Lecture 8
We are waking on understanding Borinsky's theorem about X(Out (Fa))

We've written $T(z)=c_{1} z+c_{2} z^{2}+\cdots$.

$$
=\sum_{n=1}^{\infty} c_{n} z^{n}
$$

$\left(c_{n}=X\left(o n+F_{n+1}\right)\right)$
and $\exp (T(z))=\sum_{n=0}^{\infty} b_{n} z^{n}$

Then $\sum_{k=0}^{\infty} b_{k} \varphi_{k}(n)$ is an asymptotic expansion for $f(n)$ as $n \rightarrow \infty$, where $\varphi_{k}(n)=\Gamma\left(n+\frac{1}{2}-k\right)$

This is useful because:
(1) Asymptotic expansions (with respect to a given $\left\{\varphi_{k}\right\}$ and limit (here $\left.n \rightarrow \infty\right)$) are unique
(2) There already exist expansions for $f(n)$ and facts about their coefficients have been proved.
One existing asymptotic ex pausion for $\sqrt{2 \pi}\left(\frac{n}{e}\right)^{u}$ is derived from the Lambert W-function:

Let $f(z)=z e^{z}$. For real z the graph is:

The Lambert W-function is the inverse (multi-valved) function, whose real part is:
W_{0} and W_{-1} are well-defined on $[-1 / e, \infty)$
They can be defined on $\mathbb{C}-\{0\}$
 and are analytic on $\mathbb{C}-(-\infty, 0]$, with a square-root-type singulavitijat- $\frac{1}{e}$

There are Puiseax expansions for $\omega_{0}(z)$ ad $W_{-1}(z)$ at their common branch point -Ye in powers of $\sqrt{e z+1}$:

$$
(*)\left\{\begin{array}{l}
w_{0}(z)=\sum_{p=0}^{\infty}(-1)^{p+1} w_{p}(e z+1)^{p / 2} \\
w_{-1}(z)=-\sum_{p=0}^{\infty} w_{p}(e z+1)^{p / 2}
\end{array}\right.
$$

Thu (Volkwer)

$$
w_{p}=-\frac{1}{2 \pi} \int_{0}^{\infty}(1-x)^{-p / 2-1} f^{\text {imaginary part }}\left(w_{-1}\left(e^{-1} x\right)\right) d x
$$

from $(*)$ yuri can get an expansion for $z \omega_{0}^{\prime}(z)$:

$$
\begin{aligned}
& (X *)\left\{\begin{array}{l}
z w_{0}^{\prime}(z)=\sum_{k=1}^{\infty}(-1)^{k+1} v_{k}(e z+1)^{k / 2} \\
z \omega_{-1}^{\prime}(z)=-\sum_{k=0}^{\infty} v_{k}(e z+1)^{k / 2}
\end{array}\right. \\
& \text { where }\left\{\begin{array}{l}
v_{k}=\frac{1}{2} \neq w_{k}-\frac{1}{2}(k+2) w_{k+2} \\
w_{-i}=0
\end{array}\right.
\end{aligned}
$$

Thun (Volkwer) $v_{p}>0$ for $p \geqslant 1$ and $\sum_{p=0}^{\infty} v_{2 p}=\sum_{p=0}^{\infty} v_{2 p-1}=-\frac{1}{2}$.

Here's another series for $z W_{0}^{\prime}(z)$, canvergut for $|z|<\frac{1}{c}$: $W_{0}(z)$ has a Taylor expansion at 0 :
Differentiating it and multiplying by z gives

$$
(* * *) z w_{0}^{\prime}(z)=\sum(-1)^{n+1} \frac{n^{n}}{n!} z^{n}
$$

Borinsky now says: "Comparing ($(-x)$) and ($x \times x$) and using the reflection property of the Γ-function this becomes

$$
\sqrt{2 \pi}\left(\frac{n}{e}\right)^{n}=-\sqrt{\frac{2}{\pi}} \sum_{k} \Gamma\left(k+\frac{1}{2}-n\right)(-1)^{k} \Gamma\left(k+\frac{1}{c}\right) v_{z k-1} \prime \prime
$$

By uniqueness of asymptotir expansions we gut

$$
-\sqrt{\frac{2}{\pi}} \Gamma\left(k+\frac{1}{2}\right) v_{2 k-1}=b_{k}
$$

so $v_{k}>0 \Rightarrow b_{k}<0 \Rightarrow c_{k}<0$ for $k \geqslant 1$ and $\left|c_{k}\right|$ grows more than exponentially in k.

