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Abstract. In this article we prove that there exists a continuous eigen-
function for the transfer operator corresponding to potentials for the
classical Dyson model in the subcritical regime for which the parameter
α is greater than 3/2, and we conjecture that this value is sharp.

This is a significant improvement on previous results where the ex-
istence of a continuous eigenfunction of the transfer operator was only
established for general potentials satisfying summable variations, which
would correspond to the parameter range α > 2. Moreover, this com-
plements as result by Bissacot, Endo, van Enter and Le Ny [8], who
showed that there is no continuous eigenfunction at low temperatures.

Our approach to obtaining these new results involves a novel ap-
proach based on random cluster models.

1. Introduction

It is well-known [30] that there exists a continuous and strictly positive
eigenfunction of a transfer operator defined on a symbolic shift space with a
finite number of symbols such that the potential has summable variations.
Here we prove the existence of a continuous eigenfunction for the important
special class of Dyson potentials in the subcritical regime up to at least the
critical line for Bernoulli percolation, i.e., in particular when the potential
does not satisfy the condition of summable variations.

For the Dyson model a continuous eigenfunction means that there is a con-
tinuous Radon-Nikodym derivative between the two-sided equilibrium mea-
sure (a translation invariant Gibbs measure) and the one-sided Gibbs mea-
sure.

A complementary paper to ours is the one by Bissacot, Endo, van Enter,
and Le Ny [8], where they show that there is no continuous eigenfunction
in the context of the Dyson model for low enough temperatures, although
they phrase their result in terms of the lack of the g-measure property. We
will describe the connection further below.
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1.1. Preliminaries and results. Let T be the left shift on the space X =
AN, where A = {−1,+1}. We denote by C(X) the space of continuous
functions and byM(X) the space of probability measures onX. Let ϕ : X →
R be a continuous function which we refer to as the one-point potential. The
transfer operator L = Lϕ is a positive operator L : C(X) → C(X) defined
by

(1) Lf(x) =
∑

y∈T−1x

eϕ(y) f(y).

From the Ruelle-Perron-Frobenius theorem, we can deduce the existence of
an eigenmeasure ν ∈ M(X) to the dual operator L∗ : M(X) → M(X) that
satisfies L∗ν = λν, or equivalently∫

Lf dν = λ

∫
f dν, f ∈ C(X),

for the maximum eigenvalue λ > 0.

In this paper, we want to establish the existence of a corresponding con-
tinuous eigenfunction h(x), 0 < h < ∞, for the long-range Dyson model
where

(2) ϕ(x0, x1, . . .) = x0 · β
∞∑
j=1

xj
jα
,

for parameters α > 1 and β > 0.

An equilibrium measure µ ∈ M(X) corresponding to ϕ is a minimiser of
the free energy P (µ;ϕ) = µ(ϕ) − H(µ) among the set µ ∈ MT (X) of all
translation invariant probability measures, that is measures such that µ =
µ ◦ T−1. If there is an eigenfunction h with

∫
h dν = 1 then the equilibrium

measure µ can be written as µ = hν.

It is well-known ([18, 1]) that the long-range Dyson model with potential (2)
has a critical value of the parameter β, βc = βc(α), such that we have a
unique equilibrium state µ and a unique eigenmeasure ν for 0 < β < βc
and two ergodic states for βc < β. This βc(α) is also the critical β for
percolation in the corresponding random cluster model with q = 2. There
is also the critical parameter β1c (α) for percolation in the Bernoulli random
graph model.

We can now present our main result.

Theorem 1. For 3/2 < α ≤ 2 there exists a continuous eigenfunction of
L whenever 0 < β ≤ β∗. Here, β∗ = β∗(α) is a critical value satisfying
0 < β1c ≤ β∗ ≤ βc.

We can define β∗ as the supremum of β ≤ βc for which the corresponding
random cluster model has a cluster size distribution with an exponentially
decreasing tail, see (28). Note that β∗ could well be equal to βc.



CONTINUOUS EIGENFUNCTION 3

Let varn f = sup{|f(x) − f(y)| : xi = yi, 0 ≤ i ≤ n − 1}. If one assumes
summable variations

∑∞
n=1 varn(ϕ) < ∞ then the existence of a continu-

ous eigenfunction h(x) for L follows from a classical “cone-argument” used
in, for example, Walters [30]. For the Dyson model, summability of varia-
tions means that α > 2 and that the eigenfunction h(x) is Hölder continu-
ous.

In Theorem 1, we have a continuous eigenfunction in a context when α > 3/2
and 0 < β < β∗, and thus with the variations varn ϕ = O(1/nα−1), as n →
∞. Note that the condition α > 3/2 means that

∑∞
n=1(varn ϕ)

2 <∞.

If we have a strictly positive continuous eigenfunction h of the transfer oper-
ator, then we can recover an equilibrium measure µ ([29, 30]) as the Doeblin
measure ([7]; g-measure in Keane’s terminology [27]) for the Doeblin func-
tion (g-function) g(x) defined by

(3) g(x) =
eϕ(x)

λ
· h(x)

h(Tx)
,

since
∑

y∈T−1x g(y) = 1 for all x. The corresponding transfer operator Lg
is a Markov transition operator and µ ∈ M(X) is a Doeblin measure for
g(x) if L∗

gµ = µ, i.e., it is the invariant distribution for a stationary Markov
process on the state space X. We refer to [23, 25, 16, 6, 21, 19]) for results
on Doeblin measures.

