
Lectures on Geodesic flows

May 30, 2018

The idea of these lectures is to discuss some classical ideas from ergodic
theory and dynamical systems through the lens of a family of classical examples,
namely geodesics flows on negatively curved surfaces. These include the notions
of:

1. Ergodicity

2. Rigidity

3. Entropy

4. Other connections with fashionable mathematics.

1 Preliminaries

Let us consider some basic notation, definitions and properties.

1.1 Surfaces and their topology

We let V denote a compact connected orientiable surface (i.e., a 2 dimensional
manifold). We first need to decide what our surface looks like (at least to help
in drawing pictures).

Theorem 1.1 (Poincaré classification theorem). The surface V is homeo-
morphic to exactly one of the following:

1. the sphere S2 (genus 0)

2. a torus T2 (genus 1)

3. the connected sum of g tori, for g ≥ 2 (genus g)
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1.2 Surfaces and their Riemannian metrics

Roughly speaking, a Riemannian metric gives a natural distance on the surface
based (locally) on patchs of Euclidean space.

A convenient viewpoint is to think of a Riemannian metric ρ = {‖ · ‖ρ,x}
(x ∈ V ) as a family of norms on the tangent spaces TxV (for each x ∈ V )
where describe the lengths ‖v‖ρ of tangent vectors v ∈ TV (which is locally like
V × R2) has length ‖v‖ρ,x.

To then define a more familiar notion of distance on V itself, given x, y ∈ V
we can define the (path) metric

d(x, y) = inf
γ

{∫ b

a

‖γ̇(t)‖dt
}

where the infimum is over all smooth curves γ : [a, b]→ V which start at x and
finish at y (i.e., γ(a) = x and γ(b) = y). (The parametrisation is unimportant.
and we could take a = 0 and b = 1,say)

A parameterised curve γ : [0, 1] → V is a geodesic if it (locally) minimises
the distance (i.e., for sufficiently large N the restriction γ : [i/N, (i + 1)/N ]
minimises the distance γ(i/N) and γ((i+ 1)/N)) in the sense above.

One can conveniently associate notions of area.

2 Geodesic flows

We now introduce some dynamics. The basic dynamical tool is the geodesic flow.
This is a flow (hence the name) which takes place not on the two dimensional
space V but on the there dimensional space of tangent vectors of length 1 (with
respect to the Riemannian metric ‖ · ‖ρ).

2.1 Definition of the geodesic flow

We can now introduce some dynamics. We want to define a flow on the compact
three dimensional manifold

M = {v ∈ TV : ‖v‖ρ = 1} (“Sphere bundle”)

To define a geodesic flow φt : M →M (t ∈ R) we can take v ∈M and choose
the unique (unit speed) geodesic γv : R → V such that γ̇v(0) = v. We can
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then define φt(v) := γ̇v(0). (This corresponds to “parallel transport” using more
elaborate Riemannian metrics).

This is a flow in the usual sense:

1. φt=0 = Id; and

2. φt+s = φt ◦ φs for s, t ∈ R.

There is a natural correspondence between(directed) geodesics on V and
orbits for the associated geodesic flow. There is a natural correspondence
between(directed) closed geodesics on V and closed orbits for the associated
geodesic flow.

For convenience and emphasis we record this as follows:

Lemma 2.1. The (oriented) closed geodesics τ are in one-one correspon-
dence with the closed orbits of the geodesics flow. The lengths and periods
agree.

2.2 Negative curvature

. The properties of the geodesic flow tend to be dynamically more interesting
if the curvature is negative. Given a Riemannian metric ρ we can define the
curvature function κ : V → R by

κ(x) =
12

π

(
lim
r→0

π2r − Area(B(x, r))

r4

)
where B(x, r) = {y ∈ V : d(x, y) < r}.

We are particularly interested in surfaces for which κ(x) < 0 for all x ∈ V .
In particular, negative curvature corresponds to Area(B(x, r)) being larger than
πr2 for small r.

The most useful result on negative curvature is the foliowing theorem (for
triangles).

Theorem 2.2 (Gauss-Bonnet). If ∆ ⊂ V is a triangle with geodesic sides
and internal angles 0 < θ1, θ2, θ3 < 1 then

−
∫

∆

κ(x)dArea(x) = π − (θ1 + θ2 + θ3)

with strict inequality for negatively curved spaces.
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Corollary 2.3. If κ(x) < 0 then V must be a surface of genus g ≥ 2.

