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1 Introduction

Given a triangle in the plane, there are variety of simple approaches to generate iteratively
a sequence triangles (Tn)∞n=0. If we are only interested in the shape of the triangles (up
to isometry and scaling) then the nth triangle Tn can be represented by its internal angles
(αn, βn, γn) and we can consider the convergence of the Tn in terms of the convergence of
these triples of real numbers.

Historically, there have been a number of different constructions that have attracted
attention. One simple approach is to associate to each triangle Tn the pedal triangle Tn+1

whose vertices are the pedal points of Tn. This was studied by Kingston and Synge [3] and
for typical choices of initial triangles T0 the sequence doesn’t converge. A second approach
is to choose at random one of the six triangles given by the the barycentric subdivision.
Iterating this construction Bárány, Beardon and Carne showed that limiting triangles are
typically degenerate [1]. Finally, a third simple approach is to associate to the triangle Tn
a new triangle Tn+1 whose vertices are where the incircle of Tn touches the sides of that
triangle. In this case it is a nice exercise to show that the shapes of the triangles (Tn)∞n=0

converge to an equilateral triangle [2].
We will add to this list yet another type of sequence of triangles. We would like to

consider a sequence of pairs of triangles and base sides (Tn, En)∞n=0, where Tn+1 is derived
from Tn by shearing and then rotating, a process which we will call kneading.

Kneading triangles. The triangle Tn at each step is sheared by translating the opposite
vertex parallel to the base En so as to minimize the total lengths of the sides, and the
resulting triangle is Tn+1. This is followed by a rotation of the triangle to get another side
En+1 to be the base for Tn+1 (see Figure 1).

In part, the motivation for this new construction comes from the topical study of the
action of SL(2,R) on polygons in the plane and the theory of translation surfaces (see
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2 KNEADING TRIANGLES

[4],§3). The effect of this action is to rotate, flatten or shear the polygon. We are therefore
considering the special case of triangles and using only shearing and rotating, which are
represented by the matrices ( 1 t

0 1 ) and
(

cos θ sin θ
− sin θ cos θ

)
(with t ∈ R and θ ∈ [0, 2π)), respectively,

multiplying vectors on R2.
In the next section we formulate our main theorem (Theorem 2.2) for sequences of tri-

angles and provide a simple proof. In section 3 we consider the natural analogue of this
construction for three dimensional tetrahedra.

2 Kneading triangles

It is convenient to normalize the triangles by taking T0 to have unit area. Let T be the set
of area 1 triangles up to rotation and translation. Given a triangle T0 in the plane with a
choice of edge E0 consider the following sequence of unit area triangles and edges (Tn, En)∞n=0

defined iteratively by the following kneading sequences which consist of a shearing operation
followed by a rotation operation.

(a) Shearing: Given a triangle Tn with a distinguished edge En (the base), translate the
vertex (the apex) opposite to the base along the line parallel to the base to get an
isosceles triangle Tn+1 with the two non-base edges of equal length.

(b) Rotation: Now let the next counter-clockwise edge En+1 with respect to the current
base En be the base of the new triangle.

(a) (b)

xn xn

yy

xn+1 = y

Tn Tn+1

Figure 1: (a) The triangle is sheared so that apex lies above the midpoint of the base and
the resultant triangle is isosceles; (b) The new isosceles triangle is rotated clockwise so that
the next counter-clockwise edge with respect to the old base is the new base.

Of course, these two operations are area preserving. We denote by xn the length of
the base En. Using that the intermediate triangle is isoceles and of unit area we have the
following simple relationship between xn+1 and xn.

Lemma 2.1. The length xn+1 of the base of the triangle Tn+1 is related to the length of the
base xn+1 of the triangle Tn+1 by

xn+1 :=

√(xn
2

)2
+
( 2

xn

)2
.

Proof. If Tn has height h then the area is 1 = 1
2
hxn. Moreover, by Pythagorus’ theorem

(xn/2)2 + h2 = y2 = x2n+1 and the result follows.
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It is an easy exercise to show that a unit area isosceles triangle has the smallest perimeter
for triangles of a specified base and height. Furthermore, a simple calculation shows an
equilateral triangle ∆ of unit area has sides of length 2/ 4

√
3.

We are ready to state and prove the main theorem for triangles.

Theorem 2.2. For any choice of initial triangle T0 and base E0, the associated kneading
sequence (Tn, En)∞n=0 is such that Tn converges to the unique unit area equilateral triangle ∆
( i.e., the internal angles αn, βn, γn of Tn converge to π

3
).

Proof. The theorem follows from the dynamics of the map of the positive real numbers given
by

f : (0,+∞)→ (0,+∞) given by f(x) =

√(x
2

)2
+

(
2

x

)2

.
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Figure 2: Plots of y = f(x) and y = x.

If we denote α = 2/ 4
√

3 = 1.51967 . . . > β = 2 4

√
2/
√

3− 1 = 1.2543 . . . then the following

properties are easily checked:

1. the unique solution (or fixed point) for f(x) = x occurs at x = α;

2. the unique critical point for f(x) occurs at x = 2 (i.e., f ′(2) = 0) and f(2) =
√

2 =
1.41421 . . .;

3. f ′(β) = −1 and |f ′(x)| < 1 for all x ∈ (β,∞); and

4. the image of (0,+∞) under f is contained in the interval (β,∞) i.e.,

f ((0,+∞)) = [f(2),+∞) = [
√

2,+∞) ⊂ (β,∞).
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3 KNEADING TETRAHEDRA

Since for all n ≥ 0,
|xn+1 − α| = |f(xn+1)− f(α)| < |xn+1 − α|

we see that xn = fn(x0) converges to the unique fixed point α for all x > 0.
Using the fact that (xn)∞n=0 converges to α for all x, we see that each of the lengths of the

edges of the unit area triangles Tn converge to α and hence deduce that (Tn)∞n=0 converges
to ∆.

