Lecture 7
Recap
We ave studying the spine $K_{n, s}$ of $\theta_{n, s}$, with its action by A_{n},
We are thinking of K_{u}, s as a simplicial complex. We have two ways of describing a vertex

- A marked graph g: $R_{n} \rightarrow G$
- A complete sphere system $S \subseteq M_{u, s}$

In goral $l_{k}(v) \equiv l_{e}(v) * l_{e}(v)$ we proved

- $k_{2}(v) \approx V$ spheres
- lect $(v) \simeq V$ spheres - bat tenne was a mistake in class with the induction. It's fixed in te notes, please read.

$$
\Rightarrow l l(v) \cong V S^{2 n-4+s}\left(\begin{array}{l}
\text { comping } \\
\text { exercise })
\end{array}\right.
$$

Anis acts on Kris by simplicial automorphisms
We are proving the nap $A_{n, s} \rightarrow$ Au $\left(Y_{n, s}\right)$ is an isomorphism
For simplicity y, take $s=0$, and doit use sepavatly spheres (edges) define the height of $v=$ (\# spheres inv) $-n=$ \# rant ices in $G-1$
so roses have height 0 , maximal systems hae Weight $2 n-3$
An elf of $A_{n_{1}}=\operatorname{Cnt}\left(F_{n}\right)$ preserves homeomentphisw type, is preserves height

For subjectivity: Suppose $f: K_{n} \rightarrow K_{n}$ is a simplicial autanar phis. We wont to show f is realized by the action of save φ \& out F_{n}
By considering the diameter of links we
have: have :

- f takes minimal syctans to minimal systems (roses to roses)
- f takes maximal systems to maximal systems (trivalent graphs \rightarrow trivalent graphs)
Prop f preserves the poset order

$$
\text { ie } S \subset s^{\prime} \Rightarrow f(S) \subset f\left(s^{\prime}\right)
$$

pf Since f takes edges to edges, either $f(s) \subset f\left(s^{\prime}\right)$ or $f\left(s^{\prime}\right) \subset f(s)$

We claim S^{\prime} has more roses in its link than S does:

Any minimal $R \subset S$ is also in S^{\prime} If S^{\prime} a $S^{\prime} \backslash \Delta$, ten there is a manional $R^{\prime} C S^{\prime}$ containing' (which is uon-separatin!!)
since f tales roses to roses, we must have

$$
f(s) \subset f\left(s^{\prime}\right)
$$

Cor: f preserves the number of spheres in a sphere system S
pf -Put S rn a maximal chain

$$
S_{m+n} c \cdots S c \ldots c S_{\max }=S_{0} c S_{1} c \ldots c S_{2 n-3}
$$

The position of S iuturs chain determines the number of spheres in S.
(Sin haws spheres, Si has $n+i$ spheres)

We know f sends this to another chalk

$$
f\left(S_{\min }\right) \subset \ldots f(S) \subset \ldots c f\left(S_{\text {max }}\right)
$$

So $f(s)$ has te sure position \Rightarrow sure $\# f$ sphoes.

Prop f preserves the hameonmuphism tgipe of systems witn $n+1$ spheres

$$
\text { (}=2 \text {-valex graphs) }
$$

if
The lonk of

so curculy get sut to cuoher 2-vartex graph wr le ven-loop edyes.

$$
\begin{aligned}
& P_{1} \text { has } 2 a_{1}+k \partial \text { compants } \\
& P_{2} \text { has } 2 a_{2}+k \partial \text { compuits }
\end{aligned}
$$

Clarm
If a punctaed vall P^{b} has b boudary comporerts, then it contams

$$
2^{b-1}-b-1
$$

isotopy classes of non-trivid sphores
of These are determived by the partilion of the set of b boudary splieries into two parts, each with $\geqslant 2$ spheres

$$
\left.\begin{array}{l}
=\frac{1}{2} \text { (\# sobsets of bowuday spleves) } \\
=\frac{1}{2}\left(2^{b}-2-b-b\right) \\
T
\end{array}\right)
$$

all subsets $\phi_{\text {, every }}$ tricy me elt b - (elts

$$
\begin{aligned}
& P_{1} \cong P^{2 a_{1}+k} \text { biond } \rightarrow \text { opord cintans }\left(a_{1}\right)+\binom{a_{1}}{2}+\cdots+\binom{a_{1}}{a_{1}} \\
&=2^{a_{1}}-1 \text { spheres that were } \\
& \text { separating in } M_{n}
\end{aligned}
$$

