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Most of my research has been in the general area of ergodic theory and dynamical systems,
with a particular emphasis on the interaction with geometry, analysis, number theory and
mathematical physics. My most referenced works in the mathematics literature seem to be
related to dynamical zeta functions. On the other hand, my most cited papers in the physics
literature are those on decay of correlations and resonances. However, these are basically
“two sides of the same coin”.

1 Closed orbits and Zeta functions.

1.1 Zeta functions for flows

My early and, ironically, my later research has been bound up with dynamical zeta functions.
The best known zeta function is the Riemann zeta function for primes numbers (p

n

) =
2, 3, 5, 7, 11, 13.17, · · · defined by

⇣(s) =
Y

p

�
1� p�s

��1

, s 2 C.

In 1956, Selberg introduced his famous zeta function for closed geodesics on surfaces of
constant negative curvature and showed using trace formulae for SL(2, R) that it had an
extension to the entire complex plane.

Figure 1: Riemann, Selberg, Smale and Ruelle

In 1967 Smale proposed extending the definition to a dynamical setting and, following
Ruelle’s formulation, and by analogy with the Riemann zeta function, let

⇣(s) =
Y

⌧

�
1� e�sh�(⌧)

��1

, s 2 C.
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1.2 Closed orbits and closed geodesics 1 CLOSED ORBITS AND ZETA FUNCTIONS.

where ⌧ denotes a closed orbit for an Anosov flow of least period �(⌧) then the zeta function
can defined by where h > 0 denotes the entropy of the flow. This converges in the half-plane
Re(s) > 1.

The key connection between the geometry and the dynamics is the following.

Proposition 1.1. In the particular case of negatively curved manifolds, the associated
geodesic flow is an example of an Anosov flow and there is a bijection between closed geodesics
and closed orbits for the flow.

Following even earlier work of Ruelle, and Parry and mine, a result of mine from 1985
showed it has a meromorphic extension to a strip 1 � � < Re(s)  1, say 1. Finally,
developping a very di↵erent method the result of Selberg was eventually extended as follows:

Theorem 1.2 (Giulietti-Liverani-Pollicott). For the geodesic flow on any C1 manifolds
with negative sectional curvatures (or, more generally, Anosov flows) the zeta function ⇣(s)
has an extension to the entire complex plane.

1.2 Closed orbits and closed geodesics

As an application of the original Selberg zeta function, Huber showed there is a “Prime
Geodesic Theorem” (analogous to the Prime Number Theorem) giving a simple and elegant
asymptotic formula for the number of closed orbits N(T ) for the geodesic flow whose period
is at most T . This was subsequently extended to compact manifolds with variable negative
curvature by Margulis in his thesis (but without the more delicate error term established by
Huber in the constant curvature case).

More generally, let N
↵

(T ) be the number of closed geodesics which are additionally
restricted to fixed homology class ↵, then Phillips and Sarnak had an asymptotic formula
for N

↵

(T ) in the case of constant curvature.

Figure 2: Margulis, Sunada, Sarnak and Parry

Theorem 1.3. We have the following counting function asymptotics.

1
This was already useful in studying the dependence of the entropy h on the flow. or the Riemannian

metric in the case of geodesics flows, used in the modern theory of linear response
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1.3 generalizations 1 CLOSED ORBITS AND ZETA FUNCTIONS.

1. For weak-mixing Anosov flows

N(T ) ⇠ ehT /hT as T !1.

(Parry-Pollicott)

2. For geodesic flows on surfaces or manifolds with 1

9

-pinched negative sectional curvatures
there exists h > 0 and ✏ > 0 such that

N(T ) = Li(ehT )(1 + O(e�✏T )) as T !1

where Li(x) =
R

x

2

du

log u

. (Pollicott-Sharp, Giulietti-Liverani-Pollicott)

3. For manifolds with (Variable) negative curvature, then there exist constants c
0

, c
1

, c
2

· · ·
such that

N
↵

(T ) =
ehT

T g+1

⇣
c
0

+
c
1

T
+

c
1

T 2

+ · · ·
⌘

as T !1.

(Katsuda-Sunada, Lalley, Pollicott (first term); Pollicott-Sharp, N. Ananrathaman
(full expansion))

The statement, and the proof of this theorem is analogous to the classical results in
number theory. The basic principle is that closed orbits ⌧ correspond to prime numbers p,
where we substitute p in the classical formulae by e�h�(⌧).

1. The Prime Number Theorem (Hadamard, de la Vallee Poussin):

Card{primes p  x} ⇠ x

log x
, as x ! +1

2. The Riemann Hypothesis (still to be proved)

Card{primes p  x} = Li(x) + O(x1/2+✏) as x ! +1

3. Sums of squares (Landau, Ramanujan):

Card{primes n2 + m2  x} =
xp
log x

✓
C

0

+
C

1

log x
+

C
2

(log x)2

+ · · ·
◆

as x ! +1

1.3 generalizations

1. There is a result for Poincaré series and orbital counting functions (e.g., the orbit of
a point in the universal cover of a negatively curved manifold under the action of the
fundamental group). This extends results of Patterson, etc. from constant curvature
to variable curvature.