One can also see from the proof that the convergnce is exponential.

3 Kneading tetrahedra

We want to describe an analogous result for tetrahedra. Let T1 denote the space of unit
volume tetrahedra considered up to isometry. The shear operation will be defined with
respect to one of the faces of the tetrahedron, which we will refer to as the base of the
tetrahedron.

Given an initial tetrahedron T0 ∈ T1 and a choice of face F0 for T0 we can define a
sequence ((Tn, Fn))∞n=1 where Tn ∈ T1 and Fn is one of the four faces of Tn designated as its
base. We proceed iteratively as follows.

(a) Shearing: Given a tetrahedron Tn with a distinguished face Fn (the base), translate
the opposite vertex in the plane parallel to Fn until we arrive at the tetrahedron Tn+1

which minimizes the total surface area of such tetrahedra (Figure 3); and

(b) Rotation: We choose a different face Fn+1 to be the base and let Tn+1 be the corre-
sponding tetrahedron.

When we constructed the sequences of kneading triangles, we rotated the triangle clock-
wise, or equivalently, selected the edge counter-clockwise to the base to be the new base. For
tetrahedra there are now three possible edges that we could choose to be the new base. But
we can simply choose to cycle through these peridocially, say, although other choices would
also work.

We would like to consider the limit of the sequence (Tn)∞n=0, where convergence will
correspond to the angles in the faces converging.

(a) (b)

Tn Tn+1

Figure 3: (a) The tetrahedron Tn is sheared to Tn+1 so as me minimize its surface area; (b)
The tetrahedron Tn+1 is rotated so as to make another face Fn+1 the base for Tn+1

Let A : T1 → R+ be the function which associates the surface area of a unit volume
tetrahedron. Let ∆ ∈ T1 denote the unique regular tetrahedron whose faces are all equilateral
triangles. Then this is easily seen to give the minimum for A(·) on T1.
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Remark 3.1. For T ∈ T1 one has
3
√

216
√

3 ≤ A(T), with equality if and only if T is a regular
tetrahedron.

In step (a) we choose Tn+1 to minimize A(·) over the sheared tetrahedra arising from
Tn with fixed face Fn. The next result shows that this occurs at the the tetrahedron whose
apex lies above the incenter of the face Fn.

A B

C

Figure 4: A triangle with its incenter represented by a black dot. The incenter is equidistant
from each of the triangle’s edges and the lines which connect the incenter to the vertices
bisect the angle at the vertices.

Lemma 3.2. Consider a tetrahedron T with base ABC and apex X. Let p denote the
orthogonal projection of X to the plane containing ABC and let h denote the height of the
tetrahedron, i.e. the distance from X to p. Then the following hold

1. The surface area of tetrahedra with base ABC and height h is minimised when p is the
incenter of ABC.

2. The only tetrahedron which has all of its vertices above their opposite face’s incenter
is the regular tetrahedron.

Proof. Let α, β, γ denote the lengths of edges BC, AC and AB, respectively. Let a, b, c
denote the distances from p to BC, AC and AB, respectively.

For part 1, first note that the area of the triangular face XBC is given by 1
2
α
√
a2 + h2.

Using similar formulae for the other faces of T, the area of the union of the faces XBC ∪
XAC ∪XAB is given by

1

2
α
√
a2 + h2 +

1

2
β
√
b2 + h2 +

1

2
γ
√
c2 + h2. (1)
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By applying the Minkowski inequality to (1), we see that this area is greater than or equal
to

1

2

√
h2(α + β + γ)2 + (aα + bβ + cγ)2, (2)

with equality if and only if a = b = c, i.e. p is the incenter of ABC.
Observe that the expression h2(α+ β + γ)2 in (2) is independent of X and aα+ bβ + cγ

is twice the sum of the areas of the triangles pBC, pAC and pAB in the base face. It is easy
to see that the projection of these faces cover ABC, hence (aα + bβ + cγ) is greater than
or equal to twice the area of the base ABC, Area(ABC), with equality if and only if p lies
inside ABC.

Finally, combining these inequalities, we see that the total surface area of a tetrahedron
with base ABC and height h is greater than or equal to

1

2

√
h2(α + β + γ)2 + (2Area(ABC))2 + Area(ABC),

with equality if and only if p is the incenter of ABC.

For part 2, recall that the incenter of a triangle is the unique point on the triangle such
that the lines connecting the incenter to the triangle’s vertices biscect the angles at the
vertices. Consequently, if a tetrahedron is such that each vertex lies above the opposite
face’s incenter, then the three angles around any vertex will be equal. This can only hold if
the tetrahedron is regular.

We can now prove the following analogue for tetrahedra of Theorem 2.2 for triangles.

Theorem 3.3. For any T0 and face F0 the sequence ((Tn, Fn))∞n=0 is such that Tn converges
to the unique unit volume tetrahedron ∆.

Proof. Let An := A(Tn) for all n ≥ 1. By construction, An+1 ≤ An and so the bounded
non-increasing sequence (An)∞n=1 of areas converges to some value A∗ > 0. Moreover, the
sequence (Tn)∞n=0 of tetrahedra are bounded and A : T1 → R is continuous. Therefore we
can choose a convergent subsequence Tnk

→ T∗ ∈ T1 and observe that A(T∗) = A∗.
However, by part 2 of Lemma 3.2, this implies that the each vertex of T∗ lies above

its opposite face’s incenter. Consequently, by part 1 of Lemma 3.2, T∗ = ∆ We therefore
conclude that Tnk

→ ∆ for any subsequence, and thus the original sequence Tn → ∆ as
n→ +∞.
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