In Bissacot, Endo, van Enter and Le Ny [8], they show that at low tempera-
tures for the Dyson model, there is no continuous Doeblin function g(x) that
represents the Gibbs measure, and this gives a counterexample to the exis-
tence of a continuous eigenfunction of the transfer operator for the Dyson
model. Fernandez and Maillard [17] proved that a Gibbs measure can be
represented by a Doeblin measure in the Dobrushin regime.

There were some extensions made to establish the existence of a measurable
eigenfunction bounded away from zero and infinity [10]. Walters proved
some regularity (but not continuity) for an eigenfunction ([30], Theorem
5.1) under the so-called Bowen condition.

We conjecture that the condition α > 3/2 is sharp in the sense that we do
not have a continuous eigenfunction h, 0 < h <∞, for the transfer operator
for the Dyson model when α < 3/2. We are grateful to Aernout van Enter
for pointing out that there is support in the mathematical physics literature
for such a conjecture, see Endo, van Enter, and Le Ny [14]. One possible
approach to prove sharpness might be to use the theory of Gallesco, Gallo,
and Takahashi [19] in combination with the observation that α > 3/2 means
that

∑∞
n=1(varn ϕ)

2 <∞.

1.2. The method of proof. Assume that ν is an eigenmeasure for L∗ and
that there is some translation invariant µ which is absolutely continuous
with respect to ν, i.e. such that µ = hν. We use that the Radon-Nikodym
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derivative h(x) = dµ/dν is an eigenfunction of the transfer operator L. This
follows from the identities∫

g · h dν =

∫
(g ◦ T ) · h dν =

∫
1

λ
L(g ◦ T · h) dν =

∫
g ·
(
1

λ
Lh

)
dν,

where the last equality follows from the definition of L. This hold for all
g ∈ C(X) if only if Lh = λh as elements of L1(ν).

Starting with the translation invariant µ and the eigenmeasure ν, we can
try to construct the Radon-Nikodym derivative h(x) as the limit of the
likelihood ratios dµ|Fn/dν|Fn , i.e.

(4) h(x) = lim
n→∞

hn(x) where hn(x) =
µ[x0, . . . xn]

ν[x0, . . . , xn]
.

The limit (4) is well-defined ν-almost everywhere by the martingale conver-
gence theorem. If it exists in L1(ν) then it equals h = dµ/dν and we can
deduce the existence of an eigenfunction h in L1(ν). By studying the asso-
ciated random cluster model, we can prove that the limit in (4) is actually
continuous for the relevant Dyson models.

The proof goes roughly as follows. Let ν(x) be the eigenmeasure of L∗
ϕ and

let µ(x̄), x̄ ∈ AZ, denote the natural extension of the equilibrium measure
µ. We can represent ν(x) and µ(x̄) as Gibbs measures for the Ising model
corresponding to potentials Φ(x) and Φ(x̄), respectively. Let Γ(V ) denote
the space of graphs on vertex set V . We lift ν(x) to a spin-cluster model
ν(γ+, x) and µ(x̄) to a spin-cluster model µ(γ, x̄), where γ+ ∈ Γ(N) and
γ ∈ Γ(Z) are random graphs. The bipartition Z = Z<0 ⊎ N decomposes the
graph γ as γ = (γ−, γ0, γ+). It follows from the properties of the random
cluster model that we can factorise the distribution of γ as

µ(γ−, γ0, γ+) = eR(γ) · ν(γ−)⊗ η(γ0)⊗ ν(γ+),

where we prove in Lemma 2 that eR is an element of L1. This factorisation
gives us an opening to compute the likelihood ratios in (4) and to prove the
continuity of the limit using the dominated convergence theorem.

Acknowledgements. We would like to thank Noam Berger and Evgeny
Verbitskiy for valuable discussions, and in particular Aernout van Enter for
a very important correspondence for this work. The second author wishes
to thank the Knut and Alice Wallenberg Foundation for financial support.
The third author acknowledges the ERC Grant 833802–Resonances.
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2. The proof of Theorem 1

2.1. Configurations, graphs and potentials.

2.1.1. Configurations and potentials. By a configuration space we mean a set
of form AS = {x : S → A}, where A is a finite set (the “alphabet”) and S
(the “sites”) is a countable set. We refer to elements x ∈ X as configurations
and we give the space X the usual product topology and sigma-algebra F.
For G ⊂ S, we write xG for the restriction x|G : G→ A ∈ AG of x to G and
FG for the σ-algebra generated by xG.

We use F̄ to denote the complement S \F of F . For all F we can decompose
x ∈ X as x = (xF , xF̄ ). We express that F is a finite subset of S by writing
F ⋐ S. Writing F ↑ S signifies that F ⋐ S runs through an arbitrary
increasing sequence of finite sets with limit S. We denote [x]F the cylinder
set [x]F = {y | yF = xF } at F containing x.

Implicitly, we assume all functions introduced are measurable. For a function
f : X → R the variation at F ⊂ S is varF f = sup{|f(x)−f(y)| : xF = yF }.
A function f is local at F if f is FU -measurable for some finite subset U ⋐ S
and it is continuous if limF↑S varF f = 0.

