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Chapter 1

Introduction

One could give a provisional mathematical definition of a fractal as a set for
which the Hausdorff dimension strictly exceeds the topological dimension,
once these terms are defined. However, this is not entirely satisfactory as it
excludes sets one would consider fractals. Mandelbrot introduced the term
fractal in 1977, based on the latin noun ”fractus”, derived from the verb
”frengere” meaning ”to break”. The present vogue for fractals is mainly
due to Benoit Mandelbrot.

1.0.1 In the beginning

There is no single generally accepted definition of a fractal set. They gener-
ally take the form of complicated subsets on Euclidean space.

On 18 July, 1872 the famous german mathematician Karl Weierstrass
presented a paper at the Royal Prussian Acadamy of science in which he
gave an example of a continuous function f : R→ R on the real line which
was nowhere differentiable.

1



2 CHAPTER 1. INTRODUCTION

This was part of the programme of Weierstrass to put real analysis onto a
more rigorous footing. Prior to his work, it was commonly (and incorrectly)
assumed that continuous functions were automatically differentiable. In
fact, in 1806 Amphere had published a paper in the Journal de l’Ecole
Polytechnique claiming (erroneously) that continuous functions were almost
everywhere differentiable. 1 The confusion that lead to his erroneous proof
mainly arose from the lack of clarity in the defintions. Although it was
widely known that the proof was flawed, the conclusion was still widely
accepted.

The Weierstrass function is defined using an infinite series

f(x) =
∞∑
n=0

an cos(bnπx)

where 0 < a < 1 and b ∈ 2N − 1 satisfy ab > 1 + 3π
2 . The graph of this

function might be viewed as the first example of a fractal.
In 1883, Cantor (who had attended lectures of Weirstrass) gave examples

of what are now usually called Cantor sets in the real line.
On the other hand, von Koch was unsatisfied with Weierstrass’ ana-

lytic approach and in 1906 proposed a more geometric constrution based
on interating scaled down versions of the original picture to get a von Koch
snowflake.

In a similar spirit to the constructions of both Cantor and von Koch, the
polish number theorist Sierpinski constructed in 1915-16 his triangle and
Gasket in the plane.

In 1918, Hausdorff developed the definition of the dimension of fractals.
One of the possible ways to define fractals is to say that their Hausdorff

1Amphere’s father was guilloteed after the french revolution and he himself made sig-
nificant contributions to physics which are commerated by the use of his name as a unit
of electrical current.
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dimension is strictly bigger than their topological definition. 2 The idea
of Hausdorff dimension was very effective in understanding many problems,
and it was used extensively by Besicovich in the 1930s. It was only in 2018
that its proven that the graph of the Wierestrass function has dimension
2 + logb a. 3 A simpler, but less subtle notion of dimension called Box
dimension was introduced by Bouligand in 1928 (based on earlier ideas of
Minkowski).

In the same year that Hausdorff proposed his definition, two french math-
mematicians Julia and Fatou independently initiated the study of what are
now called Julia sets in complex dynamics and where are important examples
of fractal sets. Julia published a 199-page paper in 1918 entitled Mémoire
sur l’iteration des fonctions rationelle describing the Julia set. With this
paper, Julia won the Grand Prix of the Académie des Sciences and became
extremely famous in mathematical circles throughout the 1920s. However,
this work fell into obscurity for about fifty years. In contrast, Fatou, who
producted similar retults using different methods, did not achieve the same
level of fame as Julia. 4

In the 1960’s Benoit Mandlebrot popularised the study of fractal struc-
tures accross the sciences. His name is now used to complex dynamics to
call a set in the parameter space of families of rational maps. 5

A recurrent theme is to describe the size of these fractal sets. This
reflects their complexity.

1.0.2 The notion of dimension

For d a natural number there is a perfectly reasonable intuitive definition
of dimension: A space is d-dimensional if locally it looks like a patch of Rd.
(Of course, “looks like” requires some interpretation. For the moment we
shall loosely interpret as “diffeomorphic to”). This immediately allows us
to say: the dimension of a point is zero; the dimension of a line is 1; the

2He was forced to give up his post as a professor at the University of Bonn in 1935 and
his work could only be published outside of Germany. Eventually, facing the prospect of
being sent to a concentration camp, he, along with his wife and sister-in-law, committed
suicide in January 1942.

3This was proved by someone who used to work at Warwick.
4He submitted an announcement of his results to Comptes Rendus. Unfortunately, Ju-

lia, ever protective of his work, sent letters to Comptes Rendus asking them to investigate
whose results had priority. The publication duly launched an investigation and included a
note on Julia’s findings in the same issue as the Fatou’s announcement. This apparently
discouraged Fatou enough to keep him from entering for the Grand Prix. However, the
Académie des Sciences gave him some recognition and awarded him a prize for his paper
on the topic.

5Mandelbrot’s uncle, Szolem Mandelbrojt, was a pure mathematician in Paris, who
took an interest in the young Mandelbrot and tried to steer him towards mathematics. In
fact, in 1945, Mandelbrojt showed his nephew the works of Fatou and Julia, though the
young Mandelbrot initially did not take much of an interest.
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dimension of a plane is 2; the dimension of Rd is d. Moreover, we want the
dimension of a circle to be 1; the dimension of a surface to be 2, etc. The
difficulty comes with more complicated sets “fractals” for which we might
want some notion of dimension which can be any real number.

There are several different notions of dimension for more general sets,
some more easy to compute and others more convenient in applications. We
shall concentrate on Hausdorff dimension. Hausdorff introduced his defin-
tion of dimension in 1919 and this was used to study such famous objects
such as Koch’s snowfalke curve. In fact, his definition was actually based
on earlier ideas of Carathéodory. Further contributions and applications,
particularly to number theory, were made by Besicovitch.

One could give a provisional mathematical definition of a fractal as a set
for which the Hausdorff dimension strictly exceeds the topological dimen-
sion, once these terms are defined. However, this is not entirely satisfactory
as it excludes sets one would consider fractals. Mandelbrot introduced the
term fractal in 1977, based on the latin noun ”fractus”, derived from the
verb ”frengere” meaning ”to break”. The present vogue for fractals is mainly
due to Benoit Mandelbrot.

1.0.3 In search of a good definition

To begin at the very beginning: How can we best define the dimension of
a closed bounded set X in Rn, say? Ideally, we might want a definition so
that:

(i) When X is a manifold then the value of the dimension is an integer
which coincides with the usual notion of dimension;

(ii) For more general sets X we can have “fractional” dimensional; and

(iii) Points, and countable unions of points, have zero dimension.

Perhaps the earliest attempt to define the dimension was the following:

First Definition. We can define the Topological dimension dimT (X) by
induction. We say that X has zero dimension if for every point x ∈ X every
sufficiently small ball about x has boundary not intersecting X. We say
that X has dimension d if for every point x ∈ X every sufficiently small ball
about x has boundary intersecting X in a set of dimension d− 1.

This definition satisfies out first requirement, in that it co-incides with
the usual notion of dimensions for manifolds. Unfortunately, the topological
dimension is always a whole number. (For example, the topological dimen-
sion of the Cantor set C is zero). In particular, this definition fails the second
requirement. Thus, let us try another definition.
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Second Definition. Given ε > 0, let N(ε) be the smallest number of ε-balls
needed to cover X. We can define the Box dimension to be

dimB(X) = lim sup
ε→0

logN(ε)

log(1/ε)

Again this co-incides with the usual notion of dimensions for manifolds.
Furthermore, the box dimension can be fractional (e.g., the dimension of
the Cantor set X is log 2/ log 3). We have used the limit supremum to
avoid problems with convergence. Strictly speaking, this is usually called
the upper box dimension and the box dimension is usually said to exist
when the limit exists (and is thus equal to the limsup). However, we have
the following:

Lemma 1. There exist countable sets such that condition (iii) fails for the
box dimension.

As a particular, example we can consider the countable set

X =

{
1

n
: n ≥ 1

}
∪ {0}

Then the box dimension is equal to 1/2. We will give a proof in the next
section.

Figure 1.1: Covering the coastline of Britain by boxes

Example 1 (The coastline of countries). Of course, to begin with there is
no reason that either the Box dimension or the Hausdorff dimension of a
coastline would actually be well defined. However, instead of taking a limit
as ε tends to zero one could just take ε to be “sufficiently small” and see
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Figure 1.2: (i) A cover by balls of diameter ε; (ii) A cover by open sets of
diameter ε

what sort of values one can get. Empirically, we can attempt to estimate
what the Box dimension d would be, if it was well defined.

More precisely, we can count how many balls are needed to cover the
coastline on a range of different scales (e.g., radius 100 miles, 10 miles, 1
mile). This leads to interesting (if not particularly rigorous) results, as was
observed by Lewis Fry Richardson. For example:

Germany, d = 1.12;
Great Britain, d = 1.24; and
Portugal, d = 1.12.

Finally, let us try a third definition,

Third Definition. We can define the Hausdorff dimension (or Hausdorff-
Besicovitch dimension) as follows.

Given X we can consider a cover U = {Ui}i for X by open sets. For
δ > 0 we can define Hδ

ε (X) = infU{
∑

i diam(Ui)
δ} where the infimum is

taken over all open covers U = {Ui} such that diam(Ui) ≤ ε. We define
Hδ(X) = limε→0H

δ
ε (X) and, finally,

dimH(X) = inf{δ : Hδ(X) = 0}.

As for the previous two definitions this coincides with the usual notion
of dimensions for manifolds. Furthermore, the Hausdorff dimension can be
fractional (e.g., the dimension of the Cantor set X is again log 2/ log 3).
Finally, for any countable set X property (iii) holds:

Lemma 2. For any countable set X we have that dimH(X) = 0.

We will give a proof of this fact in chapter 4.
At first sight, the definition of Hausdorff dimension seems quite elabo-

rate. However, its many useful properties soon become apparent. Conve-
niently, in many of the examples we will consider later dimH(X) = dimB(X).
In fact, one inequality is true in all cases:

Lemma 3. The definitions are related by dimH(X) ≤ dimB(X).
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We will give her proof of this results in chapter 4.
After this rather rapid gallop through the definitions, we will now settle

down to a more gentle canter through the definitions.

1.0.4 Books: A few of my favorite things

There are an number of excellent mathematical treatments of Hausdorff di-
mension and its properties. Amongst my particular favorites are Fractal
Geometry by K.J.Falconer and Geometry of sets and measures in Euclidean
spaces by P. Matilla. In the context of Dynamical Systems and Dimen-
sion Theory an excellent book is Dimension Theory in Dynamical Systems:
Contemporary Views and Applications by Y. Pesin.
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Chapter 2

A zoo of examples of fractal
sets

We want to begin my considering a selection of examples of candidates to
be called fractal sets.

2.1 Cantor sets

The simplest examples of fractal sets are already well known to most people,
namely Cantor sets. The most familiar example of a Cantor set is the middle
third Cantor set.

2.1.1 Middle 1
3
-Cantor set

One can delete from the unit interval [0, 1] = {x ∈ R : 0 ≤ x ≤ 1} a
countable sequence of open intervals to give the standard Cantor set. More
precisely, one first deletes the central interval (1

3 ,
2
3) of length 1

3 leaving
behind the union of two closed intervals [0, 1

3 ] and [2
3 , 1] of length 1

3 .
The next step is to delete from each closed interval the middle third

intervals (1
9 ,

2
9) and (7

9 ,
8
9) leaves four closed intevals[1

9 ,
2
9 ], [0, 1

9 ], [2
9 ,

1
3 ], [2

3 ,
7
9 ]

and [8
9 , 1]. When this is iterated n-times we have 2n intervals of length 1

3n .
Eventually one arrives at a closed set C, namely the middle third Cantor
set.

9
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It is easy to see that we can also write this in the form

C =

{ ∞∑
n=1

2in
3n

: i1, i2, i3, · · · ∈ {0, 1}

}

i.e., those numbers where the digit 1 doesn’t occur in the base 3 expansion.
In particular, there is a bijection π : Σ→ C from the space of sequences

Σ = {0, 1}N := {(i1, i2, i3, · · · ) : i1, i2, i3, · · · ∈ {0, 1}}

to the Cantor set C defined by

π : (i1, i2, i3, · · · ) 7→ 2

∞∑
n=1

in
3n
.

Exercise 1. Show that these two defintions of the middle third Cantor set
actually coincide.

2.1.2 Middle λ-Cantor sets

A simple variant on this construction is where we choose 0 < λ < 1 and
we delete the middle λ interval at each stage, rather than the middle third
interval. More precisely, we first delete the interval (1−λ

2 , 1+λ
2 ) leaving the

intervals [0, 1−λ
2 ] and [1+λ

2 , 1], each of which has length 1−λ
2 . We then delete

from each of these intervals their middle intervals, of length λ(1−λ)
2 leaving 4

intervals of length
(

(1−λ)
2

)2
. Continuing in this way at the nth step we have

2n closed intervals of the length
(

(1−λ)
2

)n
Continuing iteratively we end up

with a closed set Cλ.

Example 2 (λ = 1
3). In the particular case that λ = 1

3 this reduces to the
previous construction and C = Cλ.

We can also write

Cλ =

{(
1 + λ

2

) ∞∑
n=1

in

(
1− λ

2

)n
: i1, i2, i3, · · · ∈ {0, 1}

}

Exercise 2. Show that these two defintions of the Cantor set Cλ actually
coincide.

Remark 1. To show that the Cantor set actually exists (as a non-empty
set) we formally need to invoke a little metric space theory. More precisely,
assume that we have a nested sequence of compact sets (in this case unions
of closed intervals)

C1 ⊃ C2 ⊃ C3 ⊃ · · · .
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then we claim that C = ∩nCn 6= ∅. Here is a simple argument. Choose
cn ∈ Cn ⊂ C1 and by compactness of C1 choose a convergent subsequence
cnk → x ∈ C1, say. Moreover, for any j we see that (cn)n≥j ⊂ Cj and since
Cj is closed we see x ∈ Cj. Thus x ∈ ∩jCj, which is therefore nonempty.

A similar argument can be applied to some of the other constructions
(e.g., Sierpinski gasket, Bedford-McMullen carpets).

2.1.3 Cantor sets of zero Lebesgue measure

Formally, Cantor sets are totally disconnected perfect closed sets, and all
such sets are homeomorphic. However we are more interested in their metric
structure.

Without appealing to too much measure theory, we can say what it
means for a set to have zero Lebesgue measure.

Definition 1. We say that X ⊂ [0, 1] has zero Lebesgue measure if for any
ε > 0 we can choose a finite (or countable) set of subintervals I1, I2, · · · , In ⊂
[0, 1] such that

X ⊂ ∪Ni=1Ii and
N∑
i=1

λ(Ii) < ε,

where λ(·) is the measure (i.e., length) of the interval. 1

It is also easy to see countable unions of zero measure sets have zero
measure.

Exercise 3. Show that if a countable family Xi each have zero measure then
so does its union ∪iUi.

It is easy to see that the middle third Cantor set has zero measure. At
the nth stage in the cosntruction we have N := 2n intervals Ii each of length
1/3n. In particular, using these intervals we see that

N∑
i=1

`(Ii) =

(
2

3

)n
< ε

provided that n > log ε

log 2
3

> 0.

In the case that λ < 1 we similarly see that at the nth level of the
construction we have that the Cantor set Cλ is covered by 2n intervals Ii of
size

(
1−λ

2

)n
. In particular, using these intervals we see that

N∑
i=1

`(Ii) = (1− λ)n < ε

1In Rd there is an analogous defintions with cubes replacing intervals.
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provided that n > log ε
log(1−λ) > 0.

In summary, these Cantor sets are all homeomorphic and have zero
Lebesge measure. Later we will introduce defintions of dimension to destin-
guish their size which will help to distinguish them.

2.1.4 Hölder bijections

Let 0 < λ, ν < 1. There is a natural bijection between the Cantor sets
π = πλ,ν : Cλ → Cν given by

π :

(
1 + λ

2

) ∞∑
n=1

in

(
1− λ

2

)n
7→
(

1 + ν

2

) ∞∑
n=1

in

(
1− ν

2

)n
.

This is a homeomorphism. However we can show a stronger result, after
recalling the following definition.

Definition 2. We say that π is Lipschitz if there exists C > 0 and

|π(x)− π(y)| ≤ C|x− y|.

Given γ > 0 we say that π is γ-Hölder if there exists C > 0 and

|π(x)− π(y)| ≤ C|x− y|γ .

In particular, if γ = 1 then a 1-Holder function is Lipschitz.

Proposition 1. The map π is γ-Holder when γ =
log( 1+λ

2 )
log( 1+ν

2 )
.

Proof. Given x, y ∈ Cλ we can write

x =

(
1 + λ

2

) ∞∑
n=1

in

(
1− λ

2

)n
and y =

(
1 + λ

2

) ∞∑
n=1

jn

(
1− λ

2

)n
.

For x 6= y we can let
N = min{n : in 6= jn}

then iN 6= jN . In particular, there exists c > 0 such that

|x− y| ≥ c
(

1 + λ

2

)N
.

Similarly, there exists d > 0 such that

|π(x)− π(y)| ≥ d
(

1 + ν

2

)N
.

It is then easy to see the result.

Exercise 4. Complete the details of the proof.
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2.2 von Koch curve and snowflakes

The von Koch curve is defined by an iterative process.
Starting from from an equilateral triangle the middle third segment of

each side is replaced by the other two sides of an equilateral triangle, i.e.,
replacing the each middle third of each side by the other two sides of an equi-
lateral triangle pointing outward of side length 1/3 the size of the original
edge lengths entered on the edge.

We can continue this process repeatedly and it ”converges”” to the von
Koch curve.

2.3 Convergence of sets

One has to ask what convergence means in these contexts. This introduces
us to the notion of the Hausdorff metric on sets. Given a compact non-empty
set 2 X ⊂ Rd and ε > 0 we define an ε-neighbourhood

B(X, ε) = {y ∈ Rd : ∃x ∈ X with dRd(y, x) < ε},

where dRd(y, x) =
√∑d

i=1(xi − yi)2, for x = (x1, · · · , xd) and y = (y1, · · · , yd),
is the usual Euclidean metric.

Definition 3. Given two non-empty compact sets X,Y ⊂ Rd we define the
Hausdorff distance of two compact sets X and Y in Rd by

d(X,Y ) = inf{ε > 0 : X ⊂ B(Y, ε) and Y ⊂ B(X, ε)}.

Remark 2. We can see that we require the sets bounded since if we choose
X,Y ⊂ R to be X = {0} and Y = R then d(X,Y ) = +∞. We also see that

2Recall that in Euclidean space a closed bounded sets correspond to the compact sets
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we want to consider only closed sets since for X = [0, 1] and Y = (0, 1) we
have d(X,Y ) = 0 but X 6= Y .

Lemma 4. The Hausdorff metric d is a metric on the set of compact subsets
of Rd.

Proof. To see this is a metric we need to estblish three properties. Firstly,
if X = Y then we see from the definitions that X ⊂ B(X, ε) for any ε > 0
and so deduce that d(X,X) = 0. Conversely, if d(X,Y ) = 0 then we see
that for any x ∈ X and each n ≥ 1, there exists yn ∈ Y wih dRd(x, yn) < 1

n .
Thus yn → x and we deduce that x ∈ Y since Y is closed. Thus X ⊂ Y .
Similarly, Y ⊂ X by symmetry.

Secondly, we observe from the symmetry in the definitions that d(X,Y ) =
d(Y,X), i.e., the metric is symmetric.

Finally, to prove the triangle inequality let X,Y, Z ⊂ Rd be compact
subsets. Choose ε, δ > 0 such

X ⊂ B(Y, ε), Y ⊂ B(X, ε), Y ⊂ B(Z, δ), Z ⊂ B(Y, δ) (1)

For x ∈ X ⊂ B(Y, ε) there exists y ∈ Y with dRd(x, y) < ε. Moreover, since
y ∈ Y ⊂ B(Z, δ) there exists z ∈ Z with dRd(y, z) < δ. By the Euclidean
triangle inequality

dRd(x, z) ≤ dRd(x, y) + dRd(y, z) < ε+ δ

and thus X ⊂ B(Z, ε + δ). Similarly, we can show that Z ⊂ B(X, ε + δ)
and deduce that d(X,Z) ≤ ε + δ. Taking the infimum over both ε and δ
satisfying (1) gives the triangle inequality for the Hausdorff metric:

d(X,Z) ≤ d(X,Y ) + d(Y,Z).

This complete the proof.

An equivalent definition of the Hausdorff metric is

d(X,Y ) = max

{
sup
x∈X

inf
y∈Y

dRd(x, y), sup
y∈Y

inf
x∈X

dRd(x, y)

}

Exercise. Show that the two defintions of d(X,Y ) are equivalent.

Example 3. Let Xn = { in : i = 0, 1, 2, · · · , n} and X = [0, 1]. We see that
d(Xn, X) = 1

2n and so Xn → X in the Hausdorff metric.
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2.4 Sierpinski trianges and carpets

2.4.1 Sierpinski triangle

The Sierpinski triangle is rather like a two dimensional version of the middle
third Cantor set where we iteratively deleted open intervals. This time
around we start from an equilateral triangle and delete the open inscribed
(inverted) middle triangle. This leaves three triangles each of which is half
the size of the original triangle. We continute to delete the sclaed down open
middle triangles and continue iteratively.

Remark 3. To see that the limit exists we observe that we have a decreasing
sequence T1 ⊃ T2 ⊃ T3 ⊃ where Tn is a union of 3n triangles of size 1

2n .
The Sierpinski triangle is given by T = ∩∞n=1Tn. Compactness shows that T
is non-empty by analogy with the case of Cantor sets.

2.4.2 Bedford-McMullen carpets

A similar construction, with more variations available, is the following.

The Bedford-McMullen carpet is a closed subset of the unit square con-
structed by analogy with the Sierpinski triangle. The construction appeared
independently in the Warwick doctoral thesis of Tim Bedford and the first
paper of Curt McMullen. 3

Let n,m ≥ 2 and let S ⊂ {0, · · · , n − 1} × {0, · · · ,m − 1}. Divide the
unit square [0, 1]2 into subrectangles of size 1

m×
1
n and keep only the squares[

i

n
,
i+ 1

n

]
×
[
j

n
,
j + 1

n

]
where (i, j) ∈ S. We then iterate the procedure. The resulting set is the

3McMullen told the lecturer about his work in the tea room at IHES, who then wrote
to Bedford informing him
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carpet. It can also be written as

X =

{( ∞∑
k=1

xk
nk
,
∞∑
k=1

yk
mk

)
: (xk, yk) ∈ S, ∀k ≥ 1

}

Example 4. We can consider the special case n = 3 and m = 2 and S =
{(0, 1), (1, 1), (2, 0)}.

Consider the following three affine maps of R2:

Ti :

(
x
y

)
7→
(

1
3 0
0 1

2

)(
x
y

)
+

(
ci
di

)
, i = 1, 2, 3,

where (
c1

d1

)
=

(
0
0

)
,

(
c2

d2

)
=

(
1
3
1
2

)
,

(
c3

d3

)
=

(
2
3
0

)
.

=1.5in bedford.eps

The first two steps in the Bedford-McMullen example The limit set takes
the form

Λ =

{( ∞∑
n=1

in
3n
,

∞∑
n=1

jn
2n

)
: (in, jn) ∈ {(0, 0), (1, 1), (2, 0)}

}
,

and is closely related to what is called Hironaka’s curve.

Example 5 (Sieprinski Carpet). We can consider the special case n = 3
and m = 3 and S = {0, 1, 2} × {0, 1, 2} − {(1, 1)}.

Exercise 5. Show that providing |S| < nm the carpet has zero Lebesgue
measure.

Exercise 6. When is the final set connected?
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2.5 Less linear examples

All of the previous example have been very linear in their construction.
However, we can now describe a couple of examples where the construction
of the fractal set is a little different.

2.5.1 Circle packings

The curvilinear analogue of the Sierpinski Gasket is the so called Apollonian
Gasket.

Beginning with the unit circle we consider three mutually tangent in-
scribed circles. We successively inscribe into each triangle between three
circles another circle. The closure of the union of these circles is a circle
packing.

Figure 2.1: An apollonian circle packing made up of infinitely many inscribed
circles

Remark 4. The following estimate on the size of the circles was only proven
ten years ago: There exists C > 0 and δ > 1 such that

lim
ε→0

The number of circles of radius ≥ ε
εδ

= C.

2.5.2 Quasi-circles

Consider circls C1, · · · , Cn be a finite set of circles in C. Assume that the
circles have disjoint interiors and Ci touches Ci+1 at a single point (and Cn
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Figure 2.2: A quasi circle preserved by reflection in the linked circles

touches C1). footnoteAlternatively we can assume that Ci intersects Ci+1,
and Cn intersects C1, at exactly 2 points and at these points of intersection
the two circles meet at right angles. We can define inversions in the circle
Ci = {z ∈ C : |z− zi| = ri} to be the map Ti : C∪ {∞} → C∪ {∞} defined
by

Ti(z) =
(z − zi)r2

i

|z − zi|2
+ zi, for (i = 1, · · · , n).

The smallest closed set X ⊂ C such that Ti(X) = X, for i = 1, · · · , n is
either:

1. Another circle in C; or

2. A ”fractal” non-rectifiable curve (i.e., not the Lipschitz image of a
circle)

2.5.3 Julia sets

Let c ∈ C. The Julia set of a polynomial p(z) = z2 + c is a closed subset
J ⊂ C. The simplest definition is in terms of fixed points of iterates of p.
More precisely, for each n we can consider fixed points

z = pn(z) where pn = p ◦ · · · ◦ p.

We call such a periodic point repelling if |(pn)′(z)| > 1. The Julia set

J = {z : z is a reprelling periodic point}

is the closure of the repelling periodic points. This is merely one of several
equivalent definitions.

When c = 0 this is merely a circle. But for values c 6= 0 the Julia sets have
a fractal structure. We can further subdivide the parameter sets into those
for which the associated Julia set is connected or (totally) disconnected. The
collection of points c with the former property for the Mandelbrot set. This
forms a compact set in C whose boundary is again fractal in appearance.
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Figure 2.3: The Mandlebrot set is in the parameter space, and different
choices of c give rise to different Julia sets

2.6 Digit frequencies

We complete our wanderings through examples of “fractal sets” by consid-
ering a classical result which will have echos later. Here the sets in question
will actually be dense sets in the unit interval characterised by properties of
their decimal (and other bases) expansions.

2.6.1 Normal numbers and Borel’s Theorem

Given any real number 0 < x < 1 we can consider its decimal expansion

x = 0.a1a2a3 . . . where a1, a2, a3,∈ {0, 1, 2, · · · , 9}.

This will be unique, except in a countable set of values. More generally, for
any natural number b ≥ 2 we can consider its expansion in base b:

x =
∞∑
n=1

an
bn

where a1, a2, a3,∈ {0, 1, 2, · · · , b− 1}.

Again, this expansion is unique except for a countable set of values.
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We say that x is normal to base b if the digits in the base b expansion
all occur wih equal frequency 1

b , i.e., for all j ∈ {0, 1, · · · , b− 1} we have

lim
N→+∞

1

N
Card{1 ≤ n ≤ N : an = j} =

1

b
.

A normal number x is one which is normal to every base b ≥ 2.
A very significant result of E. Borel is the following.

Theorem 1 (Borel, 1909). 4 The set of points 0 < x < 1 which are not
normal have zero Lebesgue measure.

In the case b = 2. Let us deal with the case b = 2, the Back iothers being
similar. To reformulate the result in a more cBack ionvenient form to prove,
we define a sequence of funcions χn : [0, 1]→ {−1, 1} defined by

χn(x) =

{
1 if an = 0

−1 if an = 1

where

x =

∞∑
k=1

an
2n
.

Thus for x to be normal in base b is equivalent to

lim
N→+∞

1

N

N∑
n=1

χn(x) = 0.

5

We can avoid using measure theory by using a simple direct construction.
We begin with the following simple result on series

Claim 1. Let cn ≥ 0 with
∑

n cn < +∞. Then there is a sequence 0 ≤
bn → +∞ such that

∑
n anbn < +∞.

Proof of Claim 1. Since the tail of a convergent sequence tends to zero, we
can choose 0 = k0 < k1 < k2 < · · · such that k1 = 0 and

∞∑
n=kj

cn < 2−j for j = 2, 3, 4, · · · .

4The veracity of Borel’s Theorem is now beyond question. However, to paraphrase
Doob, Borel’s original derivation contains an “unmendably faulty” error. Borel himself
was aware of the gap in his proof, and asked for a complete argument. His plea was
answered a year later by Faber and also later by Hausdorff, using what is now called the
Borel-Cantelli lemma. The more modern proof uses the Birkhoff Ergodic Theorem from
1931.

5These functions χn are sometimes called Rademacher functions



2.6. DIGIT FREQUENCIES 21

For each n ∈ N we define bn = j where kj < n ≤ kj+1. In particular,

∞∑
n=1

cnbn =

k2∑
n=1

cn +
∞∑
j=2

 kj+1∑
n=kj+1

cnbn


≤

k2∑
n=1

cn +

∞∑
j=2

j kj+1∑
n=kj+1

cn


≤

k2∑
n=1

cn +

∞∑
j=2

j ∞∑
n=kj+1

cn


≤

k2∑
n=1

cn +

∞∑
j=2

j2−j < +∞

We can now proceed with the proof of Borel’s Theorem as follows. Let
us write

φn(x) =
1

n

n∑
k=1

χk(x)

then we want to show that φn(x)→ 0 as n→ +∞, s except on a set of zero
measure. Excercise Show that the functions φn(x) take only finitely many
values and are constant on the dyadic intervals [i/2n, (i+ 1)/2n].

Claim 2.
∑∞

n=1

∫ 1
0 |φn(x)|4dx < +∞

Proof of claim 2. We can expand∫ 1

0
|φn(x)|4dx =

1

n4

∫ 1

0

(
n∑
k=1

χk(x)

)4

dx

=
1

n4

n∑
k=1

∫
χ4
k(x)dx+

1

n4

∑
k1 6=k2

∫
χk1(x)2χk2(x)2dx

+
1

n4

∑
k1 6=k2

∫
χk1(x)χk2(x)3dx+

1

n4

∑
k1,k2,k3distinct

∫
χk1(x)χk2(x)χk3(x)2dx

+
1

n4

∑
k1,k2,k3,k4distinct

∫
χk1(x)χk2(x)χk3(x)χk3(x)dx

(1)
We can simply this by noting that

1. Since χ2
k(x) = 1,

(a)
∫
χk(x)4dx = 1 and
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(b)
∫
χk1(x)2χk2(x)2dx = 1 for k1, k2 distinct.

2. Since
∫
χk1(x)χk2(x)dx = 0 for k1, k2 distinct, and thus

(a) we have
∫
χk1(x)3χk2(x) = 0 (using ) χk(x)3 = χ(x)) and

(b)
∫
χk1(x)2χk2(x)χ3(x)dx =

∫
χk2(x)χ3(x)dx = 0 for k1, k2, k3 dis-

tinct (using χk1(x)2 = 1).

3.
∫
χk1(x)χk2(x)χk3(x)χk3(x)dx = 0 for k1, k2, k3, k4 distinct.

Exercise. Verify these equalities.
In particular, we see that

1

n4

n∑
k=1

∫
χ4
k(x) =

1

n3
dx and

1

n4

∑
k1 6=k2

∫
χk1(x)2χk1(x)2dx =

n− 1

n3

and all of the other terms in (1) vanish.
Exercise. Verify these estimates

In particular, we see that
∑∞

n=1

∫ 1
0 |φn(x)|4dx < +∞ as claimed.

The proof of Borel’s theorem will follow immediately from Claim 2 and
Claim 3 below.

Claim 3.[A first brush with the strong law of large numbers] If
∑

n

∫ 1
0 |φn(x)|4dx <

+∞ then limn→+∞ φn(x) = 0 for almost all x (i.e., except on a set of zero
measure).

Proof of Claim 3. We want to show that the set Z ⊂ [0, 1] of those x for
which |φn(x)| doesn’t converge to zero, has measure zero.

Let cn =
∫
|φn(x)|4dx and then since by claim 2

∑
n cn < +∞ we can

apply claim 1 to find a sequence bn → +∞. If x ∈ Z then clearly

|φn(x)|4 > 1

bn
for infinitely many n. (1)

Let us denote

An =

{
y ∈ [0, 1] : |φn(y)|4 > 1

bn

}
for n ≥ 1.

then by (1) we see that x ∈ ∪∞k=nAk for all n ≥ 1, i.e., Z ⊂ ∪∞k=nAk.
Moreover, since |φn(y)|4 takes only finitely many values we see that we

can write An = ∪Nni=1J
(n)
i where Jn1 , J

n
2 , · · · JnNn are disjoint intervals. In

particulae, ∪∞k=nAk is covered by a countable union of intervals

Jn = {J (k)
i : 1 ≤ i ≤ Nk, k ≥ 1}
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whose union must also cover Z, i.e., Z ⊂ ∪J∈JnJ . Furthermore, we can
then write the total lengths of these intervals as

λ(An) =

Nn∑
i=1

λ(J
(n)
i ), n ≥ 1.

By definition we see that for each y ∈ An we have |φn(y)|4bn ≥ 1 and thus

∑
n

λ(An) ≤
∑
n

bn

∫ 1

0
|φn(x)|4dx < +∞.

Since this series converges, its tail must tend to zero, i.e., limn→+∞
∑∞

k=n λ(An) =
0. In particular, for any ε > 0 we can write

λ (∪J∈JnJ) ≤
∞∑
k=n

λ(An) < ε

for n sufficiently large. This complete the proof.
R

Remark 5 (More measure theory makes for light work). With more measure
theory we can shorten the proof. In claim 2 we had that

∞∑
n=1

∫ 1

0

(
1

n

n∑
k=1

χk(x)

)4

dx < +∞.

In this case we can interchange the summation and integral to deduce∫ 1

0

∞∑
n=1

(
1

n

n∑
k=1

χk(x)

)4

dx < +∞.

We can then deduce that

∞∑
n=1

(
1

n

n∑
k=1

χk(x)

)4

dx < +∞

for almost all x. From this we can deduce that

lim
n→+∞

1

n

n∑
k=1

χk(x) = 0

as required.

We will next turn to the problem of describing the size of these zero
measure sets
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Chapter 3

Box Dimension

There are two particularly popular notions of quantifying the size of fractal
sets which we will consider, namely Box and Hausdorff dimension. Both
measure how efficiently a set X can be covered by balls.

Box dimension requires covering the set X by balls of the same size.
This makes it particularly easy to compute, but it lacks many desirable
properties. On the other hand, in the definition of Hausdorff dimension we
will allow coverings by sets of different sizes. This gives a better behaved
notion of dimension, but (as we shall see) is usually much more difficult to
compute.

We first introdcuce Box dimension and its properties.

3.1 Definitions

3.1.1 The definition of box dimension

We begin with the definition of Box dimension (or Minkowski dimension as
it is sometimes called). We first need to introduce a very simple notion.

Definition 4. Suppose X ⊂ Rd is a bounded set. Let ε > 0. Let N(X, ε) be
the minimal number of ε-balls needed to cover X, i.e.,

N(X, ε) = inf{n: ∃x1, · · · , xn ∈ X such that X ⊂ ∪ni=1B(xi, ε)}

Since X is bounded it is easy to see that N(X, ε) is finite. Similarly,
it follows immediately from the defintions that if ε < ε′ then N(X, ε) ≥
N(X, ε′), since given any (minimal) cover by ε-balls also corresponds to a
(possibly non-minimal) cover by ε′-balls with the same centres.

25
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The Box dimension measures the way in which the numbers N(X, ε)
depend on ε as ε → 0. It doesn’t always exist, but even when it doesn’t
there are the more general notions of upper and lower box dimension, which
we define below.

Definition 5. We define the upper Box dimension (or Minkowski dimen-
sion) of X as 1

dimB = lim sup
ε→0

− logN(X, ε)

log ε

and the lower box (or Minkowski dimension) of X as 2

dimB(X) = lim inf
ε→0

− logN(X, ε)

log ε
.

If the two values agree, then the limit

dimB(X) = lim
ε→0
− logN(X, ε)

log ε

exists and is simply called the box dimension (or Minkowski dimension) of
X.

As we shall see later, there are examples with dimB(X) < dimB(X), so
the box dimension isn’t always defined.

1. It doesn’t matter if we assume the centres of the balls xi are chosen
in Rd rather than X. This would change the value of N(X, ε) but not
the different values of the dimension(s).

2. Intuitively when the box dimension exists it means that for any δ > 0
the number of balls of size ε needed to cover X grows as

ε−(dimB(X)−δ ≤ N(X, ε) ≤ ε−(dimB(X)+δ

for ε > 0 sufficiently small.

3. It is clear from the definition that dim(X) ≥ 0 since logN(X,ε)
log ε ≥ 0.

Often it is more convenient ()both practically and concepturally to take
the lim inf and lim sup through a subsequence, in which the following simple
lemma is helpful.

Lemma 5 (Trivial, but useful lemma). Let εn → 0 be a monotone decreasing
sequence such that

1. limn→+∞
log εn+1

log εn
= 1; and

1By lim supε→0 aε = a we mean that ∀δ > 0, ∃ε0 > 0 such that | sup0<ε<ε0
aε − a| < δ

2By lim infε→0 aε = a we mean that ∀δ > 0, ∃ε0 > 0 such that | inf0<ε<ε0 aε − a| < δ
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2. limn→+∞
logN(X,εn+1)
logN(X,εn) = 1;

Then

dimB(X) = − lim sup
n→+∞

logN(X, εn)

log εn
and dimB(X) = − lim inf

n→+∞

logN(X, εn)

log εn

Proof. For any ε > 0 we can choose εn+1 ≤ ε < εn and we know that
N(X, εn) ≤ N(X, ε) ≤ N(X, εn+1). Therefore

logN(εn)

log( 1
εn+1

)
≤ logN(ε)

log(1
ε )
≤ logN(εn+1)

log( 1
εn

)

Letting n→ +∞ and using 1 and 2 gives result.

Remark 6 (The coastline of countries). Of course, there is no reason that
either the Box dimension of a coastline would actually be well defined. How-
ever, instead of taking a limit as ε tends to zero one could just take ε to be
“sufficiently small” and see what sort of values one can get. Empirically, we
can attempt to estimate what the Box dimension d would be, if it was well
defined. More precisely, we can count how many balls are needed to cover
the coastline on a range of different scales (e.g., radius 100 miles, 10 miles,
1 mile). This leads to interesting (if not particularly rigorous) results, as
was observed by Lewis Fry Richardson. For example:

Germany, dimension � 1.12;

Great Britain, dimension � 1.24; and

Portugal, dimension � 1.12.

The first mathematical example we will consider is trivial, but the con-
clusion is reassuring.

Example 6 (Single points). Let X = {x} be a single point. Then for any
δ > 0 we have that N(X, δ) = 1 since we can cover x by the single ball
B(x, ε). Thus we can deduce that dimB(X) = 0 and thus dimB(X) = 0.

The next example is almost as simple, and equally reassuring.

Example 7 (Unit interval). Suppose X = [0, 1]. Then we observe that for
any ε > 0 we have that

[1/(2ε)] ≤ N(X, ε) ≤ [1/ε] + 1

where [·] is the integer part. The upper bound is apparent since we can
consider the points xi = εi, for 0 ≤ i ≤ [1/ε] and then we have an open
cover with [1/ε]+1 balls B(xi, ε). On the other hand, to get the lower bound
we observe that since any ball B(x, ε) is an interval of length 2ε in the real
line we need at least [1/(2ε)] such intervals to cover the unit interval.
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In particular, using these bounds on N(X, ε) we see that

dimB(X) ≤ lim sup− log([1/ε] + 1)

log ε
= 1

and

dimB(X) ≥ lim inf − log([1/(2ε)])

log ε
= 1

In particular, we deduce that the box dimension exists and dimB(X) = 1.

It may seem a little strange to call this box dimension rather than, say,
ball dimension, since we uses covers by balls rather than boxes. However,
we can go some way to explaining this in the next subsection.

3.1.2 Variants on the definition of box dimension

It isn’t actually very important to use balls in the covering for X. For
example, could easily replace balls of size ε by “squares” or boxes S(x, ε) of
size ε instead. This perhaps helps to explain the name “box dimension”.

Definition 6. Let x = (ξ1, · · · , ξd) then we denote

S(x, ε) = (ξ1 − ε, ξ1 + ε)× (ξ2 − ε, ξ2 + ε)× · · · × (ξd − ε, ξd + ε)

i.e., a cube with edge sides length 2ε.

x

2ε

x

2ε

2ε

x

2ε

2ε2ε

2ε

In one dimension these definitions of squares and balls coincide, but for
d ≥ 2 it can be more convenient to use one definition rather than the other.

Definition 7. Let ε > 0. By analogy with the cover by ε-balls, let NS(X, ε)
be the minimal number of ε-boxes needed to cover X, i.e.,

NS(X, ε) = min {n: ∃x1, · · · , xn ∈ X with X ⊂ ∪ni=1S(xi, ε)}

The next lemma shows that it doesn’t really matter if we use balls or
cubes to define the (upper and lower) Box dimension(s).
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Lemma 6. We can rewrite the upper box dimension as

dimB(X) = lim sup
ε→0

− logNS(X, ε)

log ε

and the lower Box dimension as

dimB(X) = lim inf
ε→0

− logNS(X, ε)

log ε

Proof. Before we begin, we first note that a ball B(x, ε) of radius ε will fit
snuggly inside a box S(x, ε) of side length 2ε. In particular, a (minimal)
cover of X by ε-boxes gives rise to a cover by ε-balls with the same centres,
from which we deduce that

N(x, ε) ≥ NS(x, ε). (3)

On the other hand, an ε/
√
d -box B(x, ε/

√
d) of side length ε/

√
d will sit

inside a ball B(x, ε) of radius ε. In particular, we see that

NS(x, ε/
√
d) ≥ N(x, ε) (4)

The result easily follows from (3) and (4) from the definitions since for the
upper box dimension we have

dimB(X) = lim sup
ε→0

− logN(X, ε)

log ε

≤ lim sup
ε→0

− logNS(X, ε/
√
d)

log ε

≤ lim sup
ε→0

− logN(X, ε/
√
d)

log ε

= lim sup
ε→0

− logN(X, ε/
√
d)

log ε/
√
d

= dimB(X)

(since limε→0
log ε

log(ε/
√
d)

) = 1) and similarly for the lower Box dimension we

have

dimB(X) = lim inf
ε→0

− logN(X, ε)

log ε

≤ lim inf
ε→0

− logNS(X, ε/
√
d)

log ε

≤ lim inf
ε→0

− logN(X, ε/
√
d)

log ε
= dimB(X)
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Figure 3.1: Boxes stacked like a cover by three dimensional cubes

Having shown that we can replace the balls by squares we can next see
that we could restrict the squares to be those in a grid.

Example 8 (d = 2). If d = 2 then we could imagine X as a set drawn on
graph paper of width ε. We could then count the number of squares in the
graph paper which intersect X.

Example 9 (d = 3). For d = 3 then this cover might resemble boxes stacked
in a warehouse.

In general, for any d ≥ 1 and then a given ε > 0 we can denote the family
of ε-boxes associated with the standard ε-grid by

d∏
j=1

[mjε, (mj + 1)ε] : m = (m1, · · · ,md) ∈ Zd
 .

We then let

NG(X, ε) = Card

m = (m1, · · · ,md) ∈ Zd :

d∏
j=1

[mjε, (mj + 1)ε] ∩X 6= ∅


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denote the number of such ε-boxes intersecting the set X.
The next lemma shows that even with these particular choices of boxes

we still recover the upper and lower box dimensions.

Lemma 7. We can rewrite the upper box dimension as

dimB(X) = lim supε→0

logNG(X, ε)

− log ε

and the lower box dimension as

dimB(X) = lim supε→0

logNG(X, ε)

− log ε

Proof. Let ε > 0. By definition X intersects NG(X, ε) of the ε-grid boxes
described above. Consider the corresponding (ε

√
d)-balls B(′m + v, ε

√
d)

centred at the middle points of

m′ =

(
m1 +

1

2
,m2 +

1

2
, · · · ,md +

1

2

)
of boxes associated with the lattice points m = (m1, · · · ,md) ∈ Zd the
grid corresponding to boxes intersecting X we see that since each box is
contained in the corresponding ball, i.e.,

d∏
i=1

[miε, (mi + 1)ε] ⊂ B(m′, ε
√
d)

this gives a cover for X by NG(X, ε) ε
√
d- balls. Thus since N(X, δ

√
d) is

the cardinality of the smallest such cover we deduce that

NG(X, ε) ≥ N(X, ε
√
d). (5)

On the other hand, we begin with the simple geometric observation:

Claim (Geometric observation). Let δ > 0. Given U ⊂ Rd with

diam(U) = sup
x,y∈U

|x− y| ≤ δ

then U is contained in a union of 3d standard δ-grid cubes (consisting of any
cube intersecting U and the 3d − 1 neighbouring cubes). This reminiscent
of a Rubik cube.

Let ε > 0. Assume that we have a (minimal) cover by N(X, ε) ε-balls.
Since ε-ball has diameter 2ε and so we can apply the geometric observation
with δ = 2ε and where U is an ε-ball. In particular, every ε-ball in the cover
can itself be covered by 3n of these 2ε-cubes. In particular, X intersect
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Figure 3.2: For d = 3 there are 33 − 1 = 26 cubes neighbouring the original
cube

3dN(X, 2ε) of the 2ε-cubes from the standard grid with spacing 2ε, and thus
it can only intersect a smaller number of such cubes, i.e.,. 3dN(X, ε) ≥
NG(X, 2ε) or, on replacing ε by ε/2,

3dN(X, ε/2) ≥ NG(X, ε) (6)

The result easily follows from (5) and (6) and the definitions, since for
the upper box dimension we have

dimB(X) = lim sup
ε→0

− logN(X, ε
√
d)

log ε

≤ lim sup
ε→0

− logNG(X, ε)

log ε

≤ lim sup
ε→0

− log(3dN(X, ε/2))

log ε
= dimB(X)

since d log 3
log ε → 0 and d log 3

log(ε/2) → 1 as ε → 0. In particular, we have qualities
throughout. Similarly, for the lower Box dimension we have

dimB(X) = lim inf
ε→0

− logN(X, ε
√
d)

log ε

≤ lim inf
ε→0

− logNG(X, ε/
√
d)

log ε

≤ lim inf
ε→0

− log(3dN(X, ε/2))

log ε
= dimB(X)

again giving equalities throughout.
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In additional to the conceptual advantage, one of the advantage sof us-
ing a grid is that it simplifies the computation of the dimension in specific
examples. Rather than having to consider all possible covers and choosing
the most efficient we can restrict to covers using the grid boxes.

We illustrate this with the simple example of a cube (generalizing the
previous example of the unit interval ).

Example 10 (d-dimensional cube). Suppose X = [0, 1]d. Then by the pre-
vious construction

[1/ε]d ≤ NG(X, ε) ≤ ([1/ε] + 1)d

In particular we see that

−d log[1/ε]

log ε
≤ − logNG(X, ε)

log ε
≤ −d log([]1/ε] + 1)

log ε

Taking the limsup (and liminf) of the upper and lower bounds as ε→ 0 gives

dimB(X) = − lim sup
ε→0

logNG(X, ε)

log ε
= d and dimB(X) = − lim inf

ε→0

logNG(X, ε)

log ε
= d

Therefore we have that dimB(X) = d.

3.2 Examples of Cantor sets

A marginally more interesting example is the middle third Cantor set.

Example 11 (Middle third Cantor). Let X = C1/3 be the usual middle
third Cantor set. By virtue of its construction it is covered by the intervals
left at ant stage in its iterative construction. More precisely, for each n ≥ 1
we can cover the Cantor set by the union of 2n intervals of the form

C
(n)
1/3 =

1⋃
i1=0

· · ·
1⋃

in=0

[
2i1
3

+
2i2
32

+ · · ·+ 2in
3n
,
2i1
3

+
2i2
32

+ · · ·+ 2in
3n

+
1

3n

]
(7)

where each interval has length 1
3n . Given 0 < ε < 1 we can choose n such

that 1
3n+1 ≤ 2ε ≤ 1

3n . Since the 2n+1 intervals above at the nth level are each
of length 1

3n+1 they can be increased in size to give intervals which give a
cover by 2n+1 ε-balls (i.e., 2ε intervals). We thus deduce that

N(C, ε) ≤ 2n+1.

In particular, we see from the definitions

dimB(C) = − lim sup
ε→0

logN(C, ε)

log ε
≤ − lim sup

n→+∞

log 2n+1

log(3n/2)
=

log 2

log 3
.
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Conversely, given ε > 0 consider a (minimal) cover of C by N(C, ε) ε-
balls (i.e., intervals of length 2ε). We can choose n such that 1

3n+1 ≤ 2ε ≤
1

3n . Since at the nth level the individual intervals in the construction of the
Cantor set have separation at least 1/3n, we see that any ball in the minimal
cover (of length 2ε < 1

3n ) can intersect at most one of these 2n intervals. In
particular, we see that

N(C, ε) ≥ 2n

Thus

dimB(C) = − lim sup
ε→0

logN(C, ε)

log ε
≥ − lim sup

n→+∞

log 2n

log(3n+1/2)
=

log 2

log 3
.

Therefore, comparing these inequalites and recalling dimB(C) ≤ dimB(C),
the box dimension exists and we have

dimB(C) =
log 2

log 3
.

A variation on this argument leads to the following generalization to the
middle λ-Cantor set.

Example 12 (Middle λ-Cantor set). Let 0 < λ < 1 and consider the λ-
Cantor set Cλ then a similar argument gives that the Minkowski dimension
is

dimB(Cλ) =
log 2

log
(

1−λ
2

) .
Exercise 7. Check the above formula.

3.3 The limitations of Box Dimension

The next example starts to show the limitations of the box dimension. We
might expect that a countable family of points has zero dimension, but this
is not the case.

Example 13. Consider the countable set

X =

{
1

k
: k ∈ N

}
.

Observe that the distance between the consecutive points 1
k and 1

k+1 is∣∣∣∣ 1

k + 1
− 1

k

∣∣∣∣ =
1

k(k + 1)
≤ 1

k2
.
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Given ε > 0 we can choose n so that 1/(n + 1)2 < 2ε ≤ 1/n2 then at least
n distinct ε-balls are needed to cover the points {1, 1/2, · · · , 1/n}. Thus we
deduce that N(X, ε) ≥ n. Moreover the remaining points{

1

k
: k ≥ n+ 1

}
⊂
[
0,

1

n+ 1

]
in X can be covered by just n more intervals of length 2ε, or equivalently
ε-balls. Thus we see that N(X, ε) ≤ 2n. We can now observe that

dimB(X) = − lim inf
ε→0

logN(X, ε)

log ε
≥ lim sup

n→0

log n

log(2(n+ 1)2)
=

1

2
.

and

dimB(X) = − lim inf
ε→0

logN(X, ε)

log ε
≤ lim sup

n→0

log(2n)

log(2n2)
=

1

2
.

In particular, since dimB(X) ≤ dimB(X) we see that the inequalities in the
last two expressions are all equalities and deduce that dimB(X) = dimB(X) =
1
2 and thus dimB(X) = 1

2 .

In particular, in this example X is a countable set with dimB(X) > 0
which is a less desirable property for a dimension.

As an exercise we can consider a variant on this set.

Exercise 8. . Fix s > 0 and consider the set

X =

{
1

ns
: n ∈ N

}
.

What is the Box dimension dimB(X) of X? Justify your answer.

3.4 Basic properties of Box dimension

In this section we collect together some simple properties of Box dimension,
and attempt to illustrate them with the examples we have been studied.

Proposition 2 (Lipschitz images). Let X,Y ⊂ Rd be bounded subsets. It
π : X → Y is Lipschitz and surjective then dimBY ≤ dimBX and dimBY ≤
dimBX

Proof. Recall that for π to be Lipschitz there exists C > 0 such that ‖π(x)−
π(y)‖ ≤ C‖x− y‖ for all x, y ∈ X.

Assume we have a minimal ε-cover {B(xi, ε)}Ni=1 for X by N = N(X, ε)
ε-balls. Since for y ∈ B(xi, ε) we have that ‖y − xi‖ < ε, the Lipschitz
property implies that ‖π(y) − π(xi)i‖ < Cε and thus the images of the
balls will satisfy π(B(xi, ε)) ⊂ B(π(xi), Cε), for i = 1, · · · , N . In particular,
by surjectivity of π the balls {B(π(xi), Cε)}Ni=1 form a Cε-cover for Y . In
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particular, N(Y, ε) ≤ N(X,Cε). The result then follows from the definitions,
i.e.,

dimB(Y ) = − lim inf
ε→0

logN(Y, ε)

log ε
≤ − lim inf

ε→0

logN(X,Cε)

log ε
= dimB(X)

and

dimB(Y ) = − lim sup
ε→0

logN(Y, ε)

log ε
≤ − lim sup

ε→0

logN(X,Cε)

log ε
= dimB(X)

since limε→0
logC
log ε .

A simple example of this is where π is a projection.

Example 14. In particular, let π : R2 → R given by π(x, y) = x. Then we
let π(X) = {π(x, y) : (x, y) ∈ X}.

Since π : R2 → R is a Lipschitz map we have that dimBY ≤ dimBX and
dimBY ≤ dimBX.

An interesting application is the following.

Example 15 (Apollonian Circle Packings). The Apollonian circle packing
described earlier depends on the initial choice of sizes of circles. However,
the dimension of the limit set does not.

The reason for this is because given two sets of three initial tangent circles
inscribed inside the unit circle there is a Möbius map which maps one set of
circles to the other. Furthermore, since Möbius maps take circles to circles
we deduce that the entire circle packings are mapped to each other. Finally,
a Möbius map is clearly Lipschitz so they share the same box dimension.

We also have a simple, but useful, corollary.

Corollary 1. If we homothetically scale a set by a. map π : Rd → Rd
defined by

π(x1, · · · , xd) = (λx1, · · · , λxn).+ (z1, · · · , zd)

where λ ∈ R+ and (z1, · · · , zd) ∈ Rd, we have that dimB(X) = dimB(π(X))

Proof. We first observe that ‖π(x) − π(y)‖ = λ‖x − y‖, for x, y ∈ Rd. In
particular, π is Lipschitz. Similarly, π−1 is Lipschitz. By the previous
results, since π−1 ◦ π(x) = x we have

dimB(X) = dimB(π−1πX) ≤ dimB(π(X)) ≤ dimB(X)

and thus dimB(X) = dimB(π(X)). Similarly, dimB(X) = dimB(π(X)).
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A slight generalization of the result for Lipschitz maps is the following.

Proposition 3. Assume that π : X → Y is α-Hölder continuous and sur-
jective. Then dimBY ≤ αdimBX and dimBY ≤ αdimBX

Exercise. Prove the result above
By way of a reality check on these inequalities we can consider what

happens for Cantor sets.

Example 16. Given a middle λ-Cantor set Cλ we have observed that there
is a surjective Hölder continuous map π : Cλ → C1/3. The formulae for
the dimensions give us bounds on the possible Hölder exponents of any such
maps.

Another type of basic property is the following.