Now: How do you get from

$$
\exp (T(z))=\sum b_{n} z^{n} \in \mathbb{Q}[[z]]
$$

to an asymptotic expansion for $\sqrt{2 \pi}\left(\frac{n}{e}\right)^{n}$?
Start with an equation in $\mathbb{Q}[(z]]$. Since b_{n} is calculated using τ, this equation should inuche τ.

Recap of notation:

$$
\begin{aligned}
& E(\Gamma)=\{\text { edges } f \Gamma\} \\
& e(\Gamma)=\# E(\Gamma) \\
& V(\Gamma)=\{\text { vertices of } \Gamma\} \\
& v(\Gamma)=\# V(\Gamma) \\
& |v| \Gamma=\text { valence of } v \varepsilon V(\Gamma) \\
& \text { cor just vol if } \Gamma \text { is clear }) \\
& |\Gamma|=e(\Gamma)-v(\Gamma)
\end{aligned}
$$

$$
\tau(\Gamma)=\sum_{\varphi \subset \Gamma \text { forest }}(-1)^{e(\varphi)} \quad(\text { including } \varphi=\varnothing)
$$

$\mathscr{H}=$ graphs with no bivalent or univalent vertices

$$
\begin{aligned}
y^{c}= & \text { connected graphs in } \mathscr{B} \\
c_{n}= & \sum_{\Gamma \varepsilon g^{c}} \frac{c(r)}{\mid A_{u}+(r)}=X\left(\operatorname{cut} F_{n+1}\right) \\
& |\Gamma|=n \\
T(z) & =c_{1} z+c_{2} z^{2}+\cdots=\sum_{n=1}^{\infty} c_{n} z^{n} \\
\exp (T(z))= & 1+b_{1} z+b_{2} z^{2}+\cdots=\sum_{n=0}^{\infty} b_{n} z^{n}
\end{aligned}
$$

so $\quad c_{1}=b_{1}, c_{2}=b_{2}-c_{1} b_{1}$, etc.
ie: $\quad c_{k}=b_{k}-\sum_{i=1}^{k-1} c_{i} b_{k-i}$
Move graph terminology:
Fa graph. A subgraph $\gamma c \Gamma$ is (the closure of) a subset of $E(T)$.
$\gamma \subset \Gamma$ a subgraph. Γ / γ is te graph obtained by collapsing all edges of γ to points.

Definition T is a cove graph if it hus no separating edges or isolated vertices. (this includes $\Gamma=\varnothing$)

Exercise $[$ a cove graph, $\gamma<\Gamma$ a sohgraph $\Rightarrow \Gamma / \gamma$ is a cove graph.
Bet $[$ a graph. core $(\Gamma) \subset \Gamma$ is the sohgraph obtained by deleting all separating edges.
Lemma $\Gamma \in \mathcal{M}, \theta \subset \Gamma$ a core sobyraph Then there is a bijection.
$\{$ subgraphs of Γ with core $=\theta$ \}
$\leftrightarrow\{$ Forests in $[/ \theta\}$
Pf Exercise

Define $\sigma(\Gamma)=(-1)^{e(\Gamma)}($ "sign of Γ ")
Lemma $\Gamma \varepsilon \mathcal{A}$ then
(1) $\sum_{\substack{\theta c \Gamma \\ \text { core }}} \sigma(\theta) \tau(\Gamma / \theta)=0$
(2) $\sum_{\substack{\theta c T \\ \text { core }}} \tau(\theta) \sigma(\Gamma / \theta)=0$

Pf
(1) The set of all sobgraphs of Γ is just te set of subsets of $E(\Gamma)$
So $\sum_{\gamma<\Gamma}(-1)^{e(\gamma)}=\sum_{k=0}^{e(r)}(-1)^{k}\left(\frac{e(r)}{k}\right)=0$
By te previous hemunna every solyraph γ is uniquely determined by its cone $\theta=\operatorname{core}(\gamma)$ and a forest $\varphi \& \tau / \theta$, so

$$
\begin{aligned}
0=\sum_{\gamma \subset \Gamma}(-1)^{e(\gamma)} & =\sum_{\theta<\tau} \sum_{\varphi<\Gamma / \theta}(-1)^{e(\theta)+e(\varphi)} \\
= & \sum_{\substack{\text { core forest } \\
\text { core }}}(-1)^{(\theta)} \tau(\Gamma / \theta) \\
= & \sum_{\substack{\theta c \Gamma \\
\text { cue }}} \delta(\theta) \tau(\Gamma / \theta)
\end{aligned}
$$

(2) (Thanks to Sam Shepherd!)