So there are $2^{2 a_{1}+k-1}-\left(2 a_{1}-k\right)-1$

$$
\begin{aligned}
& +2^{a_{2}+k-1}-\left(2 a_{2}-k-1\right) \\
& -\left(2^{a_{1}}-1\right)-\left(2^{a_{2}}-1\right)
\end{aligned}
$$

non-separatiay splore in $P_{1} \Perp P_{2}$

$$
=2^{k-1}\left(2^{2 a_{1}}+2^{2 a_{2}}\right)-2^{a_{1}}+1-2^{a_{2}+1}-\left(2 a_{1}+k+2 a_{2}-2\right)
$$

$$
=2^{k-1}\left(2^{2 a_{1}}+2^{2 a_{2}}\right)-\left(2^{a_{1}}+2^{a_{2}}\right)+n-2
$$

The following exercise finishes the proof:
Exercise Let $a_{i}, a_{i}^{\prime} \varepsilon \mathbb{N}$ and suppose
(1) $a_{1}+a_{2}=a_{1}^{\prime}+a_{2}^{\prime}$ and
(2) $2^{k-1}\left(2^{2 a_{1}}+2^{2 a_{2}}\right)-\left(2^{a_{1}}+2^{a_{2}}\right)=2^{k-1}\left(2^{2 a_{1}^{\prime}}+2^{2 a_{2}^{\prime}}\right)-\left(2^{a_{1}^{\prime}}+2^{a_{2}^{\prime}}\right)$

Then $\left\{a_{1}, a_{2}\right\}=\left\{a_{1}^{\prime}, a_{2}^{\prime}\right\}$
Bf The Nielsen graph is the 2-ventex graph
θ

Cor f takes marked Nielsen graphs to marked Nielsen graphs
A Nielsen system is the corresponding sphere systems $\begin{gathered}O P O \\ 0 \\ 0\end{gathered}$

Dill
There are two components of M-S, one is $\cong P^{3}=S^{3}-\frac{11}{3} B^{3}$, the other is $\cong P^{2 n+1}$.

From here f takes ruses to roses. Out $\left(F_{n}\right)$ acts transitively on roses. So after composing f with φ \& Out $\left(F_{n}\right)$ we may assume f fixes a rose R.

Next Show that composing with some φ \& stab out (R), we may assume f fives all Nielsen graphs $(=$ Nielsen systems RUS) in te simplicial star of R

Fact: You can get from R to any other rose R^{\prime} by a path in K_{n} that only contains roses and Nielsen systems

$$
R-R \cup \Delta-R_{1}-R_{1} \cup \Delta_{1}-\cdots R^{\prime}
$$

Need to show:

- f fixes all Nielsen graphs in $s t(R) \Rightarrow f$ fixes all of st (R)
- f fixes st $(R) \cap$ st $\left(R_{1}\right) \Rightarrow$
f fixes R_{1}
- f fixes R_{1} and st R_{n} st R_{1}

$$
\Rightarrow f \text { fixes it }\left(R_{1}\right)
$$

Continuing along the path, we get f fixes of $\left(R^{\prime}\right)$
Since f fixes it R^{\prime} for every R^{\prime} f is the identity
Each step is proved by either produciy a howe curophism hang to desired effect ($=$ - an lt of cut F_{n}) or canty roses or otter graphs in ll es) to see that trey hue to he fixed.

Exercise (Not required!) See haw far you con get with the rest of the proof. Then try it for $s>0$.
\Rightarrow all Nielsen systems in at R^{\prime} are fixed ky
\Rightarrow all of st R^{\prime} is fred ky f.
Each step is proved by cite produciy a harecuorphism have to desired effect (:- an ell of cut En) or canty roses or otter graphs in le (S) to see that trey hae to he fixed.

Exercise (Not required!) See haw far you con get with the rest of the proof. Then try it for $s>0$.

It is clear we won't get anywhere close to most of the topics I listed in ta first lecture.

Instead Is world like to return to te Euler characteristic - $\bar{\chi}\left(A_{n, s}\right)$

We saw to calculate $\bar{X}\left(A_{n, s}\right)$ it's enagh to calculate $\bar{X}\left(\mathrm{C}_{n}+\mathrm{F}_{a}\right)$
We got the formula

$$
\bar{x}\left(o u+F_{w}\right)=\sum_{G^{a} g_{n}^{c}} \frac{\tau(\sigma)}{|A n t G|}
$$

woe $\mathscr{H}_{n}^{c}=\begin{aligned} & \text { finite } \\ & \text { calivected graphs, un }\end{aligned}$ all vertices at least trivalent,

$$
X(G)=1-x
$$

and $\tau(G)=\sum_{\text {frets }}^{\varphi \subset G}(-1)^{e(F)}$ (including \varnothing)

In te exercises yon played a little with $\tau(G)$

Here's ore more
Exercise sign $\tau(G)=(-1)^{f(G)}$ where $f(G)$ is te \& of edges in a max. fast in G
so it is not even obvious what the sign of $\bar{x}\left(\right.$ Cut $\left.F_{n}\right)$