Proposition 4 (Inclusion). Let X ⊂ Y ⊂ Rd be bounded sets then

dimB(X) ≤ dimB(Y ) and dimB(X) ≤ dimB(Y )

Proof. Let ε > 0. Let {B(xi, ε)}Ni=1 be an ε-cover for Y of minimal car-
dinality N = N(Y, ε). Since X ⊂ Y ⊂ ∪Nj=1B(xi, ε) we can deduce that
N(X, ε) ≤ N(Y, ε). We see from the definitions

dimB(X) = − lim inf
ε→0

logN(X, ε)

log ε
≤ − lim inf

ε→0

logN(Y, ε)

log ε
= dimB(Y ).

Yet another type of result is the following

Proposition 5 (Topological results). Given X ⊂ Rd be a bounded subset.

1. Let X denote the closure of X then dimB(X) = dimB(X) and dimB(X) =
dimB(X).

2. If X ⊂ Rd has nonempty interior then dimB(X) = d.

Proof. For part 1, since X ⊂ X =: Y we can apply the inclusion property
to get dimB(X) ≤ dimB(X) and dimB(X) ≤ dimB(X).

Given ε > 0, we can choose a (minimal) cover {B(xi, ε)}Ni=1 for X, where
N = N(X, ε). We therefore see that {B(xi, 2ε)}Ni=1 for X, Thus N(X, 2ε) ≤
N(X, ε). Thus

dimB(X) = − lim sup
ε→0

logN(X, 2ε)

log ε
≤ − lim inf

ε→0

logN(X, ε)

log ε
= dimB(X)

and

dimB(X) = − lim sup
ε→0

logN(X, 2ε)

log ε
≤ − lim sup

ε→0

logN(Y Xε)

log ε
= dimB(Y ).
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For part 2, we can choose such a π with π([0, 1]d) contained in the in-
terior of X. In particular, dimB(U) ≥ dimB(π([0, 1]d)) = dimB([0, 1]d) = d
by the previous corollary. We can easily see that dimB(U) ≤ d and thus
underlinedimB(U) = overlinedimB(U) = d. Therefore dimB(U) = d, as
required.

We now come to simple result.

Lemma 8 (Finite domination). Given bounded sets X,Y ⊂ Rd then

dimB(X ∪ Y ) = max{dimB(X),dimB(Y )}.

Proof. Let ε > 0¿. Let {B(xi, ε)}Ni=1 be a (minimal) ε-cover of minimal cover
with N = N(X, ε) and let {B(yj , ε)}Mj=1 be a (minimal) ε-cover of minimal
cover with M = N(Y, ε). We then have an ε-cover for X ∪ Y of the form
{B(xi, ε)}Ni=1 ∪ {B(yj , ε)}Mj=1 and cardinality N + M = N(X, ε) + N(Y, ε).
In particular,

N(X ∪ Y, ε) ≤ N(X, ε) +N(Y, ε) ≤ 2 max{N(X, ε), N(Y, ε)}.

In particular,

dimB(X ∪ Y ) ≤ − lim sup
ε→0

logN(Y ∪X, ε)
log ε

≤ − lim sup
ε→0

log (2 max{N(X, ε), N(Y, ε)})
log ε

≤ max

{
− lim sup

ε→0

log(2N(X, ε))

log ε
,− lim sup

ε→0

log(2N(Y, ε))

log ε

}
≤ max{dimB(X), dimB(Y )}

(1)

by the nature of the lim sup.

On the other hand, since X,Y ⊂ X ∪ Y we have that

dimB(X) ≤ dimB(X ∪ Y ) and dimB(Y ) ≤ dimB(X ∪ Y )

and thus

max{dimB(X),dimB(Y )} ≤ dimB(X ∪ Y ). (2)

Comparing (1) and (2) proves the result.

Remark 7. The corresponding result doesn’t hold for dimB. There exist
examples with

max{dimB(X),dimB(Y )} < dimB(X ∪ Y ).
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Remark 8. In particular, as we observed in the introduction example ???
illustrates that box dimensions are not countably dominated. In particu-
lar, the set X a countable union of points xi, each of which has zero box
dimension, but is itself of non-zero box dimension (i.e., 1

2 = dimB(∪ixi) >
supi{dimB(xi)} = 0).

We also have the following.

Lemma 9 (Products). For bounded sets X ⊂ Rd and Y ⊂ Rl we have for
X × Y ⊂ Rd+l that

dimB(X × Y ) ≤ dimB(X) + dimB(Y )

and

dimB(X × Y ) ≥ dimB(X) + dimB(Y )

Proof. Let ε > 0. It is convenient to use the definition using ε-grid boxes.
In particular, given that the ε-grid for Rd+l is a product of the ε-grid for Rd
and the ε-grid for Rl, we then see that

NG(X × Y, ε) = NG(X, ε)NG(Y, ε).

Thus we have that

dimB(X × Y ) ≤ − lim sup
ε→0

log(NG(X × Y, ε))
log ε

≤ − lim sup
ε→0

log(NG(X, ε))

log ε
− lim sup

ε→0

log(NG(Y, ε))

log ε

= dimB(X) + dimB(Y )

(where for functions aε and bε we have that lim supε→0 aε+bε ≤ lim supε→0 aε+
lim supε→0 bε).

The corresponding result for dimB is similar, i.e.,

dimB(X × Y ) ≥ − lim inf
ε→0

log(NG(X × Y, ε))
log ε

≥ − lim inf
ε→0

log(NG(X, ε))

log ε
− lim inf

ε→0

log(NG(Y, ε))

log ε

= dimB(X) + dimB(Y )

(where for functions aε and bε we have that lim infε→0 aε+bε ≥ lim infε→0 aε+
lim infε→0 bε.

This has an immediate corollary
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Corollary 2. For bounded sets X ⊂ Rd and Y ⊂ Rl where dimB(X) and
dimB(Y ) exist

dimB(X × Y ) = dimB(X) + dimB(Y )

We can illustrate this with a simple example.

Example 17. Consider the Cantor set obtained by replacing the unit square
in the plane by four equal sub-squares of side length 0 < λ < 1

2 . This is then
iterated to get a two dimension Cantor set X by analogy with the middle
third Cantor set.

If the 4 boxes are horizontally and vertically then the corresponding set
is X = Cλ × Cλ where ν = 1−λ

2 . The product theorem tells us that

dimB(X) = −2. dimB(X) = 2

(
log 2

logα

)

3.5 More Examples

Let us consider a few more of the examples we encountered in the last
chapter.

3.5.1 von Koch snowflake

The von Koch curve X is a standard fractal construction. Starting from
the interval X0 = [0, 1] we associate to each piecewise linear curve Xn in
the plane (which is a union of 4n segments of length 3−n) a new one Xn+1.
This is done by replacing the middle third of each line segment by the other
two sides of an equilateral triangle bases there. Alternatively, one can start
from an equilateral triangle and apply this iterative procedure to each of the
sides one gets a “snowflake curve”.

Lemma 10. For the von Koch curve both the Box dimension and the Haus-
dorff dimension are log 4

log 3 .

Proof. We start with a star shape X1 which is the union of 12 straight line
segments. When εn = 1

3n , the set Xn is the union of 3 × 4n intervals of
length εn = 3−n. We can cover Xn by balls of size εn by associating to each
edge a ball of radius εn

2 centred at the midpoints of the side. It is easy to see
that this is also a cover for X. Therefore, we deduce that N(εn) ≤ 3× 4n.

Moreover, it is easy(-ish) to see that any ball of diameter εn intersecting
X can intersect at most two intervals from Xn, and thus N(εn) ≥ 3× 4n−1.
For any ε > 0 we can choose εn+1 ≤ ε < εn and we know that N(εn) ≤
N(ε) ≤ N(εn+1). Then

n− 1

(n+ 1)

log 4

log 3
≤ logN(εn)

log( 1
εn+1

)
≤ logN(ε)

log(1
ε )
≤ logN(εn+1)

log( 1
εn

)
≤ (n+ 1)

n

log 4

log 3
.
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Letting n → +∞ shows that dimB(X) = limε→0
logN(ε)

log( 1
ε
)

= log 4
log 3 . We post-

pone the proof that dimB(X) = dimH(X) until later, when we shall show a
more general result.

3.5.2 Sierpinski triangle

Let X be the Sierpinski triangle.

Lemma 11. For the Sierpinski carpet the Box dimension is equal to dimB(X) =
log 3
log 2

Proof. For any n ≥ 1, we can consider the grid of size εn = 1
2n . In particular,

at the nth step of the construction we have a union Xn of 3n triangles
of size 1

2n . We can then write X = ∩∞n=0Xn. However, each triangle
in Xn corresponds to one half of a εn-grid box. From this we see that
NG(X, εn) = NG(Xn, εn) = 3n . In particular, for all n ≥ 1 we have that

logNG(Xεn)

log( 1
εn

)
=

log 3

log 2

Letting n→ +∞, gives that dimB(X) = log 3
log 2 .

3.5.3 Bedford-McMullen carpets

The Bedford-McMullen carpets have a satisfyingly complicated formula for
the value of the box dimension.

Recall that the construction is based on choosing rectangles in a m × l
grid of the unit square. More precisely, given

S ⊂ {0, 1, . . . ,m− 1} × {0, 1, . . . , l − 1}

we can associate an affine “Sierpinski carpet”:

Λ =

{( ∞∑
n=1

in
ln
,

∞∑
n=1

jn
mn

)
: (in, jn) ∈ S

}
Let

a = Card(S) ≤ lm

be the total number of rsuch ectangles. Assume for simplicity that l ≥ m ≥ 2
and that every row contains a rectangle.

Lemma 12. If a = Card(S) then

dimB(Λ) = 1 +
log a

m

log l
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Proof. At the nth level of the construction (denoted Xn) we have an rect-
angles of size l−n ×m−n. More precisely, each rectangle at the n th level of
the construction corresponds to a finite string

(i1, j1), · · · (injn) ∈ S.

Each such rectangle has shorter side l−n and longer side height m−n. More-
over, we can cover each rectangle by approximately (l/m)n squares of size
l−n and, because no rows are empty, this many are all needed. Thus we get
an upper bound on the number of l−n-squares needed to cover Xn we get a
bounds of the N(X, l−j) ≈ aj(l/m)j . Thus

dimB(Λ) = lim
ε→0
− logN(ε)

log ε

= lim
j→+∞

log(a(l/m)j)

log lj

=
log a

log l
+ 1− logm

log l

= 1 +
log a

m

log l

as required.

Example 18. The Box dimension for the Hironaka curve Λ corresponding
to S = {(0, 0), (1, 1), (0, 2)} can be explicitly computed. More precisely, in
this case

dimB(Λ) = 1 + log3

(
3

2

)
= 1.36907 . . . .

3.5.4 Examples where the lower box dimension is strictly
less than the upper box dimension

We now return to a comment we made earlier, to the effect that the upper
box dimension and lower box dimension may not agree. We now describe a
simple construction.

In fact, we modify the easy middle third interval construction by remov-
ing at the nth stage either:

1. the middle third interval (leaving two intervals); or

2. both the left and right third intervals (leaving the middle interval).

Of course at the nth level of the construction the intervals have the same
length 3−n. However, the number of intervals required varies depending on
which choice above is made.

Let us denote mk = 10k
2
. At the nth step of the construction:
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1. we take out the middle third interval (leaving two third intervals) if
m2k ≤ n < m2k+1, for some k ≥ 1 ; and

2. we leave the middle third interval (taking out the left and right third
intervals) if m2k+1 ≤ n < m2k+2 for some k ≥ 1.

The length of the intervals at the nth stage of the construction will be
1

3n . The number of intervals at the nth level of the construction can be
denoted by N(n) We can now make some simple observations.

1. We see from the construction that the number of intervals at level
m2k+2 is the same as the number of intervals at the level m2k+1, i.e.,

N (m2k+2) = N (m2k+1)

2. On the other hand the number of intervals at the level m2k+1 is
2m2k+1−m2k times the number of intervals at the level m2k, i.e.,

N(m2k+1) = 2m2k+1−m2kN(n2k)

3. Furthermore, we observe that

mk+1 −mk

mk
=

10(k+1)2 − 10k
2

10(k+1)2 = 1− 10−(2k+1) → 0 as k → +∞.

In particular,
Let X denote the associated Cantor set. In particular, following the

same sort of reasoning as for the middle third Cantor set we can deduce
that

dimB(X) = lim sup
k→+∞

logN(m2k+1)

log 3m2k+1
=

log 2

log 3

and

dimB(X) = lim sup
k→+∞

logN(m2k)

log 3m2k
= 0

This shows the required difference.

3.6 Translates of Cantor sets

We finish with a simple application to adding Cantor sets. For context we
consider the sum of the middle third Cantor set C with itself defined by

C + C := {x+ y : x, y ∈ C}

The first observation is trivial.

Lemma 13. C + C = [0, 2]
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Proof. We can expand x, y ∈ C as

x =
∞∑
n=1

an
3n
, y =

∞∑
n=1

bn
3n
, where an, bn ∈ {0, 2}.

Therefore, we can write

x+ y =
∞∑
n=1

an + bn
3n

where an + bn ∈ {0, 2, 4}

In particular, we can achieve every expansion 2
∑∞

n=1
dn
3n where dn ∈ {0, 1, 2}

from which the result immediately follows

Let C be the middle third Cantor set. Given −1 ≤ t ≤ 1 we denote

(C + t) ∩ C = {y ∈ C : ∃x ∈ C with y = x+ t}

Theorem 2. For all but a zero measure set of x ∈ [−1, 1] we have that

dimB((C + t) ∩ C) =
1

3

log 2

log 3

Proof. To begin, we observe that any t ∈ [−1, 1] can be written in the form

t =
∞∑
n=1

cn
3n

where cn ∈ {−2, 0, 2}. Moreover, this expansion is unique, except for finitely
many cases where there are finitely many non-zero cn. On the other hand,
any y ∈ C can be written uniquely in the form

y =
∞∑
n=1

cn
3n

where cn ∈ {0, 2}. If we also assume y ∈ (C + t) then

∞∑
n=1

cn + tn
3n

∈ C

which implies that cn + tn ∈ {0, 2}. This imposes the following conditions:

1. If tn = 2 then yn = 2; and

2. If tn = −2 then y0 = 0

Thus for y ∈ (C + t) ∩ C the coefficient yn is completely determined
unless tn = 0, when it can take either of the two values. Since previously
showed almost all t are normal (base 3) we know that tn = 0 with frequency

1/3. In particular, we deduce that N(C ∩ (C + t)) = 2n/3(1+o(1)), 1
3n . From

this we see that dimB((C + t) ∩ C) = 1
3

log 2
log 3



Chapter 4

Hausdorff Dimension

We now want to move onto a more sophisticated version of dimension, called
Hausdorff dimension. 1 For some sets the two notions agree, for others
they disagree and then the value of the Hausdorff dimension gives more
information.

4.1 Definition of Hausdorff Dimension

Given a set X and δ > 0 and ε > 0 we define

Hδ
ε (X) = inf

{
N∑
i=1

diam(Ui)
δ : X ⊂ ∪ni=1Ui,diam(Ui) ≤ ε

}

where the infimum is taken over all finite open covers {Ui} the diameter
diam(Ui) of each set being atiso at most ε > 0. Observe from the ba-
sic defintion that ε 7→ Hδ

ε (X) is monotone decreasing. The δ-dimensional
Hausdorff measure of X comes by taking the limit as ε tend to 0, i.e.,

Hδ(X) = lim
ε→0

Hδ
ε (X).

Lemma 14. If Hα(X) < +∞ then Hβ(X) = 0 for any β > α. Similarly,
if Hα(X) > 0 then Hβ(X) = +∞ for any β < α

Proof. For the first part, it follows from the definition of Hα(X) that

Hβ
ε (X) ≤ εβ−αHα

ε (X)

Letting ε→ 0 gives the required result.
The other inequality follows similarly.

1It is named after Felix Hausdorff, a distinguished mathematician and great intellec-
tual. Unfortunately, who came to am unfortunate end when his wife, sister-in-law and he
committed suicide in Bonn in 1942, rather than being deported to a concentration camp.

45
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Thus if we think of Hα
ε (X) as a funtion of α it must take the values 0

or +∞, except possibly an one particular value. This change occurs at the
Hausdorff Dimension of the set.

Definition 8. The Hausdorff dimension of X is the value

dimH(X) = inf{α : Hα(X) = 0} = sup{β : Hβ(X) = +}

The definition is clearly more complicated than in the case of Box di-
mension.

4.2 Hausdorff dimension is bounded above by Box
dimension

The following relationship to Box dimension is clear.

Lemma 15. The Hausdorff dimension of a set X is bounded by the lower
box dimension, i.e., dimH(X) ≤ dimB(X).

Proof. Let δ > 0. Let {B(xi, δ)} be a (minimal) δ-cover for X by δ-balls of
smallest cardinality, i.e., N = N(X, δ). Then since this constitutes a cover
for X be sets of diameter less than 2δ we can write

H2δ
t (X) ≤ N(X, δ)(2δ)t (1)

For any t > dimB(X) it follows from the definition of dimB(X) that there
is a sequence δk → 0 such that

− logN(X, δk)

log δk
< t.

In particular, we have that

N(X, δk) < δ−tk . (2)

For k sufficiently large, we can choose δk < δ and then bound

Ht
δ(X) ≤ Ht

δk
(X) ≤ N(X, δk)(2δk)

t < 2t

using (1) and (2). Thus

Ht(X) ≤ lim
δ→0

Ht
δ(X) ≤ 2t < +∞.

In particular, dimH(X) < t. Since t > dimB(X) can be chosen arbitrarily
we deduce that dimH(X) ≤ dimB(X).
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4.3 Simple examples

As in the case of box dimension, we can test out the definition on some very
simple examples.

Example 19 (Single point). Let X − {x0} be a single point then since
dimH(X) ≤ dimB(X) we see that

dimH(X) = dimB(X) = 0

.

To see that there can be a strict inequality in dimH(X) ≤ dimB(X) we
revisit a familiar example.

Example 20. Consider the countable set

X =

{
1

n
: n ∈ N

}
.

We have already see that dimB(X) = 1
2 . However, we claim that dimH(X) =

0. To see this, observe that for any ε > 0 we can cover the each point 1
n ∈ X

by an open set Un = B( 1
n , ε2

−n) of decreasing size. Thus for any δ > 0 we
can under this bound

Hδ(X) ≤ Hδ
ε (X) ≤ εδ

∞∑
k=1

2−δk =
εδ

1− 2−δ
< +∞.

Then by definition

dimH(X) = inf{α : Hα(X) = 0} = 0

as claimed.

We can also consider the familiar example of a Cantor set

Example 21 (Middle third Cantor set). Let X be the middle third Cantor
set. We already know that

dimH(X) ≤ dimB(X) ≤ log 2

log 3

We claim this is actually an equality and out method of showing this is a
blueprint for a general method used for many different examples.

We want to associate to each of the 2n intervals I
(n)
1 , I

(n)
2 , · · · , I(n)

2n occurring
in the nth levels the same weight (or mass or measure) 1

2n , i.e., we can write

µ(I
(n)
k ) = 1

2n and observe that these are consistent in that for I
(n)
2k+1, I

(n)
2k+2 ⊂

I
(n=1)
k we have that

µ(I
(n)
k ) + µ(I

(n)
k ) =

1

2n
+

1

2n
=

1

2n−1
= µ(I

(n−1)
k ).
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Given δ > 0 we can consider a cover {Uj} for X with maxj diam(Uj) < δ
and then let Vj = Uj ∩X be the restriction to X. For each j we can choose
rj ∈ N such that

1

3rj+1 ≤ diam(Vj) ≤
1

3rj
.

Since the distance between the 2rj level rj intervals is at least 1
3rj

, the set
Vj can intersect at most one of the level rj intervals and thus mu(Vj) ≤ 2−rj .

If α = log 2
log 3 then we can write

µ(Vj) ≤ 2−rj = 2.2−(rj+1) = 2.(3−(rj+1))α ≤ 2(diam(Vj))
α.

Thus

1 = µ(X) ≤
∑
j

µ(Vj) ≤ 2
∑
j

(diam(Vj))
α.

Therefore, for any δ-cover we have∑
j

(diam(Uj))
α ≥ 1

2

and taking the infimum over all δ-covers gives Hδ
α(X) ≥ 1

2 . Moreover, letting
δ → 0 we still have Hα(X) ≥ 1

2 . Since dimH(X) = inf{β : Hβ(X) = 0} we
see that dimH(X) ≥ α. Comparing this with the reverse bound which came
from the box dimension gives the result.

The same basic argument can be used in similar examples, such as the
following.

Example 22. Let us return to example ??. Since we have that

dimH(X) ≤ dimB(X) = − log 4

log λ
=: d

It remains to get a lower bound by putting an appropriate measure on the
set. To this end we can consider the probability measure on the set X for
which each of the 4n squares of the nth level has same mass 1

4n . We claim
that there exists C > 0 such that

µ(B(x, r)) ≤ Crd (1)

for all balls. To prove this claim, assume B(x, r) intersects X and choose
n so that λn+1 ≤ r < λn. Then B(x, r) intersects at most 4 of the nth
generation squares and so

µ(B(x, r) ∩X) ≤ 4
1

4n
≤ 4λnd ≤ 4λ−drd
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and the result follows with C = 4λ−d. Using this, we see that given any
overing of X by ball {B(xi, ri)} we have

1 ≤
∑
i

µ(B(xi, ri)) ≤ C
∑
i

rdi

which shows that Hd(X) ≤ 1. Therefore dimH(X) ≤ d
This argument proves a basic version of the Mass Distribution Principle:

upper bounds for Hausdorff dimension come from the Minkowski dimension,
but lower bounds come from finding a suitable measure supported on the set
X. We will formulate this more generally below.

4.4 Lower bounds on Hausdorff Dimension

It is convenient to formulate the method above as a general principle.

4.4.1 Mass distribution theorem

We now consider one of the basic techniques for Hausdorff dimension. The
usual way to get a lower bound on the Hausdorff dimension is to use prob-
ability measures.

For the moment we only need to associate values µ(A) ∈ R+ where A is
either an element of the refined partition or an open set or an intersection
of such sets. Moreover, we only need the natural properties:

1. If A ⊂ A′ then µ(A) ⊂ µ(A′);

2. If (Ai)i then µ(∪iAi) ≤
∑

i µ(Ai)

A measure µ on X is called a probability measure is µ(X) = 1.

We can consider measures µ as associating to appropriate sets Y a mass
or postive weight.

Moreover, if we partition such a set Y into smaller suitable subsets Y =
Y1∪· · ·∪Yk then the mass from Y need to be distributed between Y1, · · · , Yk.

In the previous example, the suitable sets were the 4n squares at the nth
level.

Lemma 16 (Mass distribution principle). Let α > 0. Assume that the
compact set X ⊂ Rd supports a probability measure µ and there exists C > 0
such that for every x ∈ X we have a uniform bound

µ(B(x, r)) ≤ Crα for all r > 0.

Then dimH(X) > α.
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Proof. Given ε > 0, let {Ui} be a ε-cover for X. For each open set Ui
can choose ri > diam(Ui) and balls B(xi, ri) ⊃ Ui containing the set. By
assumption we have

µ(Ui) ≤ µ(B(xi, ri)) ≤ Crαi ≤ C(diam(Ui))
α.

In particular, we see that∑
i

(diam(Ui))
α ≥

∑
i

µ(Ui)

C
≥ µ(X)

C
=

1

C
.

Since this lower bound is independent of ε we see that

Hα(X) ≥ 1

C
> 0.

Since dimH(X) ≥ inf{t > 0 : Ht(X) = 0} this implies that dimH(X) ≥
α.

Recall that we saw that a set X with non-empty interior has dimB(X) =
d. As an easy application we have the following.

Application. Assume that X has non-empty interior. Then dimH(X) = d

We already know that dimH(X) ≤ dimB(X) ≤ dimB([0, 1]d). Let us
choose a small box Y ⊂ X. But since we are assuming X has positive
Lebesgue measure we can consider the normalization of the lebesgue measure
µ(B) = λ(B ∩ Y )/λ(Y ) where λ denotes Lebesgue measure. We can then
apply the Mass Distribution Principle with α = d. 2

We can revisit an example we already saw.

Example 23 (Middle third Cantor set revisited). We already saw for the
middle third Cantor set X we have

dimH(X) =
log 2

log 3
.

We already saw µ which gave equal measure 2−n to each of the 2n intervals
in the nth level of the construction, which is the measure in the Mass Dis-
tribution Principle. If we choose n with 1

3n ≤ 2r ≤ 1
3n−1 then any x ∈ X

the ball B(x, r) will contain at least one of the intervals at the nth level and
thus

µ(B(x, r)) ≥ 1

2n
=

(
1

3n

)α
≥
(

2

3

)α
rα

2Assume that X has positive Lebesgue measure then the same conclusion holds. A
little more technical detail is needed here. If a set has positive measure then the density
points also have positive measure. For a density point x we have that for some C > 0 we
have λ(B(x, r) ∩X) ≥ Cλr2 for r > 0 sufficiently small
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Example 24 (Koch curve). We can start from the 12 straightline segments
at the zero stage, of equal length 1, say. In the construction, at each step
we replace each segments by four segments of one third the previous length.
Thus at the nth level one has 12× 4n segments of length 1

3n .

It is therefore easy to see that N(X, 1
3n ) ≤ 12× 4n and deduce that

dimB(X) ≤ lim sup
n→+∞

−
N(X, 1

3n )

log 3
=

log 4

log 3
.

The Mass Distribution Principle can be applied where each of the seg-
ments at the nth stage each has measure 1

12.4n . In particular, there exists
c > 0 such that for any r > 0 we have

µ(B(x, r)) ≥ crα

where α = log 4
log 3 .

We will return to these examples in the next chapter, where we will
describe a general method which recovers these values for the dimensions.

There is a converse to the mass distribution which gives a measure as-
sociated to the Hausdorff dimension. This requires the following version of
Frostman’s lemma.

Lemma 17. Assume that Hα(X) > 0 then there exists a probability measure
µ on X and C > 0 such that for any x ∈ X we have

µ(B(x, r)) ≤ Crα, for all r > 0.

We omit the proof.

4.4.2 Energy and Hausdorff Dimension

Closely related to the mass distribution principle is the so called potential
theoretic approach to Hausdorff dimension, which is based on the notion
of “enegery” Let α > 0. We can associate to a probability measure µ its
α-energy defined by

Es(µ) =

∫
X

∫
X

dµ(x)dµ(y)

‖x− y‖α
∈ [0,+∞].

Theorem 3. If µ is a probability measure with µ(X) = 1 and Es(µ) < +∞
then dimH(X) ≥ s

Proof. Let us consider the subset X0 ⊂ X

X0 =

{
x ∈ X : lim sup

ε→0

logµ(B(x, ε)

εs
> 0

}
.
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Thus by definition for any x ∈ X we can choose c > 0 and a sequence εn → 0
such that

µ(B(x, εn)) ≥ cεsn, for n ≥ 1.

Let us choose a second sequence tn = εn+εn+1

2 so that

r1 > t1 > r2 > t2 > r3 > t3 > · · ·

and by going to a subsequence in (rn), if necessary, we can assume that the
annulus An = B(x, rn) \B(x, qn) satisfies

µ(An) ≥ c

4
εsn, for n ≥ 1.

Then we can write for fixed x ∈ X0:∫
X

∫
X

dµ(y)

‖x− y‖α
≥
∞∑
n=1

∫
An

∫
An

dµ(y)

‖x− y‖s
≥
∞∑
n=1

c

4
εsnε
−s
n = +∞,

But considering this as a function of x on X0 we see from the hypotheses
that ∫

X0

(∫
X

dµ(y)

‖x− y‖α

)
dµ(x) ≤

∫
X

∫
X

dµ(x)dµ(y)

‖x− y‖α
< +∞

which means that µ(X0) = 0, by Fubini’s theorem. We therefore conclude
that for almost every x ∈ X we have that

lim sup
ε→0

logµ(B(x, ε)

εs
= 0

and by the mass distribution theorem we have that dimH(X) ≥ s, as re-
quired.

This is part of a more general result which gives an alternative definition
of the Hausdorff dimension of X.

Theorem 4 (Potential theoretic definition of Hausdorff dimension). For a
compact set X

dimH(X) = sup{s > 0 : ∃µ with µ(X) = 1 and Es(µ) < +∞}

4.5 Properties of Hausdorff Dimension

A rather simple, but useful, viewpoint is to think of dimension as being a
way to distinguish between sets of zero measure. This is illustrated by the
following simple observation.

Lemma 18. If X ⊂ [0, 1] has dimH(X) < 1 then the (d-dimensional)
Lebesgue measure of X is zero.
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Proof. Since dimH(X) < 1 we can choose dimH(X) < δ < 1 for which
Hδ(X) = 0. In particular, given η > 0 we can choose ε > 0 sufficiently
small that Hδ

ε (X) < η . In particular, we can then choose a cover {Ui}
(of intervals) for X with supi{diam(Ui)} < ε such that

∑
i(diam(Ui))

δ < η.
But then, in particular,

∑
i diam(Ui) < η which lead to our characterization

of sets of zero Lebesgue measure.

On the other hand, there exist examples of sets X ⊂ [0, 1] with zero
Lebesgue measure and dimH(X) = 1.

We can now collect together some basic properties of Hausdorff dimen-
sion. The first few are similar to the properties of box dimension.

Lemma 19 (Inclusion). If X ⊂ Y then dimH(X) ≤ dimH(Y ).

The proof is fairly immediate from the definitions and left as an exercise.
Another useful property is that sets which are the same up to bi-Lipschitz

maps have the same dimension (i.e., it is a invariant on classifying spaces
up to “bi-Lipschitz equivalence”). We have already seen the corresponding
result for box dimension.

Lemma 20 (Lipschitz images). Let X1 ⊂ Rd and X2 ⊂ Rl be bounded sets.
If L : X1 → X2 is a Lipschitz homeomorphism (i.e., ∃C > 0 such that
|L(x)−L(y)| ≤ C|x− y| for all x, y ∈ X1) then dimH(X1) ≤ dimH(X2). In
particular, if L : X1 → X2 is a bijective bi-Lipschitz map i.e., ∃C > 0 such
that

1

C
|x− y| ≤ |L(x)− L(y)| ≤ C|x− y|,

then dimH(X1) = dimH(X2).

Proof. Let ε > 0. Consider an open cover {Ui} for X1 with supi diam(Ui) ≤
ε. Then the collection of images {U ′i := L(Ui)} of the open sets under the
homeomorphisms now form an open cover for X2 with diam(U ′i) ≤ Cε.

Let δ > 0. From the definitions we have Hδ
Lε(X2) ≤ Hδ

ε (X1). In par-
ticular, letting ε → 0 we see that Hδ(X1) ≥ Hδ(X2). Finally, from the
definition of Hausdorff dimension we have dimH(X1) ≤ dimH(X2).

For the second statement, we can apply the first part a second time with
L replaced by L−1.

Is this still true if L is merely continuous and surjective?

Example 25 (Projections and sums of Cantor sets). Consider X to be the
middle third Cantor set. We can consider the cartesian product X×X ⊂ R2

and its image under the projection π : R2 → R defined by π(x, y) = x + y.
We see that that π(X ×X) = X +X where

X +X = {x+ y : x, y ∈ X}.
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Moreover, one easily sees that this image X+X is the interval [0, 2] (by con-
sidering the possible triadic expansions) and thus has dimension 1. On the
other hand we already saw that dimH(X×X) = 2 dimH(X) = log 4/ log 3 >
1.

A more general result is the following.

Lemma 21 (Hölder images). Let f : X → Y be a surjective α-Hölder
continuous function, i.e., there exists K ≥ 0 such that ‖f(x) − f(y)‖ ≤
K‖x− y‖α. Then for any t ≥ 0 we have that dimH(Y ) ≤ α dimH(X).

Proof. From the definition of Hausdorff dimension, we see it suffices to show

Hs(Y ) ≤ KtHs/αHs(X).

To this end Let δ ≤ 1. If {Uj} be a δ-cover then since f(Uj) ≤ K(Uj)
α ≤ K

we have that {f(Uj)}j is a (Kδα)-cover of Y .

Thus

H
s/α
Kδα(Y ) ≤

∑
j

(diam(f(Uj)))
t/α ≤

∑
j

(K(diam(f(Uj))
α)t/α

and, in particular,

H
s/α
Kδα(Y ) ≤ inf{

∑
j

Ks/α(diam(Uj))
α : {Uj} is a δ-cover for X} = Ks/α

Letting δ → 0 we have Hs/α(Y )Ks/αHs(X).

For any s > dimH(X) we have that Hs(X) = 0 and thus Hs/α(Y ) = 0.

Then we can deduce dimH(Y ) ≤ dim(X)
α .

Example 26. The Hölder continuous map between the middle third Cantor
set C1/3 and the middle λ-Cantor set Cλ is such that dim(Cλ) = − log 2

log λ .

In the case of box dimension we saw the property of finite domination
for unions of sets. Not only does the corresponding result hold for Hausdorff
Dimension, but unlike the case for box dimension the result does extend to
countably infinite unions too.

Lemma 22 (Domination). Given X,Y ⊂ Rd then

dimH(X ∪ Y ) = max{dimH(X), dimH(Y )}

Moreover, given a countable infinity of sets Xi we have that dimH(∪iXi) =
maxi{dimH(Xi)}.
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Proof. It suffices to prove the stronger second statement.

Let ε > 0. For each Xi we can choose a cover {U (i)
j } with diam(U

(i)
j ) < ε.

We can then take the union of these covers to get a cover ∪j{U (i)
j } for X.

Let δ > supi{dimH(Xi). We can then write

Hδ
ε (X) ≤

∑
i

∑
j

(diam(U
(i)
j ))δ

 .

But we can now individually minimize each of the terms in brackets over all
covers of diameter at most ε to get

Hδ
ε (X) ≤

∑
i

Hδ
ε (Xi).

Letting ε→ 0 we then have that

Hδ(X) ≤
∑
i

Hδ(Xi). (1)

But from our choice of δ we have that Hδ(Xi) = 0 and so we conclude
from (1) that Hδ(Xi) = 0 and thus dimH(X) ≤ δ. Finally, since δ >
maxi{supH(Xi)} was arbitrary, the result follows.

By taking the sets to be single points we immediately have the following
corollary.

Corollary 3. If X is a countable set then dimH(X) = 0.

Again, this is in contrast to the case of box dimension.

Finally, we can consider the Hausdorff dimension of products of sets.

Lemma 23 (Products). If X,Y ⊂ Rd are compact then

dimH(X) + dimH(Y ) ≥ dimH(X × Y ).

Proof. This is a simple application of the Frostman lemma. Suppose α <
dimH(X) and β < dimH(Y ). By Frostman’s lemma we can find measures
µX on X and µY on Y , and a constant C > 0, such that for x ∈ X and
y ∈ Y we can bound

µX(B(x, r)) ≤ Crα, µY (B(y, r)) ≤ Crβ, for all r > 0.

In particular, we can consider the product measure µX ×µY on X ×Y then

(µX × µY )(B(x, r)×B(y, r)) ≤ C2rα+β
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But since B(x, r)×B(y, r) is contained in a ball B((x, y),
√

2d) in the product
space of radius comparable to r > 0 then by the Mass Distribution Theorem

dimH(X × Y ) ≥ α+ β.

But since we can choose α and β arbitrarily close to the relative dimensions
we have

dimH(X × Y ) ≥ dimH(X) + dimH(X)

as required.

Example 27. Let C be the middle third Cantor set. Since dimH(C) =
log 2/ log 3 we see from our earlier estimate

dimH(C × C) = 2 log 2/ log 3 = 2 dimH(C)

i.e., we get equality in this case.

However, there exist examples for which there is a strict inequality

dimH(X) + dimH(Y ) > dimH(X × Y ).

4.5.1 Generic maps

Although the examples for which the different notions of dimension are
slightly artificial, in some respects it is the typical case.

Let X be a compact d-dimensional manifold and let n > d. We can
consider any continuous map f : X → Rn and its image f(X). The space
of such functions has a natural metric coming from

‖f − g‖ = sup
x∈X
‖f(x)− f(y)‖2

where ‖ · ‖2 if the usual Euclidean norm on Rn
The following amusing result appears in (unpublished?) lecture notes of

Milnor.

Lemma 24 (Milnor). For a dense Gδ set 3 of continuous maps f : X → Rn
we have that the image Y = f(X) satisfies

dimH(Y ) = dimB(Y ) = d < n = dimB(Y ).

Proof. Given a compact set Y ⊂ Rn and ε > 0, let Sε(Y ) denote the largest
cardinality of a finite subset F ⊂ X such that d(x, y) > ε for x, y ∈ F with
x 6= y.

3By Baire’s theorem this is a countable intersection of open dense sets
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Given k > 0 let Vk ⊂ C(X,Rn) consist of those maps f ∈ C(X,R) for
which there exists ε < 1

k with

logSε(f(X))

log(1/ε)
≥ n− 1

k
. (1)

Each set Vk (k ≥ 1) is easily seen to be open.
We claim Vk (k ≥ 1) are also dense. We see this, we proceed as follows.

Let p > 0. Fix ε = p−kn/(kn−1) > 0 Given f0 ∈ C(X,Rn) let xi ∈ X
(i = 1, · · · , pn) be (nearby) points whose images f(xi) are all close to x0 ∈ Rd
. We can deform f0 to f which maps the same points to lie on pn points in
a (2ε)-grid, i.e., for some x ∈ R

x0 + (2εi1, · · · , 2εin) for i1, · · · , in ∈ {0, 1, · · · , p− 1}

in Rn. Then

logSε(f(X)) ≥ n log p = (n− 1/k) log(1/ε) (2)

and so (1) holds. Moreover, we can assume that ‖f − f0‖ = O(pε) =
O(p−1/(nk−1)), since we are changing f in a neighbourhood of size O(pε)
which can be made arbitrarily small by choosing p larger. Thus each Vk is
dense, as claimed.

To complete the first part of the proof we observe that, if f ∈ ∩kVk
(which we have just shown is a dense Gδ set, then by (1) dimB(f(X)) = n.

Let Uk consist of those f ∈ C(X,Rn) such that there exists 0 < ε < 1
k

logSε(f(K))

log(1/ε)
< d+

1

k
. (3)

To see that Uk is open observe that for f0 ∈ Uk and ‖f − f0‖ < η/2 then
Sε+η(f) ≤ Sε(f0). Thus for η sufficiently small, f ∈ Uk. We also claim that
Uk is dense.

Given f ∈ C(X,n) choose a cover for K by small open sets W1, · · · ,Wp,
say, and points bi ∈ R ∗ n close to f0(Wi) (i = 1, · · · , p). Let ψ : X → [0, 1]
be a partition of unity (with ψ supported in Wi). The new function

f(x) = φ1(x)b1 + · · ·+ φp(x)bp

approximates f0 and maps X to a d-dimensional simplex in Rn. Thus
dimB(f(X)) ≤ d. Moreover, f ∈ Vk for all k.

4.5.2 translations of Cantor sets

4.5.3 examples

=3.25in europe.eps
Frontiers of different European countries
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Example 28 (Snowflake/von Koch curve). The von Koch curve X is a
standard fractal construction. Starting from the interval X0 = [0, 1] we
associate to each piecewise linear curve Xn in the plane (which is a union
of 4n segments of length 3−n) a new one Xn+1. This is done by replacing
the middle third of each line segment by the other two sides of an equilateral
triangle bases there. Alternatively, one can start from an equilateral triangle
and apply this iterative procedure to each of the sides one gets a “snowflake
curve”.

=3.25in snowflake.eps
The top third of this snowflake is the von Koch curve.

Example 29 (Middle third Cantor set and E2). . Let X denote the middle
third Cantor set. This is the set of closed set of points in the unit interval
whose triadic expansion does not contain any occurrences of the the digit 1,
i.e.,

X =

{ ∞∑
k=1

ik
3k

: ik ∈ {0, 2}, k ≥ 1

}
Proposition 6. the middle third Cantor set both the Box dimension and
the Hausdorff dimension are log 2

log 3 = 0.690....

Proof. When εn = 1
3n it is possible to cover the set of X by the union of 2n

intervals

Xn =

{
n∑
k=1

ik
3k

+
t

3n
: ik ∈ {0, 2}, k ≥ 1, and 0 ≤ t ≤ 1

}

of length 1
3n . Therefore, we deduce that N(εn) ≤ 2n.

Moreover, it is easy to see that any interval of length εn intersecting X
can intersect at most two intervals from Xn, and thus N(εn) ≥ 2n−1. For
any ε > 0 we can choose εn+1 ≤ ε < εn and we know that N(εn) ≤ N(ε) ≤
N(εn+1). Then

n− 1

(n+ 1)

log 2

log 3
≤ logN(εn)

log( 1
εn+1

)
≤ logN(ε)

log(1
ε )
≤ logN(εn+1)

log( 1
εn

)
≤ (n+ 1)

n

log 2

log 3
.

Letting n → +∞ shows that dimB(X) = limε→0
logN(ε)

log( 1
ε
)

= log 2
log 3 . We again

postpone the proof that dimB(X) = dimH(X) until later, when we shall
show a more general result.

The set E2 is the set of points whose continued fraction expansion con-
tains only the terms 1 and 2. Unlike the Middle third Cantor set, the
dimension of this set is not explicitly known in a closed form and can only
be numerically estimated to the desired level of accuracy.
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Example 30 (Sierpinski carpet). . Let

X =

{( ∞∑
n=1

in
3n
,
∞∑
n=1

jn
3n

)
: (in, jn) ∈ S

}

where S = {0, 1, 2}×{0, 1, 2}−{(1, 1)}.Thisisaconnectedsetwithoutinterior.WecallXaSierpinskicarpet.

=3.25in carpet1.eps

The Sierpinski Carpet

Proposition 7. For the Sierpinski carpet both the Box dimension and the
Hausdorff dimension are equal to log 8

log 3 = 1.892...

Proof. When εn = 1
3n it is possible to cover the set of X by 8n boxes of size

1
3n :

Xn =

{(
n∑
k=1

ik
3k

+
s

3n
,

n∑
k=1

jk
3k

+
t

3n

)
: (ik, jk) ∈ S and 0 ≤ s, t ≤ 1

}

Moreover, it is easy to see that there is no cover with less elements. For
any ε > 0 we can choose εn+1 ≤ ε < εn and we know that N(εn) ≤ N(ε) ≤
N(εn+1). Then

n

(n+ 1)

log 8

log 3
=

logN(εn+1)

log( 1
εn

)
≤ logN(ε)

log(1
ε )
≤ logN(εn)

log( 1
εn+1

)
=

(n+ 1)

n

log 8

log 3
.

Letting n → +∞, gives that dimB(X) = log 8
log 3 . We postpone the proof

that dimB(X) = dimH(X) until later, when we shall show a more general
result.

4.6 Thickness and Cantor sets

There is an alternative notion of size for Cantor sets X which we briefly
recall.

We can consider the gaps for X ⊂ [a, b], which are the maximal open
connected sets U = (c, d) where c, d ∈ X and U ∩K = ∅.

Example 31. For the middle third Cantor set the gaps (1
3 ,

2
3), (1

9 ,
2
9), (7

9 ,
8
9),

etc.

Given a gap U , with a boundary point u ∈ ∂U , we call a bridge a
maximal interval J with endpoint u ∈ ∂J and doesn’t intersect a gap U ′

with `(U ′) ≥ `(U).

We can now associate the idea of the thickness at a point:
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Definition 9. The thickness of X at u is defined by τ(X,u) = `(J)/`(U).

We can associate a single value for X:

Definition 10. The thickness of X is defined to be

τ(X) = inf{τ(K,u) : u = boundary points u of (bounded) gaps}

This definition is taken from the book of Palis and Takens. There is an
equivalent earlier definition (introduced by Hall (in 1947) and Newhouse (in
1979).

We begin by enumerating the countable collection of gaps. Let U =
{Un}∞n=1 be a fixed labelling of the gaps of X. Given n and u ∈ ∂U let C be
the connected component of [a, b] \ ∪ni=1Ui containing u (where [a, b] ⊃ X is
the smallest interval containing X). We can then denote

τ(X,U , u) := `(C)/`(Un).

This gives the alternative (equivalent) definition of the thickness.

Lemma 25. . We can write

τ(X) = sup
U

inf
u
τ(X,U , u)

where the infimum is taken over all boundary points of finite gaps of X and
the supremum is taken over all orderings U .

Proof. For any U = {Un} with `(Un) ≤ `(Um) for all n > m the supremum
is achieved.

The following inequality relates the Hausdorff Dimension dimension and
the thickness of Cantor sets.

Lemma 26. If X ⊂ R has thickness τ then

dimH(X) ≥ log 2

log(2 + 1/τ)
.

In particular, we have the

Lemma 27. If X is a dynamically defined Cantor set then 0 < dimH(X) <
1.



Chapter 5

Iterated Function Schemes

In earlier chapters we have introduced many examples and introduced two
different notions of dimension. Now we will bring these two themes together
for a simple class of sets covering many of the earlier examples.

In this chapter we introduce one of the basic constructions, that of iter-
ated function schemes They appear in a surprisingly large number of familiar
settings, including several that we have already described in the chapter 2.
Moreover, those sets X for which we stand most chance of computing the
dimension are those which exhibit some notion of self-similarity (for exam-
ple, the idea that if you magnify a piece of the set enough then somehow it
looks roughly the same). Often, if we have a local distance expanding map
on a compact set we can view the natural associated invariant set as the
limit set of an iterated function scheme of the inverse branches of this map
(e.g., hyperbolic Julia sets, etc.). We can think of X as being the associated
limit set Λ given in the following result.

In the case of many linear maps, the dimension can be found implicitly
in terms of an expression involving only the rates of contraction. In the
non-linear case, the corresponding expression involves the so called pressure
function.

5.1 Definitions

Recall that Rd is equipped with the usual Euclidean metric

‖x− y‖ =

√√√√ d∑
i=1

(xi − yi)2

where x = (x1, · · · , xn) and y = (y1, · · · , yn).

Another familar definition is the following

Definition 11. A map T : Rd → Rd is a contraction if there exists 0 ≤ c < 1

61
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such that

‖Tx− Ty‖ ≤ c‖x− y‖

More generally, Let U ⊂ Rd be an open set. We say that S : U → U is a
contraction if there exists 0 < α < 1 such that

||S(x)− S(y)|| ≤ α||x− y|| for all x, y ∈ U.

(Here || · || denotes the induced Euclidean norm on U .)

In particular, a contraction is a special case of a Lipschitz map, for which
the Lipschitz constant is strictly smaller than unity.

One of the most useful approachs to systematically construct examples
is to use Iterated Function Schemes. Therefore following definition is fun-
damental to what follows.

Definition 12. An iterated function scheme on an open set U ⊂ Rd consists
of a family of contractions T1, . . . , Tk : U → U .

=2.0in ifs.eps

The images of U under the maps T1, . . . , T4 in an iterated function
scheme.

Notation. Let 0 < c1, · · · , ck < 1 be the contraction constants associated
to the maps T1, · · · , Tk and let us denote by 0 < c = max1≤i≤k ci < 1 the
contraction constant for the iterated function scheme.

In fact, in some examples it is convenient to broaden even slightly more
the definition of an iterated function scheme. More precisely, we might want
want to consider contractions Ti : Ui → U which are only defined on part of
the domain U . In this case, we consider only those sequences (xn)∞n=0 such
that Uxn ⊃ Txn−1(Uxn−1).

5.1.1 Open set condition

We want to introduce a very useful assumption.

Definition 13 (Open set condition). An iterated function scheme consisting
of contractions T1, · · · , Tk is said to satisfy the open set condition if exists
an open set V ⊂ Rk such that:

1. T1(V ), T2(V ), · · · , Tk(V ) ⊂ V ; and

2. Ti(V ) ∩ Tj(U) = ∅ for i 6= j.

A very simple example is the following.
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T1(V ) T2(V ) Tk(V )

V

Figure 5.1: Open set condition

Example 32. Consider the maps T1, T2 : R→ R defined by

T (x) =
x

3
and T (x) =

x

3
+

2

3
.

If we let V = (0, 1) then

T1(V ) =

(
0,

1

3

)
and T2(V ) =

(
2

3
, 1

)
and we see that T1(V ) ∩ T2(V ) = ∅. Thus this iterated function scheme
satisfies the open set condition.

A stronger property is the strong separation condition.

5.2 Hutchinson’s theorem

We will now describe a general method to associate to a finite number of
contractions (i.e., an iterated function scheme) a fractal set.

We can denote by K the space of compact subsets K ⊂ U ⊂ Rd. This
is equipped with the Hausdorff metric, which we already encountered in
Chapter 2. We can now associate to a given iterated function scheme a
single map on K.

Definition 14. Given contractions T1, · · · , Tk : U → U we can define a
map T : K → K by

T : K 7→ ∪ki=1Ti(K).

He we are merely using that continuous images of compact sets are com-
pact and finite unions of compact sets are again compact.

Here is a very simple example.
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Example 33 (previous example revisited). With the previous example, we
can start with K = [0, 1] and then

T ([0, 1]) =

[
0,

1

3

]
∪
[

2

3
, 1

]
and

T 2([0, 1]) =

[
0,

1

9

]
∪
[

2

9
,
1

3

]
∪
[

2

3
,
7

9

]
∪
[

8

9
, 1

]
It is no coincidence that these are the same intervals in the construction of
the middle third Cantor set.

The next result shows that this map on compact sets is a contraction.

Proposition 8. The map T is a contraction in the Hausdorff metric (i.e.,
d(TK1, TK2) ≤ cd(K1,K2) for any K1,K2 ∈ K).

Proof. Given two (compact) sets X,Y ⊂ U ⊂ Rd we want to show that

d(T X, T Y ) ≤ cd(X,Y ).

For any t > d(X,Y ) we have from the definition of the Hausdorff dimension
that X ⊂ B(Y, t) and Y ⊂ B(X, t).

Thus for any x ∈ X there exists y ∈ Y with ‖x−y‖ < t and for any y′ ∈ Y
there exists x′ ∈ X with ‖x′ − y′‖ < t). Therefore, for each i = 1, · · · , k,

1. for any Ti(x) ∈ Ti(X) we have Ti(y) ∈ T (Y ) with ‖Ti(x)−Ti(y)‖ < cit,
and

2. for any Ti(y
′) ∈ T (Y ) we have Ti(x

′) ∈ T (X) with ‖Ti(x′)− Ti(y′)‖ <
cit

From the definition of the Hausdorff metric we see that d(T X, T Y ) ≤
cd(X,Y ) where c = maxi ci < 1, as required.

We want to use the contraction mapping theorem to find a fixed point
X = T (X). The missing ingredient is the following property of K.

Proposition 9. The Hausdorff metric on the space K of compact sets in U
is complete.

Proof. Let (Xn)∞n=1 ⊂ K be a Cauchy sequence of compact sets (i.e., d(Xn, Xm)→
0 as n,m→ +∞). We want to show that there exists a compact set X ∈ K
such that d(X,Xn)→ 0 as n→ +∞.

Step 1: A subsequence. By going to a subsequence, if necessary, we can
assume that

d(Xn+1, Xn) ≤ 1

2n
. (1)
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Moreover, since the original sequence is Cauchy its convergence is equivalent
to that of the subsequence so we don’t lose anything by this assumption.

Step 2:New sets Yn: We can now associate new closed sets (Yn)∞n=1 defined
by

Yn := cl (∪∞k=nXk) , n ≥ 1,

and observe that:

1. the new sequence is nested, i.e.,

Y1 ⊃ Y2 ⊃ Y3 ⊃ · · · ⊃ Yn ⊃ · · · ; and

2. by the triangle inequality and (1):

d(Xn, X1) ≤
n−1∑
k=1

d(Xk, Xk+1) ≤
n−1∑
k=1

1

2k
≤ 1, ∀n ≥ 1.

In particular, the sets Yn (n ≥ 1) are all (uniformly) bounded and,
since they are closed, they are thus compact.

3. Since Xn ⊂ Yn and Yn ⊂ B(Xn, εn) where

εn =

∞∑
k=n+1

d(Xk, Xk+1) ≤ 1

2n
,

again using (1), we deduce that d(Xn, Yn)→ 0 as n→ +∞.

Step 3: Identifying the limit X: We can now identify the limit as
X := ∩∞n=1Yn, which is compact and non-empty (since it is the intersection
of a nested sequence of compact non-empty sets).

Step 4: The sequence (Yn) is Cauchy. We first observe that

d(Yn, Ym) ≤ d(Yn, Xn) + d(Xn, Xm) + d(Xn, Ym)→ 0 as n,m→ +∞

by 3. above and the fact that (Xn)∞n=1 was Cauchy. Given ε > 0 choose
(Nk)

∞
k=1 such that

d(Yn, Ym) ≤ ε/2k for all n,m ≥ Nk.

Step 5: End of the proof. To complete the proof its suffices to show
that d(Yn, X)→ 0 as n→ +∞, since by 3. above this implies d(Xn, X)→ 0
as n → +∞, i.e., that the Cauchy sequence (Xn)∞n=1 converges to X. We
therefore proceed as follows.

We choose an arbitrary point y1 ∈ YN1 and from the definition of the
Hausdorff metric choose y2 ∈ YN2 with ‖y1−y2‖ ≤ ε

2 . Proceeding iteratively,
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we can choose points yk ∈ YNk with ‖yk−yk+1‖ ≤ ε
2k

. The sequence (yk)
∞
k=1

will converge to a point y ∈ X (by completeness of Rd) and (by the Euclidean
triangle inequality)

‖y1 − y‖ ≤
ε

2
+
ε

4
+
ε

4
+ · · · ≤ ε.

Since y1 ∈ YN1 was arbitrary we see that Y ⊂ YN1 ⊂ B(Y, 2ε) and thus from
the definition of the Hausdorff metric we see that d(YN1 , Y ) ≤ 2ε. Since N1

can be replaced by any value n ≥ N1 the result follows.

We can now deduce the main result of this chapter.

Theorem 5 (Hutchinson). Let T1, · · · , Tk : U → U (n ≥ 2) be a finite family
of contractions then there is a unique non-empty compact set X ⊂ Rd such
that

X = ∪ki=1Ti(X). (2)

Proof. We need only collect together the pieces of the proof. We associate
to T1, · · · , Tk : U → U (n ≥ 2) the contraction T : K. → K. The space K
is a complete metric space and thus by applying the contraction mapping
theorem we have that there exists a unique fixed point T (X) = X. This is
equivalent to the conditon (2)

Remark 9. Another consequence of the contraction mapping principle if
that if we take any compact set K ⊂ Rd then we have exconential converge
d(T nK,X) ≤ C.cn, for n ≥ 1, where C = d(K,X). In the case of the
middle third Cantor set example, this is well illustrated by taking K = [0, 1]

5.3 Examples

Many of the examples we have previously studied are examples of the con-
struction we discussed above. The main point is to try to find the associated
contractions for which the fractal set is a fixed point for the associated con-
traction T : K → K.

We begin with the standard examples of Cantor sets

5.3.1 Middle third Cantor set

Let T1, T2 : [0, 1]→ [0, 1] be contractions of the interval defined by

T1(x) =
x

3
and T2(x) =

x

3
+

2

3
.