This can be seen by writing the sphere and torus as unions of triangles,

Example 2.4 (Non-Euclidean Geometry κ = −1). Let H2 = {x + iy : y >

0}. We can then define a metic dss = dx2+dy2

y2
which means that

d(x1 + iy1, x2 + iy2) = cosh−1

(
1 +
|x1 − x2|2 + |y1 − y2|2

2y1y2

)
Then

• this metric has curvature κ = −1;

• the geodesics are semi-circles that meet the real axis perpendicularly or
are vertical lines; and

• the maps z 7→ az+b
cz+d

(a, b, c, d ∈ Z with ad − bc = 1 ) are orientation
preserving isometries (i.e., preserve the distances).

To obtain a compact surface we can consider a (discrete) subgroup of such
isometries Γ for which the quotient V = H2/Γ is compact. (Then Γ = π1(V )).

2.3 Spaces of metrics

We can consider different Riemannian metrics on the same (topological) surface
V . If we assume that the metrics have κ = −1 then the space of such metrics
is homemorphic to R6(g−1) (and this is referred to as Teichmüller space).

More generally any metric of variable negative curvature can be reduced to
a metric of constant negative curvature κ = −1:

Lemma 2.5 (Koebe). If ρ is a metric of negative curvature then it is confor-
mally equivalent to a metric of constant negative curvature ρ0 with κ = −1
(i.e., there exists a smooth function f : V → R+ such that ρ = f(x)ρ0).

Since R6(g−1) and C∞(V,R+) are both (path) connected we have a simple
corollary:

Corollary 2.6. The space of metrics of variable negative curvature on V is
path connected.

The space T of metrics of constant negative curvature κ = −1 is 6(g − 1)-
dimensional. In a seemingly exotic development there are a variety of metrics
which can be placed on T (Teichmülcer metric, Weil-Petersson metric and the
associated geodesic flow on these spaces can be studied too).
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2.4 Properties for negative curvature

We can now emphasise the dynamical importance of the negative curvature. A
key tool is the following.

Definition 2.7. We can define the sets

W s(v) = {v′ ∈M : d(φtv, φtv
′)→ 0 as t→ +∞} (Stable manifold/horocycle)

W u(v) = {v′ ∈M : d(φ−tv, φ−tv
′)→ 0 as t→ +∞} (Unstable manifold/horocycle)

In negative curvature these sets are actually (Immersed) submanifolds.

Lemma 2.8. The stable and unstable horocycles satisfy the following prop-
erties:

1. for all v ∈ M the sets W s(v) and W u(v) are one dimensional C∞ sub
manifolds;

2. the families Ws = {W s(v)} and Wu = {W u(v)} form transverse C1

foliations; and

3. Ws and Wu are not uniformly integrable.

The contraction can also be seen to be exponential in the sense that it we
consider the (transverse) tangent spaces Es

v = TvW
s(v) and Eu

v = TvW
u(v)

then:

Lemma 2.9 (Anosov Property). There exists λ > 0 and C > 0 such that
‖Dφt|Es

v‖ ≤ Ce−λt and ‖Dφ−t|Eu
v ‖ ≤ Ce−λt, t > 0

Example 2.10 (Donnay-Pugh). Let V ⊂ R3 be a surface constructed by
taking two large concentric circles joined by a large number of small tubes
with negative curvature.

2.5 Invariant probability measures

There are many different invariant measures µ for the geodesic flow (i.e., µ(M) =
1 and µ(φtB) = µ(B) for any t ∈ R and Borel B ⊂M).

Perhaps the most natural is the Liouville measure ν, which we scale to assume
to be normalised (i.e., ν(M) = 1). This corresponds to the Sinai-Ruelle-Bowen
measure in the more general context of Anosov flows and more general hyperbolic
flows.
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Lemma 2.11 (Liouville measure). There is a unique φ-invariant measure
on M which is equivalent to the Riemannian volume and called the Liouville
measure.

Remark 2.12. We can use local coodinates (x1, x2) on V and then the nat-
ural area on V comes from det(gij)dx1dx2. The three dimensional manifold
M locally looks like M = V ×T1 and then ν the locally like det(gij)dx1dx2dθ.

There is a more convenient dynamical way to describe this measure. Any
invariant measure can be written locally as dµ× dt where

1. dt is the usual lebesgue measure along the orbits of the geodesic flow.and

2. µ is the induced measure on a (local) two dimensional transverse section
W . (This is also called a current) by the geometers).

As a special case we can consider a local transverse section by choosing
v1, v2, v3, v4 ∈ M such that v2 ∈ W s(v1), v3 ∈ W u(v2), v4 ∈ W u(v3) and
φTv1 = v4 (i.e., v1 and v4 lie on the same orbit displaced by T ). We then let
these stable and unstable manifolds as the boundary of the section W .

