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Chapter 1

Introduction

One could give a provisional mathematical definition of a fractal as a set for
which the Hausdorff dimension strictly exceeds the topological dimension,
once these terms are defined. However, this is not entirely satisfactory as it
excludes sets one would consider fractals. Mandelbrot introduced the term
fractal in 1977, based on the latin noun ”fractus”, derived from the verb
”frengere” meaning ”"to break”. The present vogue for fractals is mainly
due to Benoit Mandelbrot.

1.0.1 In the beginning

There is no single generally accepted definition of a fractal set. They gener-
ally take the form of complicated subsets on Euclidean space.

On 18 July, 1872 the famous german mathematician Karl Weierstrass
presented a paper at the Royal Prussian Acadamy of science in which he
gave an example of a continuous function f : R — R on the real line which
was nowhere differentiable.

Weierstrass Function
T T
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This was part of the programme of Weierstrass to put real analysis onto a
more rigorous footing. Prior to his work, it was commonly (and incorrectly)
assumed that continuous functions were automatically differentiable. In
fact, in 1806 Amphere had published a paper in the Journal de 1’Ecole
Polytechnique claiming (erroneously) that continuous functions were almost
everywhere differentiable. ' The confusion that lead to his erroneous proof
mainly arose from the lack of clarity in the defintions. Although it was
widely known that the proof was flawed, the conclusion was still widely
accepted.

The Weierstrass function is defined using an infinite series

flz) = Z a" cos(b"mx)
n=0

where 0 < @ < 1 and b € 2N — 1 satisfy ab > 1 + 37” The graph of this
function might be viewed as the first example of a fractal.

In 1883, Cantor (who had attended lectures of Weirstrass) gave examples
of what are now usually called Cantor sets in the real line.

On the other hand, von Koch was unsatisfied with Weierstrass’ ana-
lytic approach and in 1906 proposed a more geometric constrution based
on interating scaled down versions of the original picture to get a von Koch
snowflake.

In a similar spirit to the constructions of both Cantor and von Koch, the
polish number theorist Sierpinski constructed in 1915-16 his triangle and
Gasket in the plane.

In 1918, Hausdorff developed the definition of the dimension of fractals.
One of the possible ways to define fractals is to say that their Hausdorff

! Amphere’s father was guilloteed after the french revolution and he himself made sig-
nificant contributions to physics which are commerated by the use of his name as a unit
of electrical current.



dimension is strictly bigger than their topological definition. 2 The idea
of Hausdorff dimension was very effective in understanding many problems,
and it was used extensively by Besicovich in the 1930s. It was only in 2018
that its proven that the graph of the Wierestrass function has dimension
2 + logya. 3 A simpler, but less subtle notion of dimension called Box
dimension was introduced by Bouligand in 1928 (based on earlier ideas of
Minkowski).

In the same year that Hausdorff proposed his definition, two french math-
mematicians Julia and Fatou independently initiated the study of what are
now called Julia setsin complex dynamics and where are important examples
of fractal sets. Julia published a 199-page paper in 1918 entitled Mémoire
sur literation des fonctions rationelle describing the Julia set. With this
paper, Julia won the Grand Prix of the Académie des Sciences and became
extremely famous in mathematical circles throughout the 1920s. However,
this work fell into obscurity for about fifty years. In contrast, Fatou, who
producted similar retults using different methods, did not achieve the same
level of fame as Julia.

In the 1960’s Benoit Mandlebrot popularised the study of fractal struc-
tures accross the sciences. His name is now used to complex dynamics to
call a set in the parameter space of families of rational maps. °

A recurrent theme is to describe the size of these fractal sets. This
reflects their complexity.

1.0.2 The notion of dimension

For d a natural number there is a perfectly reasonable intuitive definition
of dimension: A space is d-dimensional if locally it looks like a patch of RY.
(Of course, “looks like” requires some interpretation. For the moment we
shall loosely interpret as “diffeomorphic to”). This immediately allows us
to say: the dimension of a point is zero; the dimension of a line is 1; the

?He was forced to give up his post as a professor at the University of Bonn in 1935 and
his work could only be published outside of Germany. Eventually, facing the prospect of
being sent to a concentration camp, he, along with his wife and sister-in-law, committed
suicide in January 1942.

3This was proved by someone who used to work at Warwick.

“He submitted an announcement of his results to Comptes Rendus. Unfortunately, Ju-
lia, ever protective of his work, sent letters to Comptes Rendus asking them to investigate
whose results had priority. The publication duly launched an investigation and included a
note on Julia’s findings in the same issue as the Fatou’s announcement. This apparently
discouraged Fatou enough to keep him from entering for the Grand Prix. However, the
Académie des Sciences gave him some recognition and awarded him a prize for his paper
on the topic.

SMandelbrot’s uncle, Szolem Mandelbrojt, was a pure mathematician in Paris, who
took an interest in the young Mandelbrot and tried to steer him towards mathematics. In
fact, in 1945, Mandelbrojt showed his nephew the works of Fatou and Julia, though the
young Mandelbrot initially did not take much of an interest.
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dimension of a plane is 2; the dimension of R? is d. Moreover, we want the
dimension of a circle to be 1; the dimension of a surface to be 2, etc. The
difficulty comes with more complicated sets “fractals” for which we might
want some notion of dimension which can be any real number.

There are several different notions of dimension for more general sets,
some more easy to compute and others more convenient in applications. We
shall concentrate on Hausdorff dimension. Hausdorff introduced his defin-
tion of dimension in 1919 and this was used to study such famous objects
such as Koch’s snowfalke curve. In fact, his definition was actually based
on earlier ideas of Carathéodory. Further contributions and applications,
particularly to number theory, were made by Besicovitch.

One could give a provisional mathematical definition of a fractal as a set
for which the Hausdorff dimension strictly exceeds the topological dimen-
sion, once these terms are defined. However, this is not entirely satisfactory
as it excludes sets one would consider fractals. Mandelbrot introduced the
term fractal in 1977, based on the latin noun ”fractus”, derived from the
verb ”frengere” meaning ”to break”. The present vogue for fractals is mainly
due to Benoit Mandelbrot.

1.0.3 In search of a good definition

To begin at the very beginning: How can we best define the dimension of
a closed bounded set X in R™, say? Ideally, we might want a definition so
that:

(i) When X is a manifold then the value of the dimension is an integer
which coincides with the usual notion of dimension;

(ii) For more general sets X we can have “fractional” dimensional; and
(iii) Points, and countable unions of points, have zero dimension.

Perhaps the earliest attempt to define the dimension was the following:

First Definition. We can define the Topological dimension dimr(X) by
induction. We say that X has zero dimension if for every point x € X every
sufficiently small ball about x has boundary not intersecting X. We say
that X has dimension d if for every point € X every sufficiently small ball
about z has boundary intersecting X in a set of dimension d — 1.