The middle third Cantor set X can we written in terms of triadic expansions
as

X =

{ ∞∑
n=1

xn
3n

: x1, x2, · · · ∈ {0, 2}

}
,
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However, the images of.a typical point in X under T1 and T2 ate

T1

( ∞∑
n=1

xn
3n

)
=

0

3
+

∞∑
n=1

xn
3n+1

and T2

( ∞∑
n=1

xn
3n

)
=

2

3
+

∞∑
n=1

xn
3n+1

respectively. From this it is easy to see that X = T1(X) ∪ T2(X) is the
unique fixed point for T . Moreover, if we start with K = [0, 1] then the sets
T n([0, 1]) which converge to the middle third Cantor set X correspond to
the nth stage of the construction with 2n intervals.

5.3.2 Middle λ-Cantor set

We can also consider the more general examples of Cantor sets In this case,
let T1, T2 : [0, 1]→ [0, 1] be defined by

T1(x) =

(
1− λ

2

)
x and T2(x) =

(
1− λ

2

)
x+

(
1 + λ

2

)
.

Again, it is easy to see that X = T1(X) ∪ T2(X), i.e., that X is the unique
fixed point of T . Similarly, if we start with K = [0, 1] then the sets T n([0, 1])
which converge to the middle λ Cantor set X correspond to the nth stage
of the construction with 2n intervals.

5.3.3 von Koch curve

Let us consider the four contractions T1, T2, T3, T4 : R2 → R2 of the plane
defined by

T1(x, y) =
(x

3
,
y

3

)
T2(x, y) =

(
x

3
cos(π/3) +

y

3
sin(π/3) +

1

3
,
x

3
sin(π/3)− y

3
cos(π/3)

)
T3(x, y) =

(
x

3
cos(π/3)− y

3
sin(π/3) +

1

2
,−x

3
sin(π/3)− y

3
cos(π/3) +

1

6
√

3

)
T4(x, y) =

(
x

3
,
y

3
+

2

3

)
.

The limit set X corresponds to one third of the von Koch snowflake. If
we let K = [0, 1] × {0} ⊂ R2 then T n(K) represents the nth step in the
construction.
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5.3.4 Sierpinski Triangle

We can consider the three contractions T1, T2, T3 : R2 → R2 defined by

T1(x, y) =
(x

2
,
y

2

)
T2(x, y) =

(
1

2
, 0

)
+
(x

2
,
y

2

)
T3(x, y) =

(
1

4
,

√
3

4

)
+
(x

2
,
y

2

)
The limit set X corresponds to the Sierpinski triangle. If we let K be

an equilateral triangle with vertices (0, 1), (1, 0) and (1
2 ,
√

3
2 ) then T n(K)

represents the nth step in the construction.

5.3.5 Bedford-McMullen sets

Given S ⊂ {0, · · · , n− 1}×{0, · · · ,m− 1} we can consider the contractions
Ti,j : R2 → R2 with (i, j) ∈ S defined by

Ti,j(x, y) =
(x
n
,
y

m

)
+

(
i

n
,
j

m

)
The limit set X corresponds to the Bedord-McMullen carpet. If we let K =
[0, 1]× {0} ⊂ R2 then T n(K) represents the nth step in the construction.

5.3.6 Apollonian circle packings

Given the four tangent circles we can consider four complimentary circles
Ki each of which passes through three points from the four tangency points
(where pairs of circles touch). In each of these circles Ki = {x ∈ C : |z −
ci| − ri}, where zi ∈ C and ri > 0, we can associate a map Si : Ĉ → Ĉ
defined by

Si(z) = r2
i

(z − zi)
|z − zi|

, i = 1, · · · , 4.

We can then define maps Ti,j = Si ◦ Sj : D → D with i 6= j on the unit
disk D. These maps Ti,j aren’t quite contractions, and so the Hutchinson
theorem doesn’t quite apply directly. 1

5.3.7 Julia sets

Let us consider the polynomial maps T : C → C defined by T (z) = z2 + c,
for some c ∈ C.

1This can be overcome by inducing which corresponds to iterating the maps to pick up
the strict contraction. However, this means we end up with finitely many contractions,
which still needs our definitions broadening in any case
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When c = 0 then the Julia set is the unit circle. We can consider
neighbourhoods

U+ ⊃ {eiθ : 0 ≤ θ ≤ π} and U− ⊃ {eiθ : π ≤ θ ≤ 2π}

We can consider the maps T1 : U± → U+ and T2 : U± → U− defined by
T1(eiθ) = eiθ/2 and T2(eiθ) = eiθ/2+π. For c close to zero the Julia set is close
to the unit circle and we can consider contractions in a neighbourhood of the
Julia set of the form T1(z) =

√
z − c and T2(z) = −

√
z − c. Whereas these

maps are contractions, there are multiple domains and so the Hutchinson
theorem needs to be adapted to this situation (as mentioned in a previous
remark).

5.4 Similarities

The Iterated Function Scheme construction of fractals has the additional
benefit that it gives us the possibility to estimate the dimension of the set.
The most successful setting for this is that of similarities.

Definition 15. We say that a (contraction) T : U → U are similarities if
there exists 0 < c < 1 such that

‖T (x)− T (y)‖ = c‖x− y‖, x, y ∈ U

In particular, when 0 < c < 1 this is s special case of a contraction.

We are particularly interested in the case of Iterated Function schemes
consisting of contractions T1, · · · , Tk each of which is a similarity. We can
check this in the case of our examples

• Middle third Cantor set: The two contractions here are similarities
with c = 1

2 .

• Middle λ-Cantor set: The two contractions here are similarities with
c = 1−λ

2 .

• von Koch snowflake: The four contractions here are similarities with
c = 1

3 .

• Sierpinski Triangle: The three contractions here are similarities with
c = 1

2 .

But the Bedford-McMullen carpets have contractions which are not sim-
ilarities since the contraction is by different amounts (namely 1

n and 1
m).

Moreover, the Apollonian circle packing maps and Julia sets have non-linear
contractions, which cannot be similarities either.



70 CHAPTER 5. ITERATED FUNCTION SCHEMES

5.5 Moran’s Theorem

Now that we have described a more systematic approach to constructing
examples of fractal sets X, we want to describe an associated (implicit)
expression for the dimension(s).

As a preliminary, we begin with a little calculus.

Lemma 28. Let 0 < c1, · · · , ck < 1 with cd1 + · · · + cdk < 1. The function
f : [0, k]→ R defined by

f(t) =
k∑
i=1

cti − 1

is a monotone decreasing function and there exists a unique value 0 < t0 < 1
with f(t0) = 0.

Proof. We observe that the f(t) is continuously differentiable and the deriva-
tive satisfies

f ′(t) =
k∑
i=1

(log ci)c
t
i < 0.

This shows that f(t) is monotone decreasing. Moreover, since f(0) = k−1 >
0 and f(d) = cd1 + · · ·+ cdn − 1 < 0 the intermediate value theorem gives the
existence of a solution 0 < t0 < d to f(t0) = 0. ‘

Now we see how to find the dimension of the limit set X associated to
an iterated function scheme consisting of contractions T1, · · · , Tk. 2

Theorem 6 (Moran). Let {T1, · · · , Tk} be an iterated function scheme of
similarities satisfying the open set condition with contraction constants 0 <
c1, · · · , ck < 1. The associated limit set X has dimH(X) given by solution
0 < D ≤ d to

k∑
i=1

cDi = 1. (1)

This will follow from the next two lemmas.

Lemma 29. Let {T1, · · · , Tk} be an iterated function scheme of contractions
with contraction constants 0 < c1, · · · , ck < 1. The associated limit set X
satisfies dimH(X) ≤ D, where 0 < D < d is the unique solution to (1).

2It is a common misconception that Patrick Moran was a student of Besicovitch. In
fact, he took courses at Cambridge from 1937-1939 (including those from Besicovitch)
and while it appears he wasn’t very successful at mathematics, he did used to take Mrs.
Besicovitch occasionally to the cinema. From 1939-1945 he did war work (during which
period he proved this result). He was given a studentship at Cambridge in 1945, but
Besicovitch declined to supervise him and he ended up as a student of Smithies instead.
In any event, Moran couldn’t solve the research problem he was then given and so never
received a PhD.
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Proof. Since T (X) = X, we can write

X = T NX = ∪i1,··· ,iNTi1 ◦ · · · ◦ TiN (X)

for any N > 0. Moreover, since the maps Ti are contractions then we can
write

diam(Ti1 ◦ · · · ◦ TiN (X)) ≤ ci1ci2 · · · ciNdiam(X)

Furthermore, we can cover each of these closed sets Ti1 ◦ · · · ◦ TiN (X) by an
open ball of radius

ci1ci2 · · · cindiam(X) ≤ cNdiam(X)

where c := maxi ci. In particular, this then gives us a cover of X by open
sets of diameter at most cNdiam(X) and thus by definition we can write

HD
cNdiam(X)

(X) ≤
∑

i1,··· ,iN

(ci1ci2 · · · ciN )D(diam(X)D

= (cD1 + · · ·+ cDk )N︸ ︷︷ ︸
=1

(diam(X))D

= (diam(X))D.

LettingN → +∞ we see that cNdiam(X)→ 0 andHD(X) ≤ (diam(X))D <
+∞. Thus we deduce that dimH(X) ≤ D.

The above lemma doesn’t require the contractions to be similarities, and
without further assumptions we cannot expect equality.

Example 34. Fix 0 ≤ t ≤ 2
3 and let T1, T2 : [0, 1]→ [0, 1] be defined by

T1(x) =
x

3
and T2(x) =

x

3
+ t

If 0 < t ≤ 2
3 then the limit set X is a scaled copy of the middle third Cantor

set and thus has dimension log 2
log 3 . On the other habd, when t = 0 then T1 = T2

and then X = {0} is a single point and so has dimension equal to 0.

To get an equality in Moran’s Theorem we need to assume that the
contractions are similarities and satisfy the Open Set Condition

Lemma 30. Assume that each Ti is a similarity with constant 0 < ci < 1
(i = 1, · · · , k) and they satisfy the open set condition. Then D ≤ dimH(X)
where D is the unique solution to

∑k
j=1 c

D
j = 1.
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Proof. Given the previous lemma, it suffices to show that dimH(X) ≥ D.
In particular, we will use the Mass Distribution Principle. 3

Constructing the measure. By the Open Set Condition (with the open
set V and a little induction argument) we can assume that the sets Ti1 · · ·Tin(V )
are disjoint, for i1, · · · , in ∈ {1, · · · , k}. We define a probability measure µ
which associates to the nth level sets the measures

µ(Ti1Ti2 · · ·Tin(cl(V )) = (ci1ci2 · · · cin)D.

Special image sets. Fix an arbitrary open ball B(x0, ε). If we denote

θ = min
1≤i,j≤

{
ci
cj

}
then we can consider the family of setsTi1Ti2 · · ·Tin(cl(V )) : θε ≤ diam(Ti1Ti2 · · ·Tin(V ))︸ ︷︷ ︸

=ci1ci2 ···cindiam(V )

≤ ε


of comparable diameter. (The value of n can vary, so long as the condition
on the diameter is satisfied). In order to estimate µ(B(x0, ε)) we want to
consider those for which Ti1Ti2 · · ·Tin(cl(V )) ∩B(x0, ε) 6= ∅.

Volume estimates. Next choose an open ball in B(y0, rdiam(V )) ⊂ V of
radius equal to rdiam(V ), say, for some sufficiently 0 < r < 2 (and some
point y0). Then for each image

Ti1Ti2 · · ·Tin(V ) ⊃ Ti1Ti2 · · ·Tin(B(y0, rdiam(V ))) (1)

and since the maps are similarities this image of B(y0, rdiam(V )) is itself an
open ball now

a) centred at Ti1Ti2 · · ·Tin(y0) , and

b) radius rci1ci2 · · · cindiam(V ).

In particular, the volume of Ti1Ti2 · · ·Tin(B(x0, rdiam(V ))) is

λ(Ti1Ti2 · · ·Tin(B(y0, rdiam(V )))) = λ(B(0, 1)) (rci1ci2 · · · cindiam(V ))d

(2)
where λ(·) represents d-dimensional volume (and, in particular, λ(B(0, 1))
is the volume of the unit ball in Rd. 4) Therefore, by the inclusion (1) and

3This can be avoided, as in the book of Climenhaga-Pesin
4There is an explicit formula λ(B(0, 1)) = πd/2/Γ(1 + d/2) which we will make abso-

lutely no use of
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B(y0, rdiam(V ))

V

B(2x0, ε)

B(x0, ε)

(Ti1 · · ·Tik)cl(V )

Figure 5.2: We estimate the number of (disjoint) images Ti1Ti2 · · ·Tin(cl(V ))
intersecting B(x0, ε) by comparing volumes

the equality (2) we have a lower bound on the volumes of each of the images
of V of the form

λ(Ti1Ti2 · · ·Tin(V )) ≥ λ(B(Ti1Ti2 · · ·Tin(y0), rci1ci2 · · · cindiam(V )))

= λ(B(0, 1)) (rci1ci2 · · · cindiam(V ))d

≥ λ(B(0, 1))(rθ)dεd.

(1)

To get an upper bound on the µ-measure of B(x0, ε) we can further
restrict attention to those images of V that satisfy

Ti1Ti2 · · ·Tin(cl(V )) ∩B(x0, ε) 6= ∅,

but then since diam(Ti1Ti2 · · ·Tin(cl(V ))) ≤ ε we see that

Ti1Ti2 · · ·Tin(cl(V )) ⊂ B(x0, 2ε).

In particular, we then have a trivial upper bound of the union of all such
images of the form

λ

 ⋃
(Ti1 ···Tik )(cl(V ))∩B(x0,ε)6=∅

(Ti1 · · ·Tik)(cl(V ))

 ≤ λ(B(x0, 2ε))

= λ(B(0, 1)) (2ε)d

(2)
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Counting images of cl(V ) intersecting B(x0, ε). We can now use the
volumes to get an upper bound on the number of open sets of the form
(Ti1 · · ·Tik)(V ) which intersected B(x0, ε), which in turn gives an estimate
on its measure.

By the open set condition, two distinct sets of the form (Ti1 · · ·Tik)(V )
are disjoint and so by (1) and (2) we have an upper bound on the number
of such sets intersecting the ball B(y0, ε) of the form

Card{(Ti1 · · ·Tin)(cl(V )) : (Ti1 · · ·Tin)(cl(V )) ∩B(x0, ε) 6= ∅}

≤
λ
(⋃

(Ti1 ···Tin )(cl(V ))∩B(x0,ε)6=∅(Ti1 · · ·Tin)(cl(V ))
)

min {λ(Ti1Ti2 · · ·Tin(V ))}

≤ λ(B(0, 1))2dεd

λ(B(0, 1))(rθ)dεd

=

(
2

rθ

)d
,

(3)

In particular, this bound is independent of the ball B(x0, ε).

Mass distribution principle. We can now bound the measure µ(B(x0, ε))
as follows

µ(B(x0, ε)) ≤
∑

(Ti1 ···Tin )(cl(V ))∩B(x0,ε)6=∅

µ(Ti1 · · ·Tin)(cl(V ))

=
∑

(Ti1 ···Tin )(cl(V ))∩B(x0,ε)6=∅

(ci1 · · · cin)D

≤ Card{(Ti1 · · ·Tin)(cl(V )) : (Ti1 · · ·Tin)(cl(V )) ∩B(x0, ε) 6= ∅} × εD

≤
(

2

rθ

)d
εD

(4)
by (3). In particular, this is enough to apply the Mass Distribution and
deduce that dimH(X) = D.

Finally, we can related this to the box dimension dimB(X)

Lemma 31. Let {T1, · · · , Tk} be an iterated function scheme of similarities
satisfying the open set condition amd with contraction constants c1, · · · , ck.
The associated limit set X satisfies dimH(X) = dimB(X) = D, where 0 <
D < d is the unique solution to (1).

Proof. Consider a small ball B(y0, δ) ⊂ V , where V is the open set used in
the open set condition. By the similarities condition, the images (Ti1 · · ·Tin)(B(y0, δ))
of the ball will again be balls, now of radius ci1 · · · cinδ.
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Given ε > 0, we can then restrict to those images such that

εθ ≤ ci1 · · · cinδ ≤ ε (1)

Because of the open set condition these sets will all be disjoint. We can
now associate a measure ν such that ν((Ti1 · · ·Tin)B(y0, δ)) = (ci1 · · · cin)D.
Then we can write

1 ≥
∑

εθ≤ci1 ···cinδ≤ε
ν((Ti1 · · ·Tin)B(y0, δ)) =

∑
εθ≤ci1 ···cinδ≤ε

(ci1 · · · cin)D (1)

where the summation is restricted to those images satisfying (1) above. But
for this particular disjoint collection of open sets

(Ti1 · · ·Tin)(B(y0, δ)) = B ((Ti1 · · ·Tin)(y0), ci1 · · · cinδ)

of radius ci1 · · · cinδ the inequality (1) a bound on their cardinality given by

1 ≥ Card{(Ti1 · · ·Tin)(B(y0, δ)) : θε ≤ ci1 · · · cinδ ≤ ε} × (θε)D. (2)

Given any open cover by balls of radius εθ
2 there must be at least one ball

contained inside each of the (disjoint) balls (Ti1 · · ·Tin)(B(y0, δ)) (covering
its centre, for example). We can then deduce from (2) that

N

(
X,

εθ

2

)
≤ (θε)−D.

Therefore

dimB(X) := − lim sup
ε→0

logN(X, ε)

log ε
≤ − lim sup

ε→0

log(1/εD)

log ε
= D.

Since D = dimH(X) ≤ dimB(X) :≤ dimB(X) (by the previous lemma and
standard bounds) we deduce the result.

Without the open set condition, things can go hideously wrong!

Example 35 (An example without the open set condition). Consider, as
an example, the maps Tix = λx+ i, for i = 0, 1, 3 and let Λλ be the limit set

1. For almost all 1/4 < λ < 1/3 we have that dimH(Λλ) = log 3
log(1/λ) (as

expected); However,

2. For a dense set of values λ we have that dimH(Λλ) < log 3
log(1/λ) .

In particular, the dimension of the set Λλ is not continuous in λ. We shall
return to this example later.
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5.6 Examples of Moran’s Theorem

For the present, let us just see how Moran’s theorem allows us to deduce
the dimensions of the limits sets in three familiar simple examples.

5.6.1 Middle third Cantor set

Consider the middle third Cantor set. We have α1 = α2 = 1
3 and observe

that that with D = log 2
log 3 we have

1 =

(
1

3

) log 2
log 3

+

(
1

3

) log 2
log 3

.

In particular, we recover dimH(X) = log 2
log 3 = 0.63093.

5.6.2 Sierpinski Carpet

Consider the Sierpinski Carpet. Consider the eight contractions defined by

T(i,j)(x, y) =

(
x+ i

3
,
y + j

3

)
where 0 ≤ i, j ≤ 2, and (i, j) 6= (1, 1). We can then identify the Sierpinski
gasket as the limit set Λ = Λ(T(0,0), · · · , T(2,2)). We have αij = 1

3 for (i, j) ∈
S and observe that with D = log 8

log 3 we have

1 =

(
1

3

) log 8
log 3

+ . . .+

(
1

3

) log 8
log 3

︸ ︷︷ ︸
×8

thus dimH(XS) = log 8
log 3 = 1.89279 . . ..

5.6.3 von Koch curve

We consider again the Koch Curve. We can consider four affine contractions

T1 : (x, y) 7→
(x

3
,
y

3

)
T2 : (x, y) 7→

(
1

3
+
x

6
,
y

2
√

3

)
T3 : (x, y) 7→

(
1

2
+
x

6
,

1

2
√

3
− y

2
√

3

)
T4 : (x, y) 7→

(
2

3
+
x

3
,
y

3

)
.
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Each branch contracts by 1
3 the limit figure and observe that with D = log 4

log 3
we have

1 =

(
1

3

) log 4
log 3

+

(
1

3

) log 4
log 3

+

(
1

3

) log 4
log 3

+

(
1

3

) log 4
log 3

,

thus we recover log 4
log 3 = 1.2619....

The situation becomes interesting when we drop the assumption that
the iterated function scheme is made up of similarities. (However, dropping
the conformal assumption or the open set condition is, for the moment,
something we prefer not even to contemplate!)

5.7 A simple special case

We can consider the special case of two similarities and a simpler proof.

Theorem 7. If T1, T2 : R → R are similarities satisfying the open set
condition, then the dimension is the unique solution s = dimH(Λ) to the
identity

1 = (α1)s + (α2)s,

where α1 and α2 are the associated contraction rates.

Proof. For simplicity, we consider the case of just two maps T1, T2 : R→ R
with limit set Λ. It is also convenient to write the two contractions as

λ := |λ1|λα := |λ2|, for some 0 < α < 1,

say. We can assume, for simplicity, that the open set in the open set condi-
tion is a ball U = {x ∈ R2 : ||x|| < r}.

Given k > 1 we can consider a cover for Λ by all balls of the form

Ti1 . . . TimU where M is chosen with
λ

k
≤ |λi1 | . . . |λim | ≤

1

k
(2.1)

Let Mk be the total number of such disks, and let Nk = N(1/k).

It is easy to see that there are constants C1, C2 > 0 with C1Nk ≤Mk ≤
C2Nk.

For example, we are considering

T1T1 . . . T1︸ ︷︷ ︸
×n

UT2 T1 . . . T1︸ ︷︷ ︸
×(n−1)

UT1T2 T1 . . . T1︸ ︷︷ ︸
×(n−2)

U · · · T2 . . . T2︸ ︷︷ ︸
×[αn]

(where [αn] is the largest integer smaller than [αn]).

If T1 occurs [(1 − β)n] times, for some 0 < β < 1, then for (2.1) to be
satisfied we require that T2 occurs approximately [βαn] times. Moreover,
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then number of contributions to the above list depends on their ordering,

which is approximately
(

[(1−β+αβ)n]
[βαn]

)
.

The total number Mk of disks satisfies:

max
β

(
[(1−β+αβ)n]

[βαn]

)
≤Mk ≤ n

(
max
β

(
[(1−β+αβ)n]

[βαn]

))
and to esimate this we need to maximize

(
[(1−β+αβ)n]

[βαn]

)
in β.

By Stirling’s formula we know that log n! ∼ n log n, as n→ +∞. Thus

log
(

[(1−β+αβ)n]
[βαn]

)
= log

(
[(1− β + αβ)]!

[βαn]![(1− β]!

)
∼ n ((x+ y) log(x+ y)− x log x− y log y)

where x = αβ and y = (1 − β). Writing f(x, y) = (x + y) log(x + y) −
x log x − y log y, we have a problem of maximizing this function subject to
the condition g(x, y) = x + αy = α. Using a Lagrange multiplier γ this
reduces to solving

∇f = (log(x+ y)− log x, log(x+ y)− log y) = γ∇g = γ(1, α)

In particular, we get
(

x
x+y

)α
=
(

x
x+y

)
and so setting λd := x

x+y solves

λd + (λα)d = 1. Thus

d = lim
k→+∞

logNk

log k
= lim

k→+∞

log
(

1
λd

)k
log (λk)

as required.

5.8 non-conformal maps

Let us now return to the problem of Hausdorff dimension for non-conformal
maps, and examples of where number theoretic properties of parameters can
lead to complicated behaviour.

Consider a family of affine maps Tix = aix + bi, i = 1, . . . , k, on R2. In
particular, ai is a d × d matrix and bi is a vector in Rd. Let Λ denote the
limit set of this family of maps, defined precisely as before.

There are simple examples of affine maps where the dimension disagrees.
The following is a simple illustration.

Example 36. (Bedford-McMullen) Consider the following three affine maps
of R2:

Ti :

(
x
y

)
7→
(

1
3 0
0 1

2

)(
x
y

)
+

(
ci
di

)
, i = 1, 2, 3,

where (
c1

d1

)
=

(
0
0

)
,

(
c2

d2

)
=

(
1
3
1
2

)
,

(
c3

d3

)
=

(
2
3
0

)
.
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=1.5in bedford.eps
The first two steps in the Bedford-McMullen example The limit set takes

the form

Λ =

{( ∞∑
n=1

in
3n
,
∞∑
n=1

jn
2n

)
: (in, jn) ∈ {(0, 0), (1, 1), (2, 0)}

}
,

and is closely related to what is called Hironaka’s curve. The Box dimension
and the Haudorff dimension of the limit set Λ can be explicitly computed in
such examples, and be show to be different. More precisely,

dimH(Λ) = log2(1 + 2log3 2) = 1.34968 . . . < dimB(Λ) = 1 + log3(
3

2
) = 1.36907 . . . .

This is part of more general result.

Theorem 8 (Bedford-McMullen Theorem). Let l > m ≥ 2 be integers.
Given S ⊂ {0, 1, . . . ,m − 1} × {0, 1, . . . , l − 1} we can associate an affine
“Sierpinski carpet”:

Λ =

{( ∞∑
n=1

in
ln
,

∞∑
n=1

jn
mn

)
: (in, jn) ∈ S

}

Assume that every row contains a rectangle. If we denote tj = Card{i : (i, j) ∈
S}, and a = Card(S) then

dimH(Λ) = logm

m−1∑
j=0

t
loglm
j

 , and dimB(Λ) = 1 + logl

( a
m

)

=2.0in bedford-rev.eps
The generalized construction of Bedford-McMullen

Proof. At the j the level of the construction we have Sj rectangles of size
l−j ×m−j . Moreover, we can cover each rectangle by approximately (l/m)j

squares of size m−j . Moreover, because no rows are empty this many are
needed.

Thus for ε = l−j we have that N(l−j) = aj(l/m)j . Thus

dimB(Λ) = lim
ε→0
− logN(ε)

log ε

= lim
j→+∞

log(a(l/m)j)

log lj

=
log a

log l
+ 1− logm

log l

= 1 + logl
a

m
,
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as required. The calculation of dimH(Λ) is a little more elaborate (and
postponed). Let 0 < α = loglm < 1. To get a measure on Λ we take the

bernoulli measure µ = (p1, . . . , pa)
Z+

, where pi,j = tj
α−1/

∑
(i,j)∈S tj

α−1.

We can consider a cover by squares given by the union of rectangles
[x0, . . . , xl, . . . , xm] over all xl, . . . , xm. These are am−1 rectangles of

Example 37. One can consider “genericity” in the linear part of the affine
map (rather than the translation). Consider contractions T1, T2 : R2 → R2

defined by

Ti :

(
x
y

)
7→
(
λ1 0
0 λ2

)(
x
y

)
+

(
ci
di

)
, i = 1, 2,

where λ1 < λ2.

=2.5in boxes.eps

Two affine contractions There are the following estimates on the Haus-

dorff and Box dimensions of the limit set.

Theorem 9. For any choices ci, di ∈ R (i = 1, 2) we have:

1. For 0 < λ1 < λ2 <
1
2 , dimH(Λ) = dimB(Λ) = − log 2

log λ2
;

2. For 0 < λ1 <
1
2 < λ2 < 1, dimB(Λ) = −

log
(

2λ2
λ1

)
log λ1

and

dimH(Λ)

 = −
log
(

2λ2
λ1

)
log λ1

for almost every λ2, but

< −
log
(

2λ2
λ1

)
log λ1

whenever 1/λ1 is a Pisot number.

dimB(Λ) = − log 2

log λ2
if 0 < λ2 ≤

1

2
−

log
(

2λ1
λ2

)
log λ1

if
1

2
≤ λ2 < 1 and

dimB(Λ) = − log 2

log λ2
if 0 < λ2 ≤

1

2
−

log
(

2λ2
λ1

)
log λ1

if
1

2
≤ λ2 < 1 for almost every λ2

but dimB(Λ) < −
log
(

2λ2
λ1

)
log λ1

whenever λ1 is a Pisot number.

A Pisot number is an algebraic number for which all the other roots of
the integer polynomial defining it have modulus less than one. For example,√

5−1
2 is a Pisot number.



5.8. NON-CONFORMAL MAPS 81

Example 38. For part (1), observe that since λ1 < λ2 <
1
2 the projection

onto the vertical axis is a homeomorphic to a Cantor set C in the line gen-
erated by two contractions with λ2 <

1
2 . In particular, dimH(Λ) ≥ dimHC ≥

log 2
log λ2

. On the other hand, when λn−1
2 < ε ≤ λn2 we can cover Λ by 2n ε-balls.

In particular, N(ε) ≤ 2n and thus

dimH(Λ) ≤ dimB(Λ) = lim
ε→0
− logN(ε)

log ε
≤ − log 2

log λ2

The proof of the second part is postponed.

In particular, we conclude that

Corollary 4. dimB(Λ) is continuous in λ1, λ2, but dimH(Λ) isn’t.

These examples are easily converted into estimates on limit sets for in-
vertible maps (Smale horsehoes) in three dimensions, by “adding” a one
dimensional expanding direction.

Example 39. We can also consider the case of more contractions. Assume
that Ti : R2 → R2, i = 1, 2, 3, 4 are defined by

Ti :

(
x
y

)
7→
(
λ1 0
0 λ2

)(
x
y

)
+

(
ci
di

)
, i = 1, 2, 3, 4

where λ1 < λ2 <
1
4 . If we let(

c1

d1

)
=

(
0
0

)
,

(
c2

d2

)
=

(
0
1
4

)
,

(
c3

d3

)
=

(
0
1
2

)
,

(
c4

d4

)
=

(
0
3
4

)
,

then the limit set is the product of a point on the x-axis with a Cantor
set on the y-axis (with Hausdorff dimension − log 4/ log λ2). In particular,
dimH(Λ) = − log 4/ log λ2. On the other hand, if we let(

c1

d1

)
=

(
0
0

)
,

(
c2

d2

)
=

(
0
1
2

)
,

(
c3

d3

)
=

(
1
2
0

)
,

(
c4

d4

)
=

(
1
2
1
2

)
,

then the limit set is the product of a Cantor on the x-axis (of Hausdorff
dimension − log 2/ log λ1) with a Cantor set on the y-axis (of Hausdorff di-
mension − log 2/ log λ2). In particular, dimH(Λ) = − log 2/ log λ1−log 2/ log λ2.

Since λ1 6= λ2, the dimensions of these two different limit sets do not
agree, and we conclude that dimH(Λ) depends not only on the contraction
rates but also on the translational part of the affine maps.
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Chapter 6

Conformal systems and
thermodynamic formalism

In the previous chapter we consider the construction of limit sets for iterated
function systems by similarities. We will now consider a generalization to
the case of contractions which are conformal maps.

6.1 Coding limit sets

An alternative approach to constructing the limit set is as follows.

Definition 16. Consider a family of contractions T1, . . . , Tk : U → U . Fix
any point z ∈ U then we define the limit set X by the set of all limit points
of sequences:

X =

{
lim

n→+∞
Tx0 ◦ Tx1 ◦ . . . ◦ Txn(z) : x0, x1, . . . ∈ {1, . . . , k}

}
It is easy to see that the individual limits exist. More precisely, given a

sequence (xn)∞n=0 we can denote Λk := Tx0 ◦ . . . ◦ Txk(Λ), for each k ≥ 0.
Since this is a nested sequence of compact sets the intersection is non-empty.
Moreover, since all of the maps Ti are contracting it is easy to see that the
limit consists of a single point.

Lemma 32. The limit set Λ agrees with the attractor defined above. In
particular, it is independent of the choice of z.

Proof. The set of limit points defined above is clearly mapped into itself by
T : X → X. Moreover, it is easy to see that it is fixed by T . Since Λ was
the unique fixed point (by the contraction mapping theorem) this suffices to
show that the two definitions of limit sets coincide.

This second point of view has the additional advantage that every point
is coded by some infinite sequence. We can define a metric on the space of

83
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sequences {1, . . . , k}Z+
as follows. Given distinct sequences x = (xn)∞n=0, y =

(yn)∞n=0 ∈ {1, . . . , k}Z
+

we denote

n(x, y) = min{n ≥ 0 : xi = yi for 0 ≤ i ≤ k, but xk 6= yk}.

We then define the metric by

d(x, y) = 2−n(x,y) if x 6= y0 otherwise

It is easy to check that this is a metric. We can define a continuous map
π : {1, . . . , k}Z+ → Rd by

π(x) := lim
n→+∞

Tx0 ◦ Tx1 ◦ . . . ◦ Txn(z)

Lemma 33. The map π is Hölder continuous (i.e., ∃C > 0, β > 0 such that
||π(x)− π(y)|| ≤ Cd(x, y))β for any x, y. )

Proof. By definition, if d(x, y) = 2−n, say, then π(x), π(y) ∈ Tx0◦. . .◦Txn(Λ).
However,

||π(x)− π(y)|| ≤ diam (Tx0 ◦ . . . ◦ Txn(Λ)) ≤ αndiam (Λ) ≤ (d(x, y))βdiam (Λ)

where β = logα/ log(1/2).

We shall assume for this chapter that T1, . . . , Tk are conformal, i.e., the
contraction is the same in each direction. Of course, for contractions on
the line this is automatically satisfied, and is no restriction. In the one
dimensional setting, such iterated function schemes are often called cookie
cutters.

If we identify R2 with C then this naturally leads to simple and familiar
examples of conformal maps.

Example 40. We can consider two natural examples of conformal maps.

1. Any linear fractional transformation T : Ĉ → Ĉ on the Riemann
sphere Ĉ is conformal. Moreover, if Tz = (az + b)/(cz + d) where(
a b
c d

)
∈ SL(2,C) then T ′(z) = 1/(cz + d)2. (More generally, Mobius

tranformations T : Sd → Sd are conformal.)

2. Any analytic function T : U → C, where U ⊂ C is conformal. For
example, we could consider T to be a rational map on a neighbourhood
of U of the hyperbolic Julia set.

In addition, we shall also generalize the

Definition 17. We say that a family of maps satisfies the open set condition
if there exists an open set U ⊂ Rd such that the sets T1(U), . . . , Tk(U) are
all contained in U and are disjoint.
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The next result shows that for conformal iterated function schemes, the
Hausdorff dimension and Box dimension of the limit set actually coincide.

Lemma 34. For conformal iterated function schemes satisfying the open
set condition dimB(Λ) = dimH(Λ).

Proof. We need to show that dimB(Λ) ≤ dimH(Λ). This is down using
the Mass Distribution Principle. Let us denote d = dimB(Λ). In order to
employ this method, we want to show that there is a probability measure µ
on Λ and constants C1, C2 > 0 such that

C1diam (Tx0 ◦ . . . ◦ Txn(Λ))d ≤ µ(Tx0 ◦ . . . ◦ Txn(Λ)) ≤ C2diam (Tx0 ◦ . . . ◦ Txn(Λ))d.

In fact, the existence of such a measure is due to ideas from Thermodynamic
Formalism, which we shall discuss later. In particular, if x = π((xn)∞n=0)
then

lim
ε→0

logµ(B(x, ε))

log ε
= lim

n→+∞

logµ(Tx0 ◦ . . . ◦ Txn(Λ))

log diam (Tx0 ◦ . . . ◦ Txn(Λ))
= d.

Thus by the Mass distribution principle we have that dimB(Λ) ≥ d =
dimH(Λ).

In particular, this applies to two of our favorite examples.

Corollary 5. For hyperbolic Julia sets and Schottky group limit sets the
Hausdorff dimension and the Box dimension coincide.

We now turn the issue of calculating the dimension of limit sets. We
begin with a special case, and then subsequently consider the more general
case.

6.1.1 Expanding maps and conformal iterated function schemes

In many of our examples, the iterated function scheme arises from the in-
verse branches of an expanding map. Let T : X → X be a C1 confor-
mal expanding map (i.e., the derivative is the same in all directions and
|T ′(x)| ≥ λ > 1) on a compact space.

Example 41. For the set E2 ⊂ [0, 1] consisting of numbers whose continued
fraction expansions contains only 1s or 2s, we can take T : E2 → E2 to be
T (x) = 1

x − [ 1
x ]. We can consider the local inverses T1 : [0, 1] → [0, 1] and

T2 : [0, 1] → [0, 1] defined by T1(x) = 1/(1 + x) and T1(x) = 1/(2 + x). We
can then view E2 as the limit set Λ = Λ(T1, T2).

More generally, to associate an iterated function scheme, we want to
introduce the idea of a Markov Partition. The contractions in an associated
iterated function scheme will then essentially be the inverse branches to the
expanding maps. Let T : X → X be a C1+α locally expanding map on
X ⊂ Rd.
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Definition 18. We call a finite collection of closed subsets P = {Pi}ki=1 a
Markov Partition if it satisfies the following:

1. Their union is X (i.e., ∪ki=1Pi = X);

2. The sets are proper (i.e., each Pi is the closure of their interiors,
relative to X);

3. Each image TPi, for i = 1, . . . , k, is the union of finitely many ele-
ments from P and T : Pi → TPi is a local homeomorphism.

=3.0in partition.eps

The set X is partitioned into pieces P1, . . . , Pk each of which is mapped
under T onto X.

In many examples we consider, each image TPi = X, for i = 1, . . . , k, in
condition (iii). (Such partitions might more appropriately be called Bernoulli
Partitions.)

We shall want to make use of the following standard result.

Lemma 35. For T : X → X a C1+α locally expanding map, there exists a
Markov Partition.

The proof of this result will be outlined in a later Appendix.

The usefulness of this result is that we can now consider the local inverses
Ti : TPi → Pi, i.e., T ◦ Ti(x) = x for x ∈ TPi, (extended to suitable
open neighbourhoods) to be an iterated function scheme for which X is the
associated limit set.

Example 42 (Hyperbolic Julia sets). Let T : J → J be a linear fractional
transformation on the Julia set. Assume that the transformation T : J → J
is hyperbolic (i.e., ∃C > 0, λ > 1 such that |(Tn)′(x)| ≥ Cλn, for all x ∈ J
and n ≥ 1). Then Proposition 2.3.1 applies to give a Markov partition.

If we consider the particular case of a quadratic map Tz = z2 + c, with
|c| small then we can define the local inverses by

T1(z) = +
√
z − c and T2(z) = −

√
z − c

Of course, in order for these maps we well defined, we need to define them
on domains carefully chosen relative to the cut locus.

Example 43. Limit sets for Kleinian groups. We will mainly be concerned
with the special case of Schottky groups. In this case, we have 2n pairs of
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disjoint disks D+
i , Di

−, with 0 ≤ i ≤ n, whose boundaries are the isomet-
ric circles associated to the generators g1, . . . , gn (and there inverses). In
particular, we can define T : Λ→ Λ by

T (z) = gi(z) if z ∈ D+
i g
−1
i (z) if z ∈ D−i

If all of the closed disks are disjoint then T : Λ→ Λ is expanding.

We now want to state the generalization of Moran’s theorem to the non-
linear setting . The main ingredient that we require if the following:

Example 44. Given any continuous function f : X → R we define its
pressure P (f) (with respect to T ) as

P (f) := lim sup
n→+∞

1

n
log

 ∑
Tnx=x
x∈X

ef(x)+f(Tx)+...+f(Tn−1x)


︸ ︷︷ ︸

Sum over periodic points

(As we shall presently see, the limit actually exists and so the “lim sup” can
actually be replaced by a “lim”.) In practise, we shall mainly be interested
in a family of functions ft(x) = −t log |T ′(x)|, x ∈ X and 0 ≤ t ≤ d, so that
the above function reduces to

[0, d]→ Rt 7→ P (ft) = lim sup
n→+∞

1

n
log

 ∑
Tnx=x
x∈X

1

|(Tn)′(x)|t


The following standard result is essentially due Bowen and Ruelle. Bowen

showed the result in the context of quasi-circles and Ruelle developed the
method for the case of hyperbolic Julia sets.

Lemma 36 ( [Bowen-Ruelle). Let T : X → X be a C1+α conformal ex-
panding map. There is a unique solution 0 ≤ s ≤ d to

P (−s log |T ′|) = 0,

which occurs precisely at s = dimH(X)(= dimB(X)).

Proof. We shall explain the main ideas in the proof in the next section.
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P (t)

dimH(X)

Example 45 (Reduction to the case of linear contractions). In the case of
linear iterated functions schemes this reduces to Moran’s theorem. Let us
assume that Ti = aix+ di then we can write∑

Tnx=x
x∈X

1

|(Tn)′(x)|t
=
∑
i1,...,in

1

|ai1 |t · · · |aik |t
=

(
1

|a1|t
+ · · ·+ 1

|an|t

)n

In particular, since one readily sees that this expression is monotone decreas-
ing as a function of t we see from the definitions that the value s such that
P (−s log |T ′|) = 0 is precisely the same as that for which 1 = 1

|a1|s+· · ·+ 1
|ak|s ,

i.e., the value given by Moran’s Theorem.

Finally, we observe that the function t 7→ P (ft) has the following inter-
esting proprties

(i) P (0) = log k;

(ii) t 7→ P (ft) is strictly monotone decreasing;

(iii) t 7→ P (ft) is analytic on [0, d].

Property (i) is immediate from the definition. We shall return to the proofs
of properties (ii) and (iii) later. For the present, we can interpret analytic to
mean having a convergent power series in a sufficiently small neighbourhood
of each point.

One particularly nice application of the above theorem and properties
of pressure is to showing the analyticity of dimension as we change the
associated expanding map. More precisely:
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Corollary 6. Let Tλ, with −ε ≤ λ ≤ ε, be an analytic family of expanding
maps. Then λ 7→ dimH(Λλ) is analytic.

Proof. The function f(λ, t) = P (−t log |T ′λ|) is analytic and satisfies ∂f
∂λ(λ, t) 6=

0. Using the Implicit Function Theorem, we can often deduce that for an
analytic family Tλ the dimension λ 7→ dim(Λλ) is analytic too.

This applies, in particular, to the examples of hyperbolic Julia sets and
limit sets for Schottky groups.

Example 46 (Quadratic maps). The map Tc(z) = z2 + c has a hyperbolic
Julia set Jc provided |c| is sufficiently small. Ruelle used the above method
to show that c 7→ dim(Jc) is analytic for |c| sufficiently small. (He also gave
the first few terms in the expansion for dim(Jc), as given in the previous
chapter).

In the next section we explain the details of the proof of Theorem 2.3.2.

6.1.2 Proving the Bowen-Ruelle result

Let T : X → X be a map on X ⊂ Rd. By an expanding map we mean one
which locally expands distances. In the present context we can assume that
there exists C > 0 and λ > 1 such that

||DxT
n(v)|| ≥ Cλn||v||, for n ≥ 1.

The hypothesis that T is C1+α means that the derivative DT is α-Hölder
continuous, i.e.,

||DT ||α := sup
x 6=y

||DxT −DyT ||
||x− y||

< +∞.

Here the norm in the numerator on the Right Hand Side is the norm on
linear maps from Rd to itself (or equivalently, on d× d matrices).

Let T : X → X be a C1+α locally expanding map on X ⊂ Rd. Consider
a Markov Partition P = {Pi}ki=1 for T . If we write Ti : X → Pi for the local
inverses then this describes an iterated function scheme. For each n ≥ 1 we
want to consider n-tuples i = (i1, . . . , in) ∈ {1, . . . , k}n. We shall assume
that TPir ⊃ Pir−1, for r = 2, . . . , n. It is then an easy observation that

Pi := Tin · · ·Ti2Pi1

is again a non-empty closed subset, and the union of such sets is equal to
X.

We would like to estimate the dimension of X by making a cover using
the sets Pi, |i| = n. A slight technical difficulty is that these sets are closed,
rather than open. Moreover, if we try to use their interiors we see that they
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might not cover X. The solution is rather easy: we simply make a cover by
choosing open neighbourhoods Ui ⊃ Pi which are slightly larger, and thus do
form a cover for X. Let us assume that there is 0 < θ < 1 such that

diam(Ui)

diam(Pi)
≤ 1 +O(θn), for all i.

Let us define Ti : Pi1 → Pi by Ti = Ti1 ◦ · · · ◦ Tin.
We can now obtain the following bounds.

Lemma 37. We have the following bounds.

1. There exist B1, B2 > 0 such that for all i and all x, y ∈ X:

B1 ≤
|T ′i (x)|
|T ′i (y)|

≤ B2

2. There exist C1, C2 > 0 such that for all i and for all x ∈ X:

C1 ≤
diam(Pi)

|T ′i (x)|
≤ C2.

In particular, for t > 0, there exist C1, C2 > 0 such that for any x and
n ≥ 1:

C1 ≤
∑
|i|=n diam(Ui)

t∑
|i|=n |(Ti)′(x)|t

≤ C2

Proof. Part (1) is sometimes referred to as a telescope lemma. If D =
supi || log |T ′i |||α and θ = supi ||T ′i ||∞ < 1:

| log |T ′i (x)| − log |T ′i (y)|| =
n∑
j=1

∣∣∣log |T ′ij (Tij+1 · · ·Tinx)| − log |T ′ij (Tij+1 · · ·Tiny)|
∣∣∣

≤ D
n∑
j=1

d(Tij+1 · · ·Tinx, Tij+1 · · ·Tiny)α

≤ D
n∑
j=1

θnαd(x, y)α ≤
(

D

1− θα

)
d(x, y)α

This uses the Chain Rule and Holder continuity. In particular, setting C =
D

1−θα > 0 we have that for and x, y ∈ X and all n ≥ 1 and |i| = n with
i1 = i: ∣∣log |T ′i (x)| − log |T ′i (y)|

∣∣ ≤ Cd(x, y)α.

In particular, part (1) follows since:

e−Cdiam(X)α︸ ︷︷ ︸
=:B1

≤
|T ′i (x)|
|T ′i (y)|

= exp
(
log |T ′i (x)| − log |T ′i (y)|

)
≤ eCdiam(X)α︸ ︷︷ ︸

=:B2

.
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Since the contractions are conformal we can estimate

B1|T ′i (x)| ≤ diam (Pi) ≤ B2|T ′i (x)|.

This suffices to deduce Part (2).

It is not surprising that the part of the approach to proving the Bowen-
Ruelle result involves understanding the asymptotics of the expression

∑
|i|=n diam(Ui)

d

as n → ∞, since this is intimately related to definition involving covers of
the Hausdorff dimension of X. Moreover, the last Propostion tells us that
it is an equivalent problem to understand the behaviour of

∑
|i|=n |(Ti)′(x)|.

Perhaps, at first sight, this doesn’t seem to be an improvement. However,
the key idea is to introduce a transfer operator.

Definition 19. Let Cα(P ) be the space of Hölder continuous functions on
the disjoint union of the sets in P . This is a Banach space with the norm
||f || = ||f ||∞ + ||f ||α where

||f ||∞ = sup
x∈X
|f(x)| and ||f ||α = sup

x 6=y

|f(x)− f(y)|
d(x, y)α

.

For each t > 0 we define a bounded linear operator Lt : Cα(P )→ Cα(P ) by

Ltw(x) =
∑
i

|T ′i (x)|tw(Tix).

To understand the role played by the transfer operator, we need only
observe that iterates of the operator applied to the constant function 1 take
the required form: for x ∈ X

Lnt 1(x) =
∑
|i|=n

|(Ti)′(x)|t,

i.e., the numerator in the last line of Proposition 2.4.1 (2). In particular,
to understand what happens as n tends to infinity is now reduced to the
behaviour of the operator Lt.

Lemma 38 (Ruelle Operator Theorem). The operators Lt have the follow-
ing properties.

1. The operator Lt has a simple maximal positive eigenvalue λt. Moreover
the rest of the spectrum is contained in a disk of strictly smaller radius,
i.e., we can choose 0 < θ < 1 and C > 0 such that |Lnt 1 − λnt | ≤
Cλnt θ

n, for n ≥ 1.

2. There exists a probability measure µ and D1, D2 > 0 such that for any
n ≥ 1 and |i| = n and x ∈ X:

D1λ
n
t ≤

µ(Pi)

|T ′i (x)|t
≤ D2λ

n
t .
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3. The map λ : R → R given by λ(t) = λt is real analytic and λ′(t) < 0
for all t ∈ R.

We shall return to the proof of this result later. However, for the present
we have an immediate corollary.

Corollary 7. We can write P (−t log |T ′|) = log λt.

Proof. For each |i| = n we can choose a periodic point Tnx = x such that By
Proposition 2.4.1 (1), if we let C1 = Bt

1, C2 = Bt
2 > 0 then for any x0 ∈ X

we have C1|(Tn)′(x0)|−t ≤ |(Tn)′(x)|−t ≤ C2|(Tn)′(x0)|−t. Summing over
all possible |i| = n we have that:

C1(Lnt 1)(x0) ≤
∑

Tnx=x

|(Tn)′(x)|−t ≤ C2(Lnt 1)(x0). (2.2)

The result then follows from the definition of pressure and part (2) of Propo-
sition 2.4.2.

In particular, properties (ii) and (iii) follow from this corollary.
By Part (2) of Proposition 2.4.1 and (2.2) we see that for some D1, D2 >

0 and 0 ≤ t ≤ n:

D1λ
n
t ≤

∑
|i|=n

diam(Ui)
t ≤ D2λ

n
t , for n ≥ 1.

Recalling the definition of Hausdorff dimension we can bound

Ht
ε(X) = inf

U

∑
Ui∈U

diam (Ui)
t

 ≤ ∑
|i|=n

diam(Ui)
t ≤ D2λ

n
t ,

where the infimum is over open covers U whose elements have diameter at
most ε > 0, say, and n is chosen such that ε = max|i|=n{diam(Ui)}. We
can therefore deduce that if t > d then λt < 1 and thus limε→0H

t
ε(X) =

0. In particular, from the definition of Hausdorff dimension we see that
diamH(X) ≤ d.

To obtain the lower bound for dimH(X) we can use the mass distribution
principle with the measure µ. In particular, for any |i| = n and x ∈ X we
can estimate

µ(Pi) =

∫
(Lnt χPi)dµ ≤ D2λ

n
d |T ′i (x)|d ≤ D2C

−1
1 λnd (diam(Pi))

d

Given any x ∈ X and any ε > 0 we can choose n so that we can cover the
ball B(x, ε) by a uniformly bounded number of sets Pi with |i| = n.

In particular, since λd = 1 we can deduce that there exists C > 0 such
that µ(B(x, ε)) ≤ Cεd for ε > 0. Thus, by the mass distribution we dedude
that dimH(X) ≥ d.

This completes the proof of the Bowen-Ruelle Theorem (except for the
proof of Proposition 2.4.2). It remains to prove Proposition 2.4.2
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Proof of Proposition 2.4.2. Fix C > 0. We can consider the cone of func-
tions

C = {f : C → R : 0 ≤ f(x) ≤ 1 and f(x) ≤ f(x)eC||x−y||
α
, ∀x, y ∈ X}.

It is easy to see that C is convex and closed with respect to the norm || · ||∞.
If g ∈ C then for x 6= y we have that

|g(x)− g(y)| ≤ |g(y)| (exp (C||f ||α||x− y||α)− 1)

≤ ||g||∞C||f ||α exp (C||f ||α) ||x− y||α,

from which we deduce that C is uniformly continuous in the || · ||∞ norm,
and thus compact by the Arzela-Ascoli theorem.

Given n ≥ 1 we can define Ln(g) = L(g+ 1/n)/||L(g+ 1/n)||. Since the
operator L is positive, the numerator is non-zero and thus the operator Ln
is well defined. Moreover, providing C is sufficiently large we have that

Lnf(x) ≤ Lnf(x)eC||x−y||
α

from which we can easily deduce that Ln(C) ⊂ C. Using the Schauder-
Tychanoff Theorem there is a fixed point Lngn = gn ∈ C, i.e.,

L(gn + 1/n) = ||L(gn + 1/n)||(gn + 1/n). (2.3)

Finally, we can again use that C is compact in the || · ||∞ norm to choose a
limit point h ∈ C of {h}∞n=1. Taking limits in (2.3) we get Lth = λth, where
λt = ||Lth||∞.

Next observe that Lt(h + 1/n)(x) ≥ inf{(hn(x) + 1/n)e−||f ||∞} and so
||Lt(h + 1/n)||∞ ≥ e−||f ||∞ . Taking the limit we see that λt ≥ e−||f ||∞ > 0.
To show that h > 0, assume for a contradiction that h(x0) = 0. Then since
Lnt h(x0) =

∑
|i|=n λ

n
t |T ′i (x0)|h(Tix0) we conclude that h(Tix0) = 0 for all

|i| = n and all n ≥ 1. In particular, h(x) is zero on a dense set, but then
it must be identically zero contradicting λt = ||Lth||∞ > 0. To see that λt
is a simple eigenvalue, observe that if we have a second eigenvector g with
Ltg = λtg and we let t = inf{g(x)/h(x)} = g(x0)/h(x0) then g(x)− th(x) ≥
0, but with g(x0)− th(x0) = 0. Since g − th is again a positive eigenvector
for Lt, the preceding argument shows that g− th = 0, i.e., g is a multiple of
h.

Let us define a new operatorMtw(x) = λ−1
t w(x)−1

∑
i |T ′i (x)|tht(Tix)w(Ti).

By defintion, we have that Mt1 = 1, i.e., Mt preserves the constants. Let M
be the space of probability measures on X. The space M is convex and com-
pact in the weak star topology, by Alaoglu’s theorem. Since Mt : M → M
we see by the Schauder-Tychanof theorem that Mtµ = µ, or equivalently,
Ltν = λtν, where ν = hµ, i.e.,∫

(Ltw)(x)dν(x) = λt

∫
w(x)dµ(x) (2.4)
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for all w ∈ C(X). We can consider the characteristic function χPi and then

µ(Pi) =

∫
χPidµt = λ−nt

∫
Lnt χPidµt = λ−nt

∫
|(Ti)′(y)|dµt(y)

However, by Proposition 2.4.1 (1) we can bound

B1B
−1
2 |(Ti)

′(x)| ≤
∫
|(Ti)′(y)|dµt(y) ≤ B2B

−1
1 |(Ti)

′(x)|

for all x ∈ X. Thus Part (2) of Proposition 2.4.2 follows.

It is a simple calculation to show that there exists C > 0 such that

||Mn
t h||α ≤ C||h||∞ + αn||h||α, for n ≥ 1. (2.5)

We first claim that Mn
t h →

∫
gdµ in the || · ||∞ topology. To see this

we first observe from (2.5) that the family {Mn
t h}∞n=1 is equicontinuous.

We can then choose a limit point h. In particular, since Mt1 = 1 we see
that suph ≥ supMth ≥ · · · ≥ supMn

t h → suph, from which we deduce
supMn

t h = suph = h(x), say, for all n ≥ 1. In particular, h(Tix) = h(x) for
all |i| = n and n ≥ 1 and so h is a constant function. We can denote by C⊥
the functions h ∈ Cα(X) which satisfy

∫
hdµ = 0. To show that the rest of

the spectrum is in a disk of smaller radius we shall apply the spectral radius
theorem to Mt : C⊥ → C⊥ to show that its spectrum is strictly within the
unit disk. (The spectra of Mt and Lt agree up to scaling by βt). For h ∈ C⊥
the convergence result becomes ||Mn

t h||∞ → 0. By applying (2.5) twice we
can estimate:

‖M2n
t h‖α ≤ C‖Mn

t h‖∞ + αn‖Mn
t h‖α

≤ C‖Mn
t h‖∞ + αn(C|‖∞ + ‖h‖α)

→ 0 as n→ +∞.

In particular, for n sufficiently large we see that ||M2n
t h||α < 1 and so the

result on the spectrum follows.