Lemma 2.13. We can characterise the Liouville measure of W by setting
µ(W ) := T (W ) (again suitable normalised).

The following property is the most fundamental property of the Liouville
measure.

Theorem 2.14 (Hopf, 1939). The geodesic flow is ergodic with respect to
the measure ν, i.e., for any F ∈ C(M,R) we have that for almost every v
(with respect to ν):

lim
T→+∞

1

T

∫ T

0

F (φtv)dt =

∫
Fdν

(i.e., temporal average equals the special average).

Proof. The idea of the proof is based on the result of Birkhoff that says: for
almost very (ν) v ∈M then the future and past averages agree, i.e., for any
F ∈ C(M) we have

lim
T→+∞

1

T

∫ T

0

F (φtv)dt = lim
T→+∞

1

T

∫ 0

−T
F (φtv)dt.

It remains to see that these limits are independent of v (and thus equal to∫
Fdν). This easy enough if points lie on the same horocyle:
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• If v′ ∈ W s(v) then limT→+∞
1
T

∫ T
0
F (φtv)dt = limT→+∞

1
T

∫ T
0
F (φtv

′)dt

• If v′ ∈ W u(v) then limT→+∞
1
T

∫ 0

−T F (φtv)dt = limT→+∞
1
T

∫ 0

−T F (φtv
′)dt.

Now we can patch together these results. By the non-uniform integrabil-
ity property of the foliations we can connect nearby points v, v′ ∈ M by
a network of stable and unstable manifolds, i.e., ∃v1, v2 ∈ M such that
v1 ∈ W s(v) ∩W u(v2) and v′ ∈ W s(v2). Thus by the above the limits agree
at v and v′. (This implicitly uses that the measure µ is absolutely continu-
ous, i.e., no measure is lost under pushing the measures along the foliations,
which here is a consequence of the foliations being C1).

The geodesic flow has stronger properties. One of the more famous is that
it is exponential mixing, i.e., if F ∈ C∞(M) with

∫
Fdν = 0 then there exists

ε > 0 and C > 0 such that
∣∣∫ F ◦ φtFdµ∣∣ ≤ Ce−εt for t ≥ 0.

3 Classification

It is natural to ask which geodesic flows “look similar” or which surfaces “look
identical”. In mathematical terms this involved classifying the flows up to flow
equivalence, then topological conjugacy and classifying the surfaces up to isom-
etry.

3.1 Flow equivalence

A direct consequence of the Anosov property is the following

Lemma 3.1 (Structural Stability : Flow equivalence). Let ρ1 be a metic
of negative curvature. Then for a (sufficiently close) metric ρ2 of negative
curvature we have that the geodesic flows φ1 and φ2 are flow equivalent (i.e.,
there is a a homeomorphism h : Mρ1 →Mρ2 which takes orbits to orbits and
a reparameterization function r : M → R+ such that h(φ1,t(v)) = φ2,s(h(v))

where s =
∫ t

0
r(φ1,uv)du).

In particular h carries orbits to orbits, but doesn’t necessarily preserve the
parameterisation.

One simple way to see how the map h0 : M → M might be constructed is
as follows. Providing ε > 0 is sufficiently and the metrics are sufficiently close
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then for each v ∈ M1 we can consider the tassociated geodesic on V1. There
will be a unique orbit or M2 which stays within distance ε.

The usual proofs of structural stability are based on a fixed point theorem for
the space of homeomorphisms on M (following work of Mather) or use shadowing
properties (Bowen). It comes for free that the flow equivalence h is also Hölder

continuous, i.e, there exists α > 0 such that supx 6=y
dρ2 (h(x),h(y))

d(x,y)α
).

Remark 3.2. The situation is a little simpler in the discrete case of Anosov
diffeomorphisms f : M → M . Nearby diffeomorphisms g are topologically
conjugate to f (i.e., there exists a homeomorphism h : M → M such that
f ◦ h = h ◦ g).

We now want to impose some additional conditions which will ensure that
the parameterisations of the orbits match up.

3.2 Conjugacy

We begin with the basic definition.

Definition 3.3. We say that two (geodesic) flows φ1,t : M1 → M1 and
φ2,t : M2 → M2 topologically conjugate, i.e., there exists a homeomorphism
h : M1 →M2 such h(φ1,t(v) = φ2,th(v), for all t ∈ R and v ∈M1.