For two sequences x, y ∈ X, let ∆(x, y) ⊂ S denote the set where they are
different, i.e. ∆(x, y) := {i : x(i) ̸= y(i)}. With a potential ϕ(x) on X, we
mean a formal limit ϕ(x) = limF↑S ϕF (x) of local functions, varF ϕ = 0,
such that the difference

∆ϕ(x, y) := lim
F↑S

ϕF (x)− ϕF (y)

is finite and well defined for any pair of configurations x and y such that
∆(x, y) is a finite set. We can formally add potentials as long as it is clear
that the underlying limits give a well defined equality ∆(ϕ + ψ)(x, y) =
∆ϕ(x, y) + ∆ψ(x, y) for the differences. Note that, we can consider two
potentials ϕ = limϕF and ψ = limψF to be equal when it holds for all
F ⋐ S that ϕF (x)− ψF (x) does not depend on x.

2.1.2. Graphs. Let V (2) denote the set of unordered pairs ij of elements
i, j ∈ V , i.e. V (2) is V ×V modulo the equivalence relation with equivalence
classes ij = {(i, j), (j, i)}. We consider a graph on the vertex set V = V (G)

to be a map G : E → V from a set of edges E = E(G) to V (2). Edges e of
the form G(e) = ii, i ∈ V , are loops. We thus allow for multiple edges and
loops. The complete graph on V , K(V ), is the inclusion map of the non-

loops in V (2). Given a bipartition V = V+ ⊎ V− of V the complete bipartite
graph K(V+, V−) is the inclusion of V+ × V− in V (2).

A spanning subgraph γ of G is a restriction of G to a subset E(γ) ⊂ E(G).
We denote by Γ(G) the space of spanning subgraphs γ of G and we can

represent γ ∈ Γ(G) with a configuration γ ∈ {0, 1}E(G) or, equivalently,
a subset γ ⊂ E(G). If G is the complete graph K(V ) or the complete
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bipartite graph K(V+, V−), we write Γ(V ) or Γ(V+, V−) instead. We denote
by G[F ] the subgraph induced on F ⊂ V , which means the restriction

G[F ] : G−1(F (2)) → F (2) of G in both the domain and codomain. All
spanning subgraphs γ ∈ Γ(G) we consider will have finite degrees, i.e.

D(F, γ) :=
∑
i∈F

∑
j∈V

γ(ij) <∞,

for all F ⋐ V .

Consider an equivalence relation ∼ on V or, equivalently, a partition Ṽ =
V/∼ into equivalence classes and identifying projection π : V → Ṽ . A

contraction G/∼ of G along ∼ is the graph G/∼ : E(G) → Ṽ (2) obtained
from G by identifying pairs in the codomain along ∼. Note that E(G) =
E(G/∼) so Γ(G) and Γ(G/∼) are equal as sets. If F ⋐ V then we write
GF for the local contraction at F obtained from the equivalence relation
“x, y ∈ F or x = y”, i.e. by contracting all vertices in F .

2.1.3. Clusters and decomposition along a cut (V+, V−). For a graph γ ∈
Γ(V ), let C(γ) = {C} denote the partition of V into connected components
(“clusters”). If V is countably infinite, we consider the number of clusters
ω(γ) = |C(γ)| as a potential: The difference

∆ω(γ, γ′) = lim
F↑V

ω(γ[F ])− ω(γ′[F ])

for induced subgraphs along F ↑ V is well defined and finite. We have
|∆ω(γ, γ′)| ≤ |∆(γ, γ′)| for any two graphs γ and γ′ with a finite symmetric
difference and the limit is eventually constant. Moreover, the potential ω(γ)
is continuous at γ unless γ contains more than one infinite cluster.

The analysis of the likelihood ratios in (4) leads us to consider contractions
γF of a random graphs γ at the finite sets F = [0, n − 1]. We see that,
given F ⋐ V , the number of clusters ω(γ) = |C(γ)| satisfies the potential
equality

(5) ω(γ) = ωF (γ) + ω(γF )− 1

where ωF (γ) is the number of clusters intersecting F and ω(γF ) is the num-
ber of clusters in the contraction γF . The constant difference of one is
irrelevant for equality between potentials.

We will on occasion consider a bipartition (or “cut”) V = V+ ⊎ V− of the
vertex set in two sets. Such a cut decomposes a given graph γ ∈ Γ(V ) into
three graphs

(6) γ = (γ+, γ0, γ−) ∈ Γ(V+)× Γ(V+, V−)× Γ(V−)

and the analysis of the two-sided model with the one-sided rely on analysing
the decomposition for random graphs γ. The graphs γ± = γ[V±] are γ in-
duced on the two vertex parts and the subgraph γ0 is the bipartite subgraph
γ ∩K(V+, V−) connecting vertices i ∈ V− with vertices j ∈ V+.
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A cut gives the potential identity

(7) ω(γ) = ω(γ+) + ω(γ−)− |γ0|+R(γ),

where the cardinality |γ0| of γ0 is taken as a linear potential and where
R(γ) is a correction term. Since ω(γ \ γ0) = ω(γ+) + ω(γ−), we obtain the
following expression for R

(8) R(γ) = |γ0| − (ω(γ \ γ0)− ω(γ)) = |γ0| − (ω(γ+) + ω(γ−)− ω(γ)).

We could treat R(γ) as a potential, but, in the cases of our interest, we shall
see that R(γ) is a regular function which is small in a certain sense.

The corank of a graph γ is the maximum number of edges that one can re-
move from γ without increasing the number of components ω(γ). It is also
the minimum number one must remove in order to make the graph acyclic.
If we consider the bipartite (multi-)graph γ̃0 ∈ Γ(V+/C(γ+), V−/C(γ−)) ob-
tained from contracting γ0 along the clusters in C(γ+) and C(γ−), then R(γ)
in (8) equals the corank of γ̃0.