For the final part, we observe that since λt is a simple isolated eigenvalue
it follows by perturbation theory that it has an analytic dependence on t
(as does its associated eigenfunction ht, say). To show that λt is monotone
decreasing we consider its derivative. Differentiating Ltht = λtht we can
write

λ′tht + λth
′
t = Lth

′
t + Lt(log |T ′|ht)

Integrating with respect to µt and applying (2.4) we can cancel two of the
terms to get λ′t

∫
htdµt =

∫
log |T ′t |htdµt.
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6.2 Julia sets and Quasi-circles

6.2.1 Julia and Mandelbrot sets

The study of Julia sets is one of the areas which has attracted most at-
tention in recent years. We shall begin considering the general setting and
specialise later to quadratic maps. Consider a map T : Ĉ → Ĉ defined
by a rational function T (z) = P (z)/Q(z), for non-trivial relatively prime
polynomials P,Q ∈ C[z]. To avoid trivial cases, we always assume that
d := max(deg(P ), deg(Q)) ≥ 2.

Definition 20. We define the Julia set J to be the closure of the repelling
periodic points i.e.

J = cl
({
z ∈ Ĉ : Tn(z) = z, for some n ≥ 1, and |(Tn)′(z)| > 1

})
.

The Julia set J is clearly a closed T -invariant set (i.e., T (J) = J).
There are other alternative definitions, but we shall not require them. By
contrast, T has at most finitely many attracting periodic points, which must
be disjoint from the Julia set.

=4.50in juliaset.ps
We choose the point c = i

4 in the parameter space (left picture) and draw
the associated Julia set for T (z) = z2 + i

4 (right picture).

Let us now restrict to polynomial maps of degree 2. We can make a
change of coordinates to put these maps in a canonical form. For a fixed
parameter c ∈ C consider the map Tc : C 7→ C defined by Tc : z → z2 + c.
Let Jc be the associated Julia set. To begin with, we see that when c = 0
then the Julia set is easily easily calculated.

Example 47. c = 0 For T0z = z2, the repelling periodic points of period n
are the dense set of points on the unit circle of the form ξ = exp(2πik/(2n−
1)). The corresponding derivitive is |(Tn0 )′(ξ)| = 2n. In particular, we have
J0 = {z ∈ C : |z| = 1}, i.e., the unit circle. Thus, trivially we have that
dim(J0) = 1.

We next consider the case of values of c of sufficiently small modulus,
where the asymptotic behaviour of the limit set is well understood through a
result of Ruelle:

Proposition 10. For |c| sufficiently small:

1. the Julia set Jc for Tc(z) = z2 + c is still a Jordan circle, but it has
dimB(Jc) = dimH(Jc) > 1; and

2. the map c 7→ dimH(Jc) is real analytic and we have the asymptotic

dimH(Jc) ∼ 1 +
|c|2

4 log 2
, as |c| → 0.



96CHAPTER 6. CONFORMAL SYSTEMS AND THERMODYNAMIC FORMALISM

In a later section we shall give an outline of the proof of this result using
ideas from Dynamical Systems.

At the other extreme, if c has large modulus, the asymptotic behaviour
of the limit set is well understood through the following results of Falconer.

Proposition 11. For |c| sufficiently large

1. the Julia set for Tc is a Cantor set, with dimB(Jc) + dimH(Jc) > 0;
and

2. the map c 7→ dimH(Jc) is real analytic and we have the asymptotic

dimH(Jc) ∼
2 log 2

log |c|
as |c| → +∞ [?].

Moreover, there are also a few special cases where the Julia set (and its
dimension) are well understood. For example, the case c = −2 is particularly
simple:

Example 48. When c = −2 then J−2 = [−2, 2], i.e., a closed interval and
in this case we again trivially have that dim(J−2) = 1. For c < −2, the
Julia set is contained in the real axis.

Unfortunately, in general the Hausdorff dimension of the Julia set for
most values of c cannot be given explicitly. However, the general nature of
the Julia set is characterized by the following famous subset of the parameter
space c.

Definition 21. The Mandelbrot set M ⊂ C is defined to be the set of points
c in the parameter space such that the orbit {Tnc (0) : n ≥ 0} is bounded,
i.e.,

M := {c ∈ C : |Tnc (0)| 6→ +∞, as n→ +∞} .

=3.0in Mandelbrotset.eps
The Mandelbrot set in the parameter space for c In fact, the importance

of z = 0 in this definition is that it is a critical point for Tc, i.e., T ′c(0) = 0.
The significance of the Mandelbrot set is that it actually characterizes the
type of Julia set Jc one gets for Tc.

Proposition 12. If c 6∈ M then Jc is a Cantor set. If c ∈ M then Jc is a
connected set.

For more specific choices for the parameter c we have to resort to numer-
ical computation if we want to know the Hausdorff dimension of Jc. We shall
study this problem in detail in a latter chapter. However, for the moment,
we shall illustrate this by examples of each type of behaviour.

example
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(i) Let us consider two points in the Mandelbrot set. For c = i/4,say, we
can estimate

dimH(Ji/4) = 1.02321992890309691 . . .

For c = 1/100, say, we can estimate

dimH(J1/100) = 1.00003662 · · ·

(ii) Let us consider two points outside of the Mandelbrot set. For c =
−3/2 + 2i/3, say, we can estimate

dimH(J−3/2+2i/3) = 0.9038745968111...

For c = −5,say, we can estimate

dimH(J−5) = 0.48479829443816043053839847...

However, an important ingredient in the method of computation of these
values is that the Julia set should satisfy an additional property which is
particularly useful in our analysis our analysis. More precisely, we need to
assume that Tc is hyperbolic in the following sense.

Definition We say that the rational map is hyperbolic if there exist β > 1
and C > 0 such that for any z ∈ C we have (Tn)′(z)| ≥ Cβn, for all n ≥ 1.

Hyperbolicity, in various guises, is something that underpins a lot of
our analysis in different settings. For the particular setting of rational
maps, hyperbolicity can be shown to be equivalent to the Julia set J be-
ing disjoint from the orbit of the critical points C = {z : T ′(z) = 0} (i.e.
J ∩ (∪∞n=0T

n(C)) = ∅). However, we shall not require this observation in
the sequel.

Proposition 13. If Tc is hyperbolic then dimH(Jc) = dimB(Jc).

Proof. Actually, in the case of hyperbolic maps we can think of the Julia
set as being the limit set of an iterated function scheme with respect to the
two inverse branches for Tc. In this case, the result is just a special case of
more general results (which we return to in a later chapter).

As a cautionary tale, we should note that once one takes c outside of
the region in the parameter space corresponding to hyperbolic maps, then
the situation becomes more complicated. For example, the dimension of the
Julia set may no longer be even continuous in c, in contrast to the hyperbolic
case where there is actually a real analytic dependence. This is illustrated
by the following.
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Remark 10 (Parabolic Explosions). Of course, as c crosses the boundary
of the Mandelbrot set the Julia set Jc (and its Hausdorff dimension) can
change more dramatically. Douady studied the case as c → 1

4 (along the
real axis). As c increases the dimension dim(Jc) increases monotonically,
with derivative tending to infinity. However, as c increases past 1

4 there is
a discontinuity where the dimension suddenly stops.

Let us return to studying the Mandelbrot set. Although the Mandelbrot
set is primarily a set in the parameter space for the quadratic maps, it has a
particularly interesting structure in its own right. Some of its main features
are described in the following proposition.

1. The set M lies within the ball of radius 2 given by {c ∈ C : |c| ≤ 2};

2. The set M is closed, connected and simply connected;

3. The interior int(M) is a union of simply connected components;

4. The largest component of int(M) is the main cardioid defined by

M1 = {w ∈ C : |1−
√

1− 4w| < 1}

and for any c ∈M1 the map Tc is hyperbolic;

5. For c 6∈M , the map Tc is hyperbolic.

Proof. For part (1), suffices to show that if |c| ≥ 2 then the sequence
{Tnc (0) : n ≥ 0} is unbounded. If |z| > 2, then |z2+c| ≥ |z2|−|c| > 2|z|−|c|.
If |z| ≥ |c|, then 2|z|−|c| > |z|. So, if |z| > 2 and |z| ≥ c, |z2+c| > |z|, so the
sequence is increasing. (It takes a bit more work to prove it is unbounded
and diverges.) If |c| > 2, the sequence diverges.

The Mandelbrot set is known to be a simply connected set in the plane
from a theorem of Douady and Hubbard that there is a conformal isomor-
phism from the complement of the Mandelbrot set to the complement of the
unit disk.

For the other properties we refer the reader to any book on rational maps
(e.g., [?]).

Although we don’t have a comprehensive knowledge of which parameter
values c lead to Tc being hyperbolic, we do have some partial information.
For example, it is known that a componentH of int(M) contains a parameter
c for which Tc is hyperbolic if and only if Tc′ is hyperbolic for every c′ ∈ H. In
particular, any c in the central cartoidM1 the map Tc has the attracting fixed
point 1

2(1−
√

1− 4w), and thus is hyperbolic because of another equivalent
condition for hyperbolicity is: Either c 6∈ M or Tc has an attracting cycle.
We call H a hyperbolic component.
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At first sight, one might imagine that there is little direction between
the metric properties of the Mandelbrot set and the associated Julia sets.
However, there are are a number of surprising connections. We mention
only the following.

Theorem 10 (Shishikura). The boundary of M has Hausdorff dimension
2. For generic points c in the boundary the associated Julia set for Tc has
Hausdorff dimension 2.

Although considerable work has been in recent years done on under-
standing the structure of the Mandelbrot set, and enormous progress has
been made, there remain a number of major outstanding questions. The
solution to these would give fundamental insights into the nature of the
Mandelbrot set.

Major Open Problems However, it is a major conjecture that the bound-
ary ∂M is locally connected (i.e., if every neighbourhood of ∂M ∩ B(x, ε)
contains a connected open neighbourhood). Another important question is
whether there exist any examples of Julia sets which can have positive mea-
sure. Finally, it is apparently unknown whether every component of int(M)
is hyperbolic.

6.2.2 Random iterated function schemes

6.2.3 β-expansions and Fat Sierpinski triangles



100CHAPTER 6. CONFORMAL SYSTEMS AND THERMODYNAMIC FORMALISM



Chapter 7

Projections and slices

In this chapter we discuss two important results due to Marstrand.1

7.1 The Projection Theorem

We begin with one of the classical projection theorems. Let A ⊆ R2 and
pθ : R2 → R correspond to the linear projection onto the line at an angle
θ to the x axis. More precisely, let θ = (cos θ, sin θ) and for x = (x, y) we
write x · θ = (x cos θ + y sin θ) and then the projection is given by

pθ : R2 → R
pθ(x, y) = x · θ

Example 49. Consider the middle third Cantor set C ⊂ [0, 1] and let X =
C × {0} ⊂ [0, 1] × [0, 1] then dimH(X) = log 2

log 3 . For θ 6= ±π then pθ(X) ⊂
R is a scaled version of C which again has dimH(pθX) = log 2

log 3 . On the
other hand for θ = ±π we have that pθ(X) = {0} ⊂ R which therefore has
dimH(pθX) = 0.

Let λ denote one dimensional Lebesgue measure on the real line.

Theorem 11 (Marstrand Projection Theorem). Let A ⊂ R2 and dimH A =
s.

1. If s ≤ 1 then for almost all θ, dimH pθ(A) = dimH A.

2. If s > 1 then for almost all θ, λ(pθ(A)) > 0.

1John Marstrand was essentially supervised by Besicovich and his famous results from
1954 came from his PhD thesis. Marstrand wasn’t very prolific, but he had many outside
interests including becoming the British over 50 Fell-racing champion. Falconer attributes
to him the insightful comment ”There is only one idea in mathematical analysis: you
integrate a function in two ways and apply Fubini’s theorem. The difficulty is finding the
right function.”

101
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A

pθ(A)

θ

Figure 7.1: The result shows that if the set is small enough there is no drop
in the Hausdorff dimension for typical directions.

Although this result was first proved in 1954, Kaufmann introduced an
alternative method, which we will follow. We begin with a preliminary
lemma, which is a version of Frostman’s lemma.

Lemma 39. Assume that Ht(X) > 0. We require the following fact: There
exists a compact set K ⊂ X with 0 < Ht(K) < +∞ and b > 0 such that
Ht(K ∩B(x, r)) ≤ brt

We omit the proof.

Lemma 40. Let 0 < s < t.

1. If Ht(X) > 0 there there exists a measure on µ on X such that for all
t′ > t, ∫

X

∫
X

dµ(x)dµ(y)

|x− y|t′
< +∞

2. If µ is a probability measure such that∫
X

∫
X

dµ(x)dµ(y)

|x− y|s
< +∞

then dimH(X) ≥ s.

Proof. By the previous lemma we can choose a compact set K. Let µ =
Ht|K be the restriction to K. 2

We begin with part (1).We can define φ : K → R by

φ(x) =

∫
K

dµ(y)

|x− y|t′
for each x ∈ K.

2Here we are using that Ht(·) gives rise to a measure. This requires a proof, which we
have omitted
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We can then bound

φ(x) =

∫
|x−y|≤1

dµ(y)

|x− y|t′
+

∫
|x−y|≥1

dµ(y)

|x− y|t

=
∞∑
n=1

∫
1

2n
≤|x−y|≤ 1

2n−1

dµ(y)

|x− y|t′
+

∫
|x−y|≥1

dµ(y)

|x− y|t′

≤
∞∑
n=1

µ(B(x, 1
2n ))

2nt′
+ µ(Rn)

≤
∞∑
n=1

b

2n(t′−t) + µ(Rn) ≤ C

for some constant C > 0. Thus we have that∫
X

∫
X

dµ(x)dµ(y)

|x− y|t′
=

∫
X
φ(x)dµ(x) ≤ C.

This completes the proof of Part (1).
To prove part (2), let us now define ψ : K → R by

ψ(y) =

∫
K

dµ(x)

|x− y|s
∈ L1(K,µ).

In particular, by choosing M > 0 sufficiently large the set

AM = {y ∈ K : ψ(y) ≤M}

satisfies µ(AM ) > 0. Let ν = µ|AM be the (further) restriction to AM .
Then for all x ∈ A and r > 0 we have

M ≥
∫
AM

dν(y)

|x− y|s
≥
∫
B(x,r)∩AM

dν(y)

|x− y|s
≥ 1

rs
ν(B(x, r))

In particular, ν(B(x, r)) ≤Mrs for all r > 0. Thus by the Mass Distribution
Principle we have that dimH(A) ≥ s. This completes the proof.

After this preparation, we now come to the proof of the theorem.

Proof of Marstrand Projection Theorem. For part (1), let A ⊂ R2 where
dimH(A) < 1. We begin by observing that for any θ we have that pθ : X → R
is Lipschitz and thus dimH(pθ(X)) ≤ dimH(X). It remains to show that for
almost every θ we have an equality.

Fix any t < dimH(A) then from the definition of Hausdorff dimension
we know that Ht(A) > 0. Thus by the first part of the second lemma there
exists a probability measure µ on A such that∫

A

∫
A

dµ(x)dµ(y)

|x− y|t
<∞. (6.0)
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We denote by µθ = pθµ the projection of the measure µ onto the line R (i.e.,
µθ(I) = µ(p−1

θ I) for any interval I ⊂ R) then

µθ([a, b]) = µ(A ∩ p−1
θ ([a, b])) = µ{x ∈ A : a ≤ x · θ ≤ b}.

For any particular value of θ, to show that we have that dimH(pθA) > t
it sufficesto show that ∫ ∞

−∞

∫ ∞
−∞

dµθ(u)dµθ(v)

|u− v|t
<∞ (6.1)

and apply part (2) of the second Lemma to µθ. Therefore, if we can show
that

I :=

∫ π

0

(∫ ∞
−∞

∫ ∞
−∞

dµθ(u)dµθ(v)

|u− v|t

)
dθ <∞ (6.2)

then by Fubini’s Theorem we have for almost all θ the inner integral (6.2)
is finite, i.e., (6.1) holds for a.e. θ as required.

It now remains to establish (6.2). From the definition of µθ we can
rewrite this as

I =

∫ π

0

∫
A

∫
A

dµ(x)dµ(y)dθ

|x · θ − y · θ|t
=

(∫ π

0

dθ

|θ.τ |t

)∫
A

∫
A

dµ(x)dµ(y)

|x− y|t

and we know by (6.0) that the second part of this last term is finite. Thus
it only remains to show that, ∫ π

0

dθ

|θ.τ |t
<∞. (6.3)

We can rewrite this last integral as∫ π

0

dθ

|τ · θ|t
=

∫ π

0

dθ

| cos(τ − θ)|t
.

Moreover, the derivative of cos(τ−θ) is bounded away from 0 when cos(τ−θ)
is equal to 0 so when | cos(τ − θ)|t is close to 0 it can be bounded below by
Cxt for some C > 0. Since t < 1 this means∫ π

0

dθ

| cos(τ − θ)|t
<∞.

Thus I <∞ for any t < s and so the proof is complete.
We turn to the proof of part (2). Let d = dim(K) > 1. Let us first

assume that 0 < md(K) < +∞ and there exists C > 0 such that

md(K ∩Br(x)) ≤ Crd

for x ∈ K and 0 < r ≤ r. We can then define a measure µ on R2 by
µ(A) = µd(K ∩A), where A is a Borel set.

Let µθ be the projection of the measure onto the real line R such that∫
fdµθ =

∫
(f ◦πθ)dµ. It suffices to show that for almost all θ ∈ (−π/2, π/2)

the support of µθ has positive measure.
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Lemma 41 (Riemann-Lebesgue). Let η be a finite measure on R with com-
pact support. Let

η̂(p) =

∫ +∞

−∞
eixpdη(x)

be the Fourier transform of the measure. If 0 <
∫ +∞
−∞ |η̂(p)|2dp < +∞ then

the support of η has positive Lebesgue measure.

Proof of Riemann-Lebesgue Theorem. Since 0 <
∫ +∞
−∞ |η̂(p)|2dp < +∞ we

have by Plancherel’s theorem that φ(x) =
∫ +∞
−∞ eixpη̂(p)dp is well defined,

square integrable and dηφdx and∫ +∞

−∞
|φ(x)|2 =

∫ +∞

−∞
|η̂(p)|2| > 0.

The support of φ, and thus support of η, cannot have zero Lebesgue measure.

We return to the proof of Part (2) of the Marstrand Theorem. We want
to show that for for almost all θ ∈ (−π/2, π/2) we have that the Fourier
transform satisfies

|µ̂θ(p)|2 =
1

2π

∫ +∞

−∞

∫ +∞

−∞
ei(y−x)pdµθ(y) =

1

2π

∫ +∞

−∞

∫ +∞

−∞
ei(v−u).vθdµ(u)dµ(v).

Since

|µ̂θ(p)|2 + |µ̂θ(p)+π|2 =
1

π

∫ +∞

−∞

∫ +∞

−∞
cos(pi(v − u).vθ)dµ(u)dµ(v)

we can integrate over θ to write∫ 2π

0

∫ +∞

−∞

∫ +∞

−∞
ei(v−u).vθdµ(u)dµ(v) dθ =

1

2π

∫ +∞

−∞

∫ +∞

−∞
.

∫ 2π

0
cos(pi(v−u).vθ)dθdµ(u)dµ(v)

by Fubini’s theorem. Let J(z) = 1
2π

∫ 2π
0 cos(cos θ)dθ and then we can write∫ 2π

0
|µ̂θ(p)|2dθ

∫ ∫
J(p‖v − u‖))dµ(u)dµ(v).

Thus we can write∫ a

−a

∫ 2π

0
|µ̂θ(p)|2dθdp ≤

∫ ∫
J(p‖v − u‖))dµ(u)dµ(v)

=

∫ ∫ ∫ a

−a
J(p‖v − u‖)dµ(u)dµ(v)

=

∫ ∫ (∫ −a‖u−v‖
a‖u−v‖

J0(z)dz

)
1

‖v − u‖
dµ(u)dµ(v).
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Since
∫ +∞
−∞ J0(z)dz < +∞ we can write

∫ a
−a
∫ 2π

0 |µ̂θ(p)|
2dθdp ≤ C

∫ ∫
1

‖v−u‖dµ(u)dµ(v)
uniformly in a > 0. It is easy to see the last integral is finite. Let 0 < α < 1,∫

1

‖v − u‖
dµ(v) =

∫
‖u−v‖≥1

1

‖v − u‖
dµ(v) +

∞∑
n=1

∫
αn≤‖u−v‖≤αn−1

1

‖v − u‖
dµ(v)

≤ µ(R2) +

∞∑
n=1

α−nµ(Bαn−1(u))

≤ µ(R2) +
C

α− αd

for all u ∈ R2. Thus∫ ∫
1

‖v − u‖
dµ(v)dµ(u) ≤ µ(R2)

(
µ(R2) + +

C

α− αd

)
< +∞.

Letting a→ +∞ and using Fubini’s theorem we get∫ 2π

0

∫ ∞
−∞
|µ̂θ(p)|2dpdθ ≤ C

∫ ∫
1

‖v − u‖
dµ(v)dµ(u) < +∞

Thus
∫∞
−∞ |µ̂θ(p)|

2dp < +∞ for almost all θ ∈ (−π/2, π/2).

We claim that
∫∞
−∞ |µ̂θ(p)|

2dp > 0 for all θ ∈ (−π/2, π/2). Otherwise∫∞
−∞ |φ(x)|2dx = 0 and then φ = 0 almost everywhere. Since dµθ = φdx.

But this would imply µθ(R) = int∞−∞φ(x)dx = 0 and so µ(R2) = 0, contra-
dicting the assumption that md(X) > 0.

In the general case, we can choose d′ < d (with md′(X) = +∞) and
then choose X ′ ⊂ X with 0 < md′(X) < +∞ (see [?]). The above approach
applied to X ′ shows that for almost every θ we have πθ(X

′). ⊂ πθ(X) has
positive Lebesgue measure.

Example 50 (Example). Consider the iterated function scheme in R2 given
by contractions T1, T2, T3 of the form

T1(x, y) = (x/3, y/3)

T2(x, y) = (x/3, y/3) + (0, 1)

T3(x, y) = (x/3, y/3) + (1, 0)

and let Λ ⊂ R2 be the associated Limit set. Since the iterated function
scheme theorem holds we know that this set has Hausdorff dimension dimH(Λ) =
1.

=2.25in projectingexample.eps
For the iterated function scheme T1, T2, T3 we know the Hausdorff Di-

mension of the limit set (since Moran’s Theorem applies). Thus for “typical”
λ be know the Hausdorff Dimension of the limit set for S1, S2, S3.
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Consider the projection pθ : R2 → R onto the line at an angle θ. The
image limit set pθ(Λ) ⊂ R is the limit set for the iterated function scheme
on R given by contractions T1, T2, T3 of the form

S1(x) = x/3

S2(x) = x/3 + 1

S3(x) = x/3 + λ

(up to scaling the line by cos θ) where λ = tan θ on the real line. Let us
denote Λλ = pθ(Λ).

The open set condition does not apply in this case. However, from
Theorem 6.1 we can deduce that for a.e. λ (or equivalently for a.e. θ) we
have that dimH(Λ) = 1. Clearly, this cannot be true for all λ. For example,
when λ = 0 then S1 = S2 and the iterated function scheme has a limit
set consisting only of a Cantor set (the middle (1 − 2λ) Cantor set) with
Hausdorff Dimension − log 2/ log λ.

There is a natural generalization to projections p : Rn → Rm.

Remark 11 (Fractal Sundial). Falconer proposed that it would be possible
to construct a (more complicated) Fractal set X with the property that the
projection in different directions could be prescribed sets. For example, given
a three dimension set X one could consider the different projections as shad-
ows from sunlight. As the position of the sun moves during the day so the
projection changes. Therefore, a judicious construction of X might lead to
shadows which actually display the time, i.e., a digital ”fractal” sundial. In

particular, the mathematical principle here is that given sets Yθ ⊂ R there
exists X ⊂ R2 such that pθ(X) = Yθ ⊂ R (up to a set of zero Lebesgue
measure).
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7.2 The Slice Theorem

Assume that A ⊂ R2 has dimension dimH(A). Let

Lx = {(x, y) : y ∈ R}

be a vertical line. We can make the following assertion about the dimension
of a typical intersection A ∩ Lx.

The next theorem shows that if the set is large enough then typical slices
have dimensions that drop by at least 1.

Theorem 12 (Marstrand’s Slice Theorem). Assume that dimH(A) ≥ 1,
then for almost every x ∈ R we have that dimH(A ∩ Lx) ≤ dimH(A)− 1.

A

Lx ∩A
Lx

=2.25in projectingtheorem.eps
For a typical vertical slice through a large set A the dimension of the

slice drops by at least 1.

We begin with a preliminary result

Lemma 42. For 1 ≤ α ≤ 2 we can write

Hα(A) ≥
∫
Hα−1(A ∩ Lx)dx

Proof. Given ε, δ > 0, let {Ui} be an open cover of A with diam(Ui) < ε and
such that ∑

i

diam(Ui) ≤ Hα
ε (A) + δ.

We can cover each Ui by a square Ii× Ji aligned with the axes (whose sides
are of length li at most the diameter of Ui, i.e., diam(Ui) < ε).

Consider a function f : R2 → R defined by

f(x, y) =
∑
i

χIi×Ji(x, y)lα−2
i ,
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where

χIi×Ji(x, y) =

{
1 if x ∈ Ii, y ∈ Ji
0 otherwise.

The sets {Lx ∩ (Ii × Ji)} form a cover for Lx ∩ A of diameter ε > 0. Thus
using this cover we have that

Hα−1
ε (A ∩ Lx) ≤

∑
{i : x∈Ii}

lα−1
i . (6.3)

For a fixed x we have∫ ∞
−∞

f(x, y)dy =

∫ ∞
−∞

(∑
i

χIi×Ji(x, y)lα−2
i

)
dy = ε

∑
{i : x∈Ii}

lα−1
i

Thus we have that∫ ∞
−∞

∫ ∞
−∞

f(x, y)dxdy = ε

∫ ∞
−∞

 ∑
i : x∈Ii

lα−1
i

 dx

In particular, by (6.3) we have that∫
Hα−1(A ∩ Lx)dx ≤

∫ ∞
−∞

 ∑
i : x∈Ii

lα−1
i

 dx =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)dxdy

≤
∑
i

lα−2
i l2i =

∑
i

lαi

≤ Hα(A) + δ

using that
∫∞
−∞

∫∞
−∞ f(x, y)dxdy =

∑
i Area(Ii × Ji)lα−2

i .
Letting δ → 0 gives∫

Hα−1
ε (A ∩ Lx)dx ≤ Hα

ε (A)

Letting ε→ 0 gives that Hα−1
ε (A)↗ Hα−1

ε (A) and so∫
Hα−1(A ∩ Lx)dx ≤ Hα(A)

This completes the proof of the lemma.

After this preparation, we now have a short proof of the Slice theorem.

Proof of Theorem 12. Let α > dimH(A) then by Lemma 42

0 = Hα(A) =

∫ ∞
−∞

Hα−1(A ∩ Lx)dx.

Thus, by Fubini’s Theorem Hα−1(A ∩ Lx) = 0 for a.e. x. In particular,
dimH(A ∩ Lx) ≤ α− 1 for such x, as required.
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Example 51. Fix 1
3 < λ < 1

2 . Consider the iterated function scheme in R2

given by contractions T1, T2, T3 of the form

T1(x, y) = (λx, λy)

T2(x, y) = (λx, λy) + (0, 1)

T3(x, y) = (λx, y) + (1, 0)

and let Λ ⊂ R2 be the associated Limit set. Since λ < 1
2 the Open Set

Condition holds and by Moran’s Theorem we know that the Limit set Λ has
Hausdorff dimension dimH(Λ) = − log 3

log λ > 1. Let us take the vertical slices
Lx ∩ Λ through this limit set.

=2.25in projectingexample2.eps
The dimension drop on typical slices is strictly greater than 1. The pro-

jection onto the x-axis is a middle (1 − 2λ) Cantor set X. For x ∈ X the
Haudorff Dimension dimH(Lx ∩ Λ) is in the range [0,− log 2

log λ ]. However, X
has zero measure. On the complement R−X we have that Lx ∩ Λ = ∅. In
particular, dimH(Lx ∩ Λ) = 0 < dimH(Λ)− 1 (a strict inequality).

7.3 A generalized slice theorem

Assume that A ⊂ R2 has dimension dimH(A). Again, let Lx = {(x, y) : y ∈
R} be a vertical line. The following relates dimH(A) to typical values
dimH(A ∩ Lx) for a typical x, with respect to a more general measure µ.

Theorem 13 (Generalized Marstrand’s Slice Theorem)). Let B ⊂ R. As-
sume that µ is a probability measure on B and C > 0 with µ(I) ≤ C(diam(I))α,
for intervals I ⊂ R. If A ⊂ R2 then

dimH(A) ≥ α+ dimH(A ∩ Lx)

the for almost every x ∈ B with respect to µ.

=2.25in projectingtheorem2.eps
For a typical vertical slice through a large set A (relative to a measure

µ on B) the dimension of the slice drops by at least the value α (depending
on the measure µ).

Proof. The proof is similar to that of Theorem 6.3. Fix γ > dimH(A). If
we can show that ∫

Hγ−α(A ∩ Lx)dµ(x) < +∞

then by Fubini’s Theorem Hγ−α(A∩Lx) < +∞ for a.e. (µ) x. In particular,
dimH(A ∩ Lx) ≤ γ − α for a.e. (µ) x, by definition.
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We can cover B by squares Ii × Ji aligned with the axes whose side
lengths li satisfy

∑
i l
γ
i < ε. If we define

f(x, y) =
∑
i

χIi×Ji(x, y)lγ−α−1
i

then we can write∫ ∞
−∞

∫ ∞
−∞

f(x, y)dydµ(x) =
∑
i

lγ−α−1
i diam(Ai)µ(Bi) ≤ C

∑
i

lαi ≤ Cε

(6.4)
We can denote

Qxi =

{
Ji if x ∈ Ii
∅ otherwise

then these sets form cover of F∩Lx. By Fubini’s theorem we can interchange
integrals and write∫ ∞

−∞

∫ ∞
−∞

f(x, y)dydµ(x) =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)dydµ(x)

=

∫ (∑
i

diam (Qxi )γ−α

)
dµ(x)

≥
∫
Hγ−α
ε (Lx ∩ F )dµ(x).

(6.5)

Thus by (6.4) and (6.5):

0 ≤
∫
Hγ−α
ε (Lx ∩ F )dµ(x) ≤ Cε

Finally, letting δ → 0 gives∫
Hγ−α
ε (F ∩ Lx)dx ≤ Hγ−α

ε (F ),

and then letting ε→ 0 gives∫
Hγ−α(F ∩ Lx)dx = 0.

Thus Fubini’s Theorem gives that the integrand is finite almost everywhere,
i.e., Hγ−α(F ∩ Lx) = 0 for a.e. (µ) x. In particular, dimH(A ∩ Lx) ≤ γ − α
for a.e. (µ) x. Since γ can be chosen arbitrarily close to dimH(A) this
completes the proof.

The slicing theorems generalize to k-dimensional slices of sets in Rn.
A popular way to get one fractal from another is to drop down to a

lower dimension, either by projecting or slicing. In the interests of clarity
of exposition we will concentrate on the case of two dimensions and one
dimension.
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7.4 Application

Example 52. Let X be the gasket (with 3 squares in a 2× 2 grid). Almost
every vertical slice Xx has dimension dim(Xx) = 1

2 < dim(X)−1 = log 8
log 3−1.

For almost every x ∈ [0, 1] we can consider the binary expansion x =∑∞
n=1

xn
2n Then for almost all x the frequency with which xn = 1 equals 1

2 .
Moreover, such points ????????????????????????

Example 53. Let X be the gasket (with 3 squares in a 2 × 3 grid). The
vertical sets Xx consist of a single point.

On the other hand, the horizonal projection corresponding to y =
∑∞

n=1
yn
3n

with yn ∈ {0, 1, 2} The dimension of the intersection is

(log3 2) lim inf
N

1

N

N∑
n=1

(1− yn)

which is 1
2 for almost every y.

For almost every x ∈ [0, 1] we can consider the binary expansion x =∑∞
n=1

xn
2n 0 < m < d. Then for almost all x the frequency with which xn = 1

equals 1
2 . Moreover, such points ????????????????????????

A higher dimensional generalization is the following

Theorem 14. Let 0 < m < d. Let A ⊂ Rd such that diam(A) > d − m
and let E be an m-dimensional subspace. Then for almost every x ∈ E⊥ we
have that

dim(A ∩ (E + x)) ≤ dim(A)− (d−m).

Exercise 9. Show that the proof of ??? generalizaes to prove Theorem ???.

Example 54. Fix 1
3 < λ < 1

2 . Consider the iterated function scheme in R2

given by contractions T1, T2, T3 of the form

T1(x, y) = (λx, λy)

T2(x, y) = (λx, λy) + (0, 1)

T3(x, y) = (λx, y) + (1, 0)

and let Λ ⊂ R2 be the associated Limit set. Since λ < 1
2 the Open Set

Condition holds and by Moran’s Theorem we know that the Limit set Λ has
Hausdorff dimension dimH(Λ) = − log 3

log λ > 1. Let us take the vertical slices
Lx ∩ Λ through this limit set.

=2.25in projectingexample2.eps
The dimension drop on typical slices is strictly greater than 1. The pro-

jection onto the x-axis is a middle (1 − 2λ) Cantor set X. For x ∈ X the
Haudorff Dimension dimH(Lx ∩ Λ) is in the range [0,− log 2

log λ ]. However, X
has zero measure. On the complement R−X we have that Lx ∩ Λ = ∅. In
particular, dimH(Lx ∩ Λ) = 0 < dimH(Λ)− 1 (a strict inequality).
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Assume thatA ⊂ R2 has dimension dimH(A). Again, let Lx = {(x, y) : y ∈
R} be a vertical line. The following relates dimH(A) to typical values
dimH(A ∩ Lx) for a typical x, with respect to a more general measure µ.

Theorem 6.5 (Generalized Marstrand’s Slice Theorem) Let B ⊂ R.
Assume that µ is a probability measure on B and C > 0 with µ(I) ≤
C(diam(I))α, for intervals I ⊂ R. If A ⊂ R2 then

dimH(A) ≥ α+ dimH(A ∩ Lx)

the for almost every x ∈ B with respect to µ.

=2.25in projectingtheorem2.eps
For a typical vertical slice through a large set A (relative to a measure

µ on B) the dimension of the slice drops by at least the value α (depending
on the measure µ).

Proof. The proof is similar to that of Theorem 6.3. Fix γ > dimH(A). If
we can show that ∫

Hγ−α(A ∩ Lx)dµ(x) < +∞

then by Fubini’s Theorem Hγ−α(A∩Lx) < +∞ for a.e. (µ) x. In particular,
dimH(A ∩ Lx) ≤ γ − α for a.e. (µ) x, by definition.

We can cover B by squares Ii × Ji aligned with the axes whose side
lengths li satisfy

∑
i l
γ
i < ε. If we define

f(x, y) =
∑
i

χIi×Ji(x, y)lγ−α−1
i

then we can write∫ ∞
−∞

∫ ∞
−∞

f(x, y)dydµ(x) =
∑
i

lγ−α−1
i diam(Ai)µ(Bi)

≤ C
∑
i

lαi ≤ Cε
(6.4)

We can denote

Qxi =

{
Ji if x ∈ Ii
∅ otherwise

then these sets form cover of F∩Lx. By Fubini’s theorem we can interchange
integrals and write∫ ∞

−∞

∫ ∞
−∞

f(x, y)dydµ(x) =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)dydµ(x)

=

∫ (∑
i

diam (Qxi )γ−α

)
dµ(x)

≥
∫
Hγ−α
ε (Lx ∩ F )dµ(x).

(6.5)
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Thus by (6.4) and (6.5):

0 ≤
∫
Hγ−α
ε (Lx ∩ F )dµ(x) ≤ Cε

Finally, letting δ → 0 gives∫
Hγ−α
ε (F ∩ Lx)dx ≤ Hγ−α

ε (F ),

and then letting ε→ 0 gives∫
Hγ−α(F ∩ Lx)dx = 0.

Thus Fubini’s Theorem gives that the integrand is finite almost everywhere,
i.e., Hγ−α(F ∩ Lx) = 0 for a.e. (µ) x. In particular, dimH(A ∩ Lx) ≤ γ − α
for a.e. (µ) x. Since γ can be chosen arbitrarily close to dimH(A) this
completes the proof.

The slicing theorems generalize to k-dimensional slices of sets in Rn.

7.5 Slices

Let A ⊂ R2 be a Borel set. We can consider the one dimensional vertical
slices

Ax = {h : (x, y) ∈ A} for x ∈ A

We can formulate the following classic slice theorem.

Theorem 15. Asume that A ⊂ R2 has dimH(A) ≥ 1. Then dimH(Ax) ≤
dimH(A)− 1 for almost every x ∈ R with respect to Lebesgue measure.

If dimH(A) < 1 then Ax = ∅ for almost all x (in fact, except on a set of
dimension at most dim(A))

Proof. We begin with the following

Claim. For 1 ≤ α ≤ 2

Hα(A) ≥
∫
Hα−1(Ax)dx

Assuming this claim, we can choose α > dimH(A) and then by the claim

0 = Hα(A) ≥
∫
Hα−1(Ax)dx

and the result follows since Hα−1(Ax) = 0 for almost every x, and thus
dimH(Ax) ≤ α− 1, for almost every x.
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Proof of claim. Fix ε, δ > 0 and let {Uj} be a cover for A with diam(Uj) < ε
and such that ∑

j

(diam(Uj))
α ≤ Hα

ε (A) + δ.R

For each open set Uj we can choose a square Uj ⊂ Sj with sides of length
diam(Uj), aligned with the axes of R2.

Let Ij ⊂ R2 be the vertical projection onto the horizontal axis and define
a function f : R2 → R by

f(x, y) =
∑
j

χSj (x, y)(diam(Uj))
α−2.

For each x the slices Sj,x := Sj ∩ {(x, y) : y ∈ R} form a cover for the slices
Ax and have length

λ(Sj,x) =

{
diam(Uj) x ∈ Ij
0 x 6∈ Ij

Using this cover for Ax we can bound

Hα−1
ε (Ax) ≤

∑
j

λ(Sj,x)α−1 ≤
∑

j : x∈Ij

(diam(Uj))
α−1.

If we fix x then∫
R

∑
j : x∈Ij

χSj (x, y)(diam(Uj))
α−2dxdy =

∑
j : x∈Ij

(diam(Uj))
α−2

which implies ∫ ∫
f(x, y)dxdy =

∫
R

∑
j

(diam(Uj))
α−1.

Therefore,

inf Hα−1
ε (A+ x)dx ≤

∫
R

∑
j

diam(Uj))
α−1

 dx

=

∫ ∫
f(x, y)dxdy

=
∑
j

diam(Uj))
α−2diam(Uj))

2

=
∑
j

diam(Uj))
α ≤ Hα

ε (Ax) + δ.



116 CHAPTER 7. PROJECTIONS AND SLICES

Letting δ → 0 gives ∫
Hα−1
ε (Ax)dx ≤ Hα

ε (A).

Finally, as ε → 0 we have that Hα−1
ε (Ax) → Hα−1(Ax) and so 3 we have

that ∫
Hα−1(Ax)dx ≤ Hα(A).

as required.

7.6 Differences of Cantor sets: Hausdorff Dimen-
sion and positive measure

Let X,Y ⊂ R then we define the difference

X − Y = {t ∈ R : ∃x ∈ X, y ∈ Y such that x− y = t}.

As a corollary to the projection theorem we have the following result on
the difference of Cantor sets.

Theorem 16. Let X,Y ⊂ R be Cantor sets.

1. If dimH(X) + dimH(Y ) < 1 then for almost all λ > 0 the set

X − λY = {x− λy : x, y ∈ X,Y } ⊂ R

has Hausdorff Dimension dimH X + dimH Y .

2. If dimH(X) + dimH(Y ) > 1 then for almost all λ > 0 the set X − λY
has positive Lebesgue measure.

Proof. We can consider the product space X × Y which has Hausdorff di-
mension dimH(X) + dimH(Y ). We can now consider the projection πθ :
X × Y → R in the direction with angle θ with tan(θ) = λ. In particular,
πθ(x, y) = x cos θ − y sin θ. In particular, assuming cos θ 6= 0 we can divide
by cos θ to get x− λy.

By the projection theorem we have that if dimH(X) + dimH(Y ) < 1
then dimH(X − λY ) = dimH(X × Y ) = dimH(X) + dimH(Y ) for almost
all directions θ, which is equivalent to almost all λ. On the other hand, if
dimH(X) + dimH(Y ) > 1 then X − λY and X × Y has positive Lebesgue
measure for almost all λ.

Proposition 14. If dimB(X) + dimB(Y ) < 1 then dimB(X − Y ) < 1 and
X − Y has zero Lebesgue measure.

3By the Monotone Convergence Theorem
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Proof. We can choose dimB(X) < d1 and dimB(Y ) < d2 with d1 + d2 < 1.
There exists ε0 > 0 such that for any 0 < ε < ε0 we can cover X by [ε−d1 ]
intervals of length ε and we can cover Y by [ε−d2 ] intervals of length ε. If I
and J are intervals of length ε then X − Y has length 2ε. Thus X − Y is
covered by ε−(d1+d2) thus N2ε(X − Y ) ≤ ε−(d1+d2).

Lemma 43. Let X,Y ⊂ R be Cantor sets with thickness τ1 and τ2 with
τ1.τ2 > 1 then one of the following occurs:

1. X is contained in a gap of Y

2. Y is contained in a gap of X

3. X ∩ Y 6= ∅

We have the following version of the Marstrand projection theorem.

Theorem 17. Let X,Y ⊂ R with dimB(X) + dimB(Y ) > 1 then X − λY
has positive Lebesgue measure for almost every λ ∈ R.

It is possible to show that for dynamically defined limit sets:

Theorem 18. For a dynamically defined Cantor set X we have dimH(X) =
dimB(X).

Theorem 19. Let X be a limit set and d = dimH(X) then 0 < md(X).
Moreover, for all x ∈ X and 0 < r ≤ 1 and

1

c
≤ md(Br(x))

rd
≤ c

This also holds in two dimensions.

Lemma 44. For dynamically defined Cantor sets the Hausdorff dimension
and thickness depend continuously on the contractions.

7.7 Sums of Continued fraction cantor sets

We can consider dynamically defined Cantor sets given by finitely many
branches of the Gauss maps, i.e., let S ⊂ N be a finite set and then let
Ti : [0, 1]→ [0, 1] by Ti(x) = 1

x+i for i ∈ S. Let XS be the limit set for this
iterated function scheme. In the next result we can take S = {1, 2, 3, 4}.

Theorem 20. For S = {1, 2, 3, 4} we have that XS+XS = (
√

2−1, 4
√

2−4).
In other words, every number in the interval (

√
2 − 1, 4

√
2 − 4) is the sum

of two continued fractions whose coefficients do not exceed 4.

As it is explained in Cusick-Flahive book (cf. the first two lines of the
proof of Theorem 1 in Chapter 6), M ∩ [

√
5,
√

10) ⊂ U + U , where U is the
set of continued fractions with 1 and 2 in which 121 never occur.
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Lemma 45. dim(U + U) ≤ 2 dim(U) < 0.93

Cusick and Flahive explain (still in the proof of Theorem 1 of Chapter 6)
Hall’s theorem from 1971 using an explicit description of the structure of U
ultimately leading him to the fact that U+U has zero Lebesgue measure. In
fact, this gives an (implicit) upper bound on the dimension of U +U (and, a
fortiori, on the dimension ofM∩[

√
5,
√

10)) along the following lines. Among
several estimates, Cusick and Flahive mention that Hall noticed that U is
a Cantor set obtained by a subdivision process where each interval I of a
given stage is decomposed into four intervals I(11), I(12), I(21), I(22) such
that either

a) ‖II(11)‖ < 0.15, ‖I(12)‖ < 0.015, ‖I(21)‖ < 0.013, ‖I(22)‖ < 0.007;
or

b) ‖I(11)‖ < 0.131, ‖I(12)‖ < 0.013, ‖I(21)‖ < 0.059, ‖I(22)‖ < 0.003

From this fact, Hall showed that U +U has zero Lebesgue measure, but
Hall morally got an upper bound on dimension because it is not hard to see
that dim(U) < s for any s such that there is A < 1 with

‖I(11)‖s + ‖I(12)‖s + ‖I(21)‖s + ‖I(22)‖s < A‖s

for all I. Since

(0.15)(0.465) + (0.015)(0.465) + (0.013)(0.465) + (0.007)(0.465) < 0.79; and

(0.131)(0.465) + (0.013)(0.465) + (0.059)(0.465) + (0.003)(0.465) < 0.986
we derive that dim(U) < 0.465 and, a fortiori, dim(U + U) ≤ 2dim(U) <
0.93.



Chapter 8

Falconer’s Theorem

The situation of estimating the dimension of non-conformal maps, or maps
whose images have overlaps, can be quite challenging. However, there are
some approaches to this which work for “typical points”

8.1 Affine contractions of the line with overlaps

Assume that we have a finite set of affine contractions Ti : R → R of the
intervals of the form Ti(x) = aix+ bi (i = 1, · · · , k) for 0 ≤ x ≤ 1. However,
we will not necessarily assume the open set condition.

Let us fix 0 < a1, · · · , ad < 1 but consider the d-tuple b = (b1, · · · , bd)
within Rd. Let Xb be the associated attractor, i.e., the smallest closed non-
empty set such that ∪ni=1TiX = X. The following theorem looks a little like
Moran’s theorem, except that we don’t assume the Open Set condition, but
instead we have a conclusion that only holds for typical maps (corresponding
to almost all allowed b with respect to d-dimensional Lebesgue measure).

Theorem 21 (after Falconer). For almost all (b1, · · · , bk) ∈ Rk the Haus-
dorff dimension and Box dimension of X coincide (i.e., dimH(X) = dimB(X)).
Moreover, their common value d is then the unique solution to

ad1 + · · ·+ adk = 1.

Proof. The upper bound follows from the part of the proof of Moran’s theo-
rem that dimB(X) ≤ d. It remains to show that dimH(X) ≥ d to complete
the present proof.

Fix ε > 0. We recall that in order to show that dimH(X) ≥ d − ε, say,
it suffices to show that there exists a probability measure d on X such that∫ ∫

dµ(x)dµ(y)

|x− y|d−ε
< +∞.

This implies that
dimH(Xb) ≥ d− ε

119
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To achieve this we can associate the space of sequences Σ = {1, · · · , d}N.
There is then a natural well defined map π : Σ→ Bb given by

πb(x) = lim
n→+∞

Tx1Tx2 · · ·Txn(0). =
∞∑
n=0

bxnλx1λx2 · · ·λxn

which is easily seen to converge since

0 ≤ ax1ax2 · · · axn ≤ cn.

We can then define a Bernoulli measure ν on Σ associated to the probabil-
ity vector (p1, · · · , pd) where we make the choices pi = adi for 1 ≤ i ≤ k. We
can then push the measure down to Xb to the probability measure µb = νπ−1

on Xb, i.e., µb(B) = ν(π−1
b B) for any Borel set B ⊂ Xb.

For any R > 0 we can consider the integral over the box [−R,R]k and
then hope to show that∫

b∈[−R,R]k

(∫ ∫
dµb(x)dµb(y)

|x− y|d−ε

)
db < +∞.

In particular, this implies that for almost all b ∈ [−R,R]k (with respect to
the usual Lebesgue measure)∫ ∫

dµb(x)dµb(y)

|x− y|d−ε
< +∞.

This would imply that dimH(Xb) ≥ d− ε for almost all b ∈ [−R,R]k (with
respect to the usual Lebesgue measure).

Returning to the double integral, we can use the definition of µb to write
the inner integral as∫ ∫

dµb(x)dµb(y)

|x− y|d−ε
=

∫
Σ

∫
Σ

dν(i)dν(j)

|πb(i)− πb(j)|d−ε

where i, j ∈ Σ. We can substitute this expression into the double integral
and then switch the order of integration (formally using Fubini’s lemma) to
write∫
b∈[−R,R]k

(∫ ∫
dµb(x)dµb(y)

|x− y|d−ε

)
db =

∫
b∈[−R,R]k

(∫
Σ

∫
Σ

dν(i)dν(j)

|πb(i)− πb(j)|d−ε

)
db

=

∫
Σ

∫
Σ

(∫
b∈[−R,R]k

db

|πb(i)− πb(j)|d−ε

)
dν(i)dν(j).

In summary, since R > 0 and ε > 0 can be chosen arbirarily it only remains
to show that this final double integral is finite to complete the proof. To
this end, given j ∈ Σ and m ≥ 1 we can partition

Σ = ∪∞m=0∆m(j) ∪ {j}
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where

∆m(j) = {i ∈ Σ : ir = jr for 1 ≤ r ≤ m but im+1 6= jm+1}

for which we have by definition µ(∆m(j)) = (aj1 · · · ajn)d

We can now observe that for i ∈ ∆m(j) that

πb(i)− πb(j) =

∞∑
n=m

(binai1ai2 · · · ain − bjnaj1aj2 · · · ajn)

= ai1ai2 · · · ain
(
bin+1 − bjn+1 + E(a1, · · · , ad)

)
where for |c| < 1

3 we have that the linear map E : Rd → R has norm
‖E‖ ≤ 2c

1−c < 1. 1 This is the crucial observation in the proof. It has echos
later in the idea of “transversality”

Changing variables to y = bin+1 − bjn+1 + E(a1, · · · , ad) for fixed i ∈
∆m(j) we can bound(∫

b∈[−R,R]k

db

|πb(i)− πb(j)|d−ε

)
≤ C

(aj1aj2 · · · ajn)d−ε

for some constant C > 0.
We can now bound the double integral as∫

Σ

∫
Σ

(∫
b∈[−R,R]k

db

|πb(i)− πb(j)|d−ε

)
dν(i)dν(j)

≤
∫

Σ

( ∞∑
n=0

∫
∆n(j)

C

(aj1aj2 · · · ajn)d−ε

)
dν(j)

≤
∫

Σ

( ∞∑
n=0

µ(∆n(j))
C

(aj1aj2 · · · ajn)d−ε
dν(i)

)
dν(j)

≤
∞∑
n=0

(aj1aj2 · · · ajn)d
C

(aj1aj2 · · · ajn)d−ε

≤ C
∞∑
n=0

cεn =
C

1− cε
< +∞

as required.

1As observed by Peres, this condition can be relaxed to c 1
2
.
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Chapter 9

Transversality

9.1 The {0, 1, 3}-Problem

A similar technique to the one outlined in the previous section can be used to
help calculate the dimension of certain self-similar sets where the similarities
overlap. Let F = {f0, f1, f2} be an IFS on where,

f0(x) = λx

f1(x) = λx+ 1

f2(x) = λx+ 3.

For λ ≤ 1
4 the Open Set Condition applies and the Hausdorff dimension

of the attractor Λ(λ) is thus − log3
log λ . When λ ∈ (1

4 ,
1
3) the OSC can not

be applied and the problem of whether dim Λ(λ) = − log 3
log λ is still not fully

solved. A generic solution was found by Pollicott and Simon in [?].

Theorem 22 (Pollicott-Simon, 1994). For almost all λ ∈ (1
4 ,

1
3 ],

dim Λ(λ) = − log 3

λ
.

The method of proof is extremely similar to that of the projection the-
orem. Let µ be (1

3 ,
1
3 ,

1
3)-Bernoulli measure on Σ3. A projection Πλ : Σ3 →

can be defined by,

Πλ(i) =

∞∑
k=0

ikλ
k.

Thus on each possible attractor Λ(λ) a self-similar measure νλ can be defined
by νλ = µ ◦ Π−1

λ . Let ε > 0 and sε(λ) = − log 3
log(λ+ε) . Note that the proof is

complete, using Lemma ?? if it can be shown that,

I =

∫ 1
3

1
4

∫ ∫
dνλ(x)dνλ(y)dλ

|x− y|sε(λ)
<∞

123
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for all ε > 0. Using the projection Πλ the inner two integrals can be trans-
ferred to Σ3.

I =

∫ 1
3

1
4

∫ ∫
dµ(i)dµ(j)dλ

|Πλ(i)−Πλ(j)|sε(λ)
.

We then turn I into a product of two expressions using Fubini’s theorem.
We let t = maxλ sε(λ) and note that t < 1. It can be seen that,

|Πλ(i)−Πλ(j)|sε(λ) = λ|i∧j|sε(λ)

( ∞∑
k=0

akλ
k

)sε(λ)

≥
(

1

3
+ ε

)sε(λ)|i∧j
( ∞∑
k=0

akλ
k

)t
where {ak}k∈0 is a sequence such that ak ∈ {0,±1,±2,±3} and a0 6= 0.
Substituting this back into I and using Fubini’s Theorem we get

I ≤
∫

dλ

(
∑∞

k=0 akλ
k)
t

∫
Σ3

∫
Σ3

dµ(i)dµ(j)(
1
3 + ε

)|i∧j| .
By simple integration on Σ3 it can be seen that,∫ ∫

dµ(i)dµ(j)(
1
3 + ε

)|i∧j| ≤ ∞∑
k=0

∑
[i0,i1,...,ik−1]

µ([i0, i1, . . . , ik−1])2(
1
3 + ε

)k
=

∞∑
k=0

1
3

k+1(
1
3 + ε

)k <∞
Thus to show that I <∞ it remains to show that,∫

dλ

(
∑∞

k=0 akλ
k)
t <∞

for any sequence {ak}k∈0 where each ak ∈ {0,±1,±2,±3} and a0 = 0. Let
g(λ) be a power series of that form. In Lemma 1 of [?] it is shown that
whenever such a power series g(λ) is close to 0 its derivative is bounded
away from 0. Thus a transversality condition is satisfied. The integral can
be shown to be finite by splitting it into two parts, one part where g(λ) is
bounded away from 0 and one where g(λ) is close to zero but the derivative
is bounded away from 0. The first part is clearly finite and the second part
is finite because t < 1 and g(λ) can be bounded below by linear functions
in this region. This method will be used again in chapters 4 and 5.

In [?] a general result about when specific power series satisfy a transver-
sality condition is given. Let

Fb = {f(λ) =

∞∑
k=0

fkλ
K : gk ∈ [−b, b]}.



9.1. THE {0, 1, 3}-PROBLEM 125

As in [?] we now define,

y(b) = min{x > 0 : ∃f ∈ Fb where f(x) = f ′(x)}.

Theorem 23 (Peres-Solomyak,1996). The function y(b) : [1,∞) → [0, 1]
is strictly decreasing, continuous and piecewise algebraic. y(1) ≈ 0.649,
y(2) = 0.5 and y(b) ≥ (

√
b+ 1)−1 with equality when b ≥ 3 +

√
8.

A proof can be found in [?]. The following corollary is crucial when trying
to use the transversality technique to calculate the dimension or measure of
self-similar sets.

Corollary 8. Let f ∈ Fb. We have that,

1. for any s < 1 there exists K(s) > 0,∫ y(b)

0

dλ

|f(λ)|s
< K(s).

2. There exists C > 0 such that,

L{λ ∈ (0, b(k − 1)) : |f(λ)| ≤ ε} ≤ Cε.

The first part is extremely useful when proving theorems of a similar
type to Theorem 25. The second part is useful in the case when we wish
to show that a class of self-similar sets have positive Lebesgue measure for
almost all parameter values. We will now look at the {0, 1, 3} problem in
the region λ ∈ [1

3 , y(3)] to outline how this method works. Let µ and νλ be
defined exactly as in the proof of Thereom 25.