Here we let Mi = SVi (i = 1, 2) be the unit tangent bundles to the underlying
surfaces Vi (i = 1, 2). In particular, we see from topological considerations that
V1 and V2 must at the very least have the same genus.

To proceed, we want to explore how much information is contained in a
knowledge of the lengths of closed orbits. There are infinitely many distinct
closed geodesics on V (one in each conjugacy class in π1(V )). Furthermore,
there are denumerably many (i.e., exactly one in each conjugacy class in π1(V )).

Definition 3.4. We let C denote the family of all closed geodesics on V
(equivalently closed orbits for the associated geodesic flow φt : M → M)
which can be thought of conjugacy classes in π1(V ), for example. We define
the length spectrum Lρ : C → R to be the map which associates to each closed
geodesic (orbit) its length (period) .

We now want to consider a surface V and two metrics of negative curvature ρ1

and ρ2 and their associated geodesic flows φρ1,tM1 →M1 and φρ1,t : M2 →M2.
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Theorem 3.5 (Topological Conjugacy). Assume that Lρ1 = Lρ2 then the
geodesic flows are topologically conjugate, i.e., there exists a homeomorphism
h : M1 →M2 such h(φtv) = φth(v) for all v ∈M1 and t ∈ R.

We can use the flow equivalence h0 : M1 →M2 established earlier in Theorem
3.1 (but now denoted h0 since new now want to reserve h for the conjugacy)
and improve it to a conjugacy h0 : M1 → M2. It is the additional assumption
Lρ1 = Lρ2 that allows us to go from having flow equivalence of orbits to actually
having a conjugacy. The proof is purely dynamical (and a version lt remains true
in the broader context of Anosov flows).

We can assume without any loss of generality the assumption that f is dif-
ferentiable in the flow direction (i.e, along the orbits of the flow so that dh(φtv)

dt

exists and is continuous). Since we don’t need to assume it preserves the param-
eterzation we can aways smooth it in the flow direction

The key to constructing a conjugacy is to use Livsic’s Theorem:

Theorem 3.6 (Livsic). If k : M → R is

1. Hölder continuous

2. differentiable along the orbits of the flow and

3. integrates to zero along closed orbits (i.e., if φT (v) = v with T > 0 then∫ T
0
k(φtv)dt = 0)

then there exists a continuous function u : M → R (differentiable in the flow
direction) such that

k(φtx)− k(x) =

∫ t

0

u(φs)ds. (1)

(or equivalently u(v) = du(φtv)
dt
|t=0)

Proof. Using the ergodicity (although it is sufficient to know there is a single
dense orbit) we can choose v ∈ M whose orbit O := ∪t>0φρ,t(v) is dense in

M . We can then define u(φtv) =
∫ t

0
k(φsv)ds and we see that (1) holds (at

least) on O.
Now we need to know that h is uniformly (or even Hölder) continuous in

O and thus extends continuously from the dense set O to M . In particular,
we need to know that if φt1v and φt2v are close then the values u(φt1v) and
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u(φt2v) are close. This is where the information about integrating to zero on
closed orbits is used, we can write

u(φt1v)− u(φt2v) =

∫ t2

t1

u(φtv)dt ≈ 0

by approximating last term by the integral around a closed obit (which van-
ishes by hypothesis) to complete the proof.

Now that we have Livsic’s theorem at our disposal, we can promote the flow
equivalence h0 between φ1,t : M1 → R and φ2,t : M2 → R to a topological
conjugacy h by a suitable reparamterization.

Proof of topological conjugacy. Let v′ = h0(v) and then we can use the deriva-
tive of h in the flow direction to help reparameterize the flow. More precisely,
we can write

d

dt
h0(φ1,tv)|t=0 = w(v)φ̇2(h(v))

where φ̇2 is the vector field for the flow φ2 (tangent to the orbit for v′ = h0(v))
giving the “direction” of the derivative of h0 and w : M → R the magnitude.

To apply Livsic’s theorem, we can consider the function k(v) = w(v)− 1. If
φ1,T (v) = v is a periodic orbit for φ1of period L then h0(v) is also a periodic

orbit of (by hypothesis) period
∫ T

0
w(φs)ds = L, i.e.,

∫ T
0
k(φ1,t(v)dt = 0. Thus

Livsic’s theorem applies and we can deduce that there exists a u : M1 → R.
Setting h(v) = φ2,u(v)h0(v) we have the required topological conjugacy.

In the next subsection we will see (or geodesic flows) how we can deduce
more. More precisely, how to show that the underlying surfaces V1 and V2 are
the same (i.e., isometric).