If we contract the terms in the equality (7) at a finite set F ⋐ V+, we
obtain

(9) ω(γF ) = ω(γF+) + ω(γ−)− |γ0|+RF (γ).

Here RF (γ) equals ω(γ
F )−ω(γF \ γ0F ) = corank γ̃F0 , where γ̃

F
0 denotes the

bipartite graph γ0 contracted first at F and then along C(γ+)⊎C(γ−).

For some fixed chosen order on the edges in γ0, we say an edge ij is irrelevant
if there is an edge in γ0 from the same cluster C in C(γ−) that precedes it
in the chosen order. We define Q(γ−, γ0) as the total number of irrelevant
edges. That is,

(10) Q(γ−, γ0) =
∑

C∈C(γ−)

(D(C, γ0)− 1)+,

where D(C, γ0) =
∑

j∈C
∑

j∈V+ γ0(ij) is the degree of C ⊂ V− in γ0. Note

that Q does not depend on γ+.

From the interpretation of RF as the co-rank in γ̃F0 , it follows that for all
F

(11) RF (γ) ≤ Q(γ−, γ0)

since, the graph where all vertices in one part has degree 1, is acyclic. As-
suming Q <∞, we also have

(12) RF (γ) → Q(γ−, γ0) as F ↑ V+,

since all cycles in γ̃F0 eventually become 2-cycles when F ↑ V+.
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2.2. Random configurations and random graphs. Let M(X) denote
the space of probability distributions of configurations. Elements α ∈ M(X)
are usually written as α(x) in order to make it clear that α is a distribution
of the random configuration x ∈ X. We also use x ∼ α to denote that x
has distribution α. When we need to specify a parameter p of a distribution
α we use the form α(x; p). We denote the marginal distribution of xA by
α(xA). For a partition A⊎B = S, we denote by α(xA)⊗β(xB) the product
measure (α⊗β)(x) of α(xA) and β(xB). A measure η is a Bernoulli measure
if and only if η(x) = η(xA) ⊗ η(xB) for every bipartition S = A ⊎ B. To
parametrise a general Bernoulli distribution, we use a function p : S → M(A)
such that p(s) is a probability distribution on A. The product distribution⊗

s∈S p(s)(xs) is the corresponding Bernoulli measure η(x; p). We write
µ(x) ≺ ν(x′) to state stochastic domination between elements in M(X),
which means that we can couple µ(x) and ν(x′) so that with probability one
x ≤ x′ with respect to the partial order · ≤ ·.

By a gibbs measure (small g), we mean Gibbs measures, sufficiently gen-
eralised to cover the random cluster setting below. It is a probability dis-
tribution µ(x) ∈ M(X) consistent with an associated specification. That
is, for every finite set F ⋐ S and for every (instead of just for µ-almost
every) exterior configuration xF̄ , we have a well defined conditional prob-

ability µ(xF | xF̄ ) of xF ∈ AF given xF̄ ∈ AF̄ . Hence, for each finite set
F ⊂ S, the map xF̄ 7→ µ(· | xF̄ ) is a well defined function of the exterior con-
figuration xF̄ , satisfying the obvious consistency conditions for conditional
probabilities. An immediate class of unique gibbs measures are the Bernoulli
measures. The corresponding specification η(xF | xF̄ ; p) = η(xF ; p|F ) is in-
dependent of the boundary xF̄ .

Note that we do not require the specification of a gibbs measure to be
continuous and we are thus talking about gibbs measures in an extended
sense. The same specification may have multiple consistent gibbs measures,
but, in our context, we can consider all gibbs measure of this form to be
unique by the subcriticality assumption on β. The reference [15] gives a
more thorough and rigourous introduction of Gibbs measures and some of
their extensions.

We can modulate a gibbs measure α(x) with an “exponential of a potential”

eϕ(x) to obtain a set of new gibbs measures denoted by eϕ⋉α. Let µ = γ0
ϕ⋉α

denote an element of this set. For all finite subsets F ⋐ S, the specification
of eϕ ⋉ α at F , i.e. µ(xF | xF̄ ), is well-defined by the relation

(13)
µ(xF | xF̄ )
µ(yF | xF̄ )

= exp (∆ϕ(x, y)) · α(xF | xF̄ )
α(yF | xF̄ )

,

where y = (yF , xF̄ ) and α(·|xF̄ ) is the specification of α. We write eϕ⋉α to
denote the set of weak limit points, as F ↑ S, of µ(xF | xF̄ ) · α(xF̄ ) where
α(xF̄ ) denotes the marginal distribution of xF̄ . In our context, this limit
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will be a unique measure and we usually write µ = eϕ ⋉ α. If g(x) > 0
is a regular positive function such that g(x) ∈ L1(α) then the modulation
g ⋉ α simply means taking the product with g(x) and normalising with a
constant, i.e.

(14) g ⋉ α =
g · α∫

g(x) dα(x)
.

We can for example construct the Bernoulli measure η(x; p) as the modula-

tion eϕ(x) ⋉ υ(x) where υ(x) denotes the uniform Bernoulli measure on X
and ϕ(x) is the linear potential

ϕ(x) =
∑
i∈S

log p(i)(xi).

Modulation of a Bernoulli measure with a linear potential results in a new
Bernoulli measure.

The following rule shows that composition of modulation behaves naturally,
i.e.

(15) eψ ⋉ (eϕ ⋉ α) = eψ+ϕ ⋉ α,

provided eϕ ⋉ α is unique. Another rule of computation is that of distribu-
tivity over products of measures, i.e.