Theorem 24. For a.e. λ ∈ [1
3 , y(3)] νλ is absolutely continuous and hence

L(Λ(λ)) > 0.

This result was proved in [?]. The method of proof relies that because
of Lemma ?? to show that a measure νλ is absolutely continuous it suffices
to show that, ∫

lim inf
r→0

νλ(B(x, r))

2r
dνλ(x) <∞.

Thus to show that νλ is absolutely continuous for a.e. λ ∈ (1
3 , y(3)) it is

sufficient to show for any ε > 0

I =

∫ y(3)

1
3

+ε

∫
lim inf
r→0

νλ(B(x, r))

2r
dνλ(x)dλ <∞.

The first step is to apply Fatou’s Lemma and lift to the shift space. Thus

I ≤ lim inf
r→0

1

2r

∫ y(3)

1
3

+ε

∫
νλ(B(x, r))dνλ(x)dλ

≤ lim inf
r→0

1

2r

∫
1
3

+ε

∫
Σ3

∫
Σ3

{ω,τ :|Πλ(ω)−Πλ(τ)|≤r}dµ(ω)dµ(τ)dλ.
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Applying Fubini’s Theorem bounds I by an expression which allows part
(ii) of Corollary 9 to be used. This gives

I ≤ lim inf
r→0

1

2r

∫
Σ3

∫
Σ3

L{λ ∈
(

1

3
+ ε, y(3)

)
: |Πλ(ω)−Πλ(τ)| ≤ r}dµ(ω)dµ(τ).

It can be seen that,

|Πλ(ω)−Πλ(τ)| = λ|ω∧τ |g(λ)

where g(λ) ∈ Fλ for all ω, τ ∈ Σ3. Thus (ii) of Corollary 9 gives that,

L{λ ∈
(

1

3
+ ε, y(3)

)
: |Πλ(ω)−Πλ(τ)| ≤ r} ≤ 2C

(
1

3
+ ε

)|ω∧τ |
r

for some C > 0. This gives,

I ≤ C
∫

Σ3

∫
Σ3

(
1

3
+ ε

)−|ω∧τ |
dµ(ω)d(τ)

which can be seen to be finite by simply integrating on the shift space as in
Theorem 25. This is the standard method for using transversality that for a.e
parameter a family of measures are absolutely continuous. This method has
been successfully used in many contexts. These include self-affine sets ([?]),
Bernoulli convolutions ([?],[?],[?]), non linear hyperbolic IFS ([?]), Parabolic
IFS and random continued fraction expansions ([?]).

The {0, 1, 3}-Problem A similar technique to the one outlined in the
previous section can be used to help calculate the dimension of certain self-
similar sets where the similarities overlap. Let F = {f0, f1, f2} be an IFS
on where,

f0(x) = λxf1(x) = λx+ 1f2(x) = λx+ 3.

For λ ≤ 1
4 the Open Set Condition applies and the Hausdorff dimension

of the attractor Λ(λ) is thus − log3
log λ . When λ ∈ (1

4 ,
1
3) the OSC can not

be applied and the problem of whether dim Λ(λ) = − log 3
log λ is still not fully

solved. A generic solution was found by Pollicott and Simon in [?].

Theorem 25 (Pollicott-Simon, 1994). For almost all λ ∈ (1
4 ,

1
3 ],

dim Λ(λ) = − log 3

λ
.

The method of proof is extremely similar to that of the projection the-
orem. Let µ be (1

3 ,
1
3 ,

1
3)-Bernoulli measure on Σ3. A projection Πλ : Σ3 →

can be defined by,

Πλ(i) =

∞∑
k=0

ikλ
k.
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Thus on each possible attractor Λ(λ) a self-similar measure νλ can be defined
by νλ = µ ◦ Π−1

λ . Let ε > 0 and sε(λ) = − log 3
log(λ+ε) . Note that the proof is

complete, using Lemma ?? if it can be shown that,

I =

∫ 1
3

1
4

∫ ∫
dνλ(x)dνλ(y)dλ

|x− y|sε(λ)
<∞

for all ε > 0. Using the projection Πλ the inner two integrals can be trans-
ferred to Σ3.

I =

∫ 1
3

1
4

∫ ∫
dµ(i)dµ(j)dλ

|Πλ(i)−Πλ(j)|sε(λ)
.

We then turn I into a product of two expressions using Fubini’s theorem.
We let t = maxλ sε(λ) and note that t < 1. It can be seen that,

|Πλ(i)−Πλ(j)|sε(λ) = λ|i∧j|sε(λ)

( ∞∑
k=0

akλ
k

)sε(λ)

≥
(

1

3
+ ε

)sε(λ)|i∧j
( ∞∑
k=0

akλ
k

)t
where {ak}k∈0 is a sequence such that ak ∈ {0,±1,±2,±3} and a0 6= 0.
Substituting this back into I and using Fubini’s Theorem we get

I ≤
∫

dλ

(
∑∞

k=0 akλ
k)
t

∫
Σ3

∫
Σ3

dµ(i)dµ(j)(
1
3 + ε

)|i∧j| .
By simple integration on Σ3 it can be seen that,∫ ∫

dµ(i)dµ(j)(
1
3 + ε

)|i∧j| ≤ ∞∑
k=0

∑
[i0,i1,...,ik−1]

µ([i0, i1, . . . , ik−1])2(
1
3 + ε

)k
=

∞∑
k=0

1
3

k+1(
1
3 + ε

)k <∞
Thus to show that I <∞ it remains to show that,∫

dλ

(
∑∞

k=0 akλ
k)
t <∞

for any sequence {ak}k∈0 where each ak ∈ {0,±1,±2,±3} and a0 = 0. Let
g(λ) be a power series of that form. In Lemma 1 of [?] it is shown that
whenever such a power series g(λ) is close to 0 its derivative is bounded
away from 0. Thus a transversality condition is satisfied. The integral can
be shown to be finite by splitting it into two parts, one part where g(λ) is
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bounded away from 0 and one where g(λ) is close to zero but the derivative
is bounded away from 0. The first part is clearly finite and the second part
is finite because t < 1 and g(λ) can be bounded below by linear functions
in this region. This method will be used again in chapters 4 and 5.

In [?] a general result about when specific power series satisfy a transver-
sality condition is given. Let

Fb = {f(λ) =
∞∑
k=0

fkλ
K : gk ∈ [−b, b]}.

As in [?] we now define,

y(b) = min{x > 0 : ∃f ∈ Fb where f(x) = f ′(x)}.

Theorem 26 (Peres-Solomyak,1996). The function y(b) : [1,∞) → [0, 1]
is strictly decreasing, continuous and piecewise algebraic. y(1) ≈ 0.649,
y(2) = 0.5 and y(b) ≥ (

√
b+ 1)−1 with equality when b ≥ 3 +

√
8.

A proof can be found in [?]. The following corollary is crucial when trying
to use the transversality technique to calculate the dimension or measure of
self-similar sets.

Corollary 9. Let f ∈ Fb. We have that,

1. for any s < 1 there exists K(s) > 0,∫ y(b)

0

dλ

|f(λ)|s
< K(s).

2. There exists C > 0 such that,

L{λ ∈ (0, b(k − 1)) : |f(λ)| ≤ ε} ≤ Cε.

The first part is extremely useful when proving theorems of a similar
type to Theorem 25. The second part is useful in the case when we wish
to show that a class of self-similar sets have positive Lebesgue measure for
almost all parameter values. We will now look at the {0, 1, 3} problem in
the region λ ∈ [1

3 , y(3)] to outline how this method works. Let µ and νλ be
defined exactly as in the proof of Thereom 25.

Theorem 27. For a.e. λ ∈ [1
3 , y(3)] νλ is absolutely continuous and hence

L(Λ(λ)) > 0.

This result was proved in [?]. The method of proof relies that because
of Lemma ?? to show that a measure νλ is absolutely continuous it suffices
to show that, ∫

lim inf
r→0

νλ(B(x, r))

2r
dνλ(x) <∞.
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Thus to show that νλ is absolutely continuous for a.e. λ ∈ (1
3 , y(3)) it is

sufficient to show for any ε > 0

I =

∫ y(3)

1
3

+ε

∫
lim inf
r→0

νλ(B(x, r))

2r
dνλ(x)dλ <∞.

The first step is to apply Fatou’s Lemma and lift to the shift space. Thus

I ≤ lim inf
r→0

1

2r

∫ y(3)

1
3

+ε

∫
νλ(B(x, r))dνλ(x)dλ

≤ lim inf
r→0

1

2r

∫
1
3

+ε

∫
Σ3

∫
Σ3

{ω,τ :|Πλ(ω)−Πλ(τ)|≤r}dµ(ω)dµ(τ)dλ.

Applying Fubini’s Theorem bounds I by an expression which allows part
(ii) of Corollary 9 to be used. This gives

I ≤ lim inf
r→0

1

2r

∫
Σ3

∫
Σ3

L{λ ∈
(

1

3
+ ε, y(3)

)
: |Πλ(ω)−Πλ(τ)| ≤ r}dµ(ω)dµ(τ).

It can be seen that,

|Πλ(ω)−Πλ(τ)| = λ|ω∧τ |g(λ)

where g(λ) ∈ Fλ for all ω, τ ∈ Σ3. Thus (ii) of Corollary 9 gives that,

L{λ ∈
(

1

3
+ ε, y(3)

)
: |Πλ(ω)−Πλ(τ)| ≤ r} ≤ 2C

(
1

3
+ ε

)|ω∧τ |
r

for some C > 0. This gives,

I ≤ C
∫

Σ3

∫
Σ3

(
1

3
+ ε

)−|ω∧τ |
dµ(ω)d(τ)

which can be seen to be finite by simply integrating on the shift space as in
Theorem 25. This is the standard method for using transversality that for a.e
parameter a family of measures are absolutely continuous. This method has
been successfully used in many contexts. These include self-affine sets ([?]),
Bernoulli convolutions ([?],[?],[?]), non linear hyperbolic IFS ([?]), Parabolic
IFS and random continued fraction expansions ([?]).

We shall formulate a simple version of this result in one dimension, al-
though a version is valid in arbitrary dimensions.

Let us fix 0 < λ < 1
2 . We want to consider affine maps Ti : R → R

(i = 1, . . . , k) of the real line R defined by Tix = λx + bi, for i = 1, . . . , k,
where b1, . . . , bk ∈ R. Let us use the notation b = (b1, . . . , bk) ∈ Rk and then
let us denote by Λb the associated limit set.
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Theorem 28 (Theorem 6.6 (Falconer’s Theorem)). For almost all b =
(b1, . . . , bk) ∈ Rk we have that dimH Λb = − log k/ log λ.

Of course, this if T1, . . . , Tk satisfy the Open Set Condition then the
formula for Hausdorff Dimension automatically holds by Moran’s Theorem.

We begin with a preliminary result.

Lemma 46. Consider a power series fa(z) = a0 +
∑∞

n=1 anz
n where an ⊂

{bi − bj : 1 ≤ i, j ≤ k} and a0 6= 0. Then
∫
|b| |fa(z)|

sdb < +∞

Proof of Theorem 6.6. Let U ⊂ R be an open set chosen such that TiU ⊂ U
for all 1 ≤ i ≤ k. Given δ > 0 we can choose n sufficiently large that
λndiam(U) ≤ δ. Let us cover Λb by open sets {Ti(U) : |i| = n}. Given
s > 0 can estimate

Hs
δ (Λb) ≤

∑
|i|=n

diam(Ui) ≤ (kλs)n

In particular, for any s > − log k/ log λ we have that (kλs) < 1 and so we
deduce that dimH Λb ≤ s|. In particular, dimH Λb ≤ − log k/ log λ.

On the other hand, let us consider the Bernoulli measure ν = ( 1
k , · · · ,

1
k )Z

+

on the associate sequence space Σ = {1, . . . , k}Z+
. Let πb : Σ → Λb be

the natural coding given by πb(i) = limn→+∞ Ti0 · · ·Tin(0). We can con-
sider the associated measure µb = πbν (i.e., µb(I) = (π−1

i I)). Let us fix
s > − log k/ log λ For any R > 0 we can write∫
|b|≤R

(∫
Λb

∫
|b|≤R

dµ(b)(x)dµ(b)

|x− y|s

)
db =

∫
|b|≤R

(∫
Σ

∫
Σ

dν(i)dν(j)

|πb(i)− πb(j)|s

)
db,

where we integrate over the ball of radius R with respect to lebesgue mea-
sure. Moreover, using Fubini’s theorem we can reverse the order of the
integrals in the last expression to get∫

Σ

∫
Σ

(∫
|b|≤R

db

|πb(i)− πb(j)|s

)
dν(i)dν(j) (6.6)

If the sequences i, j agree in the first n spaces (but differ in the (n + 1)st
place) then we can write

πb(i)− πb(i) = λn+1

(
(bin+1 − bjn+1) +

∞∑
m=1

λm(bin+m+1 − bjn+m+1)

)

where bin+1 6= bjn+1 are distinct elements from {b1, . . . , bk}. In particular,
differentiating in the direction corresponding to bin+1 (whilst fixing the other
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directions) we see that∣∣∣∣∂(πb(i)− πb(i))
∂bin+1

∣∣∣∣ = λn+1

∣∣∣∣∣
(

1 +
∞∑
m=1

λm
∂(bin+m+1 − bjn+m+1)

∂bin+1

)∣∣∣∣∣
≥ λn+1

(
1−

∞∑
m=1

λm

)
≥ Cλn+1

for some C > 0. We can then write∫
|b|≤R

db

|πb(i)− πb(i)|s
≤ Dλ−s(n+1) (6.7)

for some D > 0. Substituting (6.7) into (6.6) we have that

∫
b

(∫
Λb

∫
Λb

dµb(x)dµb(y)

|x− y|s

)
db ≤ Cs

∫
Σ

 ∞∑
n=1

∑
i0,...,in

µ[i0, . . . , in]︸ ︷︷ ︸
=( 1

k
)n+1

λ−s(n+1)

 dµ(i)

≤ Cs
∞∑
n=1

(
λ−s

k

)n+1

< +∞

By Fubini’s Theorem we deduce that for almost every b we have that the
integrand is finite almost everywhere, i.e.,∫

Λb

∫
Λb

dµb(x)dµb(y)

|x− y|s
< +∞

provided s < − log k/ log λ. In particular, we deduce from lemma 6.2 that
for such b we have dimH(Λb) > s. Since s can be chosen arbitrarily close to
− log k/ log λ the result follows.
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Chapter 10

Measure and dimension

10.1 Hausdorff dimension of measures

Let µ denote a probability measure on a set X. We can define the Hausdorff
dimension µ in terms of the Hausdorff dimension of subsets of Λ.

Definition 22. For a given probability measure µ we define the Hausdorff
dimension of the measure by

dimH(µ) = inf{dimH(X) : µ(X) = 1}.

We next want to define a local notion of dimension for a measure µ at a
typical point x ∈ X.

Definition 23. The upper and lower pointwise dimensions of a measure µ
are measurable functions dµ, dµ : X → R ∪ {∞} defined by

dµ(x) = lim sup
r→0

logµ(B(x, r))

log r
and dµ(x) = lim inf

r→0

logµ(B(x, r))

log r

where B(x, r) is a ball of radius r > 0 about x.

=2.0in pointwise.eps

The pointwise dimensions describe how the measure µ is distributed.
We compare the measure of a ball about x to its radius r, as r tends to
zero. There are interesting connections between these different notions of

dimension for measures.

Theorem 29. If dµ(x) ≥ d for a.e. (µ) x ∈ X then dimH(µ) ≥ d.

Proof. We can choose a set of full µ measure X0 ⊂ X (i.e., µ(X0) = 1) such
that dµ(x) ≥ d for all x ∈ X0. In particular, for any ε > 0 and x ∈ X

133
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we have lim supr→0 µ(B(x, r))/rd−ε = 0. Fix C > 0 and δ > 0, and let us
denote

Xδ = {x ∈ X) : µ(B(x, r)) ≤ Crd−ε, ∀0 < r ≤ δ}.

Let {Ui} be any δ-cover for X. Then if x ∈ Ui, µ(Ui) ≤ Cdiam(Ui)
d−ε. In

particular,

µ(Xδ) ≤
∑
Ui∩Xδ

µ(Ui) ≤ C
∑
i

diam(Ui)
d−ε.

Thus, taking the infimum over all such cover we have µ(Xδ) ≤ CHd−ε
δ (Xδ) ≤

CHd−ε(X). Now letting δ → 0 we have that 1 = µ(X0) ≤ CHd−ε(X). Since
C > 0 can be chosen arbitrarily large we deduce that Hd−ε(X) = +∞. In
particular, dimH(X) ≥ d − ε for all ε > 0. Since ε > 0 is arbitrary, we
conclude that dimH(X) ≥ d.

We have the following simple corollary, which is immediate from the
definition of dimH(µ).

Corollary 10. Given a set X ⊂ Rd, assume that there is a probability
measure µ with µ(X) = 1 and dµ(x) ≥ d for a.e. (µ) x ∈ X. Then
dimH(X) ≥ d.

In the opposite direction we have that a uniform bound on pointwise
dimensions leads to an upper bound on the Hausdorff Dimension.

Theorem 30. If dµ(x) ≤ d for a.e. (µ) x ∈ X then dimH(µ) ≤ d.
Moreover, if there is a probability measure µ with µ(X) = 1 and dµ(x) ≤

d for every x ∈ X then dimH(X) ≤ d.

Proof. We begin with the second statement. For any ε > 0 and x ∈ X we
have lim supr→0 µ(B(x, r))/rd+ε = ∞. Fix C > 0. Given δ > 0, consider
the cover U for X by the balls

{B(x, r) : 0 < r ≤ δ and µ(B(x, r)) > Crd+ε}.

We recall the following classical result.

Besicovitch covering lemma. There exists N = N(d) ≥ 1 such that for any
cover by balls we can choose a sub-cover {Ui} such that any point x lies in
at most N balls.

Thus we can bound

Hd+ε
δ (X) ≤

∑
i

diam (Ui)
d+ε ≤ 1

C

∑
i

µ(Bi) ≤
N

C
.

Letting δ → 0 we have that Hd+ε(X) ≤ N
C . Since C > 0 can be chosen

arbitrarily large we deduce that Hd+ε(X) = 0. In particular, dimH(X) ≤
d+ ε for all ε > 0. Since ε > 0 is arbitrary, we deduce that dimH(X) ≤ d.

The proof of the first statement is similar, except that we replace X by
a set of full measure for which dµ(x) ≤ d.
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Let us consider the particular case of iterated function schemes.

Example 55 (Iterated Function Schemes and Bernoulli measures)). For an
iterated function scheme T1, · · · , Tk : U → U we can denote as before

Σ = {x = (xm)∞m=0 : xm ∈ {1, · · · , k}}

with the Tychonoff product topology. The shift map σ : Σ → Σ is a local
homeomorphism defined by (σx)m = xm+1. The kth level cylinder is defined
by,

[x0, . . . , xk−1] = {(im)∞m=0 ∈ Σ : im = xm for 0 ≤ m ≤ k − 1} ,

(i.e., all sequences which begin with x0, . . . , xk−1). We denote by Wk =
{[x0, . . . , xk−1]} the set of all kth level cylinders (of which there are precisely
kn).

Notation For a sequence i ∈ Σ and a symbol r ∈ {1, . . . , k} we denote by
kr(i) = card{0 ≤ m ≤ k− 1 : im = r} the number of occurrences of r in the
first k terms of i.

Consider a probability vector p = (p0, . . . , pn−1) and define the Bernoulli
measure of any kth level cylinder to be,

µ([i0, . . . , ik−1]) = p0
k0(i)p1

k1(i) · · · pn−1
kn−1(i).

A probability measure µ on σ is said to be invariant under the shift map if
for any Borel set B ⊂ X, µ(B) = µ(σ−1(B)). We say that µ is ergodic if
any Borel set B ⊆ Σ such that σ−1(X) = X satisfies µ(X) = 0 or µ(X) = 1.
A Bernoulli measure is both invariant and ergodic.

We now introduce the concept of entropy. Entropy We start by defining
entropy for general ergodic systems before going back to shift spaces. All of
the details given here can be found in Chapter 4 in [?]. Let (X,B , µ) be a
probability space and let T : X → X be a measure persevering transforma-
tion. A partition of (X,B , µ) is a finite or countable collection of elements
in B whose union is X. For example if we take X = Σn, B to be the stan-
dard sigma algebra for Σn and µ to be evenly weighted Bernoulli measure
the cylinders {[0], . . . , [n− 1]} form a partition of Σn. For a finite partition
A = {A1, . . . , Am} we define

Hµ(A) = −
m∑
i=1

µ(Ai) log(µ(Ai)).

For two partitions A = {A1, A2, . . . , Am} and C = {C1, . . . , Cl} we define
the join to be,

A ∨ C = {Ai ∩ Cj : 1 ≤ i ≤ m, 1 ≤ j ≤ l}.
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This definition also holds for countable partitions. The partition T−k(A)
for k ∈ is defined as,

T−k(A) = {T−k(A1), T−k(A2), . . . , T−k(Am).

We define the entropy of T with respect to A to be,

hµ(T,A) = lim
k→∞

1

k
H
(
∨k−1
i=0 T

−1A
)
.

This limit is shown to exist in [?]. The entropy of the transformation can
now be defined as,

hµ(T ) = suph(T,A).

To directly calculate the entropy of a transformation using this definition is
usually extremely difficult. The idea of a generating partition often makes
the calculation much easier. A countable partition A is said to be a gener-
ating partition if

∨∞k=−∞T
n(A) = B

where B is the Borel sigma algebra for the measure space. If A is a generator
and Hµ(A) <∞ then hµ(T ) = hµ(T,A).

We now return to Σn. In this case the set of cylinders {[0], . . . , [n− 1]}
is a generating partition.

Definition 24. For any ergodic and invariant measure µ on Σ the entropy
of µ is defined to be the value

hµ(σ) = lim
k→∞

−1

k

∑
ωk∈Wk

µ(ωk) log(µ(ωk)).

In particular, for a Bernoulli measure µ associated to a probability vector
p = (p0, . . . , pn−1) the entropy can easily seen to be simply

hµ(σ) = −
n−1∑
i=0

pi log pi.

An important classical result for entropy is the following.

Theorem 31 (Shannon-McMillan-Brieman Theorem). Let µ be an ergodic
σ-invariant measure on Σ. For µ almost all i ∈ Σ,

lim
k→∞

−1

k
logµ([i0, . . . , in−1]) = hµ(σ).

We can define a continuous map Π : Σ→ Λ by Π(i) = limk→∞ Ti0 · · ·Tik(0).
We can associated to a probability measure µ on Σ a measure ν on Λ defined
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by ν = µ ◦Π−1
λ . In particular, when µ is a p-Bernoulli measure the measure

ν satisfies,

ν(A) =
n−1∑
i=0

piν(f−1
i (A)).

In the case where all the contractions T1, . . . , Tk are similarities it is
possible to use the Shannon-Mcmillan-Brieman Theorem to get an upper
bound on the Hausdorff dimension of ν. Let Ti have contraction ratio |T ′i | =
ri < 1, say, and let

χ =
n−1∑
i=0

pi log ri < 0

be the Lyapunov exponent of ν.

Proposition 15. Consider a conformal linear iterated function scheme
T1, · · · , Tk satisfying the open set condition. Let ν be the image of a Bernoulli
measure. Then

dimH(ν) =

∑n−1
i=0 pi log pi∑n−1
i=0 pi log ri

(
=
hµ(σ)

|χ|

)
Without the open set condition we still get an inequality ≤.

Proof. The idea is to apply Theorem 5.1 and Theorem 5.2.
For two distinct sequences ω, τ ∈ Σ we denote by |ω ∧ τ | = min{k :

ωk 6= τk} the first term in which the two sequences differ. For two sequences
ω, τ ∈ Σ we denote by |ω ∧ τ | = min{k : ωk 6= τk} the first term in which
the two sequences differ. Given ω, τ ∈ Σ let m = |ω ∧ τ |, then we define a
metric by

d(ω, τ) =

k−1∏
i=0

r
mi(ω)
i

(
=

k−1∏
i=0

r
mi(τ)
i

)
.

We can apply Theorem 5.1 (1). To show dim ν ≥ s for some s it is sufficient
to show that

lim inf
r→0

log ν(B(x, r))

log r
≤ s

for a.e. (ν) x ∈ Λ. Since ν = µ ◦ Π−1, it is sufficient to show that for
µ-almost all τ ∈ Σ,

lim inf
r→0

log ν(B(Π−1τ, r))

log r
≤ s.

A useful property of this metric d is that the diameter of any cylinder in the
shift space is the same as the diameter of the projection of the cylinder in
Rn. Fix τ ∈ Σn and let x = Π−1τ . For r > 0 there exists k(r) such that,

[i1, . . . , ik(r), ik(r)+1] ≤ 2r ≤ [i1, . . . , ik(r)]
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and k(r)→∞ as r → 0. Hence

lim
r→0

log(ν(B(x, r)))

log r
= lim

k→∞

log(µ([τ0, . . . , τk−1]))

log(diam([τ0, . . . , τk−1]))
.

(Without the open set condition ν(B(x, r)) can be much bigger than µ([τ1, . . . , τk(r)−1]).)

By the Shannon-McMillan-Brieman Theorem we have that,

lim
n→∞

1

n
log(µ([τ0, . . . , τn−1]))→

n−1∑
i=0

pi log pi = hµ(σ)

for µ almost all τ and by the Birkhoff Ergodic theorem we have that

lim
n→∞

1

n
log diam[τ0, . . . , τn−1]→

n−1∑
i=0

pi log ri = χ

for µ almost all τ . Hence for µ almost all τ where x = Πτ (or equivalently,
ν almost all x)

lim
r→0

log(ν(B(x, r)))

log r
=
hµ(σ)

χ
.

Thus by Theorem 5.1 and Theorem 5.2 the result follows .

It is follows from the proof that we still get an upper bound dimH(ν) if
we replace µ by any other ergodic σ-invariant measure on Σ or if we don’t
assume the Open Set Condition.

A more general statement is the following:

Proposition 16. Let T : X → X be a conformal expanding map on a
compact metric space. If µ is an ergodic invariant measure then the pointwise
dimension dµ(x) exists for µ-almost every x. Moreover

dµ(x) =
hµ(T )∫

X log |T ′| dµ

for µ-almost every x.

Proof. The proof follows the same general lines as above. Let P = {P1, . . . , Pk}
be an Markov partition for T and let Cn(x) = ∩n−1

i=0 T
−iPxi be a cylin-

der set containing a point x. By the Shannon-McMillan Brieman theorem
− 1
n logµ(Cn) → h(µ), a.e. (µ). By the Birkhoff Ergodic Theorem we ex-

pect 1
n log |diam(Cn)| ∼ − 1

n log |(Tn)′(x)| →
∫

log |T ′|dµ, a.e. (µ)
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10.1.1 Multifractal Analysis

For a measure µ on a set X we can ask about the set of points x for which
the limit

dµ(x) = lim
r→0

logµ(B(x, r))

log r

exists. Let Xα = {x : the limit dµ(x) = α} be the set for which the limit
exists, and equals α. There is a natural decomposition of the set X by “level
sets”:

X =
⋃
−∞ < α <∞Xα ∪ {x ∈ X | dµ(x) does not exist} .

To study this decomposition one defines the following:

The dimension spectrum is a function fµ : R → [0, d] given by fµ(α) =
dimH(Xα), i.e., the Hausdorff dimension of the set Xα.

The “multifractal analysis” of the measure µ describes the size of the
sets Xα through the behaviour of the function fµ.

Example 56. Let us consider an iterated function scheme T1, . . . , Tk with
similarities satisfying the open set condition. Consider the Bernoulli mea-
sure µ associated with the vector (p1, . . . , pk). We have already seen that:

1. dµ(x) exists for a.e. (µ) x and is equal to dimH(µ). (In this particular case,

this limit is equal to
∑k
i=1 pi log pi∑k
i=1 pi log ri

).

We claim that the following is also true.

”(2)” Except in the very special case pi = r
dimH(Λ)
i , for i = 1, . . . , k, there is

an interval (a, b) containing dimH(Λ) such that fµ : (a, b)→ R is analytic.

=2.0in multifractal.eps

Multifractal analysis describes the size of sets Xα for which the pointwise
dimension is exactly α.

Sketch proof of (2). For each α, we can write

Xα = Π

{
x ∈ Σ : lim

n→+∞

∑n
j=1 log pxj∑n
j=1 log rxj

= α

}
.

For each q ∈ R, we can choose T (q) ∈ R such that P (−T (q) log |rx0 | +
q log px0) = 0. There exists an associated Bernoulli measure νq and constants
C1, C2 > 0 such that

C1 ≤
νq([i1, · · · , in])∏n−1

i=0 exp (−T (q) log rxi + q log pxi)
≤ C2. (5.1)
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Furthermore, we associate to q the particular value

α(q) =

∫
log px0dνq∫
log rx0dνq

.

For a.e. (νq) x ∈ Xα(q) we have that dνq(x) = α(q) by the Birkhoff er-
godic theorem and the definition of Xα. In particular, νq(Xα) = 1. 1 If
(r1, . . . , rk) 6= (p1, . . . , pk) then fν(α) and T (q) are strictly convex (and are
Legendre transforms of each other).

We then claim that:

”(a)” α(q) is analytic

”(b)” fν(α(q)) = (dimHXα(q)) = T (q) + qα(q). and then (2) follows.
For part (a) observe that since P (·) is analytic, we deduce from the

Implicit Function Theorem that the function T (q) is analytic as a function
of q. Observe that T (0) = dimH X. We can check by direct computation
that T ′(q) ≤ 0 and T ′′(q) ≥ 0.

Part (b) follows from the observation that dνq(x) = T (q) + qα(q) for a.e.
x ∈ Kα and d̄νq(x) = T (q) + qα(q) for all x ∈ Kα by (5.1). We then apply
Theorem 5.1 and Theorem 5.2.

Example 57 (Expanding maps). Let T I → I be an expanding transfor-
mation on the unit interval I. Let µ be a T -invariant ergodic probability
measure. We say that µ is a Gibbs measure if φ(x) = log dµT

dµ is piecewise

C1 (or merely Hölder continuous would suffice. The most familiar example
of a Gibbs measure is given by the following.

Proposition 17 (‘Folklore Lemma’). There is a unique absolutely continu-
ous invariant probability measure ν (i.e., we can write dν(x) = ρ(x)dx).

The main result is the following.

Proposition 18. Assume that µ is a Gibbs measure (but not ν):

1. The pointwise dimension dµ(x) exists for µ-almost every x ∈ I. Moreover,
dµ(x) = dµ ≡ hµ(T )/

∫
X log |T ′| dµ for µ-almost every x ∈ I.

2. The function fµ(α) is smooth and strictly convex on some interval (αmin, αmax)
containing dµ.

Let ψ be a positive function defined by logψ = φ − P (φ), where P (φ)
denotes the pressure of φ. Clearly ψ is a Hölder continuous function on
I such that P (logψ) = 0 and µ is also the equilibrium state for logψ.
We define the two parameter family of Hölder continuous functions φq,t =
−t log |T ′|+ q logψ. Define the function t(q) by requiring that P (φq,t(q)) = 0
and let µq be the equilibrium state for φq,t(q)

1We can also identify α(q) = −T ′(q), then it has a range [α1, α2] ⊂ R+.
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10.2 Computing Lyapunov exponents

In many examples, the Lyapunov exponents
∫

log |T ′(x)|dµ(x) can be com-
puted in much the same way that Hausdorff dimension was. More precisely,
this integral can be approximated by periodic orbit estimates. In the interests
of definiteness, consider the absolutely continuous T -invariant measure ν.

Lemma 47. Let

mn =

∑
x∈Fix(Tn) δx/|(Tn)′(x)|∑
x∈Fix(Tn) 1/|(Tn)′(x)|

, n ≥ 1,

where Fix(Tn) = {x ∈ [0, 1] : Tnx = x} and δx is the Dirac measure sup-
ported on x. Then mn → µ in the weak-star topology.

However, for any f ∈ Cω([0, 1]) we have exponential convergence, i.e., ∃0 <
θ < 1, C > 0 such that |

∫
fdmn −

∫
fdµ| ≤ Cθn.

Aim. We will present a different family of invariant measures µM with
super-exponential convergence for f ∈ Cω([0.1]), i.e., ∃0 < θ < 1, C > 0
such that |

∫
fdµn −

∫
fdµ| ≤ Cθn2

.

For example, taking f(x) = log |T ′(x)| gives approximations to the metric
entropy h(µ). Similarly, taking f(x) = e2πinx, n ∈ Z gives approximations to

the Fourier coefficients
µ̂(n) =

∫ 1
0 e

2πinxdµ(x) of µ.

For definiteness, let us consider the case of the absolutely continuous
invariant measure ν. We construct the family of approximating measures by
a more elaborate regrouping of the periodic points to define new invariant
probability measures. Let λn be the sequence of numbers given by

λn =
∑

k=(k1,...,km),k1+...+km≤n

(−1)mr(k)

m!

 ∑
i=1,...,mx∈Fix(Tki )

ki log |T ′(x)|


∑
k=(k1,...,km),k1+...+km≤n

(−1)mr(k)
m!

(∑
i=1,...,mx∈Fix(Tki )

ki

)
where we write

r(k) =

m∏
j=1

∑
z∈Fix(Tkj )

1

kj |(T kj )′(z)− 1|
.

and Fix(Tn) = {x ∈ [0, 1] : Tnx = x}.
We have the following superexponentially converging estimate.
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Theorem 32. If T : [0, 1]→ [0, 1] is a Cω piecewise expanding Markov map
with absolutely continuous invariant measure µ then there exists C > 0 and
0 < θ < 1 with |λn −

∫
log |T ′| dν| ≤ Cθn2

Example 58. Consider the family T 1
4π

: [0, 1]→ [0, 1] defined by

T 1
4π

(x) = 2x+ ε sin 2πx (mod 1),

for − 1
2π < ε < 1

2π .

=2.0in graphexponent.eps
A plot of the non-linear analytic expanding map of the interval T 1

4π
(x) =

2x+ ε sin 2πx (mod 1)

We can estimate the Lyapunov exponent
∫

log |T ′1/4π| dν in terms of the
estimates

λn →
∫

log |T ′1/4π| dν [super-exponential rate]

n using λn

6 0.6837719
7 0.68377196
8 0.68377196024
9 0.6837719602421451

10 0.6837719602421451396
11 0.683771960242145139619160
12 0.68377196024214513961916071



Chapter 11

Besicovich and Multifractal
Analysis

Besicovich studied the dimension of the set of points in the unit interval for
which the frequency of the digits takes given values. For the purposes of
illustration, we will consider the dyadic expansions, to base 2. Given

x =

∞∑
n=1

xn
2n

where xn ∈ {0, 1} we can ask what the frequency of the digits xn.

Definition 25. Given α ∈ R we let

Aα =

{
x =

∞∑
n=1

xn
2n

: lim
N→+∞

1

N

N∑
n=1

xn = α

}
.

For a full measure set of x we can show using the Birkhoff Ergodic
Theorem that for α = 1

2 the set A1/2 has full Lebesgue measure.

Theorem 33 (Besicovich). For any 0 < α < 1,

dim(Aα) = −α logα− (1− α) log(1− α).

The proof uses the following result.

Lemma 48. Let ν be a probablity measure and let fn ∈ L2(X, ν) be an othog-
onal family of functions, i.e.,

∫
fijjdν(x) = 0 for i 6= j, with

∫
|fi(x)|dν(x) ≤

1. Then

1

N

N∑
n=1

fn(x)→ 0

for almost all x (with respect to ν.)

143
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We can define a measure ν which on the dyadic intervals

µ

([
N∑
n=1

xn
2n
,

N∑
n=1

xn
2n

+
1

2N

])
= α

∑N
n=1 xn(1− α)N−

∑N
n=1 xn .

We begin with then following observation which illustrates why this mea-
sure is useful.

Claim 1. ν(Aα) = 1

Proof of claim 1. Let us define fn(x) = xn−α. Then Aα is the set of points
x for which

1

N

N∑
n=1

fn(x)→ 0.

To show this is a set of full ν measure we want to apply the previous lemma.
This requires proving two properties:

1.
∫
fsndν ≤ ‖fn‖∞ ≤ 1.

2. To show orthogonality, we can write∫
fnfmdν =

∫
(xn − α)(xn − α)dν(x)

= (−α)2ν([0, 1/4])− α(1− α)(ν[1/4, 3/4]) + α2ν([3/4, 1])

but then ν([0, 1/4]) = α2, ν([3/4], 1) = (1 − α)2 and ν[1/4, 3/4] =
2α(1− α). Thus we can see

∫
fnfmdν = 0 for n 6= m.

We next need Billingsley’s lemma. Let In(x) be the nth level dyadic
interval containing x.

Lemma 49. Billingsley] Let µ be a finite measure on [0, 1]. Let A ⊂ [0, 1]
with ν(A) > 0. Let 0 ≤ α1 ≤ α2 with

α1 ≤ lim inf
n→+∞

logµ(In(x))

log(1/2n)
≤ α2

for all x ∈ A then α1 ≤ dimH(A) ≤ α2.’

Proof. The upper bound implies that

lim sup
n→+∞

µ(In(x))

1/2nα2
≥ 1

We can fix ε > 0 and choose an open set V ⊃ A with µ(V ) close to µ(A).
For every x ∈ A we can choose n sufficiently large that

µ(In(x))

1/2nα2
> C.
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covers A and let {Jk} be a disjoint subcover. Let n(x) be the smallest n
satisfying this inequality and als 2n < ε and In(x) ⊂ V .

By assumption {In(x)(x)} covers A and let {Jk} be a disjoint subcover.
Clearly diam(Jk) ≤ ε for each k, and∑

k

|Jk|α ≤
∑
k

µJk) ≤ µ(V )

In particular, we can deduce

Hα
ε (A) ≤ µ(A)/C (3)

and since the right hand side of (3) is independent of ε we have that

Hα(A) ≤ µ(A)/C (3)

The lower bound implies

lim sup
n→+∞

µ(In(x))

1/2nα1
≤ 1.

Let
Am = {x ∈ A : µ(In(x)) < Cdiam(|In(x)|) for all n > m}

Since A = ∪mAm and Am+1 ⊃ Am we have that µ(A) = limm→+∞ µ(Am)
and thus it suffices to prove the result for Am.

Fix ε < 2−m and consider an cover of A by dyadic intervals. Then∑
k

|Jk|α ≥
∑
k

µ(Jk) ≥
µ(Am)

C

Thus Hαε (X) ≥ µ(Am)
C . Letting ε→ 0 and m→ +∞ gives the result.
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Chapter 12

IFS and overlaps

12.1 One dimensional Iterated Function Schemes
with overlaps

In this chapter we shall consider one dimensional iterated function schemes
with over laps (i.e., such that the Open set condition fails). In this context
we will concentrate on two particular examples. We will be interested in:
the Hausdorff dimension of the limit set; and the properties of naturally
associated measures (absolute continuity, dimension, etc.), The key tool in
our study here is the application of the so called “transversality method”
which helps in showing certain integrals are finite. We have already seen
this in another guise, in the proofs in the previous chapter.

7.1 Transversality: Properties of Power Series A general result about
when specific power series satisfy a transversality condition is given. Let Fb
be a family of analytic functions such that f(0) = 1 and whose coefficients
are real numbers that lie all in an interval [−b, b], for some b > 0, i.e.,

Fb =

{
f(t) = 1 +

∞∑
k=1

ckt
k : ck ∈ [−b, b]

}
.

In practise, we shall only need to consider the case where b ∈ N. Of course,
every function f ∈ Fb converges on the interval (−1, 1). 1 We now define,

y(b) = min{x > 0 : ∃f ∈ Fb where f(x) = f ′(x) = 0},

i.e., the first occurrence of a double zero for any function Fb.

=2.25in transversality.eps

1Of course, the power series converges on the unit disk D on the complex plane. As an
aside, we recall that any analytic function F : D → C which is simple (i.e., it is one-one
onto its image) must necessarily have a bound on its coefficients of the form |ck| ≤ k
(Bieberbach Conjecture)
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The dotted line shows the function which has the first double zero (at
y(b)). Any other function which gets δ-close to the horizontal axis before
y(b)− ε must have slope at least δ (in modulus).

The basic idea is that we can deal with real valued functions f ∈ Fb on
an interval [0, y(b) − ε], for any δ > 0, which have the property that when
they cross the x-axis their slope has to be bounded away from zero. For
example, when δ > 0 a function is said to be δ-transversal if whenever its
graph comes within δ of t-axis then its slope is at most −δ or at least δ (i.e,
|f(t)| ≤ δ implies |f ′(t)| ≥ δ). In particular, given ε > 0 we can find δ = δ(ε)
such that every f ∈ Fb is δ-transversal on [0, y(b)− ε].

Claim It is possible to numerically compute y(1) ≈ 0.649 . . . and also to
show that y(2) = 0.5.

Example Consider the series f(t) = 1 −
∑∞

k=1 t
k = 1 − t

1−t ∈ F1 (with

b = 1). The first zero is at t = 1
2 < y(1) but the derivative f ′(t) = − 1

(1−t)2

takes the value f ′(1
2) = −4 < 0.

Approach to Claim To illustrate the method consider the case b = 1.
The basic idea is to consider functions h ∈ F1 of the special form

h(x) = 1−
k−1∑
i=1

xi︸ ︷︷ ︸
x−xk+1

1−x

+akx
k +

∞∑
i=k+1

xi︸ ︷︷ ︸
xk+1

1−x

(7.1)

with |ak| ≤ 1. We claim that if we can find any such function, a value
0 < x0 < 1 and 0 < δ < 1 such that h(x0) > δ and h′(x0) < −δ then
y(1) ≥ x0. More precisely, for f ∈ Fb we have that if g(x) < δ then
g′(x) < −δ.
Observation: By construction h′′(x) is a power series with at most one sign
change, and thus has at most one zero on (0, 1). In particular, h(x) > δ and
h′(x) < −δ for all 0 ≤ x ≤ x0.

There are two cases to consider:

If k = 1 then h′(0) = a1. In particular, h′(0) < h′(x0) < −δ (by the
observation above); and

If k 6= 1 Then h′(0) = −1 < −δ.
Let g ∈ Fb and let

f(t) := g(t)− h(t) = 1 +

k−1∑
i=1

(bn − 1)︸ ︷︷ ︸
ci≥0

ti −+ (ak − bk)︸ ︷︷ ︸
ck

tk −
∞∑

i=l+1

(1− bi)︸ ︷︷ ︸
ci≥0

ti.

(7.2)
Since for 0 ≤ x ≤ x0 we have h(x) > δ then if g(x) < δ we have that

f(x) = g(x)− h(x) < 0. However, because of the particular form of f(x) in
(7.2), with positive coefficients followed by negative coefficients, one easily
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sees that f(x) < 0 implies f ′(x) = g′(x) − h′(x) < 0. Finally, since by the
observation h′(x) < −δ we deduce that g′(x) < −δ, as required.

In particular, if let

h(x) = 1− x− x2 − x3 +
1

2
x4 +

∞∑
i=5

xi

then one can check that h(2−2/3) > 0.07 and h′(2−2/3) < −0.09 and so
y(1) ≥ 2−2/3 A more sophisticated choice of h(x) leads to the better bounds
described above.

A general result shows the following.
Proposition 7.1 The function y : [1,∞) → [0, 1] is strictly decreasing,

continuous and piecewise algebraic function. Moreover,

y(b) ≥ (
√
b+ 1)−1 for 1 ≤ b < 3 +

√
8; and

y(b) = (
√
b+ 1)−1 for b ≥ 3 +

√
8 The proof uses a variation on the proof of

the claim above.
The following technical corollary is crucial when trying to use the transver-

sality technique to calculate the dimension or measure of the limit sets for
self-similar sets.

Proposition 7.2 (“Transversality Lemma”) Let b > 0.

Given 0 < s < 1 there exists K > 0 such that∫ y(b)

0

dλ

|f(λ)|s
≤ K,

for all f ∈ Fb;
There exists C > 0 such that,

Leb{0 ≤ λ ≤ y(b) : |f(λ)| ≤ ε} ≤ Cε.

for all f ∈ Fb and all sufficiently small ε > 0. Proof To see part (1), we can
write

[0, y(b)] = {x ∈ [0, y(b)] : |f(x)| > δ}︸ ︷︷ ︸
=:S1

∪{x ∈ [0, y(b)] : |f ′(x)| > δ}︸ ︷︷ ︸
=:S2

.

In particular, we can bound∫ y(b)

0

dλ

|f(λ)|s
≤
∫
S1

dλ

|f(λ)|s
+

∫
S2

dλ

|f(λ)|s
≤ 1

δs
+

1

δs

For part (2) we need only observe that if |f(x)| ≤ ε ≤ δ then x is con-
tained in an interval I upon which −ε ≤ f(t) ≤ ε is monotone and, by
δ-transversality, we have that |f ′(t)| ≥ δ. In particular, the length of I is
at most (2/δ)ε and I contains a zero. The result easily follows form the
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observation that the number of zeros of f is uniformly bounded. (For exam-
ple, by Jenson’s formula from complex analysis the number n(x0) of zeros
z1, · · · , zn(x0) (ordered by modulus) of f(z) with |zi| < x0 satisfies

n(x0)∏
i=1

x0

|zi|
= exp

(∫ 2π

0
log |f(reiθ)|dθ

)
≤ 1 +

bx0

1− x0

and we also have

n(x0)∏
i=1

x0

|zi|
≥

n(x0−ε)∏
i=1

x0

|zi|
≥
(
x0 − ε
x0

)n(x0−ε)
.

Comparing these two expressions gives a uniform bound. The first part
is extremely useful when proving theorems involving generic conclusions.
The second part is useful in the case when we wish to show that a class
of self-similar sets have positive Lebesgue measure for almost all parameter
values.

7.2 The {0, 1, 3}-Problem We want to describe the dimension of certain
self-similar sets where the images of the similarities overlap. Given 0 < λ <
1, let {T0, T1, T2} be an iterated function scheme on R where,

T0(x) = λxT1(x) = λx+ 1T2(x) = λx+ 3.

Observe that:

”(i)” For λ ∈ (0, 1
4) the Open Set Condition holds (since Ti([0, 1])∩Tj([0, 1]) =

∅, for i 6= j) and the dimension of the associated limit set Λ(λ) is dimH Λ(λ) =
dimB Λ(λ) = − log 3

log λ , by Moran’s Theorem.

”(ii)” When λ ∈ (1
4 ,

1
3) the Open Set Condition does not hold, and we

only know that dimH Λ(λ) ≤ dimB Λ(λ) ≤ − log 3
log λ . The problem of whether

dimH Λ(λ) = − log 3
log λ holds for a specific value of λ is far from well understood,

in general. This class of problems was studied by Keane, Smorodinsky and
Solomyak. In particular they showed:

”(iii)” For 2
5 < λ < 1 we have that Λ(λ) is an open interval.

A generic description of the behaviour of dimH(Λ(λ)) in the region (1
4 ,

1
3)

is given by the following result.

Theorem 7.3

”(a)” For almost all λ ∈ (1
4 ,

1
3 ],

dimH Λ(λ) = dimB Λ(λ) = − log 3

log λ
;

and
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”(b)” There is a dense set of values D ⊂ (1
4 ,

1
3 ] such that for λ ∈ D we have

that dimH Λ(λ) ≤ dimB Λ(λ) < − log 3
log λ

=2.25in zeroonethree.eps
In the range 0 < λ ≤ 1

4 we always have dimH Λ(λ) = − log 3/ log λ; but
for 1

4 < λ ≤ 1
3 we only know the result for a.e. λ; for 2

5 < Λ < 1 we always
have dimH Λ(λ) = 1.

Proof To prove part (a), it is first easy to see from the definitions that
dimH Λ(λ) ≤ dimB Λ(λ) ≤ − log 3

log λ . We now consider the opposite inequality.

Let µ = (1
3 ,

1
3 ,

1
3)Z

+
be the usual (1

3 ,
1
3 ,

1
3)-Bernoulli measure on the space

of sequences Σ = {0, 1, 2}Z+
. For any 0 < λ < 1 we can define the map

Πλ : Σ→ R by

Πλ(i) =
∞∑
k=0

ikλ
k.

Thus on each possible attractor Λ(λ) a self-similar measure νλ can be defined
by νλ = µ ◦Π−1

λ . Given ε > 0 let sε(λ) = − log 3
log(λ+ε) . Note that the proof can

be completed (as in the proofs in the previous chapter) if it can be shown
that,

I =

∫ 1
3

1
4

(∫ ∫
dνλ(x)dνλ(y)

|x− y|sε(λ)

)
dλ <∞

for all ε > 0. In particular, the finiteness of the integrand, for almost all
λ, allows us to deduce that for those values dimH Λ(λ) ≥ sε(λ). Since the
value of ε > 0 is arbitrary, we get the lower bound dimH Λ(λ) ≥ − log 3

log λ .
Using the map Πλ the inner two integrals can be rewritten in terms of

the measure µ on Σ and we can rewrite the last expressions as

I =

∫ 1
3

1
4

(∫ ∫
dµ(i)dµ(j)

|Πλ(i)−Πλ(j)|sε(λ)

)
dλ.

We then turn I into a product of two expressions. More precisely, let t =
max 1

4
≤λ 1

3
sε(λ) and note that t < 1. In particular, if i 6= j then they agree

until the |i ∧ j|-th term and we can write

|Πλ(i)−Πλ(j)|sε(λ) = λ|i∧j|sε(λ)

( ∞∑
k=0

akλ
k

)sε(λ)

≥
(

1

3
+ ε

)sε(λ)|i∧j|
( ∞∑
k=0

akλ
k

)t
,

where {ak}k∈Z+ is the sequence ak := ik+|i∧j| − jk+|i∧j| ∈ {0,±1,±2,±3}
and a0 6= 0. Substituting this back into the integrand in I and using Fubini’s
Theorem we get

I ≤
∫

Σ

∫
Σ

dµ(i)dµ(j)(
1
3 + ε

)|i∧j|
(∫ 1

3

1
4

dλ

(
∑∞

k=0 akλ
k)
t

)
. (7.3)
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We can estimate the first integral in (7.3) by∫ ∫
dµ(i)dµ(j)(

1
3 + ε

)|i∧j| ≤ ∞∑
k=0

∑
[i0,i1,...,ik−1]

µ([i0, i1, . . . , ik−1])(
1
3 + ε

)k =

∞∑
k=0

1
3

k(
1
3 + ε

)k <∞.
Thus to show that I < ∞ it remains to bound the second integral in (7.3)
by ∫

dλ

(
∑∞

k=0 akλ
k)
t <∞

for any sequence {ak}k∈Z+ , where ak ∈ {0,±1,±2} and a0 6= 0. Let f(λ) =

1 +
∑∞

k=0

(
ak
a0

)
λk then we can apply part (1) of Proposition 7.1 to deduce

that the integral is finite, since y(2) ≥ 1
3 .

To prove part (b), we need only observe that if for some n we can find
distinct (i1, . . . , in), (j1, . . . , jn) ∈ {0, 1}n such that

n∑
k=1

ikλ
k =

n∑
k=1

jkλ
k

then at the n-th level of the construction at least two of the 2n intervals of
length λn coincide. In particular, it is easy to see that

dimB(Λ(λ)) ≤ −n− 1

n

log 3

log λ
.

It is then an easy to matter to show that the set D of such λ is dense in
(1

4 ,
1
3).
Remark It is also possible to show a corresponding result where generic λ

is understood in a topological sense: for λ is a dense Gδ set (i.e., a countable
intersection of open dense sets).

Remark Of course one can prove somewhat similar results where {0, 1, 3}
is replaced by some other finite set of numbers. These are usually called
deleted digit expansions.

7.3 The Erdös-Solomyak Theorem We recall some results about the prop-
erties of self-similar measures. Let λ ∈ (0, 1). We let,

T0(x) = λxT1(x) = λx+ 1.

Let ν = νλ be a measure such that for all J ⊂
[
0, 1

1−λ

]
,

ν(J) =
1

2
ν(T−1

0 (J)) +
1

2
ν(T−1

1 (J)). (7.4)

In fact, is unique probability measure satisfying this identity called the self-
similar measure. Equivalently, we say this is a Bernoulli convolution with
respect to p = (1

2 ,
1
2).
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In particular, we wish to know whether the measures νλ are absolutely
continuous or not (i.e., whenever B is a Borel set with Leb(B) = 0 then
νλ(B) = 0). To begin with, it is an easy exercise to see that if 0 < λ < 1

2
then the Iterated Function Scheme {T0, T1} satisfies the Open Set Condition,
thus Λ(λ) is a Cantor set with

dimH(Λ(λ)) = − log 3

log λ
,

by Moran’s Theorem and, in particular, has zero Lebesgue measure. Thus
νλ is singular with respect to Lebesgue measure.

Jessen-Wintner Theorem The measure νλ is either absolutely continuous
or singular with respect to Lebesgue measure Leb (i.e, either every set B
with Leb(B) = 0 satisfies νλ(B) = 0, or there exists a set B with Leb(B) = 0
and νλ(B) = 1).

Proof Every measure νλ can be written in the form νλ = νabs + νsing,
where νabs << Leb and νsing ⊥ Leb (This is the Lebesgue decomposition
theorem). However, substituting into (7.4) we see that both νabs and νsing

satisfy the identity. By uniqueness we have that one of them must be zero.

Next we recall one of the classical theorems in Harmonic Analysis. Let
us define the Fourier transform ν̂ : R→ R by

ν̂(u) =

∫
eiutdν(t), for u ∈ R.

The following result describes the behaviour of ν̂(u) as |u| → +∞.

Riemann-Lebesgue Theorem If the measure ν is absolutely continuous
then ν̂(u)→ 0 as |u| → +∞.

We can use the Riemann-Lebesgue Theorem to show that for some value
of λ ∈ [1

2 , 1] the measure νλ is singular.

Pisot Numbers We recall that θ > 1 is an algebraic integer if it is a zero
of a polynomial P (x) = xn+an−1x

n−1 +· · ·+a1x+a0 with an−1, . . . , a0 ∈ Z.
Let θ1, . . . , θn−1 ∈ C be the other roots of P (x). We call λ a Pisot Number
if |θ1|, · · · , |θn−1| < 1.

Clearly, there are at most countably many Pisot numbers (since there
are at most countably many such polynomials P (x)). The smallest Pisot
numbers are θ = 1.3247 · · · (which is a root for x3−x−1) and θ = 1.3802 · · ·
(which is a root for x3−x−1). However, perhaps the most important feature
of these numbers is the following:

min
k∈N
|θn − k| = O(Θn) as n→ +∞

where Θ = max{|θ1|, . . . , |θn−1|} < 1.

The following highly influential Theorem was published by Erdös in 1939.
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Erdös’s Theorem If θ := 1/λ is a Pisot number then the measure νλ is
singular.

