 0 & \cdots & 0^{2 n-1} \\
\partial_{2 n} 0
\end{array}
$$

Let $s i$ be te sphere $\left(\partial_{1} \partial_{2}, \partial_{i} \mid \partial_{i+1} \ldots \partial_{2 n-1}, \partial_{2 n}\right) i=2,-2 n-2$ and $s_{i}^{\prime}=\left(\partial_{2 n} \partial_{2} \partial_{i} \mid \partial_{i+1} \ldots \partial_{2 k-1}, \partial_{1}\right) \quad i=2,-2 n-2$
Them $\left.S=\left\{s_{2}, \ldots, s_{2 n-2}\right\}\right\}$ are both maximal and $\left.S^{\prime}=\left\{s_{2}^{\prime}, \ldots, s_{2 n-2}^{\prime}\right\}\right\}$ sphevesystews

They are incompatible: m fact every sphere in S is incompatible with every splore in $S /$

So to get a path from S to S^{\prime}, need to yo first to subsystems dey a singlsphere:
$S \xrightarrow{2}$

$$
s^{\prime} \subseteq S^{\prime}
$$

s and s^{\prime} are not compatible, so cart fund a puts of length $\leqslant 4$.
Can find a splore s" compatible wite lest

$$
\begin{aligned}
S & \xrightarrow{\supseteq} \Delta^{\subseteq} s_{v} \Delta^{\prime \prime \supseteq} s^{\prime \prime} \subseteq s^{\prime} \Delta^{\prime \prime} \supseteq s^{\prime} \underline{\subseteq} \delta^{\prime} \\
& \Rightarrow \text { dian } \geqslant 6 .
\end{aligned}
$$

If S is a maximal sphere system ten

$$
\ln (S)=\operatorname{ll} S \cong|\Phi(G)|, G \text { trivalent. }
$$

$e=$ edge not a loop, not a sep. edge.
$T=$ max tree not containing e $\quad(\geqslant 2$ edges $b / c)$
(exists b/c e is not separating) \quad ne $\geqslant 3$
There is no forest φ : $T \supset \varphi>e$, so $d(T, e) \geqslant 3$
$\varphi, \varphi^{\prime}$ any forests st. $\varphi \cap \varphi_{!}^{\prime}, \varphi \varphi^{\prime}$ not forests
Take $e^{\prime} \varepsilon \varphi^{\prime}$ e\& φ st. eve a freest
Rev

$$
\begin{gathered}
\varphi^{\prime} \\
e^{\prime} \rightarrow \text { eve } \rightarrow e \\
!
\end{gathered} \Rightarrow d\left(\varphi, \varphi^{\prime}\right) \leq 4
$$

works as long as $|\varphi|,\left|\varphi^{\prime}\right| \geqslant 2$
If $\varphi=e, \varphi^{\prime}=e^{\prime}$
$n \geqslant 3$ I vertex w adj to u or $r, w \neq u, v$

Tun

$$
3 \leq \text { dian } \leq 4 . \text { always }
$$

Proof of theorem
Let $f: K_{n, s} \rightarrow K_{u, s}$ be a siaderial automerphism.

Since it takes louks of vertices to limks of vertices, it must take

$$
\text { niminul sydews }=\text { roses } \rightarrow \text { roses }
$$

naaimel systeus $=$ trivalut graphis \rightarrow trivalut graphs