(16) eψ(xA)+ϕ(xB) ⋉ (α(xA)⊗ β(xB)) = (eψ ⋉ α)(xA)⊗ (eϕ ⋉ β)(xB).

Both rule (15) and (16) are immediate when applied to the specification
determined by (13). Since we assume that gibbs measures are uniquely
specified by their specifications, we can state the rules above as equalities
between gibbs measures.

2.2.1. The random cluster model. A random graph model α(γ) is a probabil-
ity distribution α(γ) ∈ M(Γ(G)) on the space Γ(G) of (spanning) subgraphs
γ of a fixed ambient graph G. We can identify γ with the corresponding
configuration γ : E(G) → {0, 1} so that Γ(G) ∼= {0, 1}E(G). In our con-
text of “long range models”, we will use the complete graph G = K(V )
on a countable vertex set V as the ambient graph and we write γ ∈ Γ(V ).
However, we will almost surely have finite degrees D(F, γ).

The Bernoulli graph model η(γ; p) is uniquely specified by its edge prob-
abilities p : G → [0, 1], so that γij = 1 with probability p(ij) indepen-
dently at each edge ij ∈ E(G). The finite degree condition holds whenever∑

j:ij∈E(G) p(ij) <∞ for all i. Note that the Bernoulli graph model is inde-

pendent of the graph structure and is the same for all ambient graphs with
the same set of edges.

The random cluster model RCq(γ; p) (or FK-model, see [20]) is the random

graph distribution µ = qω(γ)⋉η(γ; p) on Γ(G) that one obtains if one modu-

lates the Bernoulli graph η(γ; p) with qω(γ). Note that, RC1(γ; p) = η(γ; p).
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Since we focus on the Ising model, we will assume that q = 2 unless otherwise
stated. We will only work in the sub-critical regimes where the uniqueness
of the random cluster model µ = qω(γ) ⋉ η(p) is well established [20].

It is well-known (see [20]) that the random cluster models satisfy a stochastic
domination relation, so that

RCq(γ; p) ≺ RCq′(γ
′; p′) when p ≤ p′ and q ≥ q′.

In particular it holds that RC(γ; p) ≺ η(γ; p). For a fixed vertex o ∈ V ,
we use Co(γ) to denote the cluster containing the vertex o. It is a fact,
see [5], that if we condition on the cluster Co then the distribution of the
remaining graph γ \Co is the random cluster model with edge probabilities
p′(ij) = p(ij)1i,j ̸∈Co . It follows that the conditional distribution of γ \Co is
dominated by the unconditional distribution of γ \ Co, so that

(17) µ(γ \ Co | Co) ≺ µ(γ).

The random spin-cluster model RC((x, γ); p) is the joint distribution of a ran-

dom graph γ together with an Ising spin configuration, x ∈ X = {+1,−1}V ,
on the vertex set. One can obtain the distribution

µ(x, γ) = RC((x, γ); p)

of (x, γ) by first considering the product distribution υ(x) ⊗ η(γ) of the
uniform distribution of x ∈ X and the Bernoulli distribution η(γ; p) and
then conditioning on the event that x and γ are compatible in the sense
that no edge in γ connects vertices of opposite spin. An alternate, perhaps
more direct, way to derive the spin-cluster distribution µ(x, γ) is to first
choose the random graph γ according to the random cluster model µ(γ) and
then to choose a spin x(C) ∈ {+1,−1} to each cluster C ∈ C(γ) uniformly
at random.

For our purposes, one should note that the marginal distribution µ(x) of the
spins x ∈ X is the Gibbs measure corresponding to the potential

(18) Φ(x) =
∑

ij∈E(G)

− log(1− p(ij))xixj .

The marginal distribution µ(γ) of γ is the random cluster model RC(γ; p).
Percolation is the event that the random graph γ contains a cluster of infi-
nite size. The almost sure existence of an infinite cluster coincide with the
existence of multiple Gibbs measures for the spins x ∈ X.

2.2.2. Cylinder probabilities. Let F be a finite subset of V and consider the
cylinder [x]F of spins. Let BF (x, γ) ∈ {0, 1} indicate the event that the
graph γ is compatible with the cylinder: That is, that no path in γ connects
i, j ∈ F such that the spins xi and xj have opposite signs. Recall that ωF (γ)
denote the number of clusters in γ that intersects F . From the alternate
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way to derive the spin-cluster distribution, we deduce that the probability
of the cylinder is

(19) µ([x]F ) =

∫
2−ωF (γ)BF (x, γ) dµ(γ),

since the probability that the cluster-wise assignment of spins {x(C)} give

rise to the cylinder [x]F equals 2−ωF (γ) provided the graph γ is compatible
with [x]F .

Note that ωF (γ) ≤ |F | is a bounded function. From (14), (19) and the
potential equality (5), we arrive at the following expression for the cylinder
probability

(20) µ([x]F ) =
1∫

2−ωF dµ
·
∫
BF (x, γ) dµ

F (γ),

where
µF (γ) = 2ω(γ

F ) ⋉ η(γF ; p).

denote the random cluster model µ contracted at F . Since Γ(G) ∼= Γ(GF ) as
sets, we may choose to consider µF (γ) as a perturbed random cluster distri-
bution for γ ∈ Γ(G) or the random cluster distribution for the contraction
γF ∈ Γ(GF ).