Proof This is based on the study of the Fourier Transform of the measure
νλ. In fact, if we let δ(x) be the Dirac measure on x ∈ R then

1

2n

∑
i1...in∈{0,1}

δ

 n∑
j=1

ijλ
j

→ νλ

(where convergence is in the weak star topology) as n → +∞, and so we
can write

ν̂λ(u) :=

∫ ∞
−∞

eitxdνλ(x) = lim
n→∞

n∏
k=0

(
e−iuλ

k
+ eiuλ

k

2

)

For a Pisot number θ we can choose for each n ≥ 1 a natural number kn ∈ N
such that |θn − kn| = O(Θ−n). In particular, if we let u ∈ N then we can
show that there exists c > 0 such that

n∏
k=0

(
e−iuλ

k
+ eiuλ

k

2

)
> c for all n ≥ 0

In particular, we can bound infm∈N νλ(m) > 0. Thus νλ(u) 6→ 0 as u→ +∞.
By the Riemann-Lebesgue Lemma νλ is not absolutely continuous. Thus,
by the Jessen-Wintner theorem, we deduce that νλ is singular.

Erdös also showed the following:

”(i)” If λ = 2−1/k, for some k ≥ 1, then νλ is absolutely continuous; and

”(ii)”There exists ε > 0 such that for almost all λ ∈ [1 − ε, 1] the measure
νλ is absolutely continuous. He went onto conjecture that for almost all
λ ∈ [1

2 , 1] the measure is absolutely continuous. This was eventually proved
in 1995 by Solomyak:

Erdös-Solomyak Theorem For almost all λ ∈ [1
2 , 1] the measure νλ is

absolutely continuous.
There is a useful criteria for the measure νλ to be absolutely continuous.
Absolute Continuity Lemma The measure νλ is absolutely continuous if∫ (

lim inf
r→0

νλ(B(x, r))

2r

)
dνλ(x) <∞.

Proof of the Absolute Continuity theorem From the hypotheses we see

that for a.e. (νλ) x we have that D(x) :=
(

lim infr→0
νλ(B(x,r))

2r

)
< +∞.

It therefore suffices to show that if leb(A) = 0 and u > 0, then the set
Xu := {x ∈ A : D(x) ≤ u} satisfies νλ(Xu) = 0.

Let us fix ε > 0. For each x ∈ Xu we can choose a sequence ri ↘ 0
with µ(B(x, ri))/2ri ≤ u + ε. Let us denote A = Xu. By the Besicovitch
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covering lemma, we can choose a cover {Bi} with is a union of two families

{B(0)
i }∪ {B

(1)
i } (each of which consists of balls which are pairwise disjoint).

In particular, let us assume that µ(∪iB(0)
i ) > 1

2 . In particular, we can bound

µ(A− ∪iB(0)
i ) ≤ µ(A)− µ(∪iB(0)

i ) ≤ 1

2
µ(A),

for η > 0. We can proceed inductively, replacing A by A− ∪iB(0)
i . Finally,

taking the union of the families of balls at each step we arrive at a countable
family of balls {Bi} such that:

µ(Xu − ∪iBi) = 0; and

µ(Bi) ≤ (u+ ε)λ(Bi) = (u+ ε)2ri In particular,

µ(Xu) ≤
∑
i

µ(Bi) ≤ (u+ ε)
∑
i

λ(Bi) ≤ (u+ ε)(leb(Xu) + ε).

In particular, since ε > 0 is arbitrary we have that µ(Xu) ≤ uleb(Xu) =
0.

We follow a variation on Solomyak’s original proof (due to Peres and
Soloymak) which makes use of this lemma.

Proof of the Erdös-Solomyak Theorem We will also let µ = (1
2 ,

1
2)Z

+

be the usual (1
2 ,

1
2)-Bernoulli measure defined on the sequence space, Σ =

{0, 1}BbbZ+
. As usual, we let Πλ : {0, 1}N → R be defined by,

Πλ(i) =
∞∑
n=0

inλ
n.

We can also write νλ = ΠΛµ (i.e., νλ(B) = µ(Π−1
Λ B) for all intervals B ⊂ R).

To begin with, we want to show that νλ is absolutely continuous for a.e.
λ ∈

(
1
2 , y(2)

)
, where y(2) = 0.68 · · · . In this case, it is sufficient to show for

any ε > 0

I =

∫ y(2)

1
2

+ε

(∫
lim inf
r→0

νλ(B(x, r))

2r
dνλ(x)

)
dλ <∞.

In particular, since ε > 0 is arbitrary we can then deduce that for almost
every λ ∈

(
1
2 , y(2)

)
we have that the integrand is finite. Thus for such λ we

can apply the previous lemma to deduce that νλ is absolutely continuous,
as required.

The first step is to apply Fatou’s Lemma (to move the lim inf outside of
the integral) and then reformulate the integral in terms of integrals on the
sequence space Σ. Thus

I ≤ lim inf
r→0

1

2r

∫ y(2)

1
2

+ε

(∫
νλ(B(x, r))dνλ(x)

)
dλ ≤ lim inf

r→0

1

2r

∫
1
2

+ε

(∫ y(2)

Σ

∫
Σ
{ω,τ :|Πλ(ω)−Πλ(τ)|≤r}dµ(ω)dµ(τ)

)
dλ.
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Applying Fubini’s Theorem bounds I (to switch the oder of the integrals)
gives

I ≤ lim inf
r→0

1

2r

∫
Σ

∫
Σ
Leb

{
λ ∈

(
1

2
+ ε, y(2)

)
: |Πλ(ω)−Πλ(τ)| ≤ r

}
dµ(ω)dµ(τ).

To simplify this bound observe that

|Πλ(ω)−Πλ(τ)| = λ|ω∧τ |g(λ)

where g(λ) ∈ Fλ for all ω, τ ∈ Σ. Thus by definition of y(2) and Proposition
7.2 we have that

Leb
{
λ ∈

(
1

2
+ ε, y(2)

)
: |Πλ(ω)−Πλ(τ)| ≤ r

}
≤ 2C

(
1

3
+ ε

)|ω∧τ |
r

for some C > 0. This allows us to bound:

I ≤ C
∫

Σ

∫
Σ

(
1

2
+ ε

)−|ω∧τ |
dµ(ω)d(τ) ≤ C

∫
Σ

( ∞∑
n=0

1

2n

(
1

2
+ ε

)−n)
d(τ) < +∞

which can be seen to be finite by simply integrating on the shift space.
Since ε > 0 is arbitrary, this shows that νλ is absolutely continuous for a.e.
λ ∈ [1

2 , y(2)].
We shall just sketch how to extend this result to the larger interval [1

2 , 1].
Recall from the proof of Erdös’s theorem that the Fourier transform of the
measure νλ takes the form

ν̂λ(u) =
∞∏
k=0

(
e−iuλ

k
+ eiuλ

k

2

)

and then we can write

ν̂λ(u) =
∏

k = 0k 6= 2 (mod) 3∞

(
e−iuλ

k
+ eiuλ

k

2

)
︸ ︷︷ ︸

=:ν̂′λ

×
∏

k = 0k = 2 (mod) 3∞

(
e−iuλ

k
+ eiuλ

k

2

)
.

Absolute continuity of ν ′λ would imply absolute continuity of νλ (since it is a
classical fact that convolving an absolutely continuous measure with another
measure gives an absolutely continuous measure again). However, modifying
the above proof we can replace Fb be F ′b ⊂ Fb in which the coefficients satisfy
c3i+1c3i+2 = 0 for all i ≥ 0. For such sequences one can show that the region
of transversality can be extended as far as x0 = 1/

√
2 and so we can deduce

that νλ is absolutely continuous for a.e. 1
2 < λ < 1√

2
. Finally, since we

can write ν̂λ(u) = ν̂λ2(u)ν̂λ2(λu) we can deduce that νλ is also absolutely
continuous for a.e. 1√

2
< λ < 1

21/4 . Proceeding inductively completes the
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proof. Remark The original proof of Solomyak used another
result from Fourier analysis: If ν̂λ ∈ L2(R) then νλ is absolutely continuous
and the Radon-Nikodym derivative dνλ

dx ∈ L
2(R). In particular, he showed

the stronger result that for a.e. 1
2 < λ < 1 one has dνλ

dx ∈ L
2(R).

Remark It is also possible to show that for a.e. λ we have dνλ
dx > 0 for

a.e. x ∈ [− 1
1−λ ,

1
1−λ ]. 7.4 Dimension of the measures νλ Unlike the case of

the {0, 1, 3}-problem, the limit set in the above example is an interval and
thus its Hausdorff dimension holds no mystery. However, the dimension of
the measure is still of some interest. We shall consider the slightly more
general of different Bernoulli measures. Let p = (p0, p1) be a probability
vector (i.e., 0 < p0, p1 < 1 and let p0 + p1 = 1).

Let νλ = νp0,p1

λ now denote the unique probability measure such that

νλ(J) = p0νλ(T−1
0 (J)) + p1νλ(T−1

1 (J)).

for all J ⊂
[
0, 1

1−λ

]
.

The main result on these measures is the following.
Theorem 7.4

For almost all λ ∈ [1
2 , y(1) = 0.649 . . .],

dimH ν
(p0,p1)
λ = min

(
p0 log p0 + p1 log p1

log λ
, 1

)
.

For almost all λ ∈ [pp0
0 p

p1
1 , y(1) = 0.649] we have that νλ is absolutely

continuous.
Unfortunately, it is not possible to move past the upper bound y(1)

on these intervals using properties of the Fourier transform ν̂λ (as in the
previous section) because this function is not as well behaved in the case of
general (p0, p1) as it was in the specific case of (1

2 ,
1
2) in the Erdös-Solomyak

Theorem.
Proof We shall show the lower bound on the dimension of the measure

in part (1). The proof of Part (2) is similar to that in the special case
p0 = p1 = 1

2 .

We let µ = µp0,p1 = (p0, p1)Z
+

denote the usual (p0, p1)-Bernoulli mea-

sure defined on the sequence space, Σ = {0, 1}Z+
. We again let Πλ : Σ→ R

be defined by,

Πλ(i) =
∞∑
n=0

inλ
n.

As usual, we have that ν
(p0,p1)
λ = µ(p0,p1) ◦ Π−1

λ . We shall use the following
lemma.

Claim For any α ∈ (0, 1] we have that for almost all λ ∈ [0.5, y(1) =
0.649 . . .]

dim ν
(p0,p1)
λ ≥ min

(
log((pα+1

0 + pα+1
1 )

1
α )

log λ
, 1

)
.
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Proof of Claim Fix (p0, p1) and let ε > 0. For brevity of notation we de-

note d(α, ε) = (pα+1
0 +pα+1

1 +ε)
1
α . Let us write Sε(λ) = min

(
log(d(α,ε))

log λ , 1− ε
)

.

We can first rewrite

I =

∫ y(1)

0.5

∫ (∫
dνλ(x)

|x− y|Sε(λ)

)α
dνλ(y)dλ =

∫ y(1)

0.5

∫ (∫
dµ(i)

|Πλ(i)−Πλ(j)|Sε(y)

)α
dµ(j)dλ.

To prove the claim it suffices to show that I < +∞. Next we apply Fubini’s
theorem and Hölder’s inequality

∫
fα ≤ C(

∫
f)α for α ∈ (0, 1]) to get

I ≤ C
∫ (∫ y(1)

0.5

∫
dµ(i)dλ

|Πλ(i)−Πλ(j)|sε(λ)

)α
dµ(j) ≤ C1

∫ ∫ y(1)

0.5

∫
dµ(i)dλ(

λ|i∧j| |a0 +
∑∞

n=1 anλ
n|sε(λ)

)α
 dµ(j),

for some C1 > 0, where an ∈ {−1, 0, 1} for n ≥ 1 and a0 ∈ {−1, 1}. By
transversality,

I ≤ C1

∫ ∫ y(1)

0.5

∫
dµ(i)dλ(

d(α, ε)|i∧j| |a0 +
∑∞

n=1 anλ
n|
)sε(λ)


α

dµ(j) ≤ C1

∫ (∫ y(1)

0.5

dλ

|a0 +
∑∞

n=1 anλ
n|sε(λ)

∫
dµ(i)

d(α, ε)|i∧j|

)α
dµ(j) ≤ C2

∫ (∫
dµ(i)

d(α, ε)|i∧j|

)α
dµ(j) ≤ C2

∫ ( ∞∑
k=0

µ(Wω,k)

d(α, ε)k

)α
dµ(ω) < +∞

for some C2 > 0. Consider the inequality (
∑

i bi)
α ≤

∑
i b
α
i for bi > 0 and

α ∈ (0, 1], then

I ≤ C2

∞∑
k=0

∑
w∈Wk

µ(W )α+1

d(α, ε)αk
≤ C2

∞∑
k=0

d(α, ε)−αk(pα+1
0 + pα+1

1 )k.

Thus since d(α, ε)α > pα+1
0 + pα+1

1 we have I < ∞ and hence, since the
integrand must be finite almost everywhere, we deduce that

dim νλ ≥ min

(
d(α, ε)

log λ
, 1− ε

)
for almost all λ ∈ [1

2 , y(2)]. To complete the proof of the claim we let ε = 1
n

for n ∈ N and let n→∞.
To complete the proof of the Theorem we let αn = 1

n for n ∈ and observe
that,

lim
n→∞

log(pαn+1
0 + pαn+1

1 )

αn log λ
=
p0 log p0 + p1 log p1

log λ
.

7.5 The {0, 1, 3} problem revisited: the measure νλ Finally, We can also
consider the question of absolute continuity for the {0, 1, 3} problem in the
region λ ∈ [1

3 , y(2)]. Let νλ be defined as before. The analogue of the
Erdös-Solomyak theorem is the following.

Theorem 7.5 For a.e. λ ∈ [1
3 , y(2)] the measure νλ is absolutely continu-

ous. In particular, Λ(λ) has positive Lebesgue measure.
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This result was also proved by Solomyak. The method of proof is very
similar to that in the case of section 7.3 and we only outline the main steps.
Thus to show that νλ is absolutely continuous for a.e. λ ∈

(
1
3 , y(3)

)
it is

sufficient to show for any ε > 0

I =

∫ y(2)

1
3

+ε

(∫
lim inf
r→0

νλ(B(x, r))

2r
dνλ(x)

)
dλ <∞.

The first step is to apply Fatou’s Lemma (to take the lim inf outside of the
integral) and to rewrite this as an integral on Σ. Thus

I ≤ lim inf
r→0

1

2r

∫ y(2)

1
3

+ε

(∫
νλ(B(x, r))dνλ(x)

)
dλ ≤ lim inf

r→0

1

2r

∫
1
3

+ε

(∫ y(2)

Σ

∫
Σ
{ω,τ :|Πλ(ω)−Πλ(τ)|≤r}dµ(ω)dµ(τ)

)
dλ.

Applying Fubini’s Theorem (to switch the order of the integrals) gives

I ≤ lim inf
r→0

1

2r

∫
Σ

∫
Σ
L
{
λ ∈

(
1

3
+ ε, y(2)

)
: |Πλ(ω)−Πλ(τ)| ≤ r

}
dµ(ω)dµ(τ).

As usual, one can write

|Πλ(ω)−Πλ(τ)| = λ|ω∧τ |g(λ)

where g(λ) ∈ F2 for all ω, τ ∈ Σ. Thus transversality gives that

Leb
{
λ ∈

(
1

3
+ ε, y(2)

)
: |Πλ(ω)−Πλ(τ)| ≤ r

}
≤ C

(
1

3
+ ε

)|ω∧τ |
r

for some C > 0. This gives,

I ≤ C

2

∫
Σ

∫
Σ

(
1

3
+ ε

)−|ω∧τ |
dµ(ω)d(τ) < +∞

which can easily be seen to be finite, as in the earlier proofs.
Finally, we can consider a general Bernoulli measure µ = (p0, p1, p2)Z

+

on Σ and associate the probability measure νp0,p1,p2

λ = Πλµ. In particular,
ν = νp0,p1,p2

λ will be the self-similar measure such

ν(J) = p0ν(T−1
0 (J)) + p1ν(T−1

1 (J)) + p2ν(T−1
2 (J)),

that for all J ⊂
[
0, 1

1−λ

]
.

The analogue of Theorem 7.4 is the following:
Theorem 7.5

For almost all λ ∈ [1
3 , y(2) = 0.5],

dimH ν
(p0,p1,p2)
λ = min

(
p0 log p0 + p1 log p1 + p2 log p2

log λ
, 1

)
.
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For almost all λ ∈ [pp0
0 p

p1
1 p

p2
2 , y(2) = 0.5] we have that νλ is absolutely

continuous.
This is the standard method for using transversality that for a.e pa-

rameter a family of measures are absolutely continuous. This method has
been successfully used in many contexts. These include self-affine sets ([?]),
Bernoulli convolutions ([?],[?],[?]), non linear hyperbolic IFS ([?]), Parabolic
IFS and random continued fraction expansions ([?]).
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8. Iterated function schemes with overlaps: Higher dimensions
We now turn to the study of Iterated Function systems in R2. The

starting point is the study of classical Sierpinski carpets. However, we want
to modify the construction to allow for overlaps (i.e., where the Open Set
Condition fails) by increasing the scaling factor λ. This can be viewed as
a multidimensional version of the results from the previous chapter. More
precisely, for some range of scaling values we can study the Hausdorff di-
mension of the limit set for typical values (as in the {0, 1, 3}-problem) and
for another range of scaling values we can study the Lebesgue measure on
the limit set (as in the Erdös problem).

8.1 Fat Sierpinski Gaskets Let 0 < λ < 1 and natural numbers n > k.
We consider a family of n contractions given by,

Ti(x, y) = (λx, λy) + (c
(1)
i , c

(2)
i ),

i = 0, . . . , n − 1 where (c
(1)
i , c

(2)
i ) ∈ {(j, l) ∈ Z2 : 0 ≤ j, l ≤ k − 1} are n

distinct points in a k×k grid. If λ ∈ (0, 1
k ] then it immediately follows from

Moran’s Theorem that the attractor Λ(λ) has dimension − logn
log λ .

Example 1 Our first example is the fat Sierpiński carpet. Here we take
n = 8 and k = 3 and choose c0 = (0, 0), c1 = (0, 1), c2 = (0, 2), c3 =
(1, 0), c4 = (1, 2), c5 = (2, 0), c6 = (2, 1), c7 = (2, 2). In Theorem 8.1, we can

take s =
(

2
3

) 2
3 0.338 . . .. Thus we have that for almost all λ ∈ [1

3 , 0.338 · · · ]
that

dimH Λ(λ) = − log 8

log λ
.

=2.0in carpet1.eps =2.0in carpet2.eps
The usual Sierpinski carpet (with λ = 1

3) and the Fat Sierpinski carpet
(with λ = 0.338) Example 2 Our next example is the Vicsek set. Here we

take n = 5 and k = 3 and c0 = (1, 0), c1 = (0, 1), c2 = (1, 1), c3 = (2, 1), c4 =

(1, 2). We can take s =
(

3
5

) 3
5
(

1
5

) 2
5 = 0.3866 . . .. Thus we have that for

almost all λ ∈ [1
3 , 0.386] that

dimH Λ(λ) = − log 5

log λ
.

=2.0in vicsek1.eps =2.0in vicsek2.eps

The Vicsek cross (with λ = 1
3) and the Fat Vicsek (with λ = 0.386)

Our main results are rather similar in nature to those in the last chapter.
However, our approach requires a detailed study of the measures supported
on fat Sierpiński carpets.

Theorem 8.1 There exists 1
k ≤ s ≤

1√
n

such that for almost all λ ∈ ( 1
k , s)

we have,

dimH Λ(λ) = − log n

log λ
.
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There are a dense sets of values in ( 1
k ,

1√
n

] where this inequality is strict.

Of course, for Theorem 8.1 to have any value we need to give an explicit
estimate for s which, in most cases, satisfies s > 1

k . Let denote the number
of images in the jth row by

nj = Card{1 ≤ l ≤ k : c
(2)
i = j},

for 1 ≤ j ≤ n. If we assume that each ni ≥ 1 then, as we see from the proof,
we can take

s = min

 1

n

 k∏
j=1

n
nj
j

 ,

 k∏
j=1

n
−nj
j

 1
n

 .

It should be noted that if all the values of nj are the same then s = 1
k and

then Theorem 8.1 yields no new information.

8.2 Measures on Fat Sierpinski Carpets As usual, upper bounds on the
Hausdorff Dimension are easier. In particular, it follows immediately from
a consideration of covers that dimH Λ(λ) ≤ dimB Λ(λ) ≤ − logn

log λ . Moreover,
for the sets which we consider an argument analagous to that in the previous
chapter that there are a dense sets of values λ ∈ ( 1

k ,
1√
n

] where this inequality
is strict.

To complete the proof Theorem 8.1 by the now tried and tested method
of studying measures supported on the fat Sierpiński carpets and using these
to get lower bounds on dimH Λ(λ). More precisely, let µ be a shift invariant
ergodic measure defined on Σn = {1, · · · , n}Z+

and define a map Πλ : Σn →
Λ(λ) by,

Πλ(i) = lim
j→∞

Ti0 ◦ · · · ◦ Tin−1(0, 0) =

n∑
j=0

cijλ
j .

Thus we can define a measure νλ supported on Λ(λ) by νλ = µΠ−1
λ (i.e.,

νλ(A) = µ(Π−1
λ A), for Borel sets A ⊂ R). We also introduce a map p :

Σn → Σk which is given by,

p(i0, i1, . . .) = (c
(2)
i0
, c

(2)
i1
, . . .)

(i.e., we associated to symbol i the label for the vertical coordinate of

(c
(1)
i , c

(2)
i )).

We define a shift invariant measure µ on Σk by µ = µp−1 (i.e., µ(B) =
µ(p−1B), for Borel sets B ⊂ Σk). We have already defined the entropies h(µ)
and h(µ) (in a previous chapter) and we can obtain the following technical
estimates on the Hausdorff Dimension of the measure of νλ.

Proposition 8.2 For almost all λ ∈
[

1
k ,

1√
n

]
we have that,

dimH(νλ) = − h(µ)
log λ if max

{
− h(µ)

log λ ,−
h(µ)−h(µ)

log λ

}
≤ 1; dimH(νλ) ∈

[
min

{
1− h(µ)

log λ , 1−
h(µ)−h(µ)

log λ

}
,− h(µ)

log λ

]
otherwise.
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Example (Bernoulli measure) In fact, for the proof of Theorem 8.1, it suf-
fices to consider only Bernoulli measures. If µ = ( 1

n , · · · ,
1
n)Z

+
then h(µ) =

log n. If there are n1, · · · , nk squares in the k-rows then µ = (n1
n , · · · ,

nk
n )Z

+

and

h(µ) = −
∑
i

ni
n

log
ni
n

= log n− 1

n

∑
i

ni log ni.

This is then used to prove the following:
Proposition 8.3 For almost all λ in the set,{[

1

k
, y(k)

]
: min{h(µ)− h(µ), h(µ)} ≥ − log λ

}
the measure νλ is absolutely continuous.

Examples
Our final example is contrived to have a region of values of λ where the

dimension is definitely not equal to− logn
log λ for almost all λ. We take k = 3 and

n = 5 and choose c0 = (0, 0), c1 = (1, 0), c2 = (2, 0), c3 = (0, 2), c4 = (2, 2).
In Theorem we can take s = 2−2/5 ∗ 3−3/5 = 0.3920 . . .. However if we
added to the iterated function system the map T5(x, y) = λ(x, y) + (1, 2)
the attractor would simply be the cartesian product of an interval with the
middle (1−2λ) cantor set and thus has dimension 1− log 2

log λ . The attractor of
our original system must be contained inside this set and so the dimension
must be bounded above by 1 − log 2

log λ . For λ > 0.4 we have that 1 − log 2
log λ <

− log 5
log λ and thus dimΛ(λ) < − log 5

log λ for all λ > 0.4. In fact if we take µ

to be
(

1
6 ,

1
6 ,

1
6 ,

1
4 ,

1
4

)
-Bernoulli measure we can use Theorem to show that

dim νλ ≥ 1− log 2
log λ for almost all λ ≥ 0.4082. This gives dim Λ(λ) = 1− log 2

log λ
for almost all λ ≥ 0.4082. It is not clear whether the other examples we
have considered also have regions where the dimension drops below − logn

log λ
for a set of λ with positive measure.

The rest of this section is devoted to the proof of this Proposition. In
the next section we shall deduce Theorem 8.1. For ξ ∈ Σ we define µξ to be
the conditional (probability) measure on p−1(ξ) defined

µ(A) =

∫
Σk

µξ(A ∩ p−1ξ)dµ(ξ),

for any Borel set A ⊆ Σn. Let B(Σn) and B(Σk) denote the Borel sigma
algebras for Σn and Σk, respectively. Let A = p−1B(Σk) ⊂ B(Σn) be
the corresponding σ-invariant sub-sigma algebra on Σn. In particular, this
is a smaller sigma algebra which cannot distinguish between symbols in
{0, 1, . . . , n− 1} that project under p to the same symbol in Σk.

We recall the following result:
Ledrappier-Young Lemma For µ almost every x ∈ Σn

lim
N→∞

−
log(µξ([x0, . . . , xN−1]))

N
= h(µ)− h(µ) := h(µ|A).
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Proof We omit the proof in the general case, but observe that for Bernoulli
measures it is fairly straight forward to see this. In particular, for a.e. (µ),
x ∈ Σn the symbols in p−1(i) occur with frequency ni

n and have associated
weight ni

n . Thus the limit is

h(µ|A) =
ni
n

log
(ni
n

)
,

as required.
Let us define Πλ : Σk → R by

Πλ(i) =

∞∑
j=0

c
(2)
ij
λj .

In particular, Πλ corresponds to mapping sequences from Σk to points on R
by first mapping the sequence i to the limit set Λ(λ) ⊂ R2 followed by the
horizontal projection of Λ(λ) to the y-axis. For any sequence ξ ∈ Σk it is
convenient to write yξ = Πλ(ξ). It is easy to see that Πλ(p−1ξ) ⊂ Λ(λ) ⊂ R2

is actually the part of the limit set Λ(λ) lying on the horizontal line Lyξ :=
{(x, y) : y = yξ}. 2

We define two new measures. Firstly, νλ = µ ◦ Πλ on the vertical axis
R and, secondly, on the horizontal axis νλ,ξ = µξ ◦Π−1

λ on Λ(λ) ∩ Lyξ . The
following lemma allows us to relate the dimensions of these various measures.

Lemma 8.3 Let s ≥ 0. If for a.e. (µ) ξ ∈ Σk we have that dimH νλ,ξ ≥ s
then

dimH νλ ≥ dimH νλ + s.

Proof Let A ⊆ R2 be any Borel set such that νλ(A) = 1. It follows that
µ(Π−1

λ (A)) = 1 and thus by the decomposition of µ, we have that

1 = µ(Π−1
λ (A)) =

∫
µξ(Π

−1
λ A ∩ p−1ξ)dµ(ξ).

Thus for a.e. (µ) ξ ∈ Σk we have µξ(Π
−1
λ (A) ∩ p−1ξ) = 1 and, hence,

again from the definitions, νλ,ξ(A ∩ LΠλ(ξ)
) = 1. However, dim νλ,ξ ≥ s

for a.e.(µ) ξ and thus dimH(A ∩ LΠλ(ξ)) ≥ s for a.e.(µ) ξ. In particular,
dimH(A∩Ly) ≥ s for a.e. (νλ) y. By applying Marstrand’s Slicing Theorem
to the set B = {y : dimH(A ∩ Ly) ≥ s}, which is of full νλ measure, we
deduce that dimA ≥ s+ dim νλ. Since this holds for all Borel sets A where
νλ(A) = 1we conclude that dim νλ(A) ≥ s+ dim νλ.

2To see this, let ω ∈ Σn satisfy pω = ξ then we know that c
(2)
ωi = ξi. Thus if we consider

Πλ(ω) =

n∑
i=0

(c(1)
ωi , c

(2)
ωi )λi =

∞∑
i=0

(c(1)
ωi , c

(2)
ξi

)λi

then the y-co-ordinate of Πλ(ω) is equal to Πλ(ξ). Thus any point in (x, y) ∈ Πλ(p−1ξ)
lies on the line y = yξ = Πλ(ξ) which we denote LΠλ(ξ).
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Since νλ is a measure on the real line, its properties are better under-
stood. In particular, we have the following result. Lemma 8.4 For almost
all λ ∈

[
1
k , y(k − 1)

]
we have that

dim(νλ) = min

(
1,−h(µ)

log λ

)
.

Proof The proof makes use of transversality and the Shannon-McMullen-
Brieman theorem, and follows the general lines of Theorem 7.3.

Firstly, it is easy to see from the definitions that dimH Λ(λ) ≤ dimB Λ(λ) ≤
− h(µ)

log λ . We now consider the opposite inequality. Given ε > 0 let sε(λ) =

− h(µ)
log(λ+ε) . Note that the proof can be completed (as in the proofs in the

previous chapters) if it can be shown that,

I =

∫ y(k−1)

1
k

(∫ ∫
dνλ(x)dνλ(y)

|x− y|sε(λ)

)
dλ <∞,

for all ε > 0. In particular, the finiteness of the integrand, for almost all λ,
allows us to deduce that for these values dimH Λ(λ) ≥ sε(λ). Since the value

of ε > 0 is arbitrary, we get the required lower bound dimH Λ(λ) ≥ − h(µ)
log λ .

The inner two integrals can be rewritten in terms of the measure µ on
Σ and we can rewrite this as

I =

∫ y(k−1)

1
k

(∫ ∫
dµ(i)dµ(j)

|Πλ(i)−Πλ(j)|sε(λ)

)
dλ.

Let t = max 1
k
≤λ≤y(k−1) sε(λ) and note that t < 1. In particular, if i 6= j

then they agree until the |i ∧ j|-th term and we can write

|Πλ(i)−Πλ(j)|sε(λ) = λ|i∧j|sε(λ)

( ∞∑
k=0

akλ
k

)sε(λ)

≥
(
e−h(µ) + ε

)sε(λ)|i∧j|
( ∞∑
k=0

akλ
k

)t
,

where {ak}k∈Z+ is the sequence ak := ik+|i∧j| − jk+|i∧j| ∈ {0,±1, . . . ,±(k −
1)} and a0 6= 0. Substituting this back into the integrand in I and using
Fubini’s Theorem we get

I ≤
∫

Σ

∫
Σ

dµ(i)dµ(j)(
e−h(µ) + ε

)|i∧j|
(∫ y(k−1)

1
k

dλ

(
∑∞

k=0 akλ
k)
t

)
. (8.1)

We can estimate the first integral in (8.1) by∫ ∫
dµ(i)dµ(j)(
e−h(µ) + ε

)|i∧j| ≤ ∞∑
m=0

∑
[i0,i1,...,ik−1]

µ([i0, i1, . . . , im−1])(
e−h(µ) + ε

)m =

∞∑
m=0

e−mh(µ)(
e−h(µ) + ε

)m <∞.
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Thus to show that I < ∞ it remains to bound the second integral in (8.1)
by ∫

dλ

(
∑∞

k=0 akλ
k)
t <∞

for any sequence {ak}k∈Z+ , where ak ∈ {0,±1, . . . ± (k − 1)} and a0 6= 0.

Let f(λ) = 1 +
∑∞

k=0

(
ak
a0

)
λk then we can apply part (1) of Proposition 7.1

to deduce that the integral is finite.

The next lemma allows us to associate to the measure νλ a set Y ⊂ R.

Lemma 8.5 For almost every λ ∈ [ 1
k , y(k − 1)] there exists a set Y ⊂ R

with dimH(Y ) = dimH(νλ) such that for any ξ ∈ (Πλ)−1Y ⊂ Σk we can
bound

dimH(νλ,ξ) ≥ min

{
−h(ν|A)

log λ
, 1

}
.

Proof Given δ > 0, it is enough to show that for almost all λ ∈ [ 1
k , y(1)]

there exists a set X = Xδ ⊂ Σk with µ(X) ≥ 1 − δ and such that for any

ξ ∈ X, dimH(νξ,λ) ≥ −h(µ|A)
log λ . In particular, we can take Y = ∩∞n=1X 1

n
.

Fix ε, ε′ > 0. By Ergorov’s Theorem there exist sets Xε′ ⊂ Σk and a
constant K > 0 such that:

µ(Xε′) > 1− ε′; and

for any ξ ∈ Xε′ there exists Yε′ such that for any x ∈ Xε′ we can bound

µξ[x0, . . . , xN ] ≤ K exp (− (h(µ|A)− ε)N) , for N ≥ 1.

Let us denote s = sε(λ) = −h(µ|A)
log λ − 2ε. We want to consider the measure

µ restricted to Xε′ and the measure νλ,ξ restricted to Πλ(Yε′) ∩ Lξ, where
ξ ∈ Xε′ . This allows us to use the explicit bound in (2). Consider the
multiple integral

I =

∫ y(k−1)

1
k

∫
Xε′

(∫
ΠλYε′

∫
ΠλYε′

dνξ,λ(x)dνξ,λ(y)

|x− y|s

)
dµ(ξ)dλ

We want to prove finiteness of this integral by lifting νξ,λ to µξ on p−1ξ and
then using Fubini’s Theorem to rewrite the integral as:

I =

∫
Xε′

∫
Yε′

∫
Yε′

∫ y(k−1)

1
k

dλ

|Πλ(i)−Πλ(j)|s
dµξ(i)dµξ(j)dµ(ξ) =

∫
Xε′

∫
Yε′

∫
Yε′

∫ y(k−1)

1
k

dλ

|
∑∞

n=1(in − jn)λn|s
dµξ(i)dµξ(j)dµ(ξ) =

∫
Xε′

∫
Yε′

∫
Xε′

∫ y(k−1)

1
k

dλ

e(h(µ|A)−2ε)|i∧j||
∑∞

n=0 anλ
n|s

dµξ(i)dµξ(j)dµ(ξ)

where we have that an ∈ {0,±1, . . . ,±(k−1)} and a0 6= 0. Thus we can use
transversality to write

I ≤ C
∫
Xε′

∫
Yε′

∫
Yε′

e−(h(µ|A)+2ε)i∧jdµξ(i)dµξ(j)dµ(ξ) ≤ C
∞∑
m=0

e−m(h(µ|A)+2ε)(µξ × µξ)
(
{(i, j) ∈ Yε′ × Yε′ : ia = jb, 0 ≤ a ≤ m}

)
≤ CK

∞∑
m=0

e−m(h(µ|A)+2ε)e(h(µ|A)+ε)m < +∞.
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In particular, from this we deduce that that for almost every λ ∈ [ 1
k , y(k−1)],

there is a set Y = Y (λ) ⊂ Πλ(X) of ν measure 1 − ε′ such that for y ∈ Y
one can choose ξ ∈ Π

−1
λ (y) such that∫

ΠλYε′

∫
ΠλYε′

dνλ,ξ(x)dνξ,λ(y)

|x− y|s
< +∞.

By results in a previous chapter, this allows us deduce that dimH(νλ,ξ) ≥ s.
Finally, since ε > 0 was arbitrary, the result follows.

Proof of Proposition 8.2 By combining the estimates in Lemma 8.4 and
8.5 and the Marstrand Slicing Lemma we can see that for almost every
λ ∈ [ 1

k , y(k − 1)]

dimH νλ ≥ min

{
−h(µ|A)

log λ
, 1

}
+ min

(
1,−h(µ)

log λ

)
.

Thus if −h(µ|A)
log λ < 1 and − h(µ)

log λ < 1 we have that

dim νλ ≥ −
h(µ|A)

log λ
− h(µ)

log λ

for almost every λ ∈ [ 1
k , bk−1]. However, from the definitions:

h(µ) = h(µ) + h(µ|A)

and thus for almost every λ ∈ [ 1
k , bk−1] we have,

dim νλ ≥ −
h(µ)

log λ
.

This completes the proof of Proposition 8.2.
8.3 Proof of Theorem 8.1 To prove Theorem 8.1 it remains to apply

Proposition 8.2 with a suitable choice of µ to get the lower bound.

More precisely, let µ denote the Bernoulli measure µ =
(

1
n , . . . ,

1
n

)Z+

.
Thus h(µ) = log n. We saw before that transversality gives bk−1 ≥ (1 +√
k − 1)−1 and thus since k < n we have that y(k − 1) ≥ (1 +

√
k − 1)−1 ≥

n−
1
2 . We need to find conditions on λ such that − log λ ≥ h(µ) and − log λ ≥

h(µ|A) and then we can calculate

h(µ) = −
k−1∑
i=0

ni
n

log
(ni
n

)
= − 1

n

k−1∑
i=0

(ni log ni − ni log n) = − 1

n

k−1∑
i=0

log nnii + log n = − 1

n

(
log

k−1∏
i=0

nnii

)
+ log n = − log

(∏k−1
i=0 (nnii )

1
n

n

)
.

We can write

h(µ|A) =

k−1∑
i=0

ni
n

log ni = log

(
k−1∏
i=0

nnii

) 1
n

.
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Thus, if we choose

s = min

 1

n

(
k−1∏
i=0

nnii

) 1
n

,

(
k−1∏
i=0

n−nii

) 1
n


then for almost every λ ∈ [ 1

k , s] we have that,

dimH ν ≥ −
h(µ)

log λ
= − log n

log λ
.

In particular, for almost every λ ∈ [ 1
k , s] we have that

dimH Λ(λ) ≥ − log n

log λ
,

as required.
8.4 Fat Sierpinski Carpets As the value of λ increases the limit set Λ(λ)

becomes larger. Eventually, we have a similar type of result where for typical
λ the set Λ(λ) has positive measure.

More precisely, we have the following result we obtain concerning the
two dimensional measure of the attractor.

Theorem 8.6 There exists 1√
n
≤ t ≤ y(k − 1) such that for almost all

λ ∈ [t, y(k − 1)] we have that leb(Λ(λ)) > 0.
Examples For the Sierpinski Carpet, we can take t = 0.357 . . .. For the

Vicsek cross we can take and t = 0.4541. =2.0in carpet3.eps =2.0in vicsek3.eps

A fat Sierpinski carpet (with λ = 0.357) and a fat Vicsek cross (with
λ = 0.455)

The following simple lemma shows how we can show absolute continuity
of νλ using absolute continuity of the conditional measures.

Lemma 8.7 If νλ is absolutely continuous and νλ,ξ is absolutely contin-
uous for a.e. (µ) ξ then νλ is absolutely continuous. Proof Let A ⊂ R2 be
any set such that Leb(A) = 0. We need to show that νλ(A) = 0. Using the
definiton of νλ and the decomposition of µ we get that

νλ(A) = µ(Π−1
λ A) =

∫
Σk

µξ(Π
−1
λ A ∩ p−1ξ)dµ(ξ).

From the definition of νξ,λ we have that

µξ(Π
−1
λ A ∩ p−1ξ) = νλ,ξ(Πλ(Π−1

λ A ∩ p−1ξ)).

Since Leb(A) = 0, we know that the set {y ∈ R : Leb(Ly ∩A) > 0} has zero
Lebesgue measure. Thus from the absolute continuity of νλ we have

µ{ξ ∈ Σk : Leb(LΠλξ ∩A) > 0} = νλ{y ∈ R : Leb(Ly ∩A) > 0} = 0.
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Since νλ,ξ is absolutely continuous for µ almost all ξ we know that νλ,ξ(Πλ(Π−1
λ A∩

p−1ξ)) = 0 for µ almost all ξ. Thus we have that νλ(A) = 0, as re-
quired. We now need to determine when the measures νλ and νλ,ξ are
absolutely continuous. The following result concerning νλ is useful.

Lemma 8.8 For almost all λ ∈ [e−h(µ), bk−1] the measure νλ is absolutely
continuous with respect to one dimensional Lebesgue measure.

Proof We omit the proof since it is similar to the proof of the next
lemma. Of course, it is possible that e−h(µ) > bk−1. In this
case the lemma does not give any new information. We now prove a result
about the absolute continuity of measures supported on the fibre.

lemma 8.9 For almost all λ in{
λ ∈

[
1

k
, bk−1

]
: h(µ|A) > − log λ

}
there exists a set X ⊆ Σk such that µ(X) = 1 and for any ξ ∈ X the measure
νλ,ε is absolutely continuous on LΠλ(ξ). Proof It suffices to show that given

ε′ > 0, there exists a set Xε′ ⊆ Σk such that µ(Xε′) ≥ 1 − ε′ and for any
ξ ∈ Xε′ there exists a set Yε′,ξ ⊂ LΠλ(ξ) where µξ(Y

′
ε ) ≥ 1 − ε′ and νλ,ε is

absolutely continuous on Yε′,ξ. We can then take X = ∩∞N=1X 1
N

.

Let ε, ε′ > 0. From Ergorov’s Theorem we know that there exists K > 0
and a set Xε′ ⊆ Σk such that µ(Xε′) and for ξ ∈ Xε′ there exists Yε′,ξ ⊆ p−1ξ
with µξ(Yε′,ξ) > 1− ε′ and for x ∈ Yε′,ξ we have that

µξ[x0, . . . , xN−1] ≤ K exp (− (h(µ|A)− ε)N) , for N ≥ 1.

We recall that to show that νξ,λ is absolutely continuous it suffices to
show that D(νξ,λ)(x) is finite, for a.e.(νξ,λ) x ∈ ΠλYε′,ξ. In particular, it
suffices to show that∫

ΠλYε′,ξ

D(νξ,λ)(x)dνξ,λ(x) < +∞.

Moreover, to show that for almost every λ there exists a set of ξ of µ measure
at least 1− ε′ such that νξ,λ is absolutely continuous, it suffices to show that

I :=

∫ by(k−1)

t

∫
Xε′

(∫
ΠλYε′,ξ

D(νξ,λ)(x)dνξ,λ(x)

)
dµ(ξ)dλ < +∞,

providing t is sufficiently large. We take t > eh(µ|A)+2ε. For ω, τ ∈ p−1ξ we
define

φr(ω, τ) = {λ : |Πλ(ω)−Πλ(τ)| ≤ r},
for r > 0. We start by lifting to the shift space, applying Fatou’s Lemma
and Fubini’s Theorem

I ≤ lim inf
r→0

1

2r

∫ by(k−1)

t

∫
Xε′

∫
Yε′,ξ

∫
Yε′,ξ

(ω, τ)µξ(ω)dµξ(τ)dµ(ξ)dλ ≤ lim inf
r→0

1

2r

∫
Xε′

∫
Yε′,ξ

∫
Yε′,ξ

leb(φr(ω, τ))dµξ(ω)dµξ(τ)dµ(ξ),
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where is the characteristic function for {(ω, τ) : |Πλ(ω)−Πλ(τ)| ≤ r}. We
can deduce

I ≤ C
∫
Xε′

∫
Yε′,ξ

∫
Yε′,ξ

t−|ω∧τ |dµξ(ω)dµξ(τ)dµ(ξ) ≤ C
∫
Xε′

∫
Yε′,ξ

∫
Yε′,ξ

e−|ω∧τ |(h(µ|A)+2ε)dµξ(ω)dµξ(τ)dµ(ξ) ≤ C
∫
Xε′

∞∑
m=0

e−m(h(µ|A)+2ε)(µξ × µξ) (∆m) dµ(ξ) ≤ CK
∞∑
m=0

e−m(h(µ|A)+2ε)em(h(µ|A)+ε) <∞,

where ∆m = {(τ, ω) ∈ Yε′,ξ × Yε′,ξ : ω1 = τ1, . . . , ωm = τm}. This completes
the proof.

We can give an explicit value for t by,

t = sup


k∏
j=1

n
−qj
j :

k∑
j=1

qj log

(
qj
nj

)
= 0,

k∑
j=1

qj = 1 and qj ≥ 0

 .

Of course is possible that in some examples t ≥ y(k − 1), in which case
Theorem 8.6 tells us nothing new.

Proof of Theorem 8.6 Of course, to prove Theorem 8.6 we want to use
Lemma 8.7 once we know that νλ and λξ,λ are absolutely continuous. It
remains to relate the value of t to the entropies in Lemma 8.8 and Lemma
8.9. Let q = (q0, . . . , qk−1) be a probability vector. Let pi =

qp(i)
np(i)

for

i = 1, . . . , n and µ be the p-Bernoulli measure on Σn. If we let µ = µp−1

then we have that

h(µ) =
k−1∑
i=0

and h(µ|A) =
k−1∑
i=0

qi log ni.

If we let t be defined as above then for ε > 0 let q satisfy
∑k−1

j=0 n
−qj
j ≥ t− ε

then for any λ ≥ t − ε we have that − log λ ≤ h(µ) = h(µ|A). Thus for
almost every λ ≥ t − ε the measure νλ is absolutely continuous and hence
Leb(Λ(λ)) > 0. The proof is completed by letting ε→ 0.

Example: Higher dimension The results in this chapter can be gener-
alised without difficulty to higher dimensional setting. We consider two
such setting in R3. Firstly we consider the Sierpiński tetrahedron. This
consists of the following four similarities.

T0(x, y, z) = λ(x, y, z) + (0, 0, 0)T1(x, y, z) = λ(x, y, z) + (1, 0, 0)T2(x, y, z) = λ(x, y, z) + (0, 1, 0)T3(x, y, z) = λ(x, y, z) + (0, 0, 1).

In the case where λ = 1
2 this iterated function system would satisfy the

open set condition and the attractor, Λ(λ) would have dimension log 4
log 2 = 2.

We consider the case when λ > 1
2 . Let µ be evenly distributed Bernoulli

measure on Σ4 and νλ be the natural projection of µ to Λ(λ). We can
define a map p : Σ4 → Σ3 which maps symbols 0, 1, 2 to themselves but
maps 4 to 0. If we let µ = µp−1 and project it onto the tetrahedron as
νλ then we can see that it is supported on the perpendicular projection to
the (x, y)-plane. This would be a Sierpinski gasket. We can then define a
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set of conditional measures which would be supported on vertical fibres.For
almost all λ ∈

[
1
2 , 0.569 . . .

]
that dim νλ = − log(h(µ))

log λ . We can also show
that the conditional measures will for almost every λ ∈ [0.5, y(1)] and for µ-

almost every ξ ∈ Σ3 have dimension −h(µ)−h(µ)
log λ . Thus by using Marstrand’s

Slicing Theorem we can see that for almost every λ ∈ [0.5, 0.569 . . .] we have
dim νλ ≥ − log4

log λ . This immediately gives A similar argument shows that

dim Λ(λ) = − log 4

log λ

for almost every λ ∈ [0.5.0.569 . . .].
The menger sponge is another example of a self-similar set in R3. In

the standard case it consists of 20 contractions of ratio 1
3 . The values of ci

consists of all triples of (x, y, z) ∈ (0, 1, 2)3 where at most one of x, y of z
takes the value 1. The perpendicular projection of the attractor to any of the
(x, y)-plane, the (x, z)-plane and the (y, z)-plane is the standard Sierpiński
carpet. If we consider the case where the contraction ratio (λ) are bigger
than 1

3 we have that dim Λ(λ) = − log 20
log λ for almost all λ ≤ 0.348 and that

Λ(λ) has positive measure for almost every λ ≥ 0.393.
8.5 Limits sets with positive measure and no interior Consider the fol-

lowing problem (posed by Peres and Solomyak): Can one find examples of
self-similar sets with positive Lebesgue measure, but with no interior?

A variant of the method in the preceding section leads to families of
examples of such sets.

The construction Let t = (t1, t2) with 0 ≤ t1, t2 ≤ 1. We consider ten
similarities (with the same contraction rate 1

3) given by

T0(x, y) =

(
1

3
x,

1

3
y

)
T1(x, y) =

(
1

3
x,

1

3
y + t1

)
T2(x, y) =

(
1

3
x,

1

3
y + t2

)
T3(x, y) =

(
1

3
x,

1

3
y + 1

)
T4(x, y) =

(
1

3
+

1

3
x,

1

3
y

)
T5(x, y) =

(
1

3
+

1

3
x,

1

3
y + 1

)
T6(x, y) =

(
2

3
+

1

3
x,

1

3
y

)
T7(x, y) =

(
2

3
+

1

3
x,

1

3
y + t1

)
T8(x, y) =

(
2

3
+

1

3
x,

1

3
y + t2

)
T9(x, y) =

(
2

3
+

1

3
x,

1

3
y + 1

)
.

This construction is similar in spirit to those in the previous section. To see
that the associated limit set Λt has empty interior, we need only observe
that the intersection of Λt with each of vertical lines {(k+ 1

2)3−n}×R, with
n ≥ 0 and 0 ≤ k ≤ 3n − 1 has zero measure. It remains to show that
typically Λt has positive measure.

=3in noint.eps
A typical limit set Λt
Let Σ10 = {1, 2, · · · , 10}Z+

denote the full shift on 10 symbols and let
Πt : Σ10 → Λt be the usual projection map. Let

µ =

(
1

12
,

1

12
,

1

12
,

1

12
,
1

6
,
1

6
,

1

12
,

1

12
,

1

12
,

1

12

)Z+

be a Bernoulli measure on Σ10. To show that Λt has non-zero Lebesgue
measure it suffices to show that ν := µΠ−1

t is absolutely continuous. By
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construction, ν projects to Lebesgue measure on the unit interval in the
x-axis, thus it suffices to show the conditional measure νt,x on Lebesgue
almost every vertical line {x} × R is absolutely continuous.

Let Σ3 = {1, 2, 3}Z+
be a full shift on 3 symbols corresponding to coding

the horizontal coordinate. As before, there is a natural map p : Σ10 → Σ3

corresponding to the map on symbols given by

p(1) = p(2) = p(3) = p(4) = 1p(5) = p(6) = 2p(7) = p(8) = p(9) = p(1) = 3.

Then µp−1 = µ =
(

1
3 ,

1
3 ,

1
3

)Z+

is the Bernoulli measure on Σ3. Given ξ ∈ Σ3

let µξ denote the induced measure on p−1(ξ). Clearly, if Πt,ξ : p−1(ξ) →
{x}×R is the restriction of Πt, then by construction µξΠ

−1
t,ξ = νt,x. We also

let π : Σ3 → [0, 1] be the natural projection from Σ3 to the x-axis given by

π(ξ) =

∞∑
n=0

ξn

(
1

3

)n+1

.

The analogue of transversality is the following:
Lemma 8.10 There exists C > 0 such that

∆ξ(r;ω, τ) := Leb{t ∈ [0, 1]2 : |Πt,ξ(ω)−Πt,ξ(τ)| ≤ r} ≤ C3|ω∧τ |r, for r > 0.

Proof Let ω, τ ∈ p−1(ξ) with |ω ∧ τ | = n (i.e., τi = ωi for i < n and
τn 6= ωn). Since ω, τ ∈ p−1(ξ) we have i(ωn) = i(τn) for all n, and Πt,ξ(ω)−
Πt,ξ(τ) = (0, φt,ξ(ω, τ)), where

φt,ξ(ω, τ) = 3−n

(
(tj(ωn) − tj(τn)) +

∞∑
k=1

3−k(tj(ωk+n) − tj(τk+n))

)

and j|{0,4,6} ≡ 0, j|{1,7} ≡ 1, j|{2,8} ≡ 2, j|{3,5,9} ≡ 3, and t0 = 0, t3 = 1 for
convenience. If {j(ωn), j(τn)} = {0, 3}, then

|φt,ξ(ω, τ)| ≥ 3−n

(
1−

∞∑
k=1

3−k

)
= 3−n/2,

in view of tj ∈ {0, 1} for all j, and (1) follows. Otherwise, let j ∈ {j(ωn), j(τn)}∩
{1, 2}. Then ∣∣∣∣∂φt,ξ(ω, τ)

∂tj

∣∣∣∣ ≥ 3−n

(
1−

∞∑
k=1

3−k

)
= 3−n/2,

which also implies (1).
Now we use Lemma 8.11 to prove that νt,x is absolutely continuous for

a.e. x. For a sequence ξ ∈ Σ3 we define ni(ξ) to be the number of i’s in the
first n terms of ξ. By the Strong Law of Large Numbers, given ε, δ > 0 we can
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use Egorov’s theorem to choose a set X ⊂ [0, 1] of measure leb(X) > 1 − ε
(equivalently µ(π−1X) > 1 − ε) such that there exists N ∈ N where for
n ≥ N , ni(ξ) ≥

(
1
3 − δ

)n
, for i = 0, 1, 2. We can bound∫

[0,1]2

∫
X

(∫
{x}×R

D(νt,x)(y)dνt,x(y)

)
d(leb)(x)dt ≤ lim inf

r→0

1

2r

∫
π−1X

(∫
p−1(ξ)

∫
p−1(ξ)

∆ξ(r;ω, τ)dµξ(ω)dµξ(τ)

)
dµ(ξ) ≤ C

∫
π−1X

( ∞∑
n=0

∑
τ0, . . . , τn−1µξ[τ0, . . . , τn−1]23n

)
dµ(ξ) ≤ C

∫
π−1X

( ∞∑
n=0

4−n0(ξ)2−n1(ξ)4−n2(ξ)3n

)
dµ(ξ) ≤ CC1 + C

∞∑
n=N

(
4−( 2

3
−2δ)2−( 1

3
−δ)3

)n
,

for some C1 > 0 bounding the first N terms of the series, and observe
that the series is finite for δ sufficiently small. This implies the absolute
continuity for a.e. t.

We have proved the following result.
Theorem 8.12 For almost every t ∈ [0, 1]2 the limit set Λt has positive

Lebesgue measure and empty interior.
We can also construct examples with fewer similarities using different

contraction rates. Let 0 < λ < 1
2 and t = (t1, t2, t3) ∈ [0, 1]3. Consider the

six similarities of R2 defined by

T0(x, y) = (λx, λy)T1(x, y) = (λx, λy + t1)T2(x, y) = (λx, λy + t2) T3(x, y) = (λ+ λx, λy)T4(x, y) = (λ+ λx, λy + t1)T5(x, y) = (2λ+ (1− 2λ)x, (1− 2λ)y + t3).

Let Λt again denote the self-similar set. Let µ =
(
λ
3 ,

λ
3 ,

λ
3 ,

λ
2 ,

λ
2 , (1− 2λ)

)Z+

be the Bernoulli measure on Σ6. Let µ = (λ, λ, (1 − 2λ))Z
+

denote the
induced measure on Σ3. The proof of Theorem A can be adapted to this
setting provided

−(h(µ)− h(µ)) = −λ log 2− λ log 3 ≤ 2λ log λ+ (1− 2λ) log(1− 2λ),

which is true provided λ is sufficiently close to 1
2 . More precisely, we have

the following result. Theorem B If λ ∈ (0.4759, 1
2) then for almost every

t ∈ [0, 1]3 the limit set Λt has positive Lebesgue measure and empty interior.
Remark In General
We can also obtain results about some overlapping self-affine fractals in

2. Let m > k > 2 and write β = log k
logm . We consider n affine contractions

{T0, . . . , Tn−1} :2→2 given by,

Ti(x, y) = (λ
1
β x, λy) + ci

where ci ∈ {0, . . . ,m − 1} × {0, . . . , k − 1}. In the case where λ = 1
m these

are exactly the self-affine maps considered by Bedford and McMullen. The
Hausdorff and Box counting dimensions of the attractor Λ(λ) are given by
Theorem ??. We wish to calculate the Hausdorff dimension of Λ(λ) for
larger values of λ where the images overlap. For 0 ≤ j ≤ k − 1 we define

tj = Card{ci : c
(2)
i = j}.

We obtain the following result about the Hausdorff dimension of the attrac-
tor.
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Theorem 34. There exists s such that for almost every λ ∈
[

1
m , s

]
we have

that

dim Λ(λ) = −
log
(∑k−1

i=0 n
β
i

)
log λ

.

As was the case with the fat Sierpiński carpets there will be cases where
s = 1

m and hence Theorem 34 gives no new information. However in most
cases this will not be the case. An explicit values for s will be given in the
proof.