This definition satisfies out first requirement, in that it co-incides with
the usual notion of dimensions for manifolds. Unfortunately, the topological
dimension is always a whole number. (For example, the topological dimen-
sion of the Cantor set C is zero). In particular, this definition fails the second
requirement. Thus, let us try another definition.



Second Definition. Given € > 0, let N(¢) be the smallest number of e-balls
needed to cover X. We can define the Box dimension to be

. . log N (e)

dima(X) =l 1o 17
Again this co-incides with the usual notion of dimensions for manifolds.
Furthermore, the box dimension can be fractional (e.g., the dimension of
the Cantor set X is log2/log3). We have used the limit supremum to
avoid problems with convergence. Strictly speaking, this is usually called
the upper box dimension and the box dimension is usually said to exist
when the limit exists (and is thus equal to the limsup). However, we have

the following:

Lemma 1. There exist countable sets such that condition (iii) fails for the
box dimension.

As a particular, example we can consider the countable set

X:{%:nZI}U{O}

Then the box dimension is equal to 1/2. We will give a proof in the next
section.

Figure 1.1: Covering the coastline of Britain by boxes

Example 1 (The coastline of countries). Of course, to begin with there is
no reason that either the Box dimension or the Hausdorff dimension of a
coastline would actually be well defined. However, instead of taking a limit
as € tends to zero one could just take € to be “sufficiently small” and see
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Figure 1.2: (i) A cover by balls of diameter ¢; (ii) A cover by open sets of
diameter €

what sort of values one can get. Empirically, we can attempt to estimate
what the Box dimension d would be, if it was well defined.

More precisely, we can count how many balls are needed to cover the
coastline on a range of different scales (e.g., radius 100 miles, 10 miles, 1
mile). This leads to interesting (if not particularly rigorous) results, as was
observed by Lewis Fry Richardson. For example:

Germany, d = 1.12;

Great Britain, d = 1.24; and

Portugal, d = 1.12.

Finally, let us try a third definition,

Third Definition. We can define the Hausdorff dimension (or Hausdorff-
Besicovitch dimension) as follows.

Given X we can consider a cover U = {U;}; for X by open sets. For
§ > 0 we can define H?(X) = infy {3, diam(U;)°} where the infimum is
taken over all open covers U = {U;} such that diam(U;) < e. We define
H’(X) = lim._ H)(X) and, finally,

dimy (X) = inf{6 : H°(X) =0}.

As for the previous two definitions this coincides with the usual notion
of dimensions for manifolds. Furthermore, the Hausdorff dimension can be
fractional (e.g., the dimension of the Cantor set X is again log2/log3).
Finally, for any countable set X property (iii) holds:

Lemma 2. For any countable set X we have that dimpg(X) = 0.

We will give a proof of this fact in chapter 4.

At first sight, the definition of Hausdorff dimension seems quite elabo-
rate. However, its many useful properties soon become apparent. Conve-
niently, in many of the examples we will consider later dimy (X ) = dimp(X).
In fact, one inequality is true in all cases:

Lemma 3. The definitions are related by dimg(X) < dimp(X).



We will give her proof of this results in chapter 4.
After this rather rapid gallop through the definitions, we will now settle
down to a more gentle canter through the definitions.

1.0.4 Books: A few of my favorite things

There are an number of excellent mathematical treatments of Hausdorff di-
mension and its properties. Amongst my particular favorites are Fractal
Geometry by K.J.Falconer and Geometry of sets and measures in Fuclidean
spaces by P. Matilla. In the context of Dynamical Systems and Dimen-
sion Theory an excellent book is Dimension Theory in Dynamical Systems:
Contemporary Views and Applications by Y. Pesin.
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Chapter 2

A zoo of examples of fractal
sets

We want to begin my considering a selection of examples of candidates to
be called fractal sets.

2.1 Cantor sets

The simplest examples of fractal sets are already well known to most people,
namely Cantor sets. The most familiar example of a Cantor set is the middle
third Cantor set.

2.1.1 Middle %-Cantor set

One can delete from the unit interval [0,1] = {z € R: 0 < z < 1} a
countable sequence of open intervals to give the standard Cantor set. More

precisely, one first deletes the central interval (%,%) of length % leaving
behind the union of two closed intervals [0, 3] and [2, 1] of length 3.
The next step is to delete from each closed interval the middle third

intervals (3, 2) and (g, §) leaves four closed intevals[g, 2], [0, 5], [2, 1], [3, 5]
and [%, 1]. When this is iterated n-times we have 2" intervals of length 3%
Eventually one arrives at a closed set C, namely the middle third Cantor

set.

ST O
b =

D
L =R1 S
Y pg
Ll b
Oy =
oo -
ot
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It is easy to see that we can also write this in the form
o 2i
C= {Z 377 Dy, d, 03, € {0,1}}
n=1

i.e., those numbers where the digit 1 doesn’t occur in the base 3 expansion.
In particular, there is a bijection 7 : ¥ — C from the space of sequences

¥ = {0, 1} := {(i1, 49,43, -+ ) : i1,49,13, -~ € {0,1}}

to the Cantor set C' defined by
T (il,iz,’ig,--') — 222

Exercise 1. Show that these two defintions of the middle third Cantor set
actually coincide.

2.1.2 Middle M-Cantor sets

A simple variant on this construction is where we choose 0 < A < 1 and

we delete the middle A interval at each stage, rather than the middle third

interval. More precisely, we first delete the interval (1 A 1‘*"\) leaving the

intervals [0, 15 /\] and [H)‘, 1], each of which has length I )‘. We then delete
A(1-N)
2

from each of these intervals their middle intervals, of 1ength leaving 4

(1=X)

2
7 ) . Continuing in this way at the nth step we have

intervals of length (

n
2™ closed intervals of the length <@> Continuing iteratively we end up
with a closed set C'.

Example 2 (A = %) In the particular case that A = % this reduces to the
previous construction and C' = Cl.

We can also write

CA:{<1+)\>2 ( >n:i1,i2,z’3,-~-e{0,1}}

Exercise 2. Show that these two defintions of the Cantor set Cy actually
coincide.

Remark 1. To show that the Cantor set actually exists (as a non-empty
set) we formally need to invoke a little metric space theory. More precisely,
assume that we have a nested sequence of compact sets (in this case unions
of closed intervals)

CiDCyDC3D---
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then we claim that C = N,C, # 0. Here is a simple argument. Choose
cn € Cp C C1 and by compactness of Cy choose a convergent subsequence
cn, — € C1, say. Moreover, for any j we see that (¢,)n>; C C; and since
C; is closed we see x € Cj. Thus x € N;C}, which is therefore nonempty.