2. In this setting additional progress was made using ideas from geometric group theory.
The orbital counting results were used in turn in the proof of the remarkable Babillot-
Ledrappier result on horocycle ergodicity for periodic surfaces. I subsequently gave
a new proof of, which subsequently lead to my work with Ledrappier on counting
problems for more general Cli↵ord groups and p-adic groups.
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2 ERGODICITY AND MIXING

Figure 3: Hadamard, de la Vallee Poussin, Landau and Ramanujan

3. Another more subtle result on the distribution of lengths is a pair correlation result
comparing lengths of closed geodesics (ordered by their word length) due to Richard
Sharp and myself, which is analogous to problems in Quantum Chaos.

2 Ergodicity and mixing

2.1 Decay of Correlations for hyperbolic flows

In the study of dynamical systems, one of the central themes is their long term statistical
behaviour. Of particular interest is the speed at which the system approaches its equilibrium
state, which is described by the “decay of correlations” (or rate of mixing). More precisely,
given a smooth flow �

t

: M ! M on a compact manifold, a suitable �-invariant probability
measure µ and real valued square smooth F , G one can associate the correlation function

⇢(t) =

Z
F � �

t

.Gdµ�
Z

Fdµ

Z
Gdµ.

The behaviour of this function is particularly important for “chaotic systems”, one of the
principle mathematical models for which are the Anosov flows �

t

: M ! M .

x xφ t

E

E

s

u

Figure 4: (a) The hyperbolicity transverse to the orbit of an Anosov flow; (b) Dmitri Vic-
torovich Anosov.

Definition 2.1. We say that �
t

: N ! N is a Anosov if there is a D�
t

-invariant splitting
TM = E0 � Es � Eu such that
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2.1 Decay of Correlations for hyperbolic flows 2 ERGODICITY AND MIXING

1. E0 is one dimensional and tangent to the flow direction;

2. 9C, � > 0 such that kD�
t

|Esk  Ce��t and kD��t

|Euk  Ce��t for t > 0.

The behavior of ⇢(t) (where µ is a Gibbs measure for a Hölder potential and F, G are
Hölder functions) is then determined by the following result:

Theorem 2.2. The Fourier transform b⇢(s) =
R

eits⇢(t)dt is meromorphic for |Im(s)| < ✏.
(Pollicott)

The asymptotic behaviour of ⇢(t) is controlled by the poles in this extension (often now
called Pollicott-Ruelle resonances) and this is essentially the only technique known to study
the decay of correlations for flows, besides representation theory in the very special case of
geodesic flows for surfaces of constant negative curvature, say.

Figure 5: (a) The geodesic flow on a compact surface illustrated on a book cover; (b) A
mechanical linkage whose dynamics can be described by the geodesic flow.

Example 2.3. There are two natural classes of examples with exponential decay of correla-
tions (i.e., 9C, � > 0 such that |⇢(t)|  Ce��|t|):

1. Let V be a compact surface of variable negative curvature, then the geodesic flow �
t

:
SV ! SV on the unit tangent bundle SV has exponential decay of correlations .
(Dolgopyat)

2. For small � > 0, the suspension semiflow for a function r(x) = 1 + � sin(2⇡x) over
doubling map z 7! z2 on the unit circle mixes exponentially. (Ruelle conjecture; Polli-
cott)

By contrast, I showed that there exist many examples of more general hyperbolic flows
which mix arbitrarily slowly.
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2.2 Frame flows 2 ERGODICITY AND MIXING

Figure 6: Ledrappier, Dolgopyat, Pesin and Burns

2.2 Frame flows

A more general class of systems than hyperbolic systems are the partially hyperbolic systems.
The canonical example of this is the frame flow associated to a compact d-dimensional
manifold M with negative sectional curvatures, by which orthonormal frames of tangent
vectors are parallel transported along geodesics (which is a G = SO(d� 1)-extension of the
associated hyperbolic geodesic flow). The following result completed a programme of Brin
and Gromov.

Theorem 2.4. For each d > 1 there exists ✏
d

> 0 such that if the sectional curvatures are
✏
d

-pinched then the frame flow is (stability) ergodic. (Burns-Pollicott).

Some of my work on mixing for frame flows was an ingredient in the recent work of
Markovic-Kahn.

2.3 Other systems

1. Burns, Dolgopyat, Pesin and I considered stable ergodicity for partially hyperbolic
di↵eomorphisms for which the neutral direction contracts on average.

2. Parry and I also developed a programme to study the stability of ergodicity (and mix-
ing) for skew products over hyperbolic di↵eomophisms. This lead to a fairly complete
classification of ergodic skew products, in part through the developments in the theory
of measurable Livsic theorems.

3. Johansson, Oberg and I have also studied ergodicity problems in other settings and
using more probabilistic techniques I have criteria for uniqueness of g-measures, in the
sense of Keane.