3.3 Isometries

Given a conjugacy h coming from Theorem 3.5 we would like to know that if
x ∈ V1 then there exists x ∈ V2 such that h(SxV1) = Sx′V2, i.e., fibre are
mapped to fibres. Of course this will not work for every conjugacy since they are
only defined up to a shift under the geodesic flow, i.e., if h is a conjugacy then so
is φ2,t ◦h. However, it suffices to consider just three geodesics passing through
the same point and then showing that their images under h again (locally)
pass through a single point of V2.
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Definition 3.7. Given v ∈ V1 and 0 < θ < 2π we let Rθ(v) be the vector
rotated (in a clockwise direction, say) by an angle θ above the same point
x ∈ V . If we consider the images h(v) and h(Rθv) then (locally) these too
must intersect at an angle which we denote by 0 < Θ(θ, v) < 2π.

if we consider v, Rθ1v and Rθ2v (for θ1 6= θ2 > 0) then these correspond
to three geodesics which locally intersect at the same point x, say. But we can
assume (for a contradiction) that the images images of these three geodesics
may correspond (locally) to geodesics which form a triangle with internal angles

Θ(θ1, v), π −Θ(θ1 + θ2, v) and Θ(θ2, R(θ1)v).

In negative curvature (by Gauss-Bonnet) we know that the sum of the internal
angels of any non-degenerate triangle is strictly less than π and thus for s this
triangle we have

Θ(θ1, v) + Θ(θ2, R(θ1)(v)) < Θ(θ1 + θ2, v)

We want to get a contradiction to this strict inequality (thus showing the triangle
is degenerate, i.e., triples of intersecting geodesics go to triples of intersecting
geodesics as required).

To this end we can average over M1 with respect to the (normalised) Liouville
measure ν to define a function on angles F : [0, π]→ [0, π] by

F (θ) =

∫
M1

Θ(θ, v)dν(v).

The following properties can be easily checked:

Lemma 3.8. The function F (θ) satisfies

1. F (0) = 0 and F (π/2) = π/2

2. F (π − θ) = π − F (θ), (symmetry)

3. for θ1, θ2 and θ1 + θ2 ∈ [0, π] we have

F (θ1 + θ2) ≥ F (θ1) + F (θ2), (Superadditivity)

To complete the contradiction we need the following (geometry and dynamics
free) calculus lemma:
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Lemma 3.9 (Calculus Lemma). Let F ; [0, π]→ [0, π] be any smooth function
having the properties in Lemma 3.8 then for any 0 < θ0 < π we have that∫ θ0

0

sin θ

sinF (θ)
dθ ≤ F (θ0).

We skip the tedious proof for the moment (= forever).
A bit more calculus gives the following:

Lemma 3.10. Let F : [0, π]→ [0, π] be any smooth function having the super
additive property in Lemma 3.8. Then either

1. There exists a fixed point 0 < θ0 = F (θ0) ≤ π and F (x) < x for
0 < x < θ0; or

2. F (x) ≤ x for all 0 ≤ x ≤ π.

Lemma 3.9 implies that there is no subinterval interval (0, θ0) upon which
F (θ) < θ. Assume for a contradiction this isn’t true, and choose θ0 ≤ π

2
maximal

with this property. Then∫ θ0

0

sin θ

sinF (θ)
dθ ≤ F (θ0) = θ0.

and since on [0, θ0] the integrand sin θ
sinF (θ)

> 1 we get the required contradiction.

We can now apply Lemma 3.10 to deduce that F (x) ≤ x for all 0 ≤ x ≤ π.
By symmetry F (π − θ) = F (θ) and so F (θ) ≥ θ for 0 ≤ θ ≤ π, i.e., F (θ) = θ.
But then we have equality in the super additivity property, which contradicts the
Gauss-Bonnet and negative curvature.

In summary, we have the following (stronger) result because we are dealing
with geodesic flows (rather than general Anosov flows):

Theorem 3.11 (Otal’s Theorem). Assume that Lρ1 = Lρ2 then the the un-
derlying surfaces are the same (i.e., isometric): V1 = V2

3.4 Sunada’s Theorem

We know that the length spectrum Lρ : C → R determines the surface. However,
would it be enough just to know the values it takes? That is, does knowing just
the numbers

{Lρ(c) : c ∈ V } ⊂ R
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determine the metric ρ?
In fact is known that it is not enough to know these values (i.e., the lengths

of closed geodesics without knowing which free homotopy class they came from)
to determine ρ.