A similar argument can be applied to some of the other constructions
(e.g., Sierpinski gasket, Bedford-McMullen carpets).

2.1.3 Cantor sets of zero Lebesgue measure

Formally, Cantor sets are totally disconnected perfect closed sets, and all
such sets are homeomorphic. However we are more interested in their metric
structure.

Without appealing to too much measure theory, we can say what it
means for a set to have zero Lebesgue measure.

Definition 1. We say that X C [0,1] has zero Lebesque measure if for any
€ > 0 we can choose a finite (or countable) set of subintervals Iy, I, - -+ , I, C
[0,1] such that

N
X CUX T and Y MT) <

i=1

where \(-) is the measure (i.e., length) of the interval. !

It is also easy to see countable unions of zero measure sets have zero
measure.

Exercise 3. Show that if a countable family X; each have zero measure then
so does its union J;U;.

It is easy to see that the middle third Cantor set has zero measure. At
the nth stage in the cosntruction we have N := 2" intervals I; each of length
1/3™. In particular, using these intervals we see that

provided that n > 1< > 0.
log £

In the case that i < 1 we similarly see that at the nth level of the

construction we have that the Cantor set C), is covered by 2" intervals I; of

size (%)n In particular, using these intervals we see that

N

L) =(1-N"<e

=1

In R? there is an analogous defintions with cubes replacing intervals.
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provided that n > 10gl(()1g€ > 0.

-\
In summary, these C?antor sets are all homeomorphic and have zero
Lebesge measure. Later we will introduce defintions of dimension to destin-
guish their size which will help to distinguish them.

2.1.4 Holder bijections

Let 0 < A,v < 1. There is a natural bijection between the Cantor sets
T =1y : Cy — C, given by

CCRIEC - (5502

n=1 n=1

This is a homeomorphism. However we can show a stronger result, after
recalling the following definition.

Definition 2. We say that 7 is Lipschitz if there exists C > 0 and
m(z) —7(y)| < Clz —yl.

Given v > 0 we say that 7 is y-Holder if there exists C' > 0 and
m(z) —7(y)| < Clz —y[7.

In particular, if v = 1 then a 1-Holder function is Lipschitz.

os(142)
ox(19)

Proposition 1. The map 7 is v-Holder when v =

Proof. Given z,y € C) we can write
T+ A o=, [1-X\" T+ A o= . [1-2\"
() () we=(57) 20 ()

For x # y we can let
N =min{n : iy, # jn}

then iy # jn. In particular, there exists ¢ > 0 such that

N
|9C—:L/|ZC<1J;)\> :

Similarly, there exists d > 0 such that

wm»—w@wzd(lg”)N.

It is then easy to see the result. O

Exercise 4. Complete the details of the proof.



2.2. VON KOCH CURVE AND SNOWFLAKES 13

AR

Stage 0 Stage 1
Stage 2 Stage 3

2.2 von Koch curve and snowflakes

The von Koch curve is defined by an iterative process.

Starting from from an equilateral triangle the middle third segment of
each side is replaced by the other two sides of an equilateral triangle, i.e.,
replacing the each middle third of each side by the other two sides of an equi-
lateral triangle pointing outward of side length 1/3 the size of the original
edge lengths entered on the edge.

We can continue this process repeatedly and it ”converges”” to the von
Koch curve.

2.3 Convergence of sets

One has to ask what convergence means in these contexts. This introduces
us to the notion of the Hausdorff metric on sets. Given a compact non-empty
set 2 X c R% and € > 0 we define an e-neighbourhood

B(X,e) ={y € R?: 3z € X with dga(y,z) < €},
where dga(y, z) = \/ S0 (v — y:)?, forz = (w1, -+ ,zq) and y = (y1, -, ya),
is the usual Euclidean metric.

Definition 3. Given two non-empty compact sets X, Y C R? we define the
Hausdorff distance of two compact sets X and Y in R?® by

d(X,Y)=inf{e >0 : X C B(Y,¢) and Y C B(X,¢)}.

Remark 2. We can see that we require the sets bounded since if we choose
X, Y CR tobe X ={0} and Y =R then d(X,Y) = +oo. We also see that

2Recall that in Euclidean space a closed bounded sets correspond to the compact sets



14 CHAPTER 2. A ZOO OF EXAMPLES OF FRACTAL SETS

we want to consider only closed sets since for X = [0,1] and Y = (0,1) we
have d(X,Y) =0 but X #Y.

Lemma 4. The Hausdorff metric d is a metric on the set of compact subsets

of R%.

Proof. To see this is a metric we need to estblish three properties. Firstly,
if X =Y then we see from the definitions that X C B(X,¢) for any € > 0
and so deduce that d(X,X) = 0. Conversely, if d(X,Y) = 0 then we see
that for any x € X and each n > 1, there exists y, € Y wih dga(z,yn) < %
Thus y, — = and we deduce that € Y since Y is closed. Thus X C Y.
Similarly, Y C X by symmetry.

Secondly, we observe from the symmetry in the definitions that d(X,Y") =
d(Y, X), i.e., the metric is symmetric.

Finally, to prove the triangle inequality let X,Y,Z c R? be compact
subsets. Choose €,d > 0 such

X c B(Y,e),Y C B(X,e),Y C B(Z,6),Z C B(Y,0) (1)
For x € X C B(Y,¢) there exists y € Y with da(z,y) < e. Moreover, since
y €Y C B(Z,0) there exists z € Z with dpa(y,z) < §. By the Euclidean
triangle inequality

de<$7 Z) < de<I‘, y) + d]Rd(y7 Z) <€e+o

and thus X C B(Z,e + ¢§). Similarly, we can show that Z C B(X, e+ 0)
and deduce that d(X,Z) < e+ §. Taking the infimum over both e and &
satisfying (1) gives the triangle inequality for the Hausdorff metric:

Ad(X,Z) <d(X,Y)+d(Y,Z).

This complete the proof.

An equivalent definition of the Hausdorff metric is

d(X,Y) = inf d inf d
(X,Y) maX{;g}gylgy Rd(ajay)721€1}]&3££}( Rd(%y)}

FEzercise. Show that the two defintions of d(X,Y’) are equivalent.

Example 3. Let X, = {1 :i=0,1,2,--- ,n} and X = [0,1]. We see that
d(Xn,X) = 5 and so X, = X in the Hausdorff metric.
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2.4 Sierpinski trianges and carpets

2.4.1 Sierpinski triangle

The Sierpinski triangle is rather like a two dimensional version of the middle
third Cantor set where we iteratively deleted open intervals. This time
around we start from an equilateral triangle and delete the open inscribed
(inverted) middle triangle. This leaves three triangles each of which is half
the size of the original triangle. We continute to delete the sclaed down open
middle triangles and continue iteratively.