4. Magalhaes and I have also consider the dynamics of mechanical linkages via the asso-
ciated geodesic flows.
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3 FRACTALS AND HAUSDORFF DIMENSION

3 Fractals and Hausdor↵ Dimension

3.1 Transversality and typical parameters

A basic method in studying “typical” fractal limit sets associated to a parameterised family
of contractions is a technique developed with Simon called transversality. This was originally
used to solve the following conjecture:

Theorem 3.1 (Keane-Smorodinsky-Solomyak Conjecture). The Hausdor↵ dimension of

⇤
�

:=

( 1X

n=1

i
n

�n : i
n

2 {0, 1, 3}
)

is � log 3

log �

for almost all 1

4

 �  1

3

. (Pollicott-Simon)

Moreover, this new transversality method subsequently proved to be the main tool in
studying many di↵erent problems, including Solomyak’s well known solution of the more
famous Erdös Conjecture.

Theorem 3.2 (Erdös Conjecture). For almost all 1

2

< � < 1 the distribution

1X

n=1

±�n

is absolutely continuous. (Solmyak)

3.2 Fat Sierpinski Gaskets

Another basic example of a “fractal set” is the Sierpinski gasket defined for a given finite
family S ⇢ {0, · · · , d� 1}⇥ {0, · · · , d� 1} by

⌃
�

:=

( 1X

n=1

i
n

�n,
1X

n=1

j
n

�n

!
: (i

n

, j
n

) 2 S

)
.

When � = 1

d

this is a standard Sierpinski gasket, and the dimension is easily computed.

Figure 7: (a) The Beford-McMullen construction; (b) The Hironaka curve; (c) McMullen

However, for 1

d

< � < 1 this is called a “fat Sierpinski gasket” and one of the few results
known is the following:
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3.3 Computing dimension 4 EXPLICIT VALUES

Theorem 3.3. For fat Sierpinski gaskets there are explicit ranges of � where the dimension
has a known value for almost all �. There are other explicit ranges of � where the set can
be shown to have positive lebesgue measure for almost all �. (Jordan-Pollicott)

Moreover, developing this approach lead to resolving an old conjecture (by Peres-Solomyak)
showing that there exists a self-a�ne set of nonzero measure and empty interior.

3.3 Computing dimension

In a di↵erent direction, I derived a new algorithm for computing for the Hausdor↵ dimension
of hyperbolic Julia sets (and limit sets of Kleinian groups).

Theorem 3.4. There exists a very e�cient algorithm for computing the Hausdor↵ dimension
of hyperbolic Julia sets using periodic orbit data. (Jenkinson-Pollicott)

In particular, this method improved on an algorithm of McMullen and provides, for
example, the best known numerical estimates for E

2

(the numbers in the unit interval whose
continued fraction expansion contains only 1 and 2):

0 · 5312805062772051416244686 · · ·

Figure 8: Solymak, Furstenberg, Simon and Jenkinson

4 Explicit values

4.1 Determinants and the Selberg zeta function revisited

A continuing theme of my work is finding explicit (and e↵ectively computable) formulae
for characteristic values. For example, for a compact Riemann surface (M, g) with negative
Euler characteristic one can consider the famous Determinant of the Laplacian det(g)

Theorem 4.1. There is a formula for det(g) in terms of a rapidly convergent series each of
whose coe�cients is explicitly given in terms of the lengths of finitely many closed geodesics.
(Pollicott-Rocha,)
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4.2 Lyapunov exponents and entropy rates 4 EXPLICIT VALUES

In particular, this allows one to e�ciently compute the numerical value of det(g) for given
surfaces.

This method also gives an explicit expression for the Selberg zeta function for a surface
of constant negative curvature. For a compact surface with curvature  = �1, I showed
that the Selberg zeta function Z(s) can be written in terms of a convergent series each of
whose coe�cients depends on s and are explicitly given in terms of the lengths of finitely
many closed geodesics. Anantharaman-Zelditch reformulated problems in Quantum Unique
Ergodicity, in terms of residues of related complex functions for which we can give have
explicit formulae.

4.2 Lyapunov exponents and entropy rates

In a similar spirit, I have developed a new approach to Lyapunov exponents associated to
positive matrices (as defined by Furstenberg and Kesten) and showed the following:

Theorem 4.2. There is an expliciit (and e↵ectively computable) formulae for Lyapunov
exponents in terms of a convergent series the nth term depends on of products of finitely
many matrices. (Pollicott)

Example 4.3. If we consider the matrices

A
1

=

✓
2 1
1 1

◆
and A

2

=

✓
3 1
2 1

◆

then �
n=9

this gives an approximation

� = 1.1433110351029492458432518536555882994025 · · ·

to the Lyapunov exponent �.

In particular, this gives an e↵ective algorithm for computing the entropy rate for binary
symmetric channels with transition matrix

✓
p 1� p

1� p p

◆

and Bernoulli crossover probability (1� ✏, ).

Example 4.4. Consider the case where ✏ = 0.1 and p = 0.3 then using 212 matrices we can
estimate the entropy rate

H = 0.659212415380064188468453654486913549

which is empirically accurate to the 35 decimal places given.
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