There is a nice construction due to Sunada of pairs surfaces V1 nd V2 which
have constant negative curvature κ = −1 and have the same numerical values
for lengths of closed geodesics, but are different surfaces (i.e., not isometric).

A curious feature of their construction is that they are both both quotients
of a common third surface V . Assume that hew have a surface V and a finite
group of isometries G which acts freely on V (i.e., no fixed points). If we have
subgroups G1, G2 < G then we can consider the quotient surfaces

V1 = V /G1 and V2 = V /G2

• The surfaces V1, V2 are isometric if and only if the groups are conjugate
(i.e., ∃g ∈ G such that gG1g

−1 = G2)

However, we want to consider a weaker condition: We say that G1, G2 are
almost conjugate if for every g ∈ G we have

Card([g] ∩G1) = Card([g] ∩G2)

where [g] = {hgh−1 : h ∈ G} is the set of conjugate elements to g.

Theorem 3.12 (Sunada). If G1 and G2 are almost conjugate then the set
of values of the length spectra agree

Proof. This proof is based on an exercise in number theory. The idea is that
if we have a closed geodesic γ on V1 then it projects to a geodesic γ0 on the
common quotient V0 = V /Γ. The number of lifts to Vi of γ0 are given by

Card(g : g−1g0g ∈ Gi)

Card(Gi)

where g0 is a representative of γ0. This is independent of i (by definition)
and so the length values match up.

Thus it suffices to find examples of such groups (and surfaces V ) which are
almost conjugate but not isometric.

Example 3.13. Let G = SL(3,Z2) and

G1 =

1 ∗ ∗
0 ∗ ∗
0 ∗ ∗

 and G2 =

1 0 0
∗ ∗ ∗
∗ ∗ ∗


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4 Entropy

Entropy started off as an invariant (i.e., if two flows are topologically conjugate
then they have the same entropy). However, it has many more uses, especially
as a quantification of how complicated a dynamical system is.

4.1 Topological entropy

For any flow φt : M → M we can associate the topological entropy 0 ≤ h(φ)
(of the time one flow φt=1).

Definition 4.1. Given T > 0 and ε > 0 we let N(T, ε) be the cardinality of
the smallest finite set X = X(ε) ⊂ M such that for any v ∈ M there exists
v′ ∈ X such that sup0≤t≤T d(φtv, φtv

′) < ε. The topological entropy is then
given by

h(φ) := lim
ε→0

lim sup
T→+∞

1

T
logN(T, ε).

This value is always non-zero and finite.
In the case of geodesic flows this has a simple geometric interpretation.

Theorem 4.2 (Manning’s volume entropy). Let Ṽ be the universal cover for

V (with the lifted metric ρ̃). Fix any point x0 ∈ M̃ we let B(x0, R) := {x ∈
M̃ : d(x, x0) < R} and then

h(φ) = lim
R→+∞

1

R
log Areaeρ(B(x0, R)

Proof. In negative curvature when we consider lifts X̃(ε) to the universal
cover. Then N(T, ε) can be used to give bounds on the area of an annulus
to radius T and width approximately ε. However, in negative curvature this
has the same rate of growth as the area Areaeρ(B(x0, R) of a ball of radius T

The following result is classical:

Lemma 4.3. It two flows φ1,t : M1 → M1 and φ2,t : M2 → M2 are topo-
logically conjugate then the have the same topological entropy, i.e., h(φ1) =
h(φ2).
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4.2 Entropies of measures

Let µ be a φ-invariant probability measure (i.e., µ(φtB) = µ(B) for any Borel sets
B ⊂ M and µ(M) = 1). We can then associate the entropy 0 ≤ h(µ) ≤ h(φ)
of the measure µ (of the time one flow φt=1).

Definition 4.4 (After Katok). Given T > 0, δ > 0 and ε > 0 we let
N(δ, ε, T ) be the cardinality of the smallest finite set X = X(δ, ε, T ) ⊂ M
such that

µ

({
v ∈M : ∃v′ ∈ X with sup

0≤t≤T
d(φtv, φtv

′) < ε

)
> 1− δ.

The entropy of the measure µ is then given by

h(φ) := lim
ε→0

lim sup
T→+∞

1

T
logN(T, ε).

We return to concentrating on geodesic flows. Our main example so far of
an invariant measure so far is the Liouville measure:

Example 4.5 (Liouville measure). We recall that the Liouville measure ν
is the φ-invariant probability measure equivalent to the volume . In the par-
ticular case, that ρ0 is a metric of constant negative curvature κ = −1 then
h(φ, µ) = h(φ) = 1.

