Lecture 8 We are working on understanding Borinsky's theorem about X (Out (Fa)) We've written $T(z) = c_1 z + c_2 z^2 + \cdots$ $(c_n = \chi(c_u + F_{n+1}))$ $= \sum_{n=1}^{\infty} c_n \neq n$ and $\exp(T(z)) = \sum b_n z^n$ Barinsky: Let $f(n) = \sqrt{2\pi} \left(\frac{n}{e}\right)^n$ Then Z by Pk (n) is an asymptotic expansion k=0 For f(n) as $n \rightarrow \infty$, where $f(n) = T(n+\frac{1}{2}-k)$ This is useful because: (1) A symptotic expansions (with respect to a given \$4k\$ and limit (here n->>>)) are unique

(2) There already exist expansions for f(n) and facts about their coefficients have been proved. One existing asymptotic expansion for $\overline{721}(\frac{n}{2})$ is derived from the Lambert W-fauction: let $f(z) = ze^{z}$. For real z the graph is: 2 The Lambert W-function is the inverse (multi-valued) function, whose real part is: No Wo and W- are well-defined -'/e. on [-%e,∞) They can be W defined on C-{03 $C - (-\infty, 0]$, with a and are analytic on signare-root-type singularitigat-é

There are Puiseux expansions for Wo(2) and W-1(Z) at their common branch point -Ye in powers of Tez+1: $(\mathcal{H})(\mathcal{Z}) = \sum_{p=0}^{\infty} (-1)^{p+1} w_p(\mathcal{Q}\mathcal{Z})^{p/2}$ $\left(\begin{array}{c} W_{1}(z) = \sum_{p=0}^{\infty} w_{p}(ez+i)^{2} \\ p=0 \end{array} \right)$ Thun (Volkwer) $W_{P} = -\frac{1}{2\pi} \int_{0}^{\infty} \frac{-\frac{P}{2}-1}{(1-x)^{2}} \int_{0}^{1} (W_{-}(ex)) dx$ from (*) you can get an expansion for z W'(z): Where SUK = 1 KWK - 1 (K+2) WK+2 $\int \psi_{-(z)} = 0$

Tum (Volkner) Jp>0 fer P> and $\sum_{p=0}^{\infty} V_{2p} = \sum_{p=0}^{\infty} V_{2p-1} = -\frac{1}{2}$. Here's another series for Z Wo'(Z), convergent for 12/22 : Wo(Z) has a Taylor expansion at O: Differentiating it and multiplying by Z gives $(x x x) z W_0'(z) = 2(-1) \frac{n}{n!} z^n$ Borinsky new says: "Comparing (**) and (***) and using the reflection property of the T-function this becomes $\sqrt{2\pi} \left(\frac{n}{e} \right)^{n} = \sqrt{\frac{2}{\pi}} \sum_{k} \Gamma(k + \frac{1}{2} - n) \left(\frac{1}{k} \Gamma(k + \frac{1}{2}) \sqrt{\frac{1}{2k-1}} \right)^{n}$ By uniqueness of asymptotic expansions we get $-\sqrt{\frac{2}{4}}\Gamma(k+\frac{1}{2})U_{2k-1} = b_{k}$ So $U_{k} > 0 \Rightarrow b_{k} < 0 \Rightarrow c_{k} < 0$ for $k \ge 1$ and $|C_{k}|$ grows more than exponentially in k.

21° = connected graphs in 29 $c_n = \sum_{i=1}^{r} \frac{c(r)}{iAut(r)} = \chi(CutF_{n+i})$ TENC |T| = n $T(z) = C_1 z + C_2 z^2 + \dots = \sum_{n=1}^{\infty} C_n z^n$ $e_{XP}(T(z)) = 1 + b_1 z + b_2 z^2 + \dots = \sum_{n=0}^{\infty} b_n z^n$ $C_1 = b_1, C_2 = b_2 - c_1 b_1, etc.$ 80 $ie: C_k = b_k - \sum_{i:st} c_i b_{k-i}$ More graph termindugy: [the closure of a subset of E(T). X < T a subgraph. T/X is the graph obtained by cullapsing all edges of X to points.

Defue $\tau(T) = (-1)^{e(T)}$ ("sign of T" emma TEG ton $\sum G(\theta) \mathcal{L}(\Gamma/\theta) =$ 9c7 $\sum_{\theta \in \mathcal{T}} \mathcal{C}(\theta) \sigma(\mathcal{T}_{\theta}) = 0$ COVE D The set of all subgraphs of I is just the set of subsets $\sum \left(\frac{1}{2} \right)^{e(\delta)} = \sum \left(\frac{1}{2} \right)^{k} \left(\frac{e(\Gamma)}{k} \right) =$ 50 $\chi \subset \Gamma$ C=0 By the previous Lemma every subgraph T is uniquely determined by its one $\Theta = core(8)$ and a forest $\Psi \in T/\Theta$, $\mathcal{G}\mathcal{A}$

Now instead of summing over all pairs (T, Θ) with $\Theta \subset \Gamma$ core, we want to sum over all $(core) \Delta = T/\Theta$ and core subgraphs with legs that you could insert into the vertices of Δ The claim is that the equation in the corollary above becomes $I = \sum_{i}^{1} \left(TT - T_{i\sigma_{i}}(z) \right) \frac{\sigma(\Delta)}{IAut\Delta I} z^{e(\Delta)}$ $\Delta e \mathcal{I} = \nabla e V(\Delta) - \nabla e V(\Delta) - \nabla e V(\Delta) - \nabla e (\Delta)$ where $T_{K}(z) = \sum_{i=1}^{\infty} C_{n,k} z^{n}$ $C_{n,k} = X(A_{n+i},k)$ Auik = ToHE (Rnik, 2) is the group we've been studying In particular, from the short exact sequence 1 -> Frit Antik Autio

re get $\chi(A_{NH},k) = \chi(CaF_{NH})$ $= \mathcal{M}^{k} C \mathcal{M}$ Dav we can get a different formula for the coefficients of $exp(T_{r}(z))$ by contry graphs. This involves factorials (= [-functions]. By manipulating these and a variation on Sterling's asymptotic series for T-functions we obtain an asymptotic series for $\overline{12\pi}(\frac{n}{e})^{n}$. (Sorry for all the missing details!)