2.2.3. Decomposition of the random cluster model across a cut. Consider
the decomposition in (6) of a graph γ across a cut (V+, V−). Let µ =

2ω(γ) ⋉ η(γ) be the full “two-sided” random cluster model. Similary, let

ν(γ±) = 2ω(γ±) ⋉ η(γ±) be the “one-sided” random cluster models for the
graphs γ± on vertex sets V±. Assume that F ⋐ V+ is a fixed finite subset
of V+. Let also µF (γ) and νF (γ+) be the contractions at F of µ(γ) and
ν(γ+), respectively. From (6), it is clear that the Bernoulli distribution
η(γ) = η(γ; p) factorises into three Bernoulli measures

(21) η(γ) = η(γ+)⊗ η(γ0)⊗ η(γ−).

We construct these Bernoulli measures by restricting the given edge proba-
bility.

A similar factorisation for the contracted random cluster measure µF uses (16).
From (21) and (9), we obtain that

µF (γ) = 2ω(γ
F
+)+ω(γ−)−|γ0|+RF (γ) ⋉ (η(γ+)⊗ η(γ0)⊗ η(γ−)) =

= 2RF ⋉
(
(2ω(γ

F
+) ⋉ η(γ+))⊗ (2−|γ0| ⋉ η(γ0))⊗ (2−ω(γ−) ⋉ η(γ−))

)
and, hence, we have the following factorisation

(22) µF (γ) = 2RF (γ) ⋉
(
νF (γ+)⊗ η̃(γ0)⊗ ν(γ−)

)
.

where the measure η̃ is the Bernoulli measure

(23) η̃(γ0) = 2−|γ0| ⋉ η(γ0) = η(γ0; p̃) where p̃ = p/(2− p).

Clearly, η̃(γ0) ≺ η(γ0).
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Specialising (22) with F = ∅, allow us to write the random cluster model
µ(γ) as

(24) µ(γ) = 2R(γ) ⋉ (ν(γ+)⊗ η̃(γ0)⊗ ν(γ−)) .

We shall see that, for the Dyson model, 2R(γ) ∈ L1(µ), which shows that the
marginal distribution µ(γ+) of γ+ under the two-sided model is absolutely
continuous with respect to the one-sided measure ν(γ+).

2.3. The Dyson model.

2.3.1. The one-sided and two-sided models. Let X̄ = AZ with projection
X̄ → X given by x̄ 7→ x = x̄|N. For the analysis of the long range one-
dimensional Dyson model, we consider the “two-sided” random spin-cluster
model

µ(x̄, γ) = RC((x̄, γ); p)

with vertex set V = Z where the edge probabilities are

(25) p(ij) = 1− e−J(ij) where J(ij) =
β

|i− j|α
.

By (18), the marginal spin distribution µ(x̄) is the Gibbs measure

(26) Φ̄(x̄) =
∑
i,j

β

|i− j|α
x̄ix̄j =

∞∑
k=−∞

ϕ̄(T kx̄)

where ϕ̄ is the lift to X̄ of one point potential ϕ from (2). By symmetry and
uniqueness, µ(x̄, γ) is translation invariant with respect the left shift T on
Z. In particular, so is the marginal distribution µ(x) of x ∈ X.

Taking the cut of Z = V+ ⊎ V− where V+ = N = {0, 1, 2, . . . } and V− =
{. . . ,−2,−1}, we also consider the two “one-sided” spin-cluster models

ν(x±, γ±) = RC(x±, γ±; p±).

By the vertex map j 7→ −1−j, j ∈ N, we have an isomorphism ν((x+, γ+)) ∼=
ν((x−, γ−)). For this one-sided model, the spin distribution ν(x) is the Gibbs
measure corresponding to the one-sided potential Φ(x)

(27) Φ(x) =
∞∑
k=0

ϕ(T kx)

for x ∈ X, where we drop the subscripting with± on the spin sequences. The
Gibbs measure ν(x) for the potential Φ(x) in (27) is also the eigenmeasure
for L∗

ϕ since the definition of L∗
ϕ gives that

L∗ν(x) = eϕ(x) · ν(Tx)

and the right hand side is, up to the normalising constant 1
λ , the Gibbs

measure for Φ(x) due to the identity Φ(x) = ϕ(x) + Φ(Tx).
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2.3.2. Cluster size distribution. It is well-known (see e.g. [1], [20] or [12])
that for all α, 1 < α ≤ 2, and q ≥ 1 there exists a critical parameter
βc = βc(α, q), such that percolation does not occur with probability one for
0 ≤ β < βc (the “sub-critical” regime), while it occurs with probability one
for βc < β < ∞. The random cluster model is moreover unique except for
possibly at β = βc.

We claim that there is a β∗ > 0 such that, for 0 < β < β∗, the moment
generating function of the cluster size has a positive radius of convergence.
In other words: For some t0 = t0(α, β) > 0, such that for 0 < t < t0

(28) E
(
et·|Co(γ)|

)
=

∞∑
k=0

E(|Co|k)
k!

tk <∞,

where o is any fixed vertex. The property (28) follows if the cluster size |Co|
has exponentially bounded tails, i.e. if

(29) P(|Co| > n) ≤ A · e−t0n/
√
n

for some A and t0 > 0. We can easily see that (29) implies (28) using the
identity

E
(
esX
)
=

∫ ∞

0
sesxP(X > x) dx.

Moreover, it is well-known that (29) holds (see Panagiotis [28] Theorem
1.2.1; Aizenman and Newman [2], Proposition 5.1) for β < β1c (α). By sto-
chastic domination we have β1c (α) ≤ βc(α) and we can thus infer that

(30) β1c (α) ≤ β∗ ≤ βc(α)

as claimed in discussion following Theorem 1. From now on we assume that
β < β∗ and thus that (28) holds.