There is another natural φ-invariant probability measure:

Example 4.6 (Measure of maximal entropy). There exists unique φ-invariant
probability measure µmax such that h(φ, µmax) = h(φ) . In the particular
case, that ρ is a metric of constant negative curvature then µmax is equal
to the Liouville measure. (Moreover, they agree only when the metric ρ has
constant negative curvature).

There is now a classical result due to Katok relating entropies for different
metrics.

Let us consider two metrics ρ1, ρ2 on a compact surface V . Let h(φ2) be
the topological entropy for the geodesic flow for (V, ρ1). Let h(φ1, µ1) be the
entropy of the geodesic flow for (V, ρ1) with respect to the measure µ1. We can
then consider ∫

‖v‖ρ1=1

‖v‖ρ2dµ1(v)

which measures the average change in the lengths of tangent vectors.
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Lemma 4.7. There is an inequality

h(φ2) ≥

(∫
‖v‖ρ1=1

‖v‖ρ2dµ1(v)

)−1

h(φ1, µ1)

Proof. The idea of the proof is get a lower bound on the topological entropy
h(φ2) by constructing orbit segments for φ2,t.

This done using ergodic theory for the geodesic flow φ1,t : M1 →M1 and
ν1 and the function F : M1 → R

M1 3 v 7→ F (v) = ‖v‖ρ2 ∈ R

If we assume (for simplicity) that µ1 is ergodic then by the Birkhoff
ergodic theorem then for almost every (µ1) v ∈M1 and sufficiently large T :

1

T

∫ T

0

F (φ1,t(v)dt =
1

T

∫ T

0

‖φ1,t(v)‖ρ2dt→

(∫
‖v‖ρ1=1

‖v‖ρ2dµ1(v)

)
as T → +∞.

Thus for large T we have “most” orbit segments of φ1- length approximately
T correspond to orbit segments of φ2- length

T

(∫
‖v‖ρ1=1

‖v‖ρ2dµ1(v)

)
.

We can use these to get a lower bound on h(φ2).
This leads to the main result on entropy.

Theorem 4.8 (Katok Entropy Theorem). The topological entropy is min-
imised on metrics of constant area at metrics of constant negative curvature
(i.e., If ρ2 is a metric of negative curvature and ρ1 is a metric of constant
negative curvature with Areaρ1(V ) = Areaρ2(V ) then h(φ2) ≥ h(φ1)).

Proof. By Koebe’s Theorem we can assume that ρ2 is conformally equivalent
to a metric ρ1 of constant negative curvature, i.e., ρ2 = f(x)ρ1, where f :
V → R+ is a strictly positive smooth function.

Let ν1 be the Liouville measure for M1 (i.e., V with ρ1). By conformality
we can write∫

‖v‖ρ1=1

‖v‖ρ2dν1(v) =

∫
V

f(x)dσ1(x) and

∫
V

f(x)2dσ1(x) = σ2(V ) = 1
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where σ1 and σ2 are the normalised areas on V1 and V2. Thus∫
V

f(x)dσ1(x) ≤
(∫

V

f(x)2dσ1(x)

) 1
2

= 1

with equality if and only if ρ = 1.
If ρ1 be a metric of constant negative curvature then we know by Example

4.6 that h(φ1, µ1) = h(φ1). We can then apply Lemma 4.7.

Remark 4.9. There are higher dimensional analogues of the Katok’s theorem
due to Besson-Contreras-Gallot.

4.3 Smoothness of entropy

Assume that we change the metric smoothly then we might expect the entropy
to vary smoothly.

We need to make sense of smooth changes of metrics. We can interpret the
metric as maps ρ ∈ Γ(V,S2) where S2 are positive symmetric 2× 2-matrices.

Theorem 4.10 (Katok, Knieper, Pollicott, Weiss). Given a C∞ family
(−ε, ε) 3 λ 7→ ρλ ∈ C∞(V,S2) the map

(−ε, ε) 3 λ 7→ h(φρλ) ∈ R

is C∞.

There is also an interpretation for the derivative:

Theorem 4.11 (Katok, Knieper,Weiss). We can write the first derivative

d

dλ
h(φρλ)|λ=0 = −1

2

∫
M0

d

dλ
‖v‖2

ρλ
dµmax(v)

where µmax is the unique probability measure such that h(φ, µmax) = h(φ).

4.4 The Anosov property and Lyapunov exponents

The negative curvature gives rise to the the Anosov property through the negative
curvature. One way to see this is via the Jacobi and Riccati equations.