2 A2

Remark 3. To see that the limit exists we observe that we have a decreasing
sequence 11 D To D T3 D where T, is a union of 3™ triangles of size 2%
The Sierpinski triangle is given by T' = N> T,,. Compactness shows that T
is non-empty by analogy with the case of Cantor sets.

2.4.2 Bedford-McMullen carpets

A similar construction, with more variations available, is the following.
The Bedford-McMullen carpet is a closed subset of the unit square con-
structed by analogy with the Sierpinski triangle. The construction appeared
independently in the Warwick doctoral thesis of Tim Bedford and the first
paper of Curt McMullen. 3
Let n,m > 2 and let S C {0,---,n—1} x {0,--- ,m — 1}. Divide the

unit square [0, 1] into subrectangles of size % X % and keep only the squares

iit1] [i g+l
n n n n

where (i,7) € S. We then iterate the procedure. The resulting set is the

3McMullen told the lecturer about his work in the tea room at IHES, who then wrote
to Bedford informing him
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carpet. It can also be written as
k k
X:{( nk’zmk) :(xk,yk)GS,Vk‘Zl}
k=1 k=1

Example 4. We can consider the special case n =3 and m = 2 and S =

{(0,1), (1,1),(2,0)}-

(D)) e
(- 6-6)-0-)-6)

=1.5in bedford.eps
The first two steps in the Bedford-McMullen example The limit set takes
the form

A= {(Z ;% ;Z) ¢ (in, jn) 6{(0,0),(1,1),(2,0)}},

n=1 n=1

where

and is closely related to what is called Hironaka’s curve.

Example 5 (Sieprinski Carpet). We can consider the special case n = 3
andm =3 and S ={0,1,2} x{0,1,2} — {(1,1)}.

Exercise 5. Show that providing |S| < nm the carpet has zero Lebesgue
measure.

Exercise 6. When is the final set connected?
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2.5 Less linear examples

All of the previous example have been very linear in their construction.
However, we can now describe a couple of examples where the construction
of the fractal set is a little different.

2.5.1 Circle packings

The curvilinear analogue of the Sierpinski Gasket is the so called Apollonian
Gasket.

Beginning with the unit circle we consider three mutually tangent in-
scribed circles. We successively inscribe into each triangle between three
circles another circle. The closure of the union of these circles is a circle
packing.

Figure 2.1: An apollonian circle packing made up of infinitely many inscribed
circles

Remark 4. The following estimate on the size of the circles was only proven
ten years ago: There exists C' > 0 and § > 1 such that

. The number of circles of radius > €
lim =C.

e—0 66

2.5.2 Quasi-circles

Consider circls Cq,--- ,C}, be a finite set of circles in C. Assume that the
circles have disjoint interiors and C; touches C;11 at a single point (and C,
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Figure 2.2: A quasi circle preserved by reflection in the linked circles

touches C7). footnoteAlternatively we can assume that C; intersects Cji1,
and C), intersects C, at exactly 2 points and at these points of intersection
the two circles meet at right angles. We can define inversions in the circle
Ci={2€C: |z—2z|=r} tobethe map T; : CU{oc} - CU{oo} defined
by )
ﬂ(z)z%_iz:‘zl—l—zi, for i=1,---,n).

The smallest closed set X C C such that T;(X) = X, fori=1,--- ,nis

either:

1. Another circle in C; or

2. A 7fractal” non-rectifiable curve (i.e., not the Lipschitz image of a
circle)

2.5.3 Julia sets

Let ¢ € C. The Julia set of a polynomial p(z) = 2% + ¢ is a closed subset
J C C. The simplest definition is in terms of fixed points of iterates of p.
More precisely, for each n we can consider fixed points

z = p"(z) where p" =po---op.
We call such a periodic point repelling if |(p™)'(z)| > 1. The Julia set

J ={z: zis a reprelling periodic point}

is the closure of the repelling periodic points. This is merely one of several
equivalent definitions.

When ¢ = 0 this is merely a circle. But for values ¢ # 0 the Julia sets have
a fractal structure. We can further subdivide the parameter sets into those
for which the associated Julia set is connected or (totally) disconnected. The
collection of points ¢ with the former property for the Mandelbrot set. This
forms a compact set in C whose boundary is again fractal in appearance.
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Figure 2.3: The Mandlebrot set is in the parameter space, and different
choices of ¢ give rise to different Julia sets

2.6 Digit frequencies
We complete our wanderings through examples of “fractal sets” by consid-
ering a classical result which will have echos later. Here the sets in question

will actually be dense sets in the unit interval characterised by properties of
their decimal (and other bases) expansions.

2.6.1 Normal numbers and Borel’s Theorem

Given any real number 0 < z < 1 we can consider its decimal expansion
z = 0.a1a20a3 . .. where a1, az,as3,€ {0,1,2,--- ,9}.

This will be unique, except in a countable set of values. More generally, for
any natural number b > 2 we can consider its expansion in base b:

oo
x:ZZ—Z where ay,as, a3, € {0,1,2,--- ,b—1}.
n=1

Again, this expansion is unique except for a countable set of values.
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We say that x is normal to base b if the digits in the base b expansion
all occur wih equal frequency %, ie., for all j € {0,1,---,b— 1} we have

1
lim NCard{l <n<N:a,=j}=

N—+o0

|

A normal number x is one which is normal to every base b > 2.
A very significant result of E. Borel is the following.

Theorem 1 (Borel, 1909). * The set of points 0 < x < 1 which are not
normal have zero Lebesque measure.

In the case b = 2. Let us deal with the case b = 2, the Back iothers being
similar. To reformulate the result in a more cBack ionvenient form to prove,
we define a sequence of funcions x,, : [0,1] — {—1,1} defined by

() 1 ifa, =0
n\T) =
X -1 ifa,=1

where

We can avoid using measure theory by using a simple direct construction.
We begin with the following simple result on series

Claim 1. Let ¢, > 0 with > ¢, < +00. Then there is a sequence 0 <
b, — 400 such that ) anb, < +oo.

Proof of Claim 1. Since the tail of a convergent sequence tends to zero, we
can choose 0 = kg < k1 < kg < --- such that k&1 = 0 and

m .
Y <2 forj=2,34,--.

n=~k;

4The veracity of Borel’s Theorem is now beyond question. However, to paraphrase
Doob, Borel’s original derivation contains an “unmendably faulty” error. Borel himself
was aware of the gap in his proof, and asked for a complete argument. His plea was
answered a year later by Faber and also later by Hausdorff, using what is now called the
Borel-Cantelli lemma. The more modern proof uses the Birkhoff Ergodic Theorem from
1931.