A major part of our argument depends on the following lemma stating that
the moment generating function (MGF) E(esQ) of Q from (10) is finite for
all s.

Lemma 2. If ν(γ−) satisfies (28) then

(31)

∫
exp (sQ(γ−, γ0)) dη̃(γ0) dν(γ−) <∞,

for every s > 0.

2.3.3. Proof of Lemma 2. The edge-indicators γ0(ij) distributed according
to η̃ are independent with Bernoulli distribution Be(p̃(ij)) where p̃(ij) ≤
p(ij) = 1− e−J(ij). Since Be(1− e−J) ≺ Po(J), we have

η̃(γ0) ≺ η(γ0) ≺
⊗
ij

Po(J(ij)).
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We assume an underlying probability space (Ω,F,P), carrying the processes
(γ−, η) ∼ ν−⊗η̃ as in (31). In addition, we assume a discrete Poisson process
C 7→ X(C), C ⊂ V−, specified by

X(C) :=
∑
i∈C

∑
j∈V+

X(ij) ∼ Po(λ(C)), λ(C) =
∑
i∈C

∑
j∈V+

J(ij),

where D(C) =
∑

i∈C
∑

j γ0(ij) ≤ X(C).

Let Y (C) = (X(C)− 1)+. To prove Lemma 2, it is enough to show that

(32) E

exp

s · ∑
C∈C(γ−)

Y (C)

 <∞,

for s > 0.

Choose m0 ≥ 2 so that

(33) t =
esβ

α′(m0 − 1)α
′ < t0.

where t0 = t0(β) is the radius of convergence from (28). Let S = {−1,−2, . . . ,−m0}
and let C′ = {C \S | C ∈ C(γ)}. Note that, for every C ⊂ V−, we have

Y (C) ≤ X(S ∩ C) + Y (C \ S).

Hence, it follows that∑
C∈C(γ−)

Y (C) ≤ X(S) +
∑
C∈C′

Y (C).

Since
∑

C∈C′ Y (C) is independent of X(S) ∼ Po(λ(S)) by disjointness, it

is enough to show that E
(
es

∑
C∈C′ Y (C)

)
< ∞. This amounts to show

that,

(34) K3 := E

(∏
C∈C′

Ψ(C)

)
<∞,

where

Ψ(C) = E
(
es (X(C)−1)+ | C

)
=

∞∑
k=0

e−λ · λ
k

k!
· es (k−1)+

= e−λ + λe−λ + e−λ−s ·
∞∑
k=2

(esλ)k

k!
, with λ = λ(C).(35)
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For i ≥ 2, an elementary integral estimate of λ({i}) =
∑

j∈N J(ij) gives
that

λ({i}) ≤ β

α′ · (|i| − 1)α
′ ,

where α′ = α− 1. Hence, for any C ⊂ V−

(36) λ(C) ≤ β

α′ · (J(C)− 1)α
′ · |C|,

where J(C) = min{|i| : i ∈ C} is the rightmost (first) element of C.

Since e−λ+λe−λ < 1 and e−λ−s < 1, the expression (35) and the bound (36)
implies that

(37) Ψ(C) ≤ 1 +
∞∑
k=2

(
esβ

α′(J(C)− 1)α
′

)k
· |C|

k

k!

Since J(C) ≥ m0, for all C ∈ C′, we obtain

(38) Ψ(C) ≤ 1 + w(J) ·Θ(|C|)
where

w(J) =
(m0 − 1)2α

′

(J − 1)2α
′ and Θ(N) =

∞∑
k=2

tk · N
k

k!
<∞,

with t < t0 as in (33).

Order the elements in C′ = {C1, C2, . . . } so that

m0 + 1 = J(C1) < J(C2) < · · · .
Note that J(Ck) = min{|i| : i ̸∈ S ∪C1 ∪ · · · ∪Ck−1}, i.e., we can determine
J(Ck) from the preceding clusters. By induction on (17), we see that

P(|Ck| | C1, . . . , Ck−1) ≺ P(|Co|)
and, hence, with Θ(N) as in (38), we have, for all k,

(39) E (Θ(|Ck|) | C1, C2, . . . , Ck−1) ≤ E (Θ(|Co|)) =: Θ0.

which, since t < t0, is less than ∞ by (28).

To complete the proof, we take conditional expectations in (34) and obtain
from (38) and (39) that

K3 ≤ E

( ∞∏
k=1

E (1 + w(J(Ck)) ·Θ(|Ck|) | C1, C2, . . . , Ck−1)

)

≤ E

( ∞∏
k=1

(1 + w(J(Ck)) ·Θ0)

)

≤ exp

Θ0 · const ·
∞∑

k=m0

1

(m0 + k − 1)2α
′

 <∞,
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since J(Ck) ≥ m0 + k and w(k) is decreasing in k and the sum is finite due
to 2α′ > 1.

□

2.4. The proof of the theorem. Recall that our aim is to show that the
sequence of the local likelihood ratios

hn(x) =
µ([x]n)

ν([x]n)

in (4) is a Cauchy sequence with respect to the supremum norm. That is,
we aim to show that

(40) ∥hn(x)− hm(x)∥∞ → 0 as n,m→ ∞
which means that the limit h(x) is a continuous function bounded away from
0 and ∞.