Proof of Theorem 34

We start by showing that

dim Λ(λ) ≥ −
log
(∑k−1

i=0 n
β
i

)
log λ

holds for almost every λ ∈
[

1
m , s

]
. Let Πλ : Σn → Λ(λ) be given by,

Πλ(i) =

∞∑
j=0

cijλ
j .

We then let µ be a shift invariant Ergodic measure on Σn. As before we
define νλ = µ ◦Π−1

λ . We define p : Σn → Σm by

p(j0, j1, . . .) = (c
(2)
j0
, c

(3)
j0

).

Now let µ = µ ◦ p−1. Once again we can use the Rohlin decompsition of
measures. We define a family of measures µξ where ξ ∈ Σm and for all Borel
subsets A ⊂ Σn

µ(A) =

∫
Σm

µξ(A ∩ p−1ξ)dµ(ξ).

Projections Πλ : Σm → and Πλ,ξ : p−1ξ → r are given by

Πλ(ξ) =
∞∑
j=0

ξjλ
j and Πλ,ξ(ω) =

∞∑
j=0

ωjλ
βj .

By the definition of p we have that if ω ∈ p−1ξ then for all j ∈0 there exists
ci such that (ωj , pj) = ωj . Thus

(Πλ,ξ(ω), πλ(ξ)) ∈ Λ(λ).

Let
νλ = µ ◦Π

−1
λ and νλ,ξ = µξ ◦Πλ,ξ

be measures defined on . using exactly the same methods as for the Sierpiński
carpets we can obtian the following Lemma.
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Lemma 50.

1. For almost all λ ∈
[

1
k , b(m− 1)

1
β

]
we have that,

dim νλ ≥ min

{
1,−h(µ)

log λ

}
.

2. For almost all λ ∈
[

1
k , b(k − 1)

]
we have that for µ almost all ξ,

dim νλ,ξ ≥ −
h(µ)− h(µ)

1
β log λ

.

3. For almost all λ ∈
[

1
k ,min

{
b(k − 1), e−h(µ), eh(µ)−h(µ)

}]
we have

dim νλ ≥ −
eh(µ)

log λ
− eh(µ)−h(µ)

1
β log λ

To complete the proof of the almost sure lower bound we let pi =
nβ

c
(2)
i

n
c
(2)
i

∑m−1
j=0 nβj

for i = 0, . . . , ni. We then let µ be (p0, . . . , pm−1)-Bernoulli

measure on Σm. If we let

s = min{b(m− 1), e−h(µ), eh(mu)−h(µ)}
then for almost every λ ∈ [ 1

m , s] we have that

dim νλ ≥ −
h(µ)

log λ
+
h(µ)− h(µ)

1
β log λ

.

However if we let qi =
nβi∑m

j=0−1nβj
for i = 0, . . . ,m− 1 we can calculate,

h(µ) = log
m−1∏
j=0

q
qj
j and h(µ)− h(µ) = log

m−1∏
j=0

n
qj
j .

Thus for almost every λ ∈ [ 1
k , s]

dim Λ(λ) ≥ −h(µ)

log λ
+
h(µ)− h(µ)

1
β log λ

= −
log
∏m−1
j=0 q

qj
j − β log

∏m−1
j=0 n

qj
j

log λ

=

log
∏m−1
j=0

nβj∑m−1
i=0 nβj

qj

− β log
∏m−1
j=0 n

qj
j

log λ

=

log

(
1∑m−1

j=0 nβj

)
log λ

+
log
∏m−1
j=0 n

βqj
j − log

∏m−1
j=0 n

βqj
j

log λ

= −
log
(∑m−1

j=0 nβj

)
log λ
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We complete the proof by showing that McMullen’s arguments from [?]
can be adjusted to give us a uniform upper bound in the overlapping case.

12.2 Non-linear Contractions

In this section we show how the results can be generalised to certain specific

families of non-linear contractions. Let T
(λ,α)
ij :2→, where 0 ≤ i ≤ k − 1, be

defined by

Tij : (x, y) = (f
(λ)
i , g

(χ)
ij (y))

where f
(λ)
i : [0, 1]→ [0, 1] and g

(χ)
ij : [0, 1]→ [0, 1] are C [1+α] parameterized

by some λ and φ respectively. λ and φ will be from m for some m; when
Lebesgue measure is referred to it will be m dimensional. Suppose that there
are n different maps and let Σn be the space of sequences with symbols (i, j)
and σ : Σn → Σn the usual shift map. Let Πλ,φ : Σn →2 be defined by,

Πλ,φ(x) = lim
m→∞

Tx0 · · ·Txm−1(0, 0).

This is the natural projection from the shift space to the attractor of the
iterated function system, Λ(λ, φ). Let Πλ : Σk → Σk be defined by,

Πλ(x) = lim
m→∞

fx0 ◦ · · · ◦ fxm−1(0).

We deifne p : Σn → Σk by mapping each element (i, j) of a sequence in Σn

to j. Let µ be an Ergodic shift invariant map measure on Σn and let µ = pµ.
We then decompose µ so that for any Borel set A ⊂ Σn,

µ(A) =

∫
Σk

µξ(A)dµ(ξ).

Let Πφ,ξ be the restriction of Πλ,φ to p−1ξ. We define measures by

νλ,φ = µ ◦Πλ, νλ = µ ◦Π
−1
λ , νχ,ξ = µξ ◦Πφ,ξ.

Note that νφ,ξ is entirely supported on a vertical line with x-coordinate
Πλ(ξ). In this setting we need to define Lyapunov exponents both on the
projection and along the fibres. These are the analogues of the contraction
rates in the linear cases. Let

χ1 =

∫
Σk

log |f ′x0
|◦Πλdµ(x) and χ2 =

∫
Σk

∫
p−1ξ

log |g′ξ0x0
|◦Πλ,ξdµξ(x)dµ(ξ).

To use these Lyapunov exponents we need the following two Lemmas.

Lemma 51.
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1. For µ almost all x we have that

lim
m→∞

1

m
log(Πλ([x0, . . . , xm−1])) = χ1

2. For µ almost all ξ for µξ almost all x

lim
m→∞

1

m
log(Πλ([x0, . . . , xm−1])) = χ2.

Proof.

1. By the Mean Value Theorem for all x ∈ Σk there exists x such that,

(Πλ([x0, . . . , xn−1] = fx0 ◦ · · · ◦)fxm−1)′(x).

By the Hölder continuity of each f ′i and the chain rule there exists a constant
c > 0 such that,

1

m− 1
log |fx0◦· · ·◦f ′xm−1

(x)| = 1

m− 1

∣∣∣∣∣logC +
m−1∑
l=0

log f ′xl(fxl+1
◦ · · · ◦ fik(0))

∣∣∣∣∣ .
(12.1)

If we let h : Σk → be defined by h(i) = log f ′i=0 ◦ Πλ(σ(i)) then we can
rewrite the right hand side of 12.1 as

1

m− 1

∣∣∣∣∣logC +

m−1∑
l=0

h(σl(x))

∣∣∣∣∣ .
The proof can then be completed by the Birkhoff Ergodic Theorem.

2. A similar method can be used to prove this part.

We need the following two transversality conditions to be satisfied. There
exists a constant C1 > 0 such that for ω, τ ∈ Σk with ω0 6= τ0:

L{λ : |Πλ(ω)−Πλ(τ)| ≤ r} ≤ C1r

There exists a constant C2 so that for ω, τ ∈ p−1ξ where ω0 6= τ0 we have

L{χ : |Πλ,φ,ξ(ω)−Πλ,φ,ξ(τ)| ≤ r} ≤ C2r.

Let Aλ,φ be the set where both transversality conditions are satisfied. The
following results hold when Aλ,φ has positive measure. A is the Borel sigma
algebra defined by p−1B(Σn).

Proposition 19. For almost all (λ, φ) ∈ Aλ we have

dim(νλ,φ) ≥ −
(
h(µ)

χ1
+
h(µ|A)

χ2

)
if max

{
−h(µ)

χ1
,−h(µ|A)

χ2

}
≤ 1; and

dim(νλ) ≥ 1 + min

{
−h(µ)

χ1
,−h(µ|A)

χ2

}
otherwise.
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Proposition 20. For almost all (λ, φ) in the set

{
(λ, φ) ∈ Aλ,φ : min

{
−h(µ)

χ1
,−h(µ|A)

χ2

}
≥ 1

}

νλ,χ is absolutely continuous.

Both of these Theorem can be proved using the same transversality tech-
niques as used earlier in this chapter. Details of the slight changes needed
to deal with the non-linear case can be found in [?] and [?].

Families where Proposition 19 can be applyed

We now find a family of iterated function systems on 2 where Proposition
19 can be applied. Let f, g : [0, 1] → [0, 1] be C1+α contractions where
||F ||∞, ||g||∞ < 1

2 . Let (t0, . . . , tk−1) ∈k. For 0 ≤ i ≤ k − 1
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Chapter 14

Estimating dimensions

We now come to one of the main themes we want to discuss: How can one
compute the Hausdorff Dimension of a set?

14.1 A basic approach

In the case of linear contractions there is a very effective way to estimate
the dimension using the Moran formula.

More generally, assume that T1, · · · , Tk : I → I are a family of (non-
linear) C2 contractions of an interval I. We can associate to each 1 ≤ i ≤ k
the lower and upper bounds on the derivative of the form:

0 < αi = inf
x∈I
|T ′i (x)| ≤ βi = sup

x∈I
|T ′i (x)|.

Let Λ = Λ(T1, · · · , Tk) be the associated limit set then we have the following
elementary bounds.

Proposition 21. Let 0 < d− ≤ d+ ≤ 1 be the solutions to:

k∑
i=1

α
d−
i = 1 and

k∑
i=1

β
d+

i = 1

then

d− ≤ dimH(Λ) ≤ d+

To proceed we need to prove basic distortion bounds.

Lemma 52 (Distortion bounds). There exists a constant A > 0 such that
for any i1, · · · , in ∈ {1, · · · , k} and all x, y ∈ I:

1

A
≤ |(Ti1 ◦ · · · ◦ Tin)′(x)|
|(Ti1 ◦ · · · ◦ Tin)′(y)|

≤ A

181
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Proof. Since the maps Ti are C2 we have that log |T ′i | is C1 and this is
Lipschitz, i.e.,∣∣log |T ′i (x)| − log |T ′i (x)|

∣∣ ≤ C|x− y| where C =
∑
x∈I

|f ′′i (x)|
|f ′i(x)|

< +∞.

where we use the Mean Value Theorem. By the chain rule we can write

(Ti1 ◦ · · · ◦ Tin)′(x) =

n∏
j=1

Tij (Tij+1 ◦ · · · ◦ Tin)(x))

and then for x, y ∈ I we have∣∣log |(Ti1 ◦ · · · ◦ Tin)′(x)| − log |(Ti1 ◦ · · · ◦ Tin)′(y)|
∣∣

≤
n∑
j=1

∣∣log |Tij (Tij+1 ◦ · · · ◦ Tin)(x))| − log |Tij (Tij+1 ◦ · · · ◦ Tin)(y))|
∣∣

≤ C
n∑
j=1

∣∣Tij+1 ◦ · · · ◦ Tin(x)− Tij+1 ◦ · · · ◦ Tin(y)
∣∣

≤ C
n∑
j=1

(βi)
n−j−1 ≤ C

1− β
.

(1)

where we have used the Mean Value Theorem to bound∣∣Tij+1 ◦ · · · ◦ Tin(x)− Tij+1 ◦ · · · ◦ Tin(y)
∣∣ ≤ ∫ y

x
|(Tij+1 ◦ · · · ◦ Tin)′(t)|dt

≤ βn−j−1

Exponentiating both sides of (1) and writing C = exp
(

C
1−β

)
.

Given i = (i1, · · · , in) ∈ {1, · · · , k}n we denote Ii = Ti1 ◦ · · · ◦ Tin(I)
denote the images of I. We have the following corollary.

Corollary 11. The length |Ii| of the interval |Ii| satsifies

1

A
≤

|Ii|
|(Ti1 ◦ · · · ◦ Tin)′(x0)|

≤ A

for any x0 ∈ I.

Proof. We can use the change of variables formula to write(
inf
x∈I
|(Ti1 ◦ · · · ◦ Tin)′(x)|

)
|I| ≤ |Ii| =

∫
I
|(Ti1 ◦ · · · ◦ Tin)′(t)|dt

≤
(

sup
x∈I
|(Ti1 ◦ · · · ◦ Tin)′(x)|

)
|I|

then the result follows by the lemma.
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Recall that the limit set can be written as

X = ∩∞n=1 ∪|i|=n Ii.

Let δ = infi 6=j infx∈Ii,y∈Ij |x − y| > 0 be the smallest gap between different
images Ti(I) and Tj(I).

Lemma 53. For x, y ∈ I with x 6= y we can choose n ≥ 1 and i =
(i1, · · · , in) ∈ {1, · · · , k}n with

1. x, y ∈ I, and

2. there exists i 6= j such that x ∈ Iii and y ∈ Iij

where ii = (i1, · · · , in, i) ∈ {1, · · · , k}n+1. Moreover, for any x0 ∈ I we can
bound

δ

A
≤ |x− y|
|(Ti1 ◦ · · · ◦ Tin)′(x0)|

≤ A.|I|

Proof. We can choose an interval J from I − ∪ki=1Ii which lies between Ii
and Ij . We denote Ji = Ti1 ◦ · · · ◦ Tin(J). In particular, |x − y| ≥ |Ji| and
by the change of variable formula and the corollary

|Ji| =
∫
J
|(Ti1 ◦ · · · ◦ Tin)′(t)|dt ≥ |J |

|A|
|(Ti1 ◦ · · · ◦ Tin)′(x0)|

and by definition |J | ≥ δ > 0. On the other hand

|x− y| ≤ |Ii| ≤ A|(Ti1 ◦ · · · ◦ Tin)′(x0)|.|I|.

This complete the proof.

Let us assume that β1 + · · ·+ βk < 1− δ < 1. We can then associate an
affine linear function scheme Si : [0, 1]→ [0, 1] (i = 1, · · · , k) by

Si(x) = βix+ γi

where we choose the γi = β1 + · · ·βi−1 + iδ/k (i = 1, · · · , k). Let X be the
limit set associated to {Si}ki=1, i.e., X is the smallest closed non-empty set
such that X = ∪ki=1TiX.

This leads to the following.

Lemma 54. The natural map π : X → X given by

π

(
lim

n→+∞
Si1Si2 ◦ · · · ◦ Sin(x0)

)
= lim

n→+∞
Ti1Ti2 ◦ · · · ◦ Tin(x0)

is Lipschitz.
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In particular, this implies that dimH(X) ≤ dimH(X). But by Moran’s
theorem we have dimH(X) = d.

Similarly, we can then associate an affine linear function scheme Ri :
[0, 1]→ [0, 1] (i = 1, · · · , k) by

Ri(x) = αix+ γi

where we choose the γi = α1 + · · ·αi−1 + iδ/k (i = 1, · · · , k). Let X be the
limit set associated to {Ri}ki=1, i.e., X is the smallest closed non-empty set
such that X = ∪ki=1TiX.

This leads to the following.

Lemma 55. The natural map π : X → X given by

π

(
lim

n→+∞
Ti1Ti2 ◦ · · · ◦ Tin(x0)

)
= lim

n→+∞
Ri1Ri2 ◦ · · · ◦Rin(x0)

is Lipschitz.

In particular, this implies that dimH(X) ≤ dimH(X). But by Moran’s
theorem we have dimH(X) = d.

This completes the proof of the proposition.

Example 59. Let 2 ≤ a < b be integers and let T1, T2 : [0, 1] → [0, 1] be
defined by

T1(x) =
1

a+ x
and T1(x) =

1

b+ x

In particular, we see that

1

(a+ 1)2
≤ |T ′1(x)| = 1

(a+ x)2
≤ 1

a2
and

1

(b+ 1)2
≤ |T ′2(x)| = 1

(b+ x)2
≤ 1

b2
.

(a) For example, when a = 2 and b = 3 we have that

1

16
≤ |T ′1(x)| ≤ 1

9
and

1

9
≤ |T ′2(x)| ≤ 1

4

and we can solve for 0 < d < d < 1 with(
1

9

)d
+

(
1

16

)d
= 1 and

(
1

4

)d
+

(
1

9

)d
= 1

and get

d = 0.2802 . . . and d = 0.3939 · · · .

(b) For example, when a = 12 and b = 13 we have that

1

169
≤ |T ′1(x)| ≤ 1

196
and

1

169
≤ |T ′2(x)| ≤ 1

144
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and we can solve for 0 < d < d < 1 with(
1

169

)d
+

(
1

196

)d
= 1 and

(
1

144

)d
+

(
1

169

)d
= 1

and get

d = 0.1332 . . . and d = 0.1372 · · · .

In fact, we don’t need to bound the derivatives of |T ′1(x)| and |T ′2(x)| for
all x ∈ I, but only on sub-intervals

I1 =
[
[ba], [b]

]
and I2 =

[
[a], [ab]

]
where we have periodic continued fraction expansions

ba = [bababa · · · ]
b = [bbbbbb · · · ]
a = [aaaaaa · · · ]
ab =]ababab · · · ]

Since [a] = 1
a+[a] and [b] = 1

b+[b]
we can solve to get

[a] =
1

2

(
−a+

√
a2 − 4(a− 1)

)
and [b] =

1

2

(
−b+

√
b2 − 4(b− 1)

)
Since [ab] = 1

a+ 1
b+[ab]

and b = 1
b+ 1

a+[ba]

we can solve to get

[ab] =
1

2

(
−ab+

√
(ab)2 − 4ab

)
and [ba] =

1

2

(
−ba+

√
(ab)2 − 4ab

)
14.2 Algorithms

In some of the simpler examples, particularly those constructed by affine
maps, it was possible to give explicit formulae for the Hausdorff dimension.
In this chapter we shall consider more general cases. Typically, it is not
possible to give a simple closed form for the dimension and it is necessary
to resort to algorithms to compute the dimension as efficiently as we can.
The original definition of Haudorff Dimension isn’t particularly convenient
for computation in the type of examples we have been discussing. However,
the use of pressure for interated function schemes provides a much more
promising approach.

We shall describe a couple of different variations on this idea. The main
hypotheses on the compact X is that there exists a transformation T : X →
X such that:
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1. Markov dynamics: There is a Markov partition (to help describe the local
inverses as an interted function scheme);

2. Hyperbolicity: There exists some λ > 1 such that |T ′(x)| ≥ λ for all x ∈ X;

3. Conformality: T is a conformal map;

4. Local maximality: For any sufficiently small open neighbourhood U of the
invariant set X we have X = ∩∞n=0T

−nU (such an X is sometimes called a
repeller).

Our two main examples are the following:

Example 3.1.1 Consider a hyperbolic rational map T : Ĉ → Ĉ of degree
d ≥ 2 and let J be the Julia set. This satisfies the hypotheses (1)-(4). We
let U be a sufficiently small neighbourhood of J .

Using the Markov partitions can write J = ∪ki=1Ji and inverse branches
Ti : J → Ji such that T ◦ Ti(z) and i = 1, . . . , k for all z ∈ Ji. J is the limit
set for this iterated function schemes.

Example 3.1.2 Consider a Schottky group Γ = 〈g1, · · · , gn, gn+1 = g−1
1 , · · · , g2n =

g−1
n 〉 and let Λ be the limit set. We let U = ∪2n

i=1Ui be the union of the dis-
joint open sets Ui = {z ∈ : |g′i(z)| > 1} of isometric circles. We define
T : Λ → Λ by T (z) = gi(z), for z ∈ Ui ∩ Λ and i = 1, . . . , 2n. This satisfies
the hypotheses (1)-(4).

We can define inverse branches Ti : gi(Ui∩Λ)→ Ui∩Λ such that T ◦Ti(z)
and i = 1, . . . , n for all z ∈ Ui ∩Λ. The limit set Λ is the same as that given
by the iterated function scheme.

We now describe three different approaches to estimating Hausdorff di-
mension.

A first approach: Using the definition of pressure. The most direct approach
is to try to estimate the pressure directly from its definition, and thus the
dimension from the last chapter.

Lemma 3.1 For each n ≥ 1 we can choose sn to be the unique solution
to

1

n
log

( ∑
Tnx=x

|(Tn)′(x)|−sn
)

= 1.

Then sn = dimH(X) +O
(

1
n

)
.

Proof. Fix a point x0. There exists C > 0, we can associate to each preimage
y ∈ T−nx0 a periodic point Tnx = x with |(Tn)′(y)|/|(Tn)′(x)| ≤ C (in the
last chapter). We can estimate

e−Cs
∑

Tny=x0

|(Tn)′(y)|−s ≤
∑

Tnx=x

|(Tn)′(x)|−s ≤ eCs
∑

Tny=x0

|(Tn)′(y)|−s



14.2. ALGORITHMS 187

We can identify

Ls1
n(x) =

∑
Tny=x

|(Tn)′(y)|−s. (3.1)

Recall that the Ruelle operator theorem allows us to write that Lns 1(x) =
λns (1 + o(1)), where s > 0, and thus

log λs =
1

n
log

( ∑
Tnx=x

|(Tn)′(x)|−s
)

+O

(
1

n

)
.

We can deduce the result from the the Bowen-Ruelle Theorem (since the
derivative of log λs is non-zero).

In particular, in order to get an estimate with error of size ε > 0, say, one
expects to need the information on periodic points of period approximately
1/ε. This does not suggest itself as a very promising approach for very
accurate approximations, since the number of periodic points we need to
consider grows exponentially quickly with n � 1

ε .

A second approach: Using the transfer operator. McMullen observed that
working with the transfer operator one can quite effectively compute the
pressure and the dimension. In practise, the numerical competition uses the
approximation of the operator by matrices. Some of the flavour is given by
the following statement.

Proposition 3.2 Given x ∈ X, and then for each n ≥ 1 we can choose
sn to be the unique solution to

∑
Tny=x |(Tn)′(y)|−sn = 1. Then sn =

dimH(X) +O(θn), for some 0 < θ < 1.

Proof. We begin from the identity (3.1). The stronger form of the Ruelle
operator theorem means we can write that Lns 1(x) = λns (1 + O(αn)) where
0 < α < 1. The derivative 1

λs
∂λs
∂s of log λs can be seen to be non-zero, and

so we can deduce the result from the Bowen-Ruelle Theorem.

For many practical purposes, this gives a pretty accurate approximation
to the Hausdorff dimension of X. However, we now turn to the main method
we want to discuss.

A third approach: Using determinants. Finally, we want to consider an
approach based on determinants of transfer operators. The advantage of
this approach is that it gives very fast, super-exponential, convergence to
the Hausdorff dimension of the compact set X. This is based on the map
T : X → X satisfying the additional assumption:

1. ”(5)” Analyticity: T is real-analytic.
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We need to introduce some notation.
Definition Let us define a sequence of real numbers

an =
1

n

∑
|i|=n

|Ti(zi)|−s

det
(
I −

[
Ti(zi)

]−1
) , for n ≥ 1,

where the summation is over all n-strings of contractions, T ′i (zi) denotes
the derivative of Ti at the fixed point zi = Ti(zi), and |T ′i (zi)| denotes the
modulus of the derivative. Next we define a sequence of functions by

∆N (s) = 1 +
N∑
n=1

∑
(n1,...,nm)

n1+...+nm=n

(−1)m

m!
an1 . . . anm ,

where the second summation is over all ordered m-tuples of positive integers
whose sum is n.

The main result relating these functions to the Hausdorff dimension of
X is the following.

Theorem 3.3 Let X ⊂ Rd and assume that T : X → X satisfies condi-
tions (1)-(5). We can find C > 0 and 0 < θ < 1 such that if sN is the largest
real zero of ∆N then

|dim(X)− sN | ≤ CθN
(1+ 1

d)
for each N ≥ 1.

In the case of Cantor sets in an interval then we would take d = 1. In
the case of Julia sets and Kleinian group limit sets we would take d = 2.

Practical points

1. In practise, we can get estimates for C > 0 and 0 < θ < 1 in terms
of T . For example, θ is typically smaller for systems which are more
hyperbolic.

2. To implement this on a desktop computer, the main issue is amount
memory required. In most examples it is difficult to get N larger than
18, say.

3.2 Examples
Example 1: E2 We can consider the non-linear Cantor set

E2 =

 1

i1 + 1
i2+ 1

i3+...

: in ∈ {1, 2}

 .

For X = E2, we can define Tx = 1
x (mod 1). This forms a Cantor set in the

line, contained in the interval [1
2(
√

3−1),
√

3−1], of zero Lebesgue measure.
1

1It represents sets of numbers with certain diophantine approximatibility conditions
and its Hausdorff dimension has other number theoretic significance in terms of the
Markloff spectrum in diophantine approximation, as we shall see in the next chapter.
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A number of authors have considered the problem of estimating the
Hausdorff dimension dimH(E2) of the set E2. In 1941, Good showed that
0.5194 ≤ dimH(E2) ≤ 0.5433. In 1982, Bumby improved these bounds to
0.5312 ≤ dimH(E2) ≤ 0.5314. In 1989 Hensley showed that 0.53128049 ≤
dimH(E2) ≤ 0.53128051. In 1996, he improved this estimate to 0.5312805062772051416.

We can apply Theorem 3.3 to estimating dimH(E2). In practice we can
choose N = 16, say, and if we solve for ∆16(s16) = 0 then we derive the
approximation

dimH(E2) = 0.5312805062772051416244686 . . .

which is correct to the 25 decimal places given.
Example 2: Julia sets We can consider Julia sets for quadratic polyno-

mials fc(z) = z2 + c with different values of c.
Example 2(a). Inside the main cardioid of the Mandelbrot set Let

c = −0.06, which is in the main cardioid of the Mandelbrot set. Thus
the quadratic map Tc is hyperbolic and its Julia set is a quasi-circle (which
looks quite “close” to a circle).

=2.5in frog6.eps
The Julia set for z2− 0.06 is the boundary between the white and black

regions. (The white points are those which do not escape to infinity)

Bodart & Zinsmeister estimated the Hausdorff dimension of the Julia
set to be dimH(Jc) = 1.001141, whereas McMullen gave an estimate of
dimH(Jc) = 1.0012. Using Theorem 3.3 we can recover and improve on
these estimates. Working with N = 8 we obtain the approximation

dimH(Jc) = 1.0012136624817464642 . . .

Example 2(b). Outside the Mandelbrot set Let c = −20, which is outside
the Mandelbrot set. Thus the quadratic map Tc is hyperbolic and its Julia
set is a Cantor set. With N = 12 this gives the approximation

dimH(Jc) = 0.3185080957 . . .

which is correct to ten decimal places. This improves on an earlier estimate
of Bodart & Zinsmeister.

=2.5in trig.eps
Figure 9 Contraction (a) in the r-plane; and (b) in the θ-plane

3.3 Proof of Theorem 3.3 (outline) The proof of this Theorem is based on
the study of the transfer operator on Hilbert spaces of real analytic functions.
To explain the ideas, we shall first outline the main steps in the general case
(without proofs) and then restrict to a special case (where more proofs will
be provided). The difficulties in extending from the particular case to the
general case are more notational than technical.
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(i) Real Analytic Functions We have a natural identification

Rd = Rd × {0} ⊂ Rd × iRd = Cd.

A function f : U → Rk on an neighbourhood U ⊂ Rd is real analytic
if about every point x ∈ U there is a convergent power series expansion.
Equivalently, it has a complex analytic extension to a function f : D → Ck,
where U ⊂ D ⊂ Cd is an open set in Cd.

(ii) Expanding maps and Markov Partitions We start from an expanding
map T : X → X with a Markov Partition P = {Xj}, say. For each 1 ≤
j ≤ k, let us assume that Uj is an open neighbourhood of a element Xj

of the Markov Partition. We may assume that for each (i, j), the local
inverse Tji : Xj → Xi for T : Xi ∩ T−1Xj → Xj are contracting maps
in an interated function scheme. Using analyticity (and choosing a smaller
Markov partition P , if necessary) we can assume that Uj ×{0} ⊂ Dj where

Dj = D
(1)
j × . . .×D

(d)
j ⊂ Cd is chosen is an open polydisc, i.e., a product of

open discsD
(l)
j in C. Thus, we can assume that these extend holomorphically

to maps Tji : Di → Dj , and |DTji(·)| : Di → C too, such that both

Tji(Di) ⊂ Dj and sup
z∈Di

|DTji(z)| < 1, (3.1)

i.e., the discs are mapped are mapped so that their closures are contained
inside the interior of the range disk, and the derivative is smaller than 1.

(iii) A Hilbert space and a linear operator For any open set U ⊂ Cd, let
A2(U) denote the Hilbert space of square integrable holomorphic functions
on U equipped with the norm

||f ||A2(U) =

√∫
U
|f |2d(vol).

For any s ∈ R, and any admissible pair (i, j), define the analytic weight
function ws,(j,i) ∈ H(Di) by ws,(j,i)(z) = |DTji(z)|s. 2 We then define the
bounded linear operator Ls,(j,i) : H(Dj)→ H(Di) by

Ls,(j,i)g(z) = g(Tjiz)ws,(j,i)(z).

For a fixed i we sum over all (admissible) composition-type operators
Ls,(j,i) to form the transfer operator Ls,i, i.e.,

Ls,ih(z) =
∑

j:A(i,j)=1

h(Tjiz)ws,(j,i)(z). (3.2)

2It is here that we need to consider real analyticity, because of the need for the modulus
| · |.
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Finally, let D =
∐
iDi be the disjoint union of the disks, then we define

the transfer operator Ls : A2(D)→ A2(D) by setting

Lsh|Di = Ls,ih

for each h ∈ A2(D) and each i ∈ {1, . . . , k}.

The strategy we shall follow is the following. The operators Ls are de-
fined on analytic functions on the disjoint union of the disks Di. This in
turn allows us to define their Fredholm determinants det(I−zLs). These are
entire function of z which, in particular, have as a zero the value z = 1/λs.
In this context we can get very good approximations to det(I − zLs) using
polynomials whose coefficients involve the traces tr(Lns ). Finally, these ex-
pressions can be evaluated in terms of fixed points of the iterated function
scheme, leading to the functions ∆N (s) introduced above.

(iv) Nuclear operators and approximation numbers Given a bounded
linear operator L : H → H on a Hilbert space H, its ith approximation
number si(L) is defined as

si(L) = inf{||L−K|| : rank(K) ≤ i− 1},

where K is a bounded linear operator on H.

Definition A linear operator L : H → H on a Hilbert space H is called
nuclear if there exist un ∈ H, ln ∈ H∗ (with ||un|| = 1 and ||ln|| = 1) and∑∞

n=0 |ρn| < +∞ such that

L(v) =
∞∑
n=0

ρnln(v)un, for all v ∈ H. (3.4)

The following theorem is due to Ruelle.

Proposition 3.4 The transfer operator L : A2(D)→ A2(D) is nuclear.

(iv) Determinants We now associate to the transfer operators a function
of a two complex variables.

Definition For s ∈ C and z ∈ C we define the Fredholm determinant
det(I − zLs) of the transfer operator Ls by

det(I − zLs) = exp

(
−
∞∑
n=1

zn

n
tr(Lns )

)
(3.5)

This is similar to the way in which one associates to a matrix the determi-
nant.

We can compute the traces explicitly.

The key to our method is the following explicit formula for the traces of
the powers Lns in terms of the fixed points of our iterated function scheme.
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Proposition 3.5 If Ls : A∞(D) → A∞(D) is the transfer operator asso-
ciated to a conformal iterated function scheme then

tr(Lns ) =
∑
|i|=n

|T ′i (zi)|s

det(I − T ′i (zi))
,

where T ′i (·) is the (conformal) derivative of the map Ti. This allows us to
compute the determinant:

det(I − zLs) = exp

− ∞∑
n=1

zn

n

∑
i∈Fix(n)

|DTi(zi)|s

det(I −DTi(zi))

 .

(iv) Pressure, Hausdorff Dimension and Determinants We can now make
the final connection with the Hausdorff dimension.

Proposition 3.6 For any s ∈ C, let λr(s), r = 1, 2, . . . be an enumeration
of the non-zero eigenvalues of Ls, counted with algebraic multiplicities. Then

det(I − zLs) =
∞∏
r=1

(1− zλr(s)).

In particular, the set of zeros z of the Fredholm determinant det(I − zLs),
counted with algebraic multiplicities, is equal to the set of reciprocals of
non-zero eigenvalues of Ls, counted with algebraic multiplicities.

This brings us to the connection we want.
Proposition 3.7 Given an iterated function scheme, the Hausdorff di-

mension dim(Λ) of its limit set Λ is the largest real zero of the function
s 7→ det(I − Ls).

Proof. If s is real then by the previous section the operator Ls has simple
maximal eigenvalue λs, which equals 1 if and only if s = dim(Λ). But
Proposition 3.7 tells us that 1 is an eigenvalue of Ls if and only if s is a zero
of det(I − Ls).

To see that dimH(Λ) is actually the largest real zero of det(I − Ls),
observe that if s > dim(Λ) then the spectral radius of Ls is less than 1,
so that 1 cannot be an eigenvalue of Ls, and hence cannot be a zero of
det(I − Ls).

The reason that det(I − zLs) is particularly useful for estimating λs is
because of the following result.

Proposition 3.8 The function det(I−zLs) is entire as a function of z ∈ C
(i.e., it has an analytic extension to the entire complex plane). In particular,
we can expand

det(I − zLs) = 1 +
∞∑
n=1

bn(s)zn
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where |bn(s)| ≤ Cθn1+1/d
, for some C > 0 and 0 < θ < 1.

We can rewrite det(I − Ls) by applying the series expansion for e−x =
1 +
∑∞

m=1(−1)mxm

m! to the trace formula representation of det(I− zLs), and
then regrouping powers of z. More precisely, we can expand the presentation

det(I − zLs) = exp

− ∞∑
n=1

zn

n

∑
|i|=n

|Ti(z∗i )|−s

det(I − Ti(z∗i ))

 = 1 +
∞∑
n=1

bn(s)zn

(3.6)
using the Taylor series e−x = 1 +

∑∞
m=1(−1)mxm

m! . Collecting together the
coefficients of zN we have the following:

Proposition 3.9 Let det(I − zLs) = 1 +
∑∞

N=1 dN (s)zN be the power
series expansion of the Fredholm determinant of the transfer operator Ls.
Then

bN (s) =
∑

(n1,...,nm)
n1+...+nm=N

(−1)m

m!

m∏
l=1

1

nl

∑
|i|=nl

|DTi(zi)|s

det(I −DTi(zi))
, (3.7)

where the summation is over all ordered m-tuples of positive integers whose
sum is N .

In conclusion, (3.7) allows an explicit calculation of any coefficient dN (s),
in terms of fixed points of compositions of at most N contractions.

3.4 Proof of Theorem 3.3 (special case) We shall try to illustrate the
basic ideas of the proof, by proving these results with in the simplest setting:
d = 1. Let ∆r = {z ∈ C : |z| < r} denote the open disk of radius r centered
at the origin in the complex plane. Assume that X is contained in the unit
disk ∆1 and that T : X → X has two inverse branches T1, T2 which have
analytic extensions T1 : ∆1 → ∆1 and T2 : ∆1 → ∆1 which have analytic
extensions to ∆1+ε satisfying T1(∆1+ε) ∪ T2(∆1+ε) ⊂ ∆1. Thus T1 and T2

are strict contractions of ∆1+ε into ∆1 with the radii being reduced by a
factor of θ = 1/(1 + ε) < 1.

Let A2(∆r) denote the Hilbert space of analytic functions on ∆r with
inner product 〈f, g〉 :=

∫
∆r
f(z) g(z) dx dy.

Let us assume that |T ′1(z)| and |T ′2(z)| have analytic extensions from X
to ∆1+ε. We define the transfer operator Ls : A2(∆1)→ A2(∆1) by

Lsh(z) = |T ′1(z)|sh(T1z) + |T ′2(z)|sh(T2z), for z ∈ ∆1+ε.

Observe that Ls(A2(∆1)) ⊂ A2(∆1+ε) and then

Lsh(z) =

∫
|ξ=1+ε|

Lsh(ξ)

z − ξ
dξ =

1

2πi

∫
|ξ|=1+ε

Lsh(ξ)

(
1

ξ

∞∑
n=0

(
z

ξ

)n)
dξ =

∞∑
n=0

zn
1

2πi

∫
|ξ|=1+ε

Lsh(ξ)

ξn+1
dξ,

where un(z) = zn ∈ A2(∆1+ε) and ln(h) = 1
2πi

∫
|ξ|=1+2ε

Lsh(ξ)
ξn+1 ∈ A2(∆1+ε)

∗

is a linear functional. We can deduce that Ls is a nuclear operator, the
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uniform convergence of the series coming from |z/ξ| = θ < 1. Aside on

Operator Theory. A bounded linear operator T : H → H on a Hilbert space
H is called compact if the image T (B) ⊂ H of the unit ball {x ∈ H : ||x|| ≤
1} has a compact closure. In particular, a nuclear operator is automatically
compact.

We denote the norm of the operator by ||T ||H = sup||f ||=1 ||T (f)||.
We recall the following classical result.
Weyl’s Lemma Let A : H → H be a compact operator with eigenvalues

(λn)∞n=1. We can bound |λ1λ2 · · ·λn| ≤ s1s2 · · · sn

Proof. Given a bounded linear operator A : H → H on a Hilbert space
H we can associate a bounded self-adjoint linear operator B : H → H by
B = A∗A. Since B is non-negative (i.e, 〈Bf, f〉 = ||Af ||2 ≥ 0 for all f ∈ H)
the eigenvalues µ1 ≥ µ2 ≥ · · · for B are described by the minimax identity:

µ1 = max
f 6=0

〈Bf, f〉
||f ||2

andµn+1 = max
dimL=n

max
f∈L⊥

〈Bf, f〉
||f ||2

for n ≥ 1,

where L denotes an n-dimensional subspace.
Claim 1 µn ≤ sn(A) Proof of Claim 1 For any linear operator K : H → H

with n-dimensional image K(H) ⊂ H we can use the minimax identity to
write

µn ≤ max
f∈ker(K)

〈Bf, f〉
||f ||2

= max
f∈ker(K)

〈(B −K)f, f〉
||f ||2

≤ ||B −K||

Taking the infimum over all such K proves the claim.

Claim 2 Given an orthonormal set {φi}ni=1 ⊂ H we can write

det(〈Aφi, Aφj〉)ni,j=1 ≤ s2
1s

2
2 · · · s2

n det(〈φi, φj〉)ni,j=1

Proof of Claim 2 Let {en}∞m=0 be a complete orthonormal basis of eigenvec-
tors forB. We can write 〈Aφi, Aφj〉 = 〈Bφi, φj〉 =

∑∞
m=0 µm〈φj , em〉〈em, φk〉.

In particular, we can write the original matrix as a product of two infinite
matrices.

(〈Aφi, Aφj〉)ni,j=1 = (
√
µm〈φj , em〉)∞m=1

n
j=1 × (

√
µm〈em, φk〉)nk=1

∞
m=1. (3.7)

Considering determinants gives:

det(〈Aφi, Aφj〉)ni,j=1 =
∑
C,C′

det(C) det(C ′),

where the sum is over all possible n × n submatrices C and C ′ of the two
matrices on the rights hand side of (*3.7), respectively. In this latter ex-
pression, we can take out a factor of

√
µ1µ2 · · ·µn from each matrix to leave

det(〈φi, φj〉)ni,j=1. Since, by Claim 1, µ1µ2 · · ·µn ≤ s1s2 · · · sn this gives the
desired result.
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It remains to complete the proof of Weyl’s Lemma. Since A is a compact
operator we can choose an orthonormal basis (e)∞n=0 for H such that Aen =
an1e1+an2e2+· · ·+annen, (i.e., the matrix (anm) is triangular) and ann = λn
is an eigenvalue. In particular, if i < j than

〈Aei, Aej〉 =

i∑
k=1

〈Aφi, φk〉〈Aφk, Aφj〉

and thus

det (〈Aei, Aej〉)ni,j=1 = det (〈Aei, ej〉)ni,j=1 det
(
〈Aei, ej〉

)n
i,j=1

=
∣∣∣det (〈Aei, ej〉)ni,j=1

∣∣∣2 = |λ1 · · ·λn|2.

This completes the proof
We now return to the explicit case of analytic functions.
Lemma 3.10 The singular values of the transfer operator Ls : A2(∆1)→

A2(∆1) satisfy

sj(Ls) ≤
||Ls||A2(∆1+ε)

1− θ
θj , for all j ≥ 1.

Proof. Let g ∈ A2(∆1) and write Lsg =
∑∞

k=0 lk(g)pk, where pk(z) = zk. We

can easily check ||pk||A2(∆1) =
√

π
k+1 and ||pk||A2(∆1+ε) =

√
π
k+1(1 + ε)k+1.

The functions {pk}∞k=0 form a complete orthogonal family for A2(∆1+ε), and
so 〈Lsg, pk〉A2(∆1+ε) = lk(g)||pk||2A2(∆1+ε)

. The Cauchy-Schwarz inequality
implies that

|lk(g)| ≤ ||Lsg||A2(∆1+ε) ||pk||
−1
A2(∆1+ε)

.

We denote the rank-j projection operator L
(j)
s by L

(j)
s (g) =

∑j−1
k=0 lk(g)pk.

For any g ∈ A2(∆1) we can estimate

||
(
Ls − L(j)

s

)
(g)||A2(∆1) ≤ ||Lsg||A2(∆1)

∞∑
k=j

θk+1.

It follows that

||Ls − L(j)
s ||A2(∆1) ≤

||Ls||A2(∆1)

1− θ
θj+1 and so sj(Ls) ≤

||Ls||A2(∆1)

1− θ
θj+1,

and the result follows.

We now show that the coefficients of the power series of the determinant
decay to zero with super-exponential speed.

Lemma 3.11 If we write
∏∞
j=1 (1 + zsj) = 1 +

∑∞
m=1 cmz

m, then

|cm| ≤ B
(
||Ls||A2(∆1)

)m
θ
m(m+1)

2 ,

where B =
∏∞
m=1(1− θm)−1 <∞.
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Proof. The coefficients cn in the power series expansion of the determinant
have the form cm =

∑
i1<...<im

si1 · · · sim , the summation is over all m-tuples
(i1, . . . , im) of positive integers satisfying i1 < . . . < im. Thus by Lemma
3.10 we can bound

|cm| ≤
( ||Ls||A2(∆1)

1− θ

)m
θm(m+1)/2

(1− θ)(1− θ2) · · · (1− θm)
. ≤ B

( ||Ls||A2(∆1)

1− θ

)m
θm(m+1)/2.

For some B > 0.

The coefficients of det(I − zLs) = 1 +
∑∞

n=1 bnz
n are given by Cauchy’s

Theorem:

|bn| ≤
1

rn
sup
|z|=r
|det(I − zLs)|, for any r > 0. (3.8)

We recall the following standard bound of Hardy, Littlewood and Polya: Let
{an}, {bn} be not increasing sequences of real numbers such that

∑n
j=1 aj ≤∑n

j=1 bj and let Φ : R → R be a convex function then
∑n

j=1 Φ(aj) ≤∑n
j=1 Φ(bj). Letting aj = log |λj |, bj = log sj and Φ(x) = log(1 + tx)

(and letting n→ +∞) we deduce that if |z| = r then

|det(I − zLs)| ≤
∞∏
j=1

(1 + |z|λj) ≤
∞∏
j=1

(1 + |z|sj) ≤

(
1 +B

∞∑
m=1

(rα)mθ
m(m+1)

2

)
(3.9)

where α = ||Ls||A2(∆1). If we choose r = r(n) := θ−n/2

α then we can bound

(rα)mθm
2/2 ≤ θn2/2 for m = 1, . . . ,

[n
2

]
θ((m−n)2+nm)/2 ≤ (θn/2)m for m >

[n
2

]
(3.10)

Comparing (3.8), (3.9) and (3.10) we can bound

|bn| ≤
[n

2

]
θn

2/2 +
(θn/2)n/2

1− θn/2

This proves the super-exponential decay of the coefficients provided we re-
place θ by a value larger than θ1/4.

Lemma 3.12 We can compute the traces:

tr (Lns ) =
∑
|i|=n

|T ′i (x)|s

1− |T ′i (x)|−1

Proof. For each string i = (i1, . . . , in) ∈
∏n
j=1{0, 1} let us first define opera-

tors Ls,i : A2(∆1)→ A2(∆1) by Ls,ig(z) = g(Tiz)ws,i(z), where the analytic
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weight functions ws,i are given by ws,i(z) = |DTi(z)|s. The nth iterate of the
transfer operator Ls is given by

Lns =
∑
|i|=n

Ls,i.

The additivity of the trace means we can write

tr(Lns ) =
∑
|i|=n

tr(Ls,i). (3.11)

For each i there is a unique fixed point zi of the contraction Ti : ∆1 → ∆1.
We can compute the trace of Ls,i by evaluating the eigenvalues of this
operator and summing. In particular, consider the eigenfunction equa-
tion Ls,ih(z) = λh(z). We can evaluate this at z = zi to deduce that
ws,i(zi)h(zi) = λh(zi). If h(zi) 6= 0 then we see that the only solution cor-
responds to λ = 1. If h(zi) = 0, then we can differentiate the eigenvalue
equation to get that

w′s,i(z)h(z) + ws,i(z)h
′(z) = λh′(z)

Evaluating this at z = zi (and recalling that h(zi) = 0) we get that

ws,i(zi)h
′(zi) = λh′(zi)

If h′(zi) 6= 0 then we see that the only solution corresponds to λ = ws,i(zi).
Proceeding inductively, we can see that the only eigenvalues are {λn}∞n=1 =
{ws,i(zi)k : k ≥ 0}. (Moreover, one can see that these eigenvalues are real-
ized). Summing over these eigenvalues gives:

tr(Ls,i) =

∞∑
n=1

λn =
ws,i(zi)

(1− T ′i (zi))
=
|T ′i (zi)|s

(1− T ′i (zi))
. (3.12)

Finally, comparing (3.11) and (3.12) completes the proof.
We will consider the Banach space

A :=

{
h ∈ C(

k∐
i=1

V i,C) : h is holomorphic on
k∐
i=1

Vi

}
,

equipped with the norm ||h|| = sup{|h(z)| : z ∈
∐k
i=1 V i} <∞.

Proposition 2 The operator Ls : A→ A is nuclear.

Proof. Because property (iii) holds, this follows from Lemma 3.3 in [?].

In order to study periodic points it is useful to consider a more general
setting. Let V ⊂ Cd be an open set and consider an analytic contraction
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T : V → V such that T (V ) ⊂ V . The contraction T : U → U has a unique
fixed point z∗ ∈ U .

For future reference, we write the components T = (T1, . . . , Td).
The operator LT : A→ A defined by Lψ,Th(z) = ψ(Tz)h(Tz) is nuclear

(by the same proof as the above proposition). If Lψ,T has eigenvalues λn,
n ≥ 0, then the trace tr(Lψ,T ) :=

∑∞
n=0 λn is well defined.

Proof. For each admissible string i = (i1, . . . , in+1) let us first define composition-
like operators Ls,i : A∞(Din+1)→ A∞(Di1) by

Ls,ig(z) = g(Tiz)ws,i(z), (3.22)

where the weight functions ws,i ∈ A∞(Di1) are given by

ws,i(z) = |DTi(z)|s.

For a fixed i1 = i, the nth iterate of the component transfer operator Ls,i
(see (3.7)) is given by

Lns,i =
∑
|i|=n+1
i1=i

Ls,i,

where the summation is over those length-(n + 1) admissible strings i =
(i1, . . . , in+1) with i1 = i.

Then note that the nth iterates of the operators Ms,i : A∞(D)→ A∞(D)
(defined by (3.10)) satisfy

Mn
s,iu|Di = Lns,iu, Mn

s,iu|Dj = 0 if j ∈ {1, . . . , k} \ {i},

so we can express

Lns =
k∑
i=1

Mn
s,i. (3.23)

The additivity of the trace means we then have

tr(Lns ) =

k∑
i=1

tr(Mn
s,i) =

k∑
i=1

tr(Lns,i) =

k∑
i=1

∑
|i|=n+1
i1=i

tr(Ls,i) =
∑
|i|=n+1

tr(Ls,i) =
∑

i∈Fix(n)

tr(Ls,i).

(3.24)
The last equality in the above follows because if i1 6= in+1 then the

domain and target spaces of the operator Ls,i : A∞(Din+1)→ A∞(Di1) are
not the same, so it has no eigenvalues.

If i ∈ Fix(n), however, we have the following trace formula for the oper-
ators Ls,i in terms of the fixed point zi of the composition Ti,

tr(Ls,i) =
ws,i(zi)

det(I −DTi(zi))
=

|DTi(zi)|s

det(I −DTi(zi))
. (3.25)
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The above formula (3.25) has its origins in the work of Atiyah & Bott
[?] on the Lefschetz fixed point theorem, and in our context is proved in
[?] (see also [?]). Note that since Ti : Ui1 → Uin is a contraction, then the
determinant det(I −DTi(zi)) > 0.

Combining (3.24) and (3.25) completes the proof.

Remark Fried actually corrected a minor error in Grothendieck’s original
paper which was reproduced in Ruelle’s paper.

Combining the above gives us the following bound of Fried.

Lemma 2

|bn(s)| ≤ Cnnn/2 exp
(
cn− bn1+1/d

)
, for n ≥ 0 (3.3)

for some C = C(s) > 1, and c, b > 0.

3.5 Julia sets For practical purposes, our algorithm is effective in com-
puting the dimension dimH(Jc) of the Julia set Jc if we choose c either in the
main cardioid of the Mandelbrot set M , or c outside of M , say. In the latter
case all periodic points are repelling, while in the former case all periodic
points are repelling except for a single attractive fixed point. We can give
explicitly estimate γ = γc for c close to 0.

For quadratic maps we know that T ′(z) = 2z and if Tn(z) = z then by
the chain rule

(Tn)′(z) = T ′(Tn−1z) · · ·T ′(Tz).T ′(z) = 2n(Tn−1z) · · · (Tz).z

and so the coefficients in the expansions take a simpler form.

Example 3.5.1 (c = i/4) First we consider the purely imaginary value c =
i/4, which lies in the main cardioid of the Mandelbrot set. Table 1 illustrates
the successive approximations sN to dimH(Ji/4) arising from our algorithm.

=2.5in frog2.eps

The Julia set for z2 + i/4 is the boundary between the white and black
regions. (The white points are those which do not escape to infinity)
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N N th approximation to dim(Ji/4)

3 1.1677078534172827136
4 0.9974580934808979848
5 1.0169164188641603339
6 1.0218764720532313644
7 1.0230776911089017648
8 1.0232246810534996595
9 1.0232072525392922127
10 1.0231992637099065199
11 1.0231993120941968028
12 1.0231992857944621198
13 1.0231992888227184780
14 1.0231992890455073830
15 1.0231992890300189633
16 1.0231992890307255210
17 1.0231992890309781268
18 1.0231992890309686742
19 1.0231992890309691466
20 1.0231992890309691251

Table 1 Successive approximations to dim(Ji/4)

Example 3.5.2 (c = −3
2 + 2

3 i) If we take the parameter value c = −3
2 + 2

3 i,
which lies outside the Mandelbrot set, then the sequence of approximations
to the dimension of Jc are given in Table 2. =2.5in frog4.eps

The Julia set for z2 − 3
2 + 2

3 i is a zero measure Cantor set - so invisible to
the computer. The lighter regions are points ”nearer” the Julia set which
take longer to escape.
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N N th approximation to dim(J−3/2+2i/3)

1 0.7149355610391974853
2 0.9991996994914223217
3 0.8948837401931045135
4 0.8990693400138277172
5 0.9048525377869365908
6 0.9040847144651654898
7 0.9038472818583009063
8 0.9038738383368002502
9 0.9038748469934538668
10 0.9038745896021979531
11 0.9038745956441220338
12 0.9038745968650866636
13 0.9038745968171929578
14 0.9038745968108846487
15 0.9038745968111623979
16 0.9038745968111848616

Table 2 Successive approximations to dimH(J−3/2+2i/3)

Example 3.5.3 c = −5 For real values of c which are strictly less than
−2, the Julia set Jc is a Cantor set completely contained in the real line.
For such cases we have, by Corollary 3.1, the faster O(δN

2
) convergence rate

to dim(Jc), as illustrated in Table 3 for the case c = −5.

N N th approximation to dim(J−5)

1 0.4513993584764174609675959101241383349
2 0.4841518684194122992464635900326070715
3 0.4847979587486975778612282908975662571
4 0.4847982943561895699730717563576367090
5 0.4847982944381635057518511943420942957
6 0.4847982944381604305347487891271825909
7 0.4847982944381604305383984765793729512
8 0.4847982944381604305383984781726830747

Table 3 Successive approximations to dimH(J−5)

Example 3.5.4 (c = −20) For larger negative real values of c, the hyper-
bolicity of fc : Jc → Jc is more pronounced, so that the constant 0 < δ < 1
in the O(δN

2
) estimate is closer to zero, and the convergence to dimH(Jc)

consequently faster. Table 4 illustrates this for c = −20.
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N N th approximation to dimH(J−20)

1 0.31485651652009699091265279629753355933688857812644665851918
2 0.31850483144363986562810164826944017431378984622904321285835
3 0.31850809576591085725942984004207253452015913804880055477625
4 0.31850809575800523882867786043747732330759968092023152922729
5 0.31850809575800524988789850335472906645586111530021825766595
6 0.31850809575800524988789848098884346788677292871828344714065
7 0.31850809575800524988789848098884348414792438297975066097358
8 0.31850809575800524988789848098884348414792438305840652044425

Table 4 Successive approximations to dimH(J−20)

Remark Of particular interest are those c in the intersection M ∩ R =
[−2, 1

4 ], i.e., the where the real axis intersects the Mandelbrot set. For values
−3/4 < c < 1/4 (in the main Cartoid) the map Tc is expanding and the
dimension c 7→ dim(Jc) changes analytically. Indeed, about c = 0 we have
the asymptotic expansion of Ruelle, mentioned before. However, at c = 0
the map Tc= 1

4
is not expanding (since Tc= 1

4
has a parabolic fixed point of

derivative 1 at the point z = 1
2). Moreover, c 7→ dim(Jc) is actually dis-

continuous at c = 1/4. This phenomenon was studied by Douady, Sentenac
& Zinsmeister. Havard & Zinsmeister proved that when restricted to the
real line, the left derivative of the map c 7→ dim(Jc) at the point c = 1/4 is
infinite.

One advantage of this method is that it leads to effective estimates on
the rate of convergence of the algorithm. This is illustrated by the following
result.

Proposition 3.13 For any η > 1/2 there exists ε > 0 such that if |c| < ε
then the expansion coefficient for Tc is less than η.

The proof is very easy.