5These functions Xn are sometimes called Rademacher functions
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For each n € N we define b, = j where k; < n < kjy1. In particular,

00 ko 0o kji1
chbnzzcn+z Z Cnbn
n=1 n=1 Jj=2 \n=k;+1

ko 0o kji1
< Cn + Z J Cn
n=1 j=2 n=k;+1
ko 00 00
<S> e+ ) D e
n=1 j=2 n=k;+1
k2 00
<D en+ Y 27 < +oo
n=1 j=2

We can now proceed with the proof of Borel’s Theorem as follows. Let
us write

onl) = =3 xula)
k=1

then we want to show that ¢, (z) — 0 as n — 400, s except on a set of zero
measure. Fzcercise Show that the functions ¢, (x) take only finitely many
values and are constant on the dyadic intervals [i/27, (i + 1)/2"].

Claim 2. > >, fol | (z)[dr < 00

Proof of claim 2. We can expand
n 4
<Z Xk(@) dx
1

k1#ko

1 1
DI EOCINE AR S DR PN
k1#ks k1,ko,ksdistinct

1
to Y @@ @@
kl,k’g,kg,k’z;distinct

We can simply this by noting that
1. Since x2(z) = 1,
(a) [ xk(z)dz =1 and
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b) [ Xk, (2)*Xky (z)?dx = 1 for ky, ko distinct.
2. Since kal )xk2(x)dx = 0 for ky, ke distinct, and thus

(a) we have [ X, () Xk, () = 0 (using ) xi(2)? = x(x)) and

(b) J Xk (2)*x2(2)x3(2)da = [ xw2(2)x3(2)dz = 0 for ki, ko, ks dis-
tinct (using xx, ()% = 1).

3. [ Xk (@) xk2(z) Xr3(2) Xr3(x)dx = O for ki, ko, k3, ks distinct.

Exercise. Verify these equalities.
In particular, we see that

1O n—1
MZ/Xi( d:c and — Z /Xkl 2k, (x)%dx = 3
k=1

k;ék

and all of the other terms in (1) vanish.
Ezercise. Verify these estimates
In particular, we see that > 7, fol |pn(z)[*dz < 400 as claimed.

The proof of Borel’s theorem will follow immediately from Claim 2 and
Claim 3 below.

Claim 3.[A first brush with the strong law of large numbers| If ) " fo | () |[*dz <
+oo then limy, oo ¢n(z) = 0 for almost all x (i.e., except on a set of zero
measure).

Proof of Claim 3. We want to show that the set Z C [0, 1] of those x for
which |¢,(x)| doesn’t converge to zero, has measure zero.

Let ¢, = [ |¢n(z)|*dz and then since by claim 2 Y, ¢, < +00 we can
apply claim 1 to find a sequence b, — +o00. If x € Z then clearly

1
| (z)[* > w for infinitely many n. (1)

n

Let us denote

A, = {y €10,1] ¢ |on(y)* > bl} for n > 1.

n

then by (1) we see that x € U2 | Ay for all n > 1, 1e., Z C U2, Ag.
Moreover, since |¢,(y)|* takes only finitely many values we see that we

can write A, = UMy ™ where J7, Jp, - % are disjoint intervals. In

particulae, U2 Ay is covered by a countable union of intervals

Tn={J® 1<i< N k>1}
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whose union must also cover Z, i.e., Z C Ujeyg,J. Furthermore, we can
then write the total lengths of these intervals as

Np,
A) =S MUY n > 1.
=1

By definition we see that for each y € A,, we have |¢,(y)|*b, > 1 and thus

1
S A(A) < an/o ()M < +o0.

Since this series converges, its tail must tend to zero, i.e., lim, 100 > po,, A(Ap) =
0. In particular, for any € > 0 we can write

A(Ugeg,J) Z A(A

for n sufficiently large. This complete the proof.
R O

Remark 5 (More measure theory makes for light work). With more measure
theory we can shorten the proof. In claim 2 we had that

Z/ ( ZXk )d:):<+oo.

In this case we can interchange the summation and integral to deduce

n 4
/ (rlL Z Xk(fU)) dr < +o0.
n=1 k=1

We can then deduce that

n

o 4
1
Z ( ZXR(QU)) dr < 400
n=1 n k=1
for almost all x. From this we can deduce that

as required.

We will next turn to the problem of describing the size of these zero
measure sets
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Chapter 3

Box Dimension

There are two particularly popular notions of quantifying the size of fractal
sets which we will consider, namely Box and Hausdorff dimension. Both
measure how efficiently a set X can be covered by balls.

Box dimension requires covering the set X by balls of the same size.
This makes it particularly easy to compute, but it lacks many desirable
properties. On the other hand, in the definition of Hausdorff dimension we
will allow coverings by sets of different sizes. This gives a better behaved
notion of dimension, but (as we shall see) is usually much more difficult to
compute.

We first introdcuce Box dimension and its properties.

3.1 Definitions

3.1.1 The definition of box dimension

We begin with the definition of Box dimension (or Minkowski dimension as
it is sometimes called). We first need to introduce a very simple notion.

Definition 4. Suppose X C R? is a bounded set. Let ¢ > 0. Let N(X,¢€) be
the minimal number of e-balls needed to cover X, i.e.,

N(X,€) =inf{n: Jz1, -+ ,z, € X such that X C U}, B(x;,€)}

Since X is bounded it is easy to see that N(X,e¢) is finite. Similarly,
it follows immediately from the defintions that if € < ¢ then N(X,¢) >
N(X,¢€), since given any (minimal) cover by e-balls also corresponds to a
(possibly non-minimal) cover by €’-balls with the same centres.

25
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The Box dimension measures the way in which the numbers N (X e¢)
depend on € as ¢ — 0. It doesn’t always exist, but even when it doesn’t
there are the more general notions of upper and lower box dimension, which
we define below.

Definition 5. We define the upper Box dimension (or Minkowski dimen-
sion) of X as !
— log N (X
dimp = lim sup _log N(X,¢)
e—0 10g€

and the lower box (or Minkowski dimension) of X as >

log N(X
dimp(X) = liminf—w.
e—0 log e
If the two values agree, then the limit
log N(X
dimp(X) = lim — 28V (X0)
e—0 log €

exists and is simply called the box dimension (or Minkowski dimension) of
X.

As we shall see later, there are examples with dimz(X) < dimpg(X), so
the box dimension isn’t always defined.

1. It doesn’t matter if we assume the centres of the balls x; are chosen
in R? rather than X. This would change the value of N (X, ¢) but not
the different values of the dimension(s).

2. Intuitively when the box dimension exists it means that for any § > 0
the number of balls of size € needed to cover X grows as

Ef(dimB(X)fé < N(X, 6) < 67(dimB(X)+6

for € > 0 sufficiently small.

log N (X e) > 0.