But your ca calculate, for small values of n

$$
\begin{aligned}
& \text { eq } n=2 \quad G=0-0 \quad 0 \quad \infty \\
& \tau=0 \quad-2 \quad 1 \\
& \mid \text { Ant }=8 \quad 12 \quad 8 \\
& \Rightarrow \bar{\gamma}\left(\text { out } f_{2}\right)=\frac{0}{8}-\frac{4}{12}+\frac{1}{8} \\
&=\frac{-4}{24}+\frac{3}{24}=\frac{-1}{24} \\
& n=3-\frac{1}{48} \quad n=4 \quad \frac{-161}{5760} \quad n=5-\frac{367}{5760}
\end{aligned}
$$

$$
n=12 \quad X \approx-2000
$$

... Always <0, growing very fast!
Borinsky proved: $: \bar{x}<0$ always

- (X) grams mure turn exponentially far).
- \bar{X} is closely related to te S-functim
$=$ analytic cut of $\rho(s)=\sum \frac{1}{n^{s}}$
To understand his prof, need to sud a little about asymptotic expansions, r-fumitines and gerevatioy fens.
We already talked account $[$-functions

$$
\begin{aligned}
& \Gamma(n)=(n-1)!\text { (so } \Gamma(m+1)=m \Gamma(m)) \\
& \Gamma(z)=\int_{0}^{\infty} t^{z} e^{-t} d t \text { converyosfer } \\
& \operatorname{Re}(x)>0
\end{aligned}
$$

can be analytically continued to \mathbb{C}, has simple poles at non-pos integers.
satisfies $\Gamma(x+1)=x \Gamma(x)$
In particular,
For fixed k, defoe $\varphi_{k}(x)=F(x-k)$
than $\lim _{x \rightarrow \infty} \frac{\varphi_{k+1}(x)}{\varphi_{k}(x)}=$

$$
\begin{aligned}
& =\lim _{x \rightarrow \infty} \frac{\Gamma(x-k-1)}{\Gamma(x-k)}= \\
& =\lim _{x \rightarrow \infty} \frac{\Gamma(x-k-1)}{(x-k-1) \Gamma(x-k-1)}
\end{aligned}
$$

$$
=\lim _{x \rightarrow \infty} \frac{1}{x-k-1}=0
$$

A sequence of functions $\varphi_{k}(x)$ st. $\lim _{x \rightarrow \infty} \frac{\varphi_{k+1}(x)}{\varphi_{k}(x)}=0$ is called an asymptotic scale: Y Grows
much stoner tun φ_{k} with x.
A series $\sum_{k=0}^{\infty} a_{k} \varphi_{k}(x) \quad$ z called an asymptotic expansion for $f(x)$

$$
\begin{aligned}
& \text { if } f(x)=\sum_{k=0}^{N} a_{k} \varphi_{k}(x)+\theta\left(\varphi_{N}(x)\right) \\
& \frac{f(x)-\sum^{N} a_{k} \varphi_{k}(x)}{\varphi_{N}(x)} \underset{x \rightarrow \infty}{\longrightarrow} 0
\end{aligned}
$$

$$
\begin{aligned}
& a_{0}=\lim _{x \rightarrow \infty} \frac{f(x)}{\varphi_{0}(x)} \\
& a_{1}=\lim _{x \rightarrow \infty} \frac{f(x)-a_{0} \varphi_{0}(x)-a_{1} \varphi_{1}}{\varphi_{1}(x)} \\
& \lim _{x \rightarrow \infty} \frac{f(x)-a_{0} \varphi_{0}(x)}{\varphi_{0}(x)}=0 \\
& \Rightarrow \lim _{x \rightarrow \infty} \frac{f(x)}{\varphi_{0}(x)}=a_{0}
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{f(x)-a_{0} \varphi_{0}(x)-a_{1} \varphi_{1}(x)}{\varphi_{1}(x)}=0 \\
& \Rightarrow \lim _{x \rightarrow \infty} \frac{f(x)-a_{0} \varphi_{0}(x)}{\varphi_{1}(x)}=a_{1}
\end{aligned}
$$

etc so the coefficients in te asymptotic expansion are determine by f and $\left\{\varphi_{k} \xi\right.$
ie if an asymptotic expansion exists, it is unique.
$\operatorname{Thm}($ Barinsky $) \quad c_{n}=X\left(0 n+F_{n+1}\right)$

$$
\begin{aligned}
& T(z)=c_{1} z+c_{2} z^{2}+\cdots \\
& \exp (T(z))=1+b_{1} z+b_{2} z^{2}+\cdots \\
& \varphi_{k}(x)=T\left(x+\frac{1}{2}-k\right)
\end{aligned}
$$

Then $\sum b_{k} \varphi_{k}(n)$ is an
asymptotic expansion for

$$
f(n)=\sqrt{2 \pi}\left(\frac{e}{n}\right)^{n}
$$

There are otter asymptotic expansions for of in the literature, and people have proved facts about the coefficients This proves facts about tee b_{n}, and \therefore about te c_{n} !