Proof. First consider the (unperturbed) map T (z) = z2, whose Julia set
is the unit circle S1. We have a natural Markov partition consisting of
the upper and lower semi-circles, and corresponding local inverse branches
T0(z) = z1/2 and T1(z) = −z1/2. Let us think of T , T0, T1 as maps defined
on subsets of R2 (and by abuse of notation we will continue to denote f , T0,
T1). Taking polar coordinates (r, θ), define the rectangular regions

U0 = [1− %, 1 + %]× [0, 2π] ⊂ R2 and U1 = [1− %, 1 + %]× [−2π, 0] ⊂ R2,

for some as yet undefined 0 < % < 1. We then have formulae T0(r, θ) =
(r1/2, θ/2) and T1(r, θ) = (r1/2,−θ/2). Thus

T0U0 = [(1−%)1/2, (1+%)1/2]×[0, π] and T1U1 = [(1−%)1/2, (1+%)1/2]×[−π, 0].
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Both maps Ti : Ui → R2 are real-analytic, so we may consider their
holomorphic extensions to suitable subsets of C2. Define the poly-disc

V = D%(1)×D2π(0) ⊂ C2

(i.e. the product of the radius-% disc around 1 in the complex r-plane with
the radius-2π disc around 0 in the complex θ-plane). Both T0 and T1 extend
holomorphically to V , and as usual we continue to denote these extensions
T0, T1. Let us concentrate on the map T0, the other map being similar.

We see that the image T0V is contained in the poly-disc D1−(1−%)1/2(1)×
Dπ(0).

In the θ-plane this gives a contraction ratio of 1/2. In the r-plane the
contraction ratio is

1− (1− %)1/2

%
= 1/2− %/8 + . . . ,

which can be made arbitrarily close to 1/2 by choosing % small.

Therefore the overall contraction ratio is also 1/2, as expected.

3.6 Schottky groups Limit sets

Example 3.6.1 Fix 2p disjoint closed discs D1, . . . , D2p in the plane, and
Möbius maps g1, . . . , gp such that each gi maps the interior of Di to the
exterior of Dp+i. The corresponding Schottky group is defined as the group
generated by g1, . . . , gp. The associated limit set Λ is a Cantor subset of
the union of the interiors of the discs D1, . . . , D2p. We define a map T on
this union by T |int(Di) = gi and T |int(Dp+i) = g−1

i . A reflection group is a
Schottky group with Di = Dp+i for all i = 1, . . . , p.

Example 3.6.2. Quasifuchsian groups Such groups are isomorphic to the
fundamental group of a compact Riemann surface, and are obtained by a
quasiconformal deformation of a Fuchsian group (a Kleinian group whose
limit set is contained in some circle). The limit set Λ of a quasifuchsian
group is a simple closed curve. We can associate an expanding map T with
the limit set of any Fuchsian group, and the quasiconformal deformation
induces an expanding map on Λ.

We show that the Hausdorff dimension of the limit sets Λ of both Schot-
tky and quasifuchsian groups can be efficiently calculated via a knowledge
of the derivatives (Tn)′(z), evaluated at periodic points Tnz = z.

Theorem 3.14 (Kleinian groups) Let Γ be a finitely generated non-elementary
convex cocompact Schottky or quasifuchsian group, with associated limit set
Λ. The algorithm applies.

First suppose Γ is a Schottky group. We define a map T on the union
∪2p
j=1Dj by T |int(Dj) = gj and T |int(Dp+j) = g−1

j , for j = 1, . . . , p, A Markov

partition for this map just consists of the collection of interiors {int(Di)}2pi=1.
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The corresponding 2p× 2p transition matrix A has entries A(i, p+ i) =
0 = A(p+ i, i) for each i = 1, . . . , p, and all other entries are 1 (in the reflec-
tion group case, the transition matrix has zeros along the leading diagonal,
and 1’s elsewhere).

Now T is not quite an expanding map, since the conformal derivative
|Dgj(z)| = 1 on the boundary of Dj . However, the second iterate of T
is expanding. Conformality and real-analyticity are clearly satisfied, so by
Theorem 3 we deduce the result for Schottky groups.

Suppose Γ is quasifuchsian, with limit set Λ. Now Γ is quasi-conformally
conjugate to some Fuchsian group Γ′. Bowen & Series proved there exists
an expanding Markov map S : S1 → S1 which faithfully models the action
of Γ′, and the quasiconformal deformation conjugates this to an expanding
Markov map T : Λ → Λ. Conformality and real-analyticity are clearly
satisfied.

Example 3.6.3 The following family of reflection groups was considered
by McMullen. Consider three circles C0, C1, C2 ⊂ C of equal radius, ar-
ranged symmetrically around S1, each intersecting the unit circle S1 or-
thogonally, and meeting S1 in an arc of length θ. We do not want the Ci
to intersect each other, so we ask that 0 < θ < 2π/3. For definiteness let us
suppose each Ci has radius r = rθ = tan θ

2 , and that the circle centres are at

the points z0 = a, z1 = ae2πi/3 and z2 = ae−2πi/3 (where a = aθ =
√

1 + r2 =
sec θ

2). =2.5in limitplus.eps

Figure 5 Reflection in three circles The reflection ρi :ˆ

C →ˆ

C inthecircleCi takes the explicit form

ρi(z) =
r2

|z − zi|2
(z − zi) + zi.

Let Λθ ⊂ S1 denote the limit set associated to the group Γθ of transfor-
mations given by reflection in these circles. For example, with the value
θ = π/6 we show that the dimension of the limit set Λπ/6 is

dim(Λπ/6) = 0.18398306124833918694118127344474173288 . . .

which is empirically accurate to the 38 decimal places given. The approxi-
mations are shown in Table 5.
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N Largest zero of ∆N

2 0.14633481296007741055454748401454596
3 0.18423440272351767688822531747382350
4 0.18399977929621235204864644797773486
5 0.18398305039516509087579859265399133
6 0.18398305988417009403195596234810316
7 0.18398306122261622100816402885866734
8 0.18398306124841998285455137338908131
9 0.18398306124833255797187772764544302
10 0.18398306124833929946685349025674957
11 0.18398306124833918404985469216386875
12 0.18398306124833918700689278881066430
13 0.18398306124833918693967757277042711
14 0.18398306124833918694121655021916395
15 0.18398306124833918694118046846226018
16 0.18398306124833918694118129222351397
17 0.18398306124833918694118127301338345
18 0.18398306124833918694118127345475071
19 0.18398306124833918694118127344451095
20 0.18398306124833918694118127344474707

Table 5 Successive approximations to dim(Λπ/6)
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Chapter 15

Applications

15.1 Circle packings

We begin with a brief history. Apollonius (c. 240 - 190 BC) who was known
as the ”The Great Geometer”and was a greek geometer born in Perga (now
in Turkey). He proved the following basic theorem.

Theorem 35 (Apollonius). Given three mutually tangent circles C1, C2, C3

with disjoint interiors there are precisely two new circles C−0 , C
+
0 which are

tangent to each of the original three.

Proof. One can choose a Möbius map g : Ĉ → Ĉ which takes the tangency
point of two of the circle (C1 ∩ C2, for example) to ∞. The circles C1 and
C2 are mapped to parallel lines with the image g(C3) being a circle sitting
between then and tangent to both. But we can then translate g(C3) (twice)
to two images tangent to both g(C3) and the parallel lines. Mapping this
configuration back under g−1 gives the required result.

C1

C2 C3

C−0C+
0

But one can ask: How are the radii of these circles related? This problem
was studied by royalty. Princess Elizabeth of Bohemia (1618-1680) was the
daughter of King Frederick V of Bohemia (whose brief reign lasted 1 year and
4 days). Her education included correspondence with Rene Descartes (1596-
1650), the french mathematician and philosopher on many topics, including
Apollonian circles. When she wrote to Queen Christina of Sweden asking
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208 CHAPTER 15. APPLICATIONS

help regaining her Father’s lost lands, the Queen instead invited Descartes
to Stockholm, which proved unfortunate for him since he died of pneumonia
caught during his 5am audiences in a draughty palace.

In 1643, Descartes set Elizabeth the following problem: Assume that the
radii of the original 3 circles are r1, r2, r3 > 0 determine the radius r0 of a
fourth mutually tangent circle. Her solution was the following.

Theorem 36 (Descartes - Princess Elizabeth). We can write

2

(
1

a2
0

+
1

a2
1

+
1

a2
2

+
1

a2
3

)
=

(
− 1

a0
+

1

a1
+

1

a2
+

1

a3

)2

(1)

r1

r2 r3

r−0

r+
0

Proof. Given circles

Ci = {(x(i)
1 , x

(i)
2 ) : (c

(i)
1 − x

(i)
1 )2 + (c

(i)
2 − x

(i)
2 ) = r2

i } for i = 1, · · · , 4,

with centres ci = (c
(i)
1 , c

(i)
2 ) ∈ R2 and radii ri > 0 we associate

〈Ci, Cj〉 =
d2 − r2

i − r2
j

2rirj

where d = ‖ci − cj‖ is the distance apart of the centres. In particular, if we
are assuming Ci and Cj are tangent if i 6= j then we easily see that

〈Ci, Cj〉 =

{
−1 if i = j

1 if i 6= j.
(1)

We can associate to the circle Ci the vector

vi =


x

(i)
1 /ri

x
(i)
2 /ri
1/ri

((x
(i)
1 )2 + (x

(i)
2 )2)/ri

 and write g =


−1 0 0 0
0 −1 0 0
0 0 0 1

2
0 0 1

2 0


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and then we can rewrite 〈Ci, Cj〉 = vTi gvi. We can then combine the four
column vectors to get a 4×4 matrix C = (v1, v2, v3, v4). By (1) we can write

CT gC =


−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

 .

A simple observation is that the square of this matrix is (CT gC)2 = 4I,
where I is the identity matrix, and thus (CT gC)−1 = 1

4(CT gC). Taking
inverses and rearranging gives g−1 = 1

4C(CT gC)CT , i.e.,
−1 0 0 0
0 −1 0 0
0 0 0 2
0 0 2 0

 =
1

4


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

1/r1 1/r2 1/r3 1/r4

∗ ∗ ∗ ∗



−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1



∗ ∗ 1/r1 ∗
∗ ∗ 1/r2 ∗
∗ ∗ 1/r3 ∗
∗ ∗ 1/r4 ∗

 .

But comparing the entry in row 3 and column 3 gives the result.

Since this is a quadratic polynomial in c0, given r1, r2, r3 > 0 (and thus
c1, c2, c3) we actually have two possible solutions

c±0 = c1 + c2 + c3 ± 2
√
c1c2 + c2c3 + c3c1 (2)

i.e., the curvatures of the two circles of Apollonius. The solution c+
0 will

be positive, but the solution c−0 will be negative. We interpret the latter as
corresponding to a circle of radius r0 = 1/|c−0 | > 0.

The formula of Descartes and Elizabeth was later rediscovered by Fred-
erick Soddy (1877-1956) the winner of the Nobel prize for chemistry in 1921.
He chose to publish it as a poem in the journal Nature.

Adding the two solutions

c+
0 = c1 + c2 + c3 + 2

√
c1c2 + c2c3 + c3c1 and

c−0 = c1 + c2 + c3 − 2
√
c1c2 + c2c3 + c3c1

from (2) gives

c+
0 + c−0 = 2 (c1 + c2 + c3) .

Therefore, we easily deduce that:

Lemma 56. If c−0 , c1, c2, c3 ∈ Z then c+
0 ∈ Z.

Proceeding inductively proves the following.

Corollary 12. If the four initial Apollonian circles have curvatures that are
integers then so do all of the others.
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A Theorem on Apollonian Circle Packings For every integral Apollonian circle packing there is a
unique ‘minimal’ quadruple of integer curvatures,(a,b, c,d), satisfying a≤ 0 ≤ b ≤ c ≤ d, a+b+c+d > 0
and a+ b+ c ≥ d. This so-calledroot quadruplecompletely specifies the packing.
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A Descartes configuration consists of four mutually tangentcircles. Above right, for example, is a circle of radius 1/7 containing circles of
radius 1/12, 1/17 and 1/20, each of which has a point of contact with the other three. The integers labelling the circles are thecurvatures
(the reciprocals of the radii) and in the root quadruple of curvatures, (−7,12,17,20), the enclosing circle of radius 1/7 is determined to have
negative curvature so that all four circles have disjoint interiors. Any such configuration specifies four more tangent circles — above right, these
have curvatures 24, 33, 48, and 105, producing four new configurations (−7,12,17,24), (−7,12,20,33), (−7,17,20,48) and (12,17,20,105).
Repeating this process produces a system of infinitely packedcircles: anApollonian circle packing. If our initial configuration is integral, as in
each of the above examples (which are drawn to different scales), then we will get anintegralpacking with every curvature an integer.

This theorem comes from a series of four pivotal papers by the AT&T team of Ronald Graham, Jeffrey Lagarias, Colin Mallows
and Allan Wilks, together with Catherine Yan of Texas A&M University. Theyfurther show that all integral Apollonian circle
packings may be derived from root quadruples which, like those depicted above, have entries whose gcd is 1.
Web link: www.ams.org/featurecolumn/archive/kissing.html. The packing images were provided by Emil Vaughan.
Further reading: Introduction to Circle Packing: The Theory of Discrete Analytic Functionsby Kenneth Stephenson, CUP, 2005.

Clearly these curvatures tend to infinity (i.e., the sequence of radii (rn)
tends to zero) since the total area enclosed by the circles is

∞∑
n=1

πr2
n =

∞∑
n=1

πc−2
n < +∞. (3)

Example 60. Let us start with an example with radii

r1 =
1

5
, r2 =

1

8
, r3 =

1

8
and r−0 = −1

3
,

i.e., curvatures c1 = 5, c2 = 8, c3 = 8 and c−0 = −3. We can consider the
values of the curvatures cn (n ≥ 1) we get for all of the circles

(cn)∞n=1 = 5, 8, 8, 12, 12, 20, 20, 21, 29, 29, 32, 32, · · ·
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3108

3108

3116

3116

3116

3116

3141

3141

3149

3149

3189

3189

3192

3192

3197

3197

3200

3200

3213

3213

3248

3248

3261

3261

3296

3296

3317

3317

3341

3341

3341

3341

3341

3341

3341

3341

3389

3389

3405

3405

3420

3420

3432

3432

3437

3437

3452

3452

3476

3476

3504

3504

3525

3525

3540

3540

3548

3548

3605

3605

3612

3612

3632

3632

3656

3656

3677

3677

3693

3693

3704

3704

3756

3756

3812

3812

3848

3848

3893

3893

3909

3909

3932

3932

3941

3941

4004

4004

4052

4052

4053

4053

4061

4061

4064

4064

4077

4077

4149

4149

4157

4157

4160

4160

4197

4197

4205

4205

4388

4388

4400

4400

4413

4413

4436

4436

4512

4512

4520

4520

4581

4581

4608

4608

4653

4653

4653

4653

4664

4664

4701

4701

4709

4709

4716

4716

4752

4752

4781

4781

4829

4829

4832

4832

4872

4872

4877

4877

4901

4901

4949

4949

4949

4949

4964

4964

4968

4968

4989

4989

4997

4997

4997

4997

5157

5157

5168

5168

5168

5168

5216

5216

5220

5220

5256

5256

5276

5276

5285

5285

5421

5421

5453

5453

5480

5480

5520

5520

5544

5544

5552

5552

5621

5621

5628

5628

5669

5669

5709

5709

5741

5741

5765

5765

5813

5813

5837

5837

5844

5844

6024

6024

6029

6029

6053

6053

6344

6344

6429

6429

6480

6480

6509

6509

6597

6597

6636

6636

6896

6896

6912

6912

6944

6944

6984

6984

6996

6996

7101

7101

7136

7136

7269

7269

7413

7413

7488

7488

7541

7541

7584

7584

7728

7728

7773

7773

8133
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7

7

10

10

15

15

19

19

22

22

27

27

31

31

34

34

39

39

42

42

42

42

42

42

43

43

54

54

55

58

58

63

63

66

66

67

67

67

67

75

75

79

79

82

82

82

82

87

87

90

90

91

91

91

91

94

94

99

99

102

102

103

103

103

103

106

106

111

111

114

114

115

115

115

115

118

118

127

127

130

130

138

138

138

138

138

138

138

138

139

139

139

142

142

142

142

147

147

147

147

150

150

151

151

154

159

159

163

163

166

166

166

166

171

171

174

174

175

175

178

178

178

178

178

178

183

183

187

187

187

187

190

190

195

199

199

199

202

202

202

202

207

207

207

210

210

214

214

222

222

222

222

223

223

223

223

223

226

226

226

226

231

231

234 234

235

235

235

235

235

238

238

238

238

238

238

243

243

246

246

247

247

247

250

250

255

255

258

258

258

258

262

262

267

267

267

271

271

271

271

271

271

274

279

279

282

282

283

283

283

283

283

283

283

283

286

286

286

286

291

298

298

298

303

303

306

306

306

307

307

310

318

318

318

318

318

318

319

319

322

322

322

322

327

327

330

330

330

330

331

331

331

334

334

342

342

342

342

342

342

343

346

346

346

346

351

351

354

354

355

355

363

363

363

363

366

366

366

367

367

370

370

370

370

370

375

375

378

378

379

379

382

382

387

387

391

391

391

391

391

402

402

411

411

415

415

415

415

418

418

418

418

418

426

427

427

427

427

427

439

442

442

442

442

447

447

447

447

447

451

451

451

451

451

451

454

454

454

454

454

462

462

462

462

462

463

463

466

466

471

471

474

474

475

475

475

475

475

475

478

478

478

483

483

483

486

486

486

486

487

490

490

495

495

495

498

499

499

502

502

507

507

511

511

511

511

514

514

514

514

514

514

519

519

519

519

522 522

522

523

523

523

523

523

531

531

535

535

535

535

538

538

538

538

538

543

543

546

547

550

550

558

558

558

558

559

559

559

559

559

562

567

567

567

570

570

571

574

574

579

582

582

582

582

582

583

583

594

598

598

603

603

603

603

603

606

606

610

615

615

618

618

618

619

619

619

622

622

622

622

627

627

630

630

630

642

643

643

643

643

643

658

658

658

663

666

666

667

667

670

670

670

670

670

670

675

675

678

678

678

678

682

682

682

687

687

687

690

690

690

690

691

691

691

694

694

694

694

699

702 702

703

703

703

703

703

703

703

711

711

711

715

715

718

718

726

726

726

726

727

727

727

730

730

738

738

739

739

742

742

742

742

742

742

742

751

751

751

754

754

754

754

759

759

759

759

759

762

762

762

766

766

775

775

778

783

783

787

787

787

787

787

795

795

795

798

798

799

802

810

811

811

811

811

811

814

814

823

823

826

826

826

831

831

834

834

834

835

835

835

835

838

838

838

838

843

843

843

843

846

847

847

847

850

850

858

859

859

859

859

862

862
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867

867

867

871

871

874

874

879

879

894

894 894

895

895

895

895

906

906

907

907

910

910

918

919

919

919

919

919

922

922

922

930

930

931

931

934

934

934

939

943

943

943

943

946

946

954

955

958

958

958

958

967

978

978

979

979

979

982

982

987

990

990

994

994

999

999

1002

1002

1003

1003

1006

1011

1011

1014

1014

1018

1023

1023

1023

1023

1026

1027

1027

1030

1030

1035

1035

1038

1042

1042

1042

1050

1050

1054

1054
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1054

1059

1059

1062
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1083
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1086
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1102

1102

1107
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1111

1111

1119
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1119
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1134

1135
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1138
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1147
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1147
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1426

1426

1431

1434
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1438

1443

1447

1447

1447

1459

1459

1459

1467

1474
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1599

1602
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1618
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1623
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1651
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1678
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1678
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1842
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1846
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1851
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1903
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1918
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1926

1926
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1935
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1938

1939

1951

1959

1963
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1974
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1978

1983

1995

1995

1995

1998

1998

1999

2011

2011

2011

2014

2014

2022

2023

2026

2026

2031

2035

2038

2038

2038

2038

2047

2047

2050

2059

2062

2082

2083

2083

2086

2094

2098

2106

2115

2118

2127

2127

2131

2134

2143

2154

2154

2154

2158

2163

2166

2166

2182

2182

2187

2191

2194

2199

2202

2203

2211

2215

2218

2230

2242

2250

2251

2251

2259

2266

2271

2271

2274

2278

2283

2287

2307

2310 2310

2323

2334

2334

2343

2343

2350

2359

2374

2379

2379

2382

2383

2386

2406

2427

2439

2443

2446

2451

2454

2463

2470

2470

2475

2491

2494

2494

2494

2502

2502

25032511

2518

2527

2527

2535

2539

2566

2574

2574

2578

2587

2590

2595

2598

2598
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2622

2623

2623

2626

2631
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2646

2647
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2686

2695
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2838
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2859

2871

2890

2895

2895
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2914

2914

2938

2946

2950

2959

2962

2974

2979

2979

2983
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3010

3015

3034

3034

3043

3046

3063

3070

3070

3079

3082

3099

3103

3106

3106

3147

3163

3171

3178

3183

3187

3190

3195

3210

3211

3219

3226

3231

3259

3262

3279

3291

3295

3307

3310

3342

3355

3367

3390

3394

3418

3426

3427

3439

3442

3447

3499

3499

3510

3523

3523

3526

3526

3546

3558

3570

3582

3586

3591

3594
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3610

3615

3619

3627
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3631

3658

3666

3690

3714

3723

3727

3735

3759

3778

3783

3786

3787

3790
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3814

3814

3819

3826

3835

3847

3855

3867

3883

3886

3918

3951

3967

3979

3982

4006

4006

4015

4030

4039

4051

4059

4074 4074

4086

4090

4107

4111

4111

4114

4119

4134

4134

4135

4150

4174

4186

4206

4219

4230

4246

4266

4270

4278

4282

4294

4303
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4342

4374

4387

4462

4474

4491

4515 4515

4531

4543

4614

4638

4639
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4678

4686

4699

4702

4767

4774

4803

4819 4879

4891

4906

4987

5035

5079

5095

5134

5214

5251

5263

5271

5311 5319

5350

5350

5374

5386

5419

5455

5470

5470

54945575

5662

5710

5719

5767

5806

5811

5875

5902

5974

6022

6259

6307

Example 61. Let us next consider the example with

r1 =
1

3
, r2 =

1

6
, r3 =

1

7
, and r−0 = −1

2
,

i.e., curvatures c1 = 3, c2 = 6, c3 = 7 and c−0 = −2. We can consider the
values of the curvatures cn (n ≥ 1) we get for all of the circles

(cn)∞n=1 = 3, 6, 7, 7, 10, 10, 15, 15, 19, 19, 22, 22, · · ·
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Definition 26. Let N(T ) be the number of circles with curvature at most
T > 0.

An improvement on the basic result N(T ) → +∞ as T → 0, which
follows from (3). is the following.

Theorem 37 (Kontorovich-Oh, 2009). There exist K, δ > 0 such that
N(T ) ∼ KT δ as T → +∞, i.e.,

lim
T→+∞

N(T )

KT δ
= 1.

This doesn’t require integral curvatures. The original proof used spectral
theory of the Laplacian and hyperbolic geometry.

Lemma 57. We denote by A the closure of the union of all the circles.

1. The exponent δ is equal to the Hausdorff dimension of A.

2. All of these Apollonian circle packings have the same dimension δ.

Proof. The second part comes from the fact that any two such circle packings
are related by a Möbius maps. This is because Möbius maps take circles to
circles and once the initial circles are aligned the remaining circles match up
because of this property. Then, in particular, they have the same dimension.

Curt McMullen calculated δ = 1.30568 . . ..

One might compare this with a similar looking problem. Let

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, . . .

be the prime numbers. Let π(T ) denote the number of prime numbers less
than T > 0. Since there are infinitely many primes, we see that π(T )→∞
as T tends to infinity.

Theorem 38 (Prime Number Theorem: Hadamard (1896)).

π(T ) ∼ T

log T

(
i.e., lim

T→+∞

π(T )
T

log T

= 1

)

The Prime Number Theorem was proved by Jacques Hadamard.

Hadamard_2.jpg
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For primes: use Riemann ζ-
function ζ(s) =

∑∞
n=1

1
ns .

• ζ(s) converges to a non-
zero analytic function on
Re(s) > 1.

• ζ(s) has a simple pole at s =
1.

• ζ(s) has no zeros on Re(s) =
1.

For circles use complex function
η(s) =

∑∞
n=1 c

−s
n .

• η(s) converges to a non-
zero analytic function on
Re(s) > δ.

• η(s) has a simple pole at s =
δ.

• η(s) has no poles on Re(s) =
δ.

One can apply classical tauberian theorems to get the asymptotic for-
mula (i.e., a theorem which converts properties of series into counting re-
sults).

1. using the above strategy from Number Theory, with circle radii re-
placing prime numbers,

2. using transformations of A whose images systematically generate cir-
cles (originally observed by mancunian Philip Beecroft in 1842, in the
wonderfully named journal Lady’s and Gentleman’s diary) and

3. some ideas from dynamical systems to prove the necessary results on
η(s).

This method is fairly flexible and applies to quite different problems and
can be used to prove other types of related results.

15.2 The Zaramba conjecture

The Zaremba conjecture [?] was formulated in 1972, motivated by problems
in numerical analysis. It deals with the denominators that can occur in finite
continued fraction expansions using a uniform bound on the digits. A nice
account appears in the very informative survey of Kontorovich [?].

Zaremba conjecture. For any natural number q ∈ N there exists p (co-
prime to q) and a1, · · · , an ∈ {1, 2, 3, 4, 5} such that

p

q
= [0; a1, · · · , an] : =

1

a1 +
1

a2 +
1

· · ·+
1

an

.
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Let us denote for each for N ≥ 1 and m ≥ 2,

Dm(N) :=

Card

{
1≤ q≤ N | ∃p ∈ N, (p, q)=1, a1, · · · , an∈{1, 2, · · · ,m} with

p

q
=[0; a1, · · · , an]

}
,

i.e., the number of 1 ≤ q ≤ N which occur as denominators of finite con-
tinued fractions using digits |ai| ≤ m. The Zaremba conjecture would cor-
respond to D5(N) = N for all N ∈ N. The conjecture remains open, but
Huang [?], building on work of Bourgain and Kontorovich [?], proved the
following version of Zaremba conjecture.

[Bourgain—Kontorovich, Huang] There is a density one version of the
Zaremba conjecture, i.e.,

lim
N→+∞

D5(N)

N
= 1.

There have been other important refinements on this result by Frolenkov–
Kan [?], [?], Kan [?], [?], Huang [?] and Magee–Oh–Winter [?].

Let us introduce for each m ≥ 2,

Em : = {[0; a1, a2, · · · ] | an ∈ {1, 2, · · · ,m} for all n ∈ N}

which is a Cantor set in the unit interval. Originally, Bourgain—Kontorovich [?]
proved an analogue to Theorem 15.2 for D50(N). Amongst other things,
their argument, related to the circle method, used the fact that the Hausdorff
dimension dimH(E50) is sufficiently close to 1 (more precisely, dimH(E50) >
307
312). In Huang’s refinement of their approach, he reduced m to 5, i.e. re-
placed the alphabet {1, 2, · · · , 50} with {1, 2, 3, 4, 5}, as in the statement
of Theorem 15.2. In Huang’s approach, it was sufficient to show that
dimH(E5) > 5

6 . In [?] there is an explicit rigorous bound on the Haus-
dorff dimension of this set which confirms this inequality. The approach
used there is the periodic point method, whereas in this article we use a
different method to confirm and improve on these bounds.

As another example, we recall the following result for m = 4 and the
smaller alphabet {1, 2, 3, 4}.

[Kan [?]] For the alphabet {1, 2, 3, 4} there is a positive density version
of the Zaremba conjecture, i.e.,

lim inf
N→+∞

D4(N)

N
> 0.

The proof of the result is conditional on the lower bound dimH(E4) >√
19−2
3 . In [?] this inequality is attributed to Jenkinson [?], where this value

was, in fact, only heuristically estimated. In [?] there is an explicit rigorous
bound on the Hausdorff dimension of this set which confirms this inequality.
The approach used there is the periodic point method, whereas in this article
we give a different method to confirm and improve on these bounds, as well
as give new examples. These results are presented in §??.
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15.3 Diophantine Approximations

Given any irrational number α ∈ R, we can approximate it arbitrarily closely
by rational numbers, since they are dense in the real numbers. The following
is a very classical result. 1

Theorem 39 (Dirichlet, 1840). Let α be an irrational number. We can find
infinitely many distinct p, q ∈ Z (q 6= 0) such that∣∣∣∣α− p

q

∣∣∣∣ < 1

q2
(4.1)

Proof. The proof just uses the “pigeon-hole principle”. Let N ≥ 1. Consider
the N + 1 fractional parts {α}, {2α}, {3α}, · · · , {(N + 1)α} ∈ [0, 1] (where
0 ≤ {jα} < 1 is the fractional part of jα, i.e., jα = {jα} + [jα] with
[jα] ∈ N). If we divide up the unit interval into N -intervals [0, 1

N ], [ 1
N ,

2
N ],

..., [N−1
N , 1], each of length 1

N , then one of the intervals must contain at
least two terms {iα}, {jα}, say, for some 1 ≤ i < j ≤ N + 1. In particular,
0 ≤ {iα} − {jα} ≤ 1

N from which we see that

0 ≤ α (i− j)︸ ︷︷ ︸
=:q

− ([αi]− [αj])︸ ︷︷ ︸
=:p

= {iα} − {jα} ≤ 1

N

where 0 ≤ q ≤ N . In particular, writing p = [αi]− [αj] and q = i−j we have
that |α − p

q | ≤
1
q2 . Moreover, by successively choosing N sufficiently large

we can exclude previous choices of p
q and thus generate an infinite sequence

of approximations (4.1)

In particular, since almost every number is irrational, almost every 0 <
α < 1 satisfies (4.1). We want to consider what happens if we try still
stronger approximations.

First version: Replace exponent in the denominator by a larger value: Con-
siders instead the inequality (4.1) with the Right Hand Side decreased from
1
q2 to 1

q2+η , say, for some η > 0. In this case, the set Λη of 0 < α < 1 for
which the stronger inequality ∣∣∣∣α− p

q

∣∣∣∣ < 1

q2+η
(4.2)

has infinitely many solutions is smaller. In fact, the set has Hausdorff Di-
mension strictly smaller than 1 and so, in particular, has zero measure. This
follows from the following classical result.

1Dirichlet was a distinguished mathematician, and was married to the sister of the
composer Mendelhson
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Theorem 40 (Janik-Besicovitch Theorem). For η > 0, the set of α with
infinitely many solutions to (4.2) has zero measure. Moreover this set has
Hausdorff dimension, i.e.,

dimH

{
α :

∣∣∣∣α− p

q

∣∣∣∣ < 1

q2+η
for infinitely p ∈ Z, q ∈ Z− {0}

}
︸ ︷︷ ︸

=:Λη

=
2

2 + η
< 1.

Proof. The upper bound on the dimension is easy to prove. Given ε > 0,
we can choose q ≥ 2 such that 1

q2+η < δ ≤ 1
(q−1)2+η . For each q ≥ 1, we can

choose a cover for this set by the q(q + 1)/2-intervals(
p

q
− 1

q2+η
,
p

q
+

1

q2+η

)
, for 0 ≤ p ≤ q.

Since these each have diameter q−(2+η) < ε we deduce that Hd
ε ≤ q2−d(2+η).

In particular, if d > 2
2+η then we see that limε→0H

d
ε = 0. We thus deduce

that the Hausdorff dimension is at most 2
2+η . We omit the other inequality,

referring to the book of Falconer for the details.

Second version: replace 1 in numerator by a different value C: A natural
question to ask is how big a value of C = C(α) ≥ 1 we can choose such that
we can still find infinitely many distinct p, q ∈ Z (q 6= 0) such that∣∣∣∣α− p

q

∣∣∣∣ < 1

Cq2
. (4.3)

To begin with, we recall that there is a slightly stronger version of Dirichlet’s
theorem due to Hurewicz.

Theorem 41 (Hurewicz’s Theorem). Let α be an irrational number. We
can find infinitely many distinct p, q ∈ Z (q 6= 0) such that∣∣∣∣α− p

q

∣∣∣∣ < 1√
5q2

In particular, we can always choose C ≥
√

5 = 2.23607 . . .. (The proof,
which is not difficult, uses Continued Fractions and can be found in the book
of Hardy and Wright).

Notation For a given irrational number 0 < α < 1 we define C(α) ≥
√

5
to be the largest C such that |α − p/q| < 1/(Cq2), for infinitely many p, q,
i.e.,

C(α) = lim inf
q→∞

[
max
p∈N
|q2α− pq|−1

]
.
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We next want to consider the set of all possible values C(α), where α
ranges over all irrational numbers between 0 and 1, say. We define the
Lagrange spectrum to be the set L = {C(α) : α ∈ (0, 1)−Q}.

=2.25in markov.eps
The Lagrange spectrum

By Hurewitz’s theorem we know that L ⊂ [
√

5,+∞). Moreover, it is
also known that for α = 1/

√
2, say, we have C(1/

√
2) =

√
5 ∈ L. In

particular, we see that
√

5 is the smallest point in L. In fact, the portion of
the spectra below the value 3 is a countable set which is known exactly. For
completeness, we quote the following result without proof.

Proposition 22. We can identify

L∩[0, 3] =

{
1

z

√
9z2 − 4 : x2 + y2 + z2 = 3xyz, where x, y, z ∈ N and x, y ≤ z

}
In particular, the smallest value in the spectrum is

√
5 and the next smallest

values (in ascending order) are:
√

8 = 2.82843 . . .,
√

221/5 = 2.97321 . . .,√
1517/13 = 2.99605 . . .,

√
7565/29 = 2.99921 . . ..

Since this portion L∩ [0, 3] is countable, we have the following corollary.
Corollary dimH(L ∩ [

√
5, 3]) = 0. At the other extreme, the spectrum is

known to contain the whole interval [µ,+∞), where µ ≈ 4.527829566.
It is an interesting question to ask how large an interval [

√
5, t] (t > 3)

we can choose such that we still have dimH(L ∩ [
√

5, t]) < 1 or L ∩ [
√

5, t]
has zero Lebesgue measure. We shall return to this in a moment.

There is an alternative definition of L which is particularly useful in
studying the region L ∩ [

√
5, 4.527 . . .].

Proposition 4.2 The set L can also be defined in terms of doubly infinite
sequences of positive integers. Given a = (an)n∈Z we define

λi(a) = ai + [ai+1, ai+2 . . .] + [ai−1, ai−2, . . .], i ∈ Z

where, as usual, [c0, c1, . . .] = 1/(c0 + (1/c1 + . . .)) denotes the continued
fraction with c0, c1, . . . ∈ N. We then have

L =

{
L(a) = lim sup

|i|→∞
λi(a) : a ∈ NZ

}
.

The proof is outside the scope of these notes, and is so omitted.
A little calculation shows:

1. If a = (an)n∈Z has at least one entry greater than 2 then L(a) ≥
√

13.
and indeed L(a) =

√
13 if and only if a = (. . . , 3, 3, 3, . . .). However,

2. if a has entries only 1’s and 2’s then L(a) ≤
√

12
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In particular, we can deduce the following result.

Corollary There are gaps in the spectrum (i.e., intervals which don’t
intersect L

Proof. This is apparent, since (
√

12,
√

13)∩L 6= ∅, as we saw above.

We can now consider the problem of finding the Lebesgue measure and
Hausdorff dimension of various portions of the spectrum. Let us define
Lt = L ∩ [0, t]. We have the following result.

Theorem 4.3 We can estimate

dimH(L√10) ≈ 0.8121505756228 and dimH(L√689/8) ≈ 0.9716519526

(where sqrt10 ≈ 3.1622 . . . and
√

689/8 ≈ 3.2811 . . .).

Sketch Proof If we consider Λ1 ⊂ E2 to be those numbers whose con-
tinued fraction expansions do not have consecutive triples (ikik+1ik+2) =
(121) then L√10 = L ∩ [0,

√
10] ⊂ Λ1 + Λ1 In particular, dimH(L√10) ≤

2dimH(Λ1), and we can estimate the numerical value of dimH(Λ1) by the
method in Chapter 3. Similarly, if we consider Λ2 ⊂ E2 to be those num-
bers whose continued fraction expansions do not have consecutive quadruples
(ikik+1ik+2ik+3) = (1212) then L√689/8 = L ∩ [0,

√
689/8] ⊂ Λ2 + Λ2 and

dimH(L√10) ≤ 2dimH(Λ2). Using degree-16 truncated equations we can es-
timate dimH(Λ1) ≈ 0.4060752878114 and dimH(Λ2) ≈ 0.4858259763, giving
the upper bounds on the dimension in the theorem. On the other hand, a
result of Moreira-Yoccoz implies equality.

In particular the above result implies that:

Corollary L√689/8 has zero Lebesgue measure. Observe that
√

689/8 ≈
3.2811... The strongest result in this direction is due to Bumby, who showed
that L3.33437 has zero Lebesgue measure.

Remark The triples (x, y, z) are known as Markoff triples. A closely
related notion is that of the Markoff spectrum. M. Consider quadratic forms
f(x, y) = ax2 + bxy + cy2 (with a, b, c ∈ Z) for which d(f) := b2 − 4ac > 0.
If we denote m(f) = inf|f(x, y)|, then Markoff spectrum M is defined to be
the set of all possible values of

√
d(f)/m(f). which can be defined in terms

of minima of certain indefinite quadratic forms. The Lagrange spectrum L
is a closed subset of R. It is clear from this definition that the Lagrange
spectrum is a subset of the Markoff spectrum. It is in the interval (3, µ)
where the Markof and Lagrange spectra differ. The largest known number
in M but not in L is β ≈ 3.293 (the number is known exactly).
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15.4 Fuchsian groups

15.5 Kleinian groups

The Limit sets of Kleinian groups often have similar features to those of
Julia sets. Indeed, in the 1970’s Sullivan devised a “dictionary” describing
many of the corresponding properties.

Let H3 = {z + jt ∈ C⊕ R : t > 0} be the three dimensional upper half
space. We can equip this space with the Poincare metric

ds2 =
dx2 + dy2 + dt2

t2
.

With this metric the space has curvature κ = −1. For a detailed description
of the space and its geodesics we refer the reader to Bearden’s book on
Discrete groups.

We can identify the isometries for H3 and this metric with the (orienta-
tion preserving) transformations

(z, t) 7→
(
az + b

cz + d
, t+ 2 log |cz + d|

)
,

where a, b, c, d ∈ C with ad− bc = 1. In particular, the first component is a
linear fractional transformation and we can identify the space of isometries
with the matrices G = SL(2,C).

Defintion A Kleinian group Γ < G is a finitely generated discrete group
of isometries. Let Γ0 be the generators of Γ.

Although the action of g ∈ G is an isometry on H3, the action on the
boundary is typically not an isometry. In particular, we can associate to
each g ∈ Γ its isometric circle C(g) := {z ∈ C : |g′(z)| = 1}. This is a
Euclidean circle in the complex plane C.

Defintion We define the limit set Λ = ΛΓ ⊂ C∪{∞} for Γ to be the set of
all limit points (in the Euclidean metric) of the set of points {g(j) : g ∈ Γ}.

By way of clarification, we should explain that since Γ is a discrete group
these limit points must necessarily be in the Euclidean boundary. Moreover,
we should really take the limit points using the one point compactification
of C (where the the compactification point is denoted by ∞. Depending on
the choice of Γ, the limit set ΛΓ may have different properties.

These include the possibilities that ΛΓ is a Cantor set, or all of C∪{∞}.
We begin by considering one of the most famous examples of a Limit set for
a Kleinian group - which happens to be neither of these cases.

Example 1.4.1 Apollonian circle packing. Consider three circles C1, C2, C3

in the euclidean plane that are pairwise tangent. Inscribe a fourth circle C4

which is tangent to all three circles. Within the three triangular region whose
sides consist of the new circle and pairs of the other circles inscribe three new
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circles. Proceed inductively. The limit set is call an Apollonian circle pack-
ing. =4.50in apollonian.ps

The Apollonian circle packing

We can associate to each circle Ci = {z : |z− zi| = ri} (with zi ∈ C and
ri > 0) an element gi ∈ G associated to the linear fractional transformation

gi : z 7→ 1

r2
i (z − zi)

.

These correspond to generators for a Kleinian group Γ < G. The limit set
is estimated to have dimension 1.305686729 . . ..

Let us consider some special cases:
Example 1.4.2. Fuchsian Groups: Let K = {z ∈ C : |z| = 1} be the

unit circle in the complex plane C. If each element g preserves K then Γ is
a Fuchsian group. In this case the isometric circles for each element g ∈ Γ
meet K orthogonally.

The standard presentation for a (cocompact) Fuchsian group is of the
form

Γ = 〈g1, . . . , g2d ∈ G :
d∏
i=1

[g2i−1, g2i] = 1〉.

where [g2i−1, g2i] = g2i−1g2ig
−1
2i−1g

−1
2i . We can also consider the limit sets of

such groups.
Theorem 1.4.1 The Limit set of a non-cocompact convex cocompact

Fuchsian group is either:

1. a Cantor set lying in the unit circle; or

2. the entire circle.

=3.25in limitset.eps
For Fuchsian groups (a subclass of Kleianin groups) the limit set could

be the entire circle or a Cantor set.

Example 1.4.3. Quasi- Fuchsian Groups: We can next consider a Kleinian
group whose generators (and associated isometric circles) are close to that
of a Fuchsian group. Such groups are called quasi-Fuchsian. In this case the
limit set is still homeomorphic to a closed circle. This is called a quasi-circle.

=4.25in quasifuchsian.eps
Perturbing the generators of a Fuchsian group changes the limit circle to

a quasi-circle. (The dotted circles represent the generators for the Fuchsian
group (left) and quasi-Fuchsian group (right).)

However, although the quasi-circle is topologically a circle it can be quite
different in terms of geometry.
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Theorem 1.4.2 The Hausdorff dimension of a quasi-circles is greater than
or equal to 1, with equality only when it is actually a circle. This result was
originally proved by Bowen, in one of two posthumous papers published
after his death in 1978. Quasi-circles whose Hausdorff dimension is strictly
bigger than 1 are necessarily non-rectifiable, i.e., they have infinite length.

15.6 Horseshoes

Example Consider the example of a linear horseshoe. Taking the horizonal
and vertical projections we have Cantor sets in the line with smaller Haus-
dorff dimensions − log 2/ logα and − log 2/ log β.

The next result says that Hausdorff dimension behaves in the way we
might have guessed under addition of sets.

Proposition 1.6.3 Let Λ1,Λ2 ⊂ R and let

Λ1 + Λ2 = {λ1 + λ2 : λ1 ∈ Λ1, λ2 ∈ Λ2}

then dimH(Λ1 + Λ2) ≤ dimH(Λ1) + dimH(Λ2).

Proof. It is easy to see from the definitions that dimH(Λ1×Λ2) = dimH(Λ1)+
dimH(Λ2). Since the map L : R2 → R given by L(x, y) = x+ y is Lipshitz,
the result follows.

15.7 Kleinian groups

Given any Kleinian group Γ of isometries of n-dimensional hyperbolic space
Hn we can associate the quotient manifold M = Hn/Γ. The Laplacian
∆M : C∞(M) → C∞(M) is a self-adjoint second order linear differential
operator. This extends to a self-adjoint linear operator ∆M on the Hilbert
space L2(M). In particular, the spectrum of −∆M is contained in the in-
terval [λ0,+∞), where λ0 is the smallest eigenvalue. If M is compact then
the constant functions are an eigenfunction and so λ0 = 0. More generally,
we can have λ0 > 0.

Perhaps surprisingly, λ0 is related to the Hausdorff dimension dimH(Λ)
of the Limit set by the following result.

Sullivan’s Theorem λ0 = min {d(1− d), 1/4}
McMullen’s Example This problem is very closely related to the geom-

etry of an associated surface of constant curvature κ = −1. Consider the
unit disk

D2 = {x+ iy ∈ C : x2 + y2 < 1}

with the Poincaré metric

ds2 = 4
dx2 + dy2

(1− x2 − y2)2
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then (D2, ds2) has constant curvature κ = −1. Let C1, C2, C3 ⊂ C be
the three similar circles in the complex plane which meet the unit circle
orthogonally and enclose an arc of length θ.

radii r =
√

2 centres c1 =
√

3, c2 =
√

3e2πi/3, c3 =
√

3e4πi/3

We can identify the reflections in these circles with isometries R1, R2, R3 ⊂
Isom(D2) and then consider the Kleinian group Γθ they generate. where

Ri : z → 3(z−ci)
|z−ci|2 + ci (i = 1, 2, 3). Let Γ = 〈R1, R2, R3 : R2

1 = R2
2 = R2

3 =

1〉 ⊂ Isom(D2). We can then let M = D2/Γ be the quotient manifold.

The Laplacian ∆M : C∞(M)→ C∞(M) is given by

∆M = (1− x2 − y2)2

(
∂2

∂x2
+

∂2

∂y2

)
.

The smallest eigengvalue of −∆M is related to the dimension d of the bound-
ary by Sullivan’s Theorem. In particular, we have the following corollary.

Proposition 4.4 When θ = π/6 then we can estimate λ0 = 0.24922656...

Proof. In Chapter 3 we estimated that dimH(Λ) = 0.4721891278821... 2. By
applying Sullivan’s Theorem, the result follows.

On can also study the asymptotic behavior of dimH(Λθ). McMullen
showed the following:

Propositon 4.5 The asymptotic behaviour of dimH(Λθ) is described by
the following result:

1.

dimH(Λθ) ∼
1

| log θ|
as θ → 0;

2.

dimH(Λθ) ∼ 1− 1

2

(
2π

3
− θ
)

as θ → 2π

3
.

(Equivalently, the associated smallest eigenvalue λ0(θ) satisfies λ0(θ) ∼
1

| log θ| as θ → 0 and λ0(θ) ∼ 1
2

(
2π
3 − θ

)
as θ → 2π

3 .)

Proof. For small θ, the radii of the circles Ci is well approximated by θ/2.
The derivative on Cj (i 6= j) of the hyperbolic reflection in Ci is approx-
imately (θ/2)2/|Ci − Cj | ∼ θ2/12. Every periodic orbit Tnx = x satis-
fies a uniform estimate |(Tn)′(x)|1/n ∼ θ2/12 from which we deduce that
P (−t log |T ′|) 2− t(θ2/12), since there are 32n−1 periodic orbits of period n,
for n ≥ 2. Thus, solving for 2− t log(θ2/12) = 0 gives that t ∼ 1

| log θ| .

2McMullen previously estimated d = dimH(X) = 0.47218913...



222 CHAPTER 15. APPLICATIONS

The proof for θ ∼ 2π
3 relies of Sullivan’s theorem and asymptotic be-

haviour of the eigenvalues, as controlled by a minimax principle. In par-
ticular, dimH(Λθ) ∼ 1 − λ0(θ) → 1. However, one can write λ0(θ) =
inff

∫
|∇f |2dvol/

∫
|f |2dvol ∼ lθ, where lθ is the length of the boundary

curves on the quotient surface. For θ close to 2π/3 on can estimate lθ ∼√
2π/3− θ.

1.5 Horseshoes We now recall a famous Cantor set in Dynamical Systems.
The “Horseshoe” was introduced by Smale as an example of invariant set
for a (hyperbolic) diffeomorphism f : S2 → S2 on the two sphere S2.

=3.25in horseshoe.eps

f bends the rectangle into a horseshoe. The Cantor set Λ is the set of
points that never escape from the rectangle.

In the original construction, f is chosen to expand a given rectangle R
(sitting on S2) vertically; contract it horizontally; and bends it over to a
horseshoe shape. The points that remain in the rectangle under all iterates
of f (and f−1) are an f -invariant Cantor set, which we shall denote by Λ.
The rest of the points on S2 are arranged to disappear to a fixed point.

In an more general construction, let M be a compact manifold and let
f : M → M be a diffeomorphism. A compact set Λ = Λ(f) ⊂ M is called
invariant if f(Λ) = Λ. We say that f : Λ → Λ is hyperbolic if there is a
continuous splitting TΛM = Es⊕Eu of the tangent space into Df -invariant
bundles and there exists C > 0 and 0 < λ < 1 such that

||Dxf
n(v)|| ≤ Cλn||v|| and v ∈ Es

||Dxf
−n(v)|| ≤ Cλn||v|| and v ∈ Eu.

We say that Λ is locally maximal if we can choose an open set U ⊃ Λ such
that Λ = ∩∞n=−∞f

nU . In general, we can take a horseshoe Λ to be an locally
maximal f -invariant hyperbolic Cantor sets a diffeomorphism f on M .

Theorem 1.5.1 (Manning-McClusky) For Horseshoes Λ(f) on surfaces we
have that dimH(Λ(f)) = dimB(Λ(f)).

Moreover, Manning and McClusky gave an implicit formula for the Haus-
dorff dimension, which we shall return to in a later chapter.

Example Consider the case of the original Smale horseshoe such that f :
R∩ f−1R→ R is a linear map which contracts (in the horizontal direction)
at a rate α and expands (in the vertical direction) at a rate 1/β. For a linear
horseshoe Λ the work of Manning-McClusky gives that:

dimH(Λ) = dimB(Λ(f)) = log 2

(
1

α
+

1

β

)
.
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Let us now consider the dependence of the dimension X on the diffeome-
orphism f . Let D ⊂ C2(M,M) be the space of C2 diffeomorphisms from
M to itself. This comes equipped with a standard topology. We can con-
sider a parmeterised family of diffeomorpisms (−ε, ε) 3 λ 7→ fλ. The first
part of the next result shows smooth dependence of the Hausdorff dimen-
sion of horseshoes on surfaces. However, the second part shows this fails
dramatically in higher dimensions.

Theorem 1.5.3

1. On surfaces the Hausdorff dimension dimH(Λ(fλ)) of the horseshoe
varies continuously (even differentiably).

2. There exist examples of horseshoes on three dimensional manifolds for
which the Hausdorff dimension does not change continuously.

Palis and Viana originally showed continuity of the Hausdorff dimension
in the case or surfaces, and Mane subsequently showed smoothness. Both
results used a study of the “structural stability conjugacy map”. Pollicott
and Weiss showed the failure in higher dimensions by exploiting number
theoretic results of two dimensional expanding maps.

Example Consider an extension of the original construction of Smale
where the rectangle is now replaced by a cube C (sitting on the sphere S3).
We can arrange that f expands the cube in one direction; contracts it in
the remaining two directions; and maps it back across C is in the Smale
construction. In this case, the dimension depends on the alignment of the
intersection of f(C) and C in the two dimensional contracting direction.

15.8 Differences of Cantor sets

15.9 Microsets

15.10 Fourier dimension
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Appendix: A little belated history

Felix Hausdorff

Felix Hausdorff was born on 8th November 1868 in Breslau, Germany
(which is now Wroclaw, Poland) into a wealthy family. His Father was a
textile merchant. In fact, Felix grew up in Leipzig after his parents moved
there when he was a child. He studied Mathematics at Leipzig University,
completing his PhD there in 1891.

Figure 15.1: Felix Hausdorff
(1868-1942)

He was subsequently a Privatdozent,
and then an Extraordinary Professor in
Leipzig. However, Hausdorff really wanted
to be a writer and actually published
books on philosophy and poetry under a
pseudonym. In 1904 he even published
a farce which, when eventually produced,
turned out to be very successful. Following
this literary phase, he concentrated again
on mathematics, and during the next dozen
years he made major contributions to both
topology and set theory. In 1910 he moved
to Bonn, and then in 1913 he moved again
to take up an ordinary professorship in Greifswalf before finally, in 1921, he
returned again to Bonn. In 1919 he introduced the notion of Hausdorff di-
mension in a seminal paper on analysis. This was essentially a generalisation
of an idea introduced earlier by Carathéodory, but Hausdorff realised that
the construction actually allows a definition of “fractional dimensions”. In
particular, Hausdorff’s paper includes a proof of the famous result that the
dimension of the middle-third Cantor set is log 2/ log 3. Unfortunately, the
final years of Hausdorff’s life were tragic. He had come from a Jewish family,
and in 1935 he was forced to retire by the Nazi regime in power in Germany.
In 1941 he was scheduled to be sent to an internment camp, but managed to
avoid being sent through the intervention of the University. However, this
was merely a postponement, and on 26th Januray 1942 Hausdorff, his wife
and sister-in-law committed suicide when internment seemed inevitable.

Constantin Carathéodory

Figure 15.2: Constantin
Carathéodory (1873-1950)

Constantin Carathéodory was
born on 13th September 1873, in
Berlin. He was of Greek extraction,
being the son of a secretary in the
Greek embassy in Berlin. As a stun-
dent, he studied as a military engi-
neer at the École Militaire de Bel-
gique. Subsequently, he joined the
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British colonial service and worked
on the construction of the Assiut
dam in Egypt in 1900. He then went
on to study for his PhD in Berlin,
and then Gottingen, before becom-
ing a Provatdozent in Bonn in 1908. The following year he married - his
own aunt! In the following years Carathéodory went on to hold chairs at
Universities in Hanover, Breslau, Gottingen and Bonn. However, in 1919 the
Greek Government asked him to help establish a new university in Smyrna.
However, this was not a happy experience since the project was thwarted by
a turkish attack. Eventually, following this interlude he was appointed to a
chair in Munich, which he held until his retirement in 1938. He died there
on 2nd February 1950.

Anton Julia

Figure 15.3: Anton Julia(1893-1978)

Anton Julia was born on 3rd
February 1893 in Sidi Bel Abbés,
in Algeria. As a soldier in the
First World War, he was severely
wounded during an attack on the
western front. This resulted in a dis-
figuring injury and he had to wear a
leather strap across his face for the
rest of his life. In 1918 Julia pub-
lished “Mémoire sur l’itération des
fonctions rationnelles” on the itera-
tion of a rational function f, much of
the work done while he was in hos-
pital. In this, Julia gave a precise
description of the set of those points whose orbits under the iterates of the
map stayed bounded. This received the Grand Prix de l’Académie des Sci-
ences. Julia became a distinguished professor at the École Polytechnique in
Paris. He died on 19 March 1978 in Paris. His work was essentially forgot-
ten until B Mandelbrot brought it back to prominence in the 1970s through
computer experiments.

Benoit Mandelbrot

Figure 15.4: Benoit Mandelbrot
(1924-20??)

Benoit Mandelbrot was born
on 20th November 1924, in War-
saw. When his family emigrated
to France in 1936 his uncle Szolem
Mandelbrojt, who was Professor
of Mathematics at the Collége de
France, took responsibility for his
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early education. After studying
at Lyon, he studied for his PhD
at the École Polytechnique and af-
ter a brief spell in the CNRS, ac-
cepted an appointment with IBM.
In 1945 Mandelbrot’s uncle had
recommended Julia’s 1918 paper.
However, is wasn’t until the 1970s that he had returned to this problem.
By this time rudimentary computer graphics allowed a study of the compli-
cated fractal structure of Julia sets and Mandelbrot sets. This, and subse-
quent work, has provided and immense impetus to the study of Hausdorff
Dimension.

Abram Besicovitch

Figure 15.5: Abram Besicovitch
(1891-1970)

Abram Besicovitch was born on
24th January 1891 in Berdyansk,
Russia. His Father used to own a
jeweller’s shop. He studied mathe-
matics at the University of St Pe-
tersburg, taking a chair there in
1991, during the Russian Civil War.
Following positions in Copenhagen
and Liverpool he moved to Cam-
bridge in 1927, where he worked un-
til his retirement in 1958. His work
on sets of non-integer dimension was
an early contribution to fractal ge-
ometry. Besicovitch extended Haus-
dorff’s work to density properties of
sets of finite Hausdorff measure. He
died in Cambridge on 2nd Novem-
ber 1970.