3. It is clear from the definition that dim(X) > 0 since oge ~ =

Often it is more convenient ()both practically and concepturally to take
the lim inf and lim sup through a subsequence, in which the following simple
lemma is helpful.

Lemma 5 (Trivial, but useful lemma). Let €, — 0 be a monotone decreasing
sequence such that

: log €nt1 .
1. limy, 400 bgiii =1; and

!By limsup, _,, ac = a we mean that V& > 0, Jeo > 0 such that [SUPg« <y @e —a| <
2By liminfe_0 ac = a we mean that V§ > 0, Jeo > 0 such that |infocece, ae —al < §
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: IOgN(X,E +1) —1-
2 iMoo GorN Xy — b

Then

— log N(X, en log N(X, e
dimp(X) = —limsupM and dimz(X) = _1iminfM

N—+00 log e, n—+00 log e,

Proof. For any ¢ > 0 we can choose €,41 < € < ¢, and we know that
N(X,e,) < N(X,e) < N(X, €p4+1). Therefore

logN(fn) < IOgN(G) < IOgN(en-‘rl)

log(—) = log(1) ~ log(2)

Letting n — +o00 and using 1 and 2 gives result. O

Remark 6 (The coastline of countries). Of course, there is no reason that
either the Box dimension of a coastline would actually be well defined. How-
ever, instead of taking a limit as € tends to zero one could just take € to be
“sufficiently small” and see what sort of values one can get. Empirically, we
can attempt to estimate what the Box dimension d would be, if it was well
defined. More precisely, we can count how many balls are needed to cover
the coastline on a range of different scales (e.g., radius 100 miles, 10 miles,
1 mile). This leads to interesting (if not particularly rigorous) results, as
was observed by Lewis Fry Richardson. For example:

Germany, dimension =< 1.12;

Great Britain, dimension =< 1.24; and

Portugal, dimension =< 1.12.

The first mathematical example we will consider is trivial, but the con-
clusion is reassuring.

Example 6 (Single points). Let X = {z} be a single point. Then for any
6 > 0 we have that N(X,d) = 1 since we can cover x by the single ball
B(x,€). Thus we can deduce that dimp(X) =0 and thus dimp(X) = 0.

The next example is almost as simple, and equally reassuring.

Example 7 (Unit interval). Suppose X = [0,1]. Then we observe that for
any € > 0 we have that

[1/(26)] < N(X,e) < [1/e] +1

where [-] is the integer part. The upper bound is apparent since we can
consider the points x; = €i, for 0 < i < [1/€| and then we have an open
cover with [1/€]+1 balls B(x;,€). On the other hand, to get the lower bound
we observe that since any ball B(x,€) is an interval of length 2¢ in the real
line we need at least [1/(2€)] such intervals to cover the unit interval.
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In particular, using these bounds on N(X,€) we see that

log([1/€] + 1)
log e

dimpg(X) < limsup — =1

and
log((1/(2]) _ |

dimp(X) > liminf — log ¢

In particular, we deduce that the box dimension exists and dimp(X) = 1.

It may seem a little strange to call this box dimension rather than, say,
ball dimension, since we uses covers by balls rather than boxes. However,
we can go some way to explaining this in the next subsection.

3.1.2 Variants on the definition of box dimension

It isn’t actually very important to use balls in the covering for X. For
example, could easily replace balls of size € by “squares” or boxes S(z,€) of
size € instead. This perhaps helps to explain the name “box dimension”.
Definition 6. Let x = (&1, ,&4) then we denote

Srye)=(E -6 +e)x(L2—6&+e) X x(§g—¢6&+e)

i.e., a cube with edge sides length 2e.

| | .
| x | .
2¢ | ° 2€ |
| |
x | | B
| |
— + + ¥ 26
D > D >
R >
2¢ 2¢ 2¢

In one dimension these definitions of squares and balls coincide, but for
d > 2 it can be more convenient to use one definition rather than the other.

Definition 7. Let € > 0. By analogy with the cover by e-balls, let Ng(X,€)
be the minimal number of e-boxes needed to cover X, i.e.,

Ng(X,e) =min{n: Jz1, - ,z, € X with X C U}, S(zi,€)}

The next lemma shows that it doesn’t really matter if we use balls or
cubes to define the (upper and lower) Box dimension(s).
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Lemma 6. We can rewrite the upper boxr dimension as

. loe Nl X
dimp(X) = limsup —M
e—0 log €
and the lower Box dimension as
looc No(X
dimp(X) = liminf—w
e—0 IOg €

Proof. Before we begin, we first note that a ball B(x,€) of radius e will fit
snuggly inside a box S(z,€) of side length 2¢. In particular, a (minimal)
cover of X by e-boxes gives rise to a cover by e-balls with the same centres,
from which we deduce that

N(z,€) > Ng(z,e€). (3)

On the other hand, an €/v/d -box B(z,€e/V/d) of side length e/v/d will sit
inside a ball B(x,€) of radius €. In particular, we see that

Ns(SC,E/\/g) ZN(:E,E) (4)

The result easily follows from (3) and (4) from the definitions since for the
upper box dimension we have

—— log N(X
dimp(X) = limsup _log N(X,¢)
e—0 IOg €
log Ng(X d
< limsup — %8 (X, ¢/Vd)
e—0 10g €
log N(X d
< limsup 128N ,€/Vd)
e—0 log €
log N (X —
= lim sup — 0g N(X, ¢/Vd) = dimpg(X)
e—0 loge/Vd
. . 10g6 - . . .
(since lime_,0 oate/ \/&)) = 1) and similarly for the lower Box dimension we
have log N(X. )
. . og ) €
dimg(X) = h?i}élf B —
1
< liminf — 22 Ns (X, ¢/Vd)
e—0 log €
log N(X d
< liminf — 08 N(X,¢/Vd) = dimp(X)
e—0 log e
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Figure 3.1: Boxes stacked like a cover by three dimensional cubes

Having shown that we can replace the balls by squares we can next see
that we could restrict the squares to be those in a grid.

Example 8 (d = 2). If d = 2 then we could imagine X as a set drawn on
graph paper of width €. We could then count the number of squares in the
graph paper which intersect X .

Example 9 (d = 3). For d = 3 then this cover might resemble bozes stacked
in a warehouse.

In general, for any d > 1 and then a given € > 0 we can denote the family
of e-boxes associated with the standard e-grid by

d
[Tmie, (m; + 1)el : m = (ma,--- ,mq) € Z°
j=1
We then let

d
Nea(X,€) = Card{ m = (my,--- ,my) € 2% : H[mje, (m; +1)efNX #0
j=1
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denote the number of such e-boxes intersecting the set X.
The next lemma shows that even with these particular choices of boxes
we still recover the upper and lower box dimensions.