We will refer to previous relations concerning representations and cylinder
probabilities such as (24), (22), (20), etc. which use notation for a more gen-
eral setting. We can now specialise to the case where we consider cylinders
at F = [0, n−1] = {0, 1, . . . , n−1} where n→ ∞. For notational simplicity,
we use subscript n instead of F when referring to cylinders, cluster counts
and measures, etc. i.e. [x]n stands for the cylinder [x][0,n−1] and we write

ωn for ω[0,n−1], ν
n for νF , Rn for RF , etc.

From (22) and (20), we have in this notation

µ([x]n) = k2 ·
∫
Bn(x, γ) · 2Rn(γ) d (νn(γ+)⊗ η̃(γ0)⊗ dν(γ−))

and

ν([x]n) = k1 ·
∫
Bn(x, γ+) dν

n(γ+),

where k2 =
∫
2−ωn(γ) dµ(γ) and k1 =

∫
2−ωn(γ+) dν(γ+). Hence, by taking

the ratio, we have

(41) hn(x) = Kn ·
1

Ln
· In(x)

where Kn and Ln are

Kn =
k2
k1

=

∫
2−ωn(γ) dµ(γ)∫

2−ωn(γ+) dν(γ+)
(42)

Ln =

∫
2Rn(γ) d(νn(γ+)⊗ η̃(η)⊗ ν(γ−)).(43)

Only the integral In(x) depends on x ∈ X and we have

(44) In(x) =

∫
Bn(x, γ) · 2Rn(γ) · d(νn(γ+)⊗ η̃(γ0)⊗ ν(γ−))∫

Bn(x, γ+) dνn(γ+)
.

Note that Kn and Ln does not depend on x.
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Let

B′
n(x, γ) =

{
1 Bn(x, γ+) = 0

Bn(x, γ) otherwise.

Thus B′
n(x, γ) is zero only if Bn(x, γ+) = 1 and their is some cluster C in

C(γ−) sends a pair of edges in γ0 that joins two clusters in γ+ that intersect
[1, n−1] at positions with opposite spins. We can now rewrite In(x) as

(45) In(x) =

∫
B′
n(x, γ)2

Rn(γ) d(ν̂n(γ+)⊗ η̃(γ0)⊗ ν(γ−)),

where ν̂n(γ+) is the probability measure given by

(46) ν̂n =
Bn(x, γ+) · dνn(γ+)∫
Bn(x, γ+) dνn(γ+)

.

In other words, it is the measure νn(γ+) conditioned on γ+ and [x]n being
compatible.

We define the endpoint of the “last” irrelevant edge as

(47) N = max{j ∈ V+ | ij ∈ γ0, i ∈ C ∈ C(γ−), D(C) ≥ 2}.
By Lemma 2 P(N < ∞) = 1. Let A(x, γ−, γ0) indicate the event that
no cluster C ∈ C(γ−) sends two edges in γ0 to opposite spins of x. We
have

(48) B′
n(x, γ) = A(x, γ−, γ0) for all n ≥ N .

Moreover, by (12), we have for n ≥ N

(49) Rn(γ) = Q(γ−, γ0).

We note that the quantities B′
n and Rn are conditionally independent on

the event n ≥ N .

We can now start to establish the convergence of the quantities (42), (43)
and (44). From (49) it is clear that the integrals Ln converge

Ln →
∫

2Q(γ0,γ−) d(η̃(γ0)⊗ ν(γ−)),

as n→ ∞. This is finite by Lemma 2.

It also follows from (48) and (49) that conditioning on (γ−, γ0) gives

gn(x) := E(In(x) | γ−, γ0) = A(x, g−, γ0) · 2Q(γ−,γ0) > 0

on n ≥ N and hence gn(x)−gm(x) are eventually equal to 0. It follows from
dominated convergence that

∥In(x)− Im(x)∥∞ ≤ ∥2Q∥L1 · P(N ≥ min(n,m)),

which goes to zero as n,m → ∞. Thus, the functions {In(x)} constitute a
Cauchy sequence with respect to the supremum norm and the limit I(x) =
lim In(x) is thus a continuous function and it is also clear that In(x) > 0 for
all x.
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In order to establish (40), we must also show that the limit of Kn exists
as a value bounded away from zero and infinity. That is, we want to show
that

(50) lim
n→∞

logKn = logK

exists as a finite value. By the representation (24) of µ, we can write

logKn = log

∫
2−ωn(γ) dµ(γ)− log

∫
2−ωn(γ+) dν(γ+)

= log

∫
2ωn(γ+)−ωn(γ)+R(γ) · 2−ωn(γ+) d(ν(γ+)⊗ η̃(γ0)⊗ ν(γ−))∫

2−ωn(γ+) dν(γ+)

= log

∫
2ωn(γ+)−ωn(γ)+R(γ) d(ν̂n(γ+)⊗ η̃(γ0)⊗ ν(γ−))

where ν̂n(γ+) is the probability distribution 2−ωn(γ+) ⋉ ν(γ+).

But, each cluster C in γ− can only contribute with at most (D(C)− 1)+ to
the difference ωn(γ+)−ωn(γ), since each irrelevant edge from C can join at
most two clusters intersecting S = n. It follows that

(51) ωn(γ+)− ωn(γ) ≤ Q(γ−, γ0)

Thus by (11), we have

ωn(γ+)− ωn(γ) +R(γ) ≤ 2 ·Q(γ−, γ0),

and, since
∫
22Q dη̃(γ0) dν(γ−) < ∞ by Lemma 2, the dominated conver-

gence theorem implies (50). □
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