Let v ∈ V and let γv : R→ V be the associated geodesic on V . Let us then
denote by κ(t) := κ(γv(t)) < 0 the curvature at γv(t) ∈ V (i.e., after time t
along the (geodesic) orbit).

The expansion and contraction in Eu and Es along the geodesic (or orbit)
can be seen through these solutions to the Jacobi equations.
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Definition 4.12 (Jacobi equation). Consider solutions Jv : R → R on the
real line to

J ′′v (t) + κ(t)Jv(t) = 0.

Size of solutions |J(t)| either grow or contract exponentially (for Eu and Es)
depending on the initial conditions.

If we define av(t) = J ′v(t)/Jv(t) then the Jacobi equation reduces to the
Riccati equation:

Definition 4.13 (Riccati Equation). Consider solutions av : R→ R on the
real line to

a′v(t) + av(t)
2 + κ(t) = 0. (1)

These determine the rate of growth (or contraction) for Eu and Es along the
(geodesic) orbit for v.

Example 4.14 (κ = −1). In the case of constant negative curvature κ = −1
then one sees that there are two solutions to (1):

1. av = 1 corresponding to an expansion et in Eu;

2. av = −1 corresponding to a contraction e−t in Eu.

We can consider the average expansion along a typical (geodesic) orbit of the
positive solution. Let µ be any φ-invariant (ergodic) probability measure then
for a.e., (µ) v ∈ V

lim
T→+∞

1

T

∫ T

0

av(t)dµ(v) =

∫
M

avdµ(v)

This is the (positive) Lyapunov exponent.

4.5 Ricci flow and entropy

Given a metric ρ and the associated curvature function κ : V → R then we can
also denote κ : M → R where v ∈ TxV . The average curvature

κ :=

∫
κ(v)dν(v) = −π(g − 1)

where ν is the (normalised) Liouville measure on M , using the Gauss-Bonnet
theorem.
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Example 4.15 (Constant curvature metrics). In the case of metrics ρ0 of
constant curvature κ(x) = κ we have that the entropy is

h(µρ0) =
√
|κ|.

By Katok’s theorem we have that for other metrics ρ of (variable) negative
curvature and the same total area we have that

h(φρ) > h(µρ0) =
√
|κ|

It is fashionable to study how families of metrics ρt evolve under the Ricci
flow. Recall that a Riemannian metric can be thought of as ρ = {‖ · ‖ρ,x}x∈V ,
where ‖·‖ρ,x is a norm on TxV = {x}×R2. With a suitable choice of coordinates
we can write each norm in terms of (positive definite) 2 × 2 matrices (gij(x))
through the associated definite quadratic form

‖v‖2
ρ,x = g(x)(v, v) := vT (gij(x))v.

We can now define the flow on the space of metrics (of fixed area A).

Definition 4.16. We can define the Ricci flow on the space of metrics (of
constant area) by

d

dt
gtij(x) = −2(κt(x)− κ)gtij for x ∈ V (1)

where κt(x) is the curvature of ρ(t) := (gtij).

There is a connection between solutions ρ(t) = (gtij(x)) to the Ricci equation
and the topological entropy.

Theorem 4.17 (Manning). Starting from a metric ρ = (gij) with non-
constant negative curvature then the topological entropy is strictly decreasing
along the solution ρ(t) to the Ricci equation (1).

To prove the entropy is decreasing along the orbit ρt one can use the formula
for the derivative of the topological entropy (along the solution to the Ricci
equation):

d

dt
h(φρ

t

)|t=0 = −1

2

∫
M

(
d

dt
gij|t=0

)
dµmax(v) =

∫
V

(κ− κ)dµmax(v)
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where µmax is the measure of maximal entropy. We want to show the derivative
is negative, i.e., that

−
∫
V

κ(v)dµmax(v) > κ

Step 1. By Katok’s theorem
√
κ < h(φρ).

Step 2. The solution av := av(0) > 0 to the Riccati equation (1) gives the
Lyapunov exponent and we have an inequality:

Lemma 4.18 (Ruelle). We can write

h(φ) = h(φ, µmax) ≤
∫
M

avdµmax(v).

Step 3. By the Cauchy-Schwarz inequality we can write∫
M

avdµmax(v) ≤
(∫

M

a2
vdµmax(v)

) 1
2

Step 4. We can the substitute for a2
v from the Riccati equation and observe

that ∫
M

a2
vdµmax(v) = −

∫
M

da

ds
dµmax(v)︸ ︷︷ ︸
=0

−
∫
M

κ(x)dµmax(v)

=−
∫
M

κ(x)dµmax(v).

Comparing the above inequalities the result follows.
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