Lemma 7. We can rewrite the upper box dimension as

log Ng(X
dimp(X) = lim supﬁoog—leosge’d
and the lower box dimension as
log Ng(X
dimpz(X) = lim supeﬁo()g_ﬁ);e’e)

Proof. Let € > 0. By definition X intersects Ng(X,€) of the e-grid boxes
described above. Consider the corresponding (ev/d)-balls B('m + v, ev/d)
centred at the middle points of

, n 1 N 1 n 1
1 27 2 27 s 1 92
of boxes associated with the lattice points m = (my,---,mq) € Z¢ the
grid corresponding to boxes intersecting X we see that since each box is
contained in the corresponding ball, i.e.,

[mie, (m; + 1)e] € B(m/, eV/d)
1

d
1=

this gives a cover for X by Ng(X,e€) ev/d- balls. Thus since N(X,dv/d) is
the cardinality of the smallest such cover we deduce that

Ng(X,E)ZN(X,E\/;i). (5)
On the other hand, we begin with the simple geometric observation:
Claim (Geometric observation). Let § > 0. Given U C R? with

diam(U) = sup |z —y| < ¢
z,yeU

then U is contained in a union of 3¢ standard §-grid cubes (consisting of any
cube intersecting U and the 3% — 1 neighbouring cubes). This reminiscent
of a Rubik cube.

Let € > 0. Assume that we have a (minimal) cover by N(X,e) e-balls.
Since e-ball has diameter 2¢ and so we can apply the geometric observation
with § = 2¢ and where U is an e-ball. In particular, every e-ball in the cover
can itself be covered by 3" of these 2e-cubes. In particular, X intersect
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Figure 3.2: For d = 3 there are 33 — 1 = 26 cubes neighbouring the original
cube

39N (X, 2¢) of the 2e-cubes from the standard grid with spacing 2¢, and thus
it can only intersect a smaller number of such cubes, ie.,. 39N(X,¢) >
N¢g(X, 2¢) or, on replacing € by €/2,

3N (X,€/2) > Ng(X, ) (6)

The result easily follows from (5) and (6) and the definitions, since for
the upper box dimension we have

—_— log N(X, evVd
dimp(X) :limsup—M

e—0 IOgE
log N (X
< limsup 28 Ne(X, 9
e—0 10g€
log(3¢N (X, /2 —
< limsup — 0g(3"N(X, ¢/2)) = dimp(X)
e—0 10g6

since %6—3 — 0 and hﬁg?—%% — 1 as € — 0. In particular, we have qualities

throughout. Similarly, for the lower Box dimension we have

log N(X, eVd
dimp(X) = lim it 08N (X, eVd)

e—0 log e
< liminf — log No/(X, ¢/ V)
e—0 log e
d
e—0 loge

again giving equalities throughout.
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In additional to the conceptual advantage, one of the advantage sof us-
ing a grid is that it simplifies the computation of the dimension in specific
examples. Rather than having to consider all possible covers and choosing
the most efficient we can restrict to covers using the grid boxes.

We illustrate this with the simple example of a cube (generalizing the
previous example of the unit interval ).

Example 10 (d-dimensional cube). Suppose X = [0,1]%. Then by the pre-
vious construction

[1/€? < Na(X,¢) < ([1/d + 1)
In particular we see that

_loelt/d _ logNa(X.0) _ _ log([1/ + 1)
log e loge loge

Taking the limsup (and liminf) of the upper and lower bounds as € — 0 gives

N 1 1
dimp(X) = —limsupw =d and dimgz(X) = _hmmfw
e—0 log e e—0 loge

Therefore we have that dimp(X) = d.

3.2 Examples of Cantor sets

A marginally more interesting example is the middle third Cantor set.

Example 11 (Middle third Cantor). Let X = C/3 be the usual middle
third Cantor set. By virtue of its construction it is covered by the intervals
left at ant stage in its iterative construction. More precisely, for each n > 1
we can cover the Cantor set by the union of 2™ intervals of the form

Y20 2i 2, 2i 2 2
1/3 U U{1+2 "'+37:’?1 322+ +37: 3n
11=0 in=0

(7)
where each interval has length 3% Given 0 < € < 1 we can choose n such
that 3n+1 < 26 < 1 . Since the 2"t intervals above at the nth level are each
of length 3n+1 they can be increased in size to give intervals which give a
cover by 2" e-balls (i.e., 2¢ intervals). We thus deduce that

N(C,e) < 2nHL,

In particular, we see from the definitions

— log N(C log2"t!  log2
dimp(C) = —limsupM < —limsup o8 — 982
c—0 log € n—+oo 10g(37/2)  log3

9
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Conversely, given € > 0 consider a (minimal) cover of C' by N(C,¢) e-
balls (i.e., intervals of length 2¢). We can choose n such that Sn% <2<
3%. Since at the nth level the individual intervals in the construction of the
Cantor set have separation at least 1/3™, we see that any ball in the minimal
cover (of length 2e < 3%) can intersect at most one of these 2™ intervals. In
particular, we see that

N(Cje) > 2"
Thus
. . log N(C|e) . log 2™ log 2
d C)=-1 — T 7> ] = .
dimp(C) = —limsup =300 = ~Imeup {3 1/3) = log3

Therefore, comparing these inequalites and recalling dimg(C) < dimpg(C),
the box dimension exists and we have

_log2
~ log3’

dimp(C)

A variation on this argument leads to the following generalization to the
middle A-Cantor set.

Example 12 (Middle A-Cantor set). Let 0 < A\ < 1 and consider the \-
Cantor set C)y then a similar argument gives that the Minkowski dimension

i
log 2

2

Exercise 7. Check the above formula.

3.3 The limitations of Box Dimension

The next example starts to show the limitations of the box dimension. We
might expect that a countable family of points has zero dimension, but this
is not the case.

Example 13. Consider the countable set

1
X =49+ .
{k k:eN}
1

Observe that the distance between the consecutive points % and 7 s

11 1 1
I R
‘lﬁ—l k:‘ k(k+1) = k2
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Given € > 0 we can choose n so that 1/(n + 1)? < 2e < 1/n? then at least
n distinct e-balls are needed to cover the points {1,1/2,--- ,1/n}. Thus we
deduce that N (X, €) > n. Moreover the remaining points

1 1
— k> 1 —
{k: >n+ }C[O,n+1]

i X can be covered by just n more intervals of length 2¢, or equivalently
e-balls. Thus we see that N(X,¢€) < 2n. We can now observe that

log N(X 1 1

dimpz(X) = —liminfL(’e) > limsupL =—.

e—0 loge noo log(2(n+1)2) 2
and log N(X log(2 1
dimgz(X) = —liminfm < hmsupM =_.
e—0 loge n—o log(2n?) 2

In particular, since dimg(X) < dimp(X) we see that the inequalities in the
last two expressions are all equalities and deduce that dimpg(X) = dimp(X) =

% and thus dimp(X) = %

In particular, in this example X is a countable set with dimg(X) > 0
which is a less desirable property for a dimension.
As an exercise we can consider a variant on this set.