Recall that $\tau(\gamma)=0$ if γ has a separating edge

$$
\text { so } \begin{aligned}
& \sum_{\theta c T} \tau(\theta) \sigma(\Gamma / \theta) \\
= & \sum_{\gamma c \tau}^{c o r e} \tau(\gamma) \sigma(\Gamma / \gamma) \\
= & \sum_{\gamma c \Gamma} \sum_{\langle c \gamma}(-1)^{e(\varphi)}(-1)^{e(\Gamma-\gamma)} \\
= & (-1)^{e(r)} \sum_{\gamma \subset \Gamma} 1 \sum_{\varphi c T}(-1)^{e(\varphi)}(-1)^{e(\gamma)}
\end{aligned}
$$

$$
\begin{aligned}
& =(-1)^{e(\Gamma)} \sum_{\varphi c \Gamma} \sum_{\gamma>\varphi}(-1)^{e(\varphi)}(-1)^{e(\gamma)} \\
& = \pm \sum_{\varphi c \Gamma} e^{(\varphi)} \sum_{\gamma>\varphi}(-1)^{e(\gamma)} \\
& \gamma
\end{aligned}
$$

The set of sobgraphs containing φ is just the set of subsets of $E(\Gamma)-E(\varphi)$, so $\sum_{\gamma>\varphi}(-1)^{e(\gamma)}=0$ as in te prof of (1)
So $= \pm \sum_{\varphi \subset \Gamma}(-1)^{e(\varphi)} \cdot 0=0$
Corollary In $\mathbb{Q}[[z]]$

$$
\begin{aligned}
& 1=\sum_{\Gamma c y \mid} \sum_{\theta c \Gamma} \frac{\tau(\theta) \sigma(\Gamma / \theta)}{\mid \text { Au } \Gamma \mid} z^{|r|} \\
& \underbrace{\text { care }}_{\left.\begin{array}{cc}
=0 & \text { if } \\
\text { and } & \tau(\phi)=1
\end{array}\right]}
\end{aligned}
$$

Now instead of summing ores all pairs (Γ, θ) with $\theta \subset \Gamma$ cone, we want to sum over all $($ cos $) \Delta=\Gamma / \theta$ and core sobgraphs with legs that you could insert into the vertices of Δ

The claim is that the equation in the corollary above becomes

$$
\begin{aligned}
& 1=\sum_{\Delta \varepsilon g}\left(\prod_{v \varepsilon V(\Delta)} T_{|v|}(z)\right) \frac{\sigma(\Delta)}{\left|A_{a t} \Delta\right|} z^{e(\Delta)} \\
& \text { weer } T_{k}(z)=\sum_{v=1}^{\infty} C_{n, k} z^{n} \\
& \quad C_{n, k}=X\left(A_{n+1, k}\right) \\
& A_{n, k}=\pi_{0} H E\left(R_{n, k}, \partial\right) \text { is the grape }
\end{aligned}
$$ we 've been studying

In particular, from te short exact sequence $\quad \rightarrow F_{n+1}^{k} \rightarrow A_{n+1, k} \rightarrow A_{n \in 1,0} \rightarrow 1$
we get

$$
\begin{aligned}
x\left(A_{n+1, k}\right) & =n^{k} x\left(c_{n} E_{n+1}\right) \\
& =n^{k} c_{n}
\end{aligned}
$$

Now we can get a different formula
for the coefficients of exp $\left(T_{k}(z)\right)$ by counting graphs. This involves factorials $(=I-f u n c t i o n s) \cdot B y$ manipulating these and a variation on Sterling's asymptotic sevies for Γ-functions we obtain an asymptotic series for $\sqrt{2 \pi}\left(\frac{n}{e}\right)^{n}$.
(Sorry for all the missing details!)