Exercise 8. . Fixz s > 0 and consider the set

1
n

What is the Box dimension dimp(X) of X ? Justify your answer.

3.4 Basic properties of Box dimension

In this section we collect together some simple properties of Box dimension,
and attempt to illustrate them with the examples we have been studied.

Proposition 2 (Lipschitz images). Let X,Y C R? be bounded subsets. It
7 : X —= Y is Lipschitz and surjective then dimgpY < dimpX and dimgY <
@BX

Proof. Recall that for 7 to be Lipschitz there exists C' > 0 such that ||7(x)—
m(y)|| < Cllz —y|| for all 2,y € X.

Assume we have a minimal e-cover {B(z;,€)}Y, for X by N = N(X,¢)
e-balls. Since for y € B(x;,€) we have that ||y — x;|| < €, the Lipschitz
property implies that ||7(y) — m(z;)i]| < Ce and thus the images of the
balls will satisfy 7 (B(z;,€)) C B(m(z;),Ce), fori =1,--- , N. In particular,
by surjectivity of 7 the balls {B(n(x;), Ce)}Y, form a Ce-cover for Y. In
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particular, N(Y,e) < N(X, Ce). The result then follows from the definitions,
i.e.,

log N (Y, log N(X
dimgz(Y) = —liminf()gi(’e) < —liminfM = dimp(X)
e—0 log e €—0 log e
and
— log N(Y, log N(X E—
dimp(Y) = —limsup log N(¥ ¢) < —limsup log N(X, Ce) = dimp(X)
e—0 loge €0 loge
since lim._,q lﬁ) gg g
O

A simple example of this is where 7 is a projection.

Example 14. In particular, let 7 : R? = R given by n(x,y) = x. Then we
let m(X) ={n(z,y) : (z,y) € X}.

Since ™ : R? — R is a Lipschitz map we have that dimgY < dimpX and
dimpY < dimpX.

An interesting application is the following.

Example 15 (Apollonian Circle Packings). The Apollonian circle packing
described earlier depends on the initial choice of sizes of circles. However,
the dimension of the limit set does not.

The reason for this is because given two sets of three initial tangent circles
inscribed inside the unit circle there is a Mébius map which maps one set of
circles to the other. Furthermore, since Mdbius maps take circles to circles
we deduce that the entire circle packings are mapped to each other. Finally,
a Mobius map s clearly Lipschitz so they share the same box dimension.

We also have a simple, but useful, corollary.

Corollary 1. If we homothetically scale a set by a. map © : R? — R?
defined by
7'('(1'1,"' ,Id):(Al’l,"‘ ,)\xn).+(z1,~- 7Zd)

where A € RT and (21, , 24) € RY, we have that dimp(X) = dimp(7(X))
Proof. We first observe that ||7(z) — 7(y)|| = M|z — y||, for 2,y € R% In

particular, 7 is Lipschitz. Similarly, 7—! is Lipschitz. By the previous
results, since 7! o w(x) = = we have
dimp(X) = dimg(7 7 X) < dimg(7(X)) < dimp(X)

and thus dimp(X) = dimpg(7(X)). Similarly, dimp(X) = dimg(7(X)).
D
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A slight generalization of the result for Lipschitz maps is the following.

Proposition 3. Assume that 7 : X — Y is a-Holder continuous and sur-
jective. Then dimpY < adimpX and dimgY < adimpX

Exercise. Prove the result above
By way of a reality check on these inequalities we can consider what
happens for Cantor sets.

Example 16. Given a middle A-Cantor set C) we have observed that there
is a surjective Holder continuous map m : C\ — Cy;3. The formulae for
the dimensions give us bounds on the possible Hélder exponents of any such
maps.

Another type of basic property is the following.
Proposition 4 (Inclusion). Let X C'Y C R? be bounded sets then

Proof. Let ¢ > 0. Let {B(zi,€)}Y, be an e-cover for Y of minimal car-
dinality N = N(Y,e). Since X C Y C U;-VZIB(wi,e) we can deduce that
N(X,e) < N(Y,e). We see from the definitions

log N(X loe N(Y.
dimp(X) = —liminfM < _hminfm
e—0 log e e—0 log €

— dim(Y).
Yet another type of result is the following
Proposition 5 (Topological results). Given X C R? be a bounded subset.
1. Let X denote the closure of X then dimp(X) = dimp(X) and dimp(X) =
dimp(X).
2. If X C RY has nonempty interior then dimp(X) = d.

Proof. For part 1, since X C X =: Y we can apply the inclusion property
to get dimp(X) < dimp(X) and dimp(X) < dimp(X).

Given € > 0, we can choose a (minimal) cover {B(x;,€)}Y, for X, where
N = N(X,¢). We therefore see that {B(x;,2¢)}¥, for X, Thus N (X, 2¢) <
N(X,e). Thus

log N (X, 2¢) log N(X,€)

dimp(X) = —1i < —liminf = dimp(X
ma(X) = i e < T T e~ Wme()

and

dimpg(X) = _hmsupw < _hmsupw = MB(Y).

e—0 log e e—0 loge
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For part 2, we can choose such a 7 with ([0, 1]¢) contained in the in-
terior of X. In particular, dimz(U) > dimg(7([0,1]9)) = dimg([0,1]%) = d
by the previous corollary. We can easily see that dimp(U) < d and thus
underlinedimp(U) = overlinedimp(U) = d. Therefore dimp(U) = d, as

required. O
We now come to simple result.
Lemma 8 (Finite domination). Given bounded sets X,Y C R? then
dimp(X UY) = max{dimp(X),dimp(Y)}.

Proof. Let € > 0;. Let {B(z;,€)}Y, be a (minimal) e-cover of minimal cover
with N = N(X,¢) and let {B(y;, e)}jj\il be a (minimal) e-cover of minimal
cover with M = N(Y,e). We then have an e-cover for X UY of the form
{B(z;,¢)}¥, U {B(y;, e)}jj‘/il and cardinality N + M = N(X,¢) + N(Y,¢).
In particular,

N(XUY,e) < N(X,e)+ N(Y,e) <2max{N(X,¢e), N(Y,¢)}.

In particular,

E— logN(Y UX
dimp(X UY) < —limsup og N(YUX, )
e—0 10g €
< limsup log (2max{N(X,e), N(Y,¢)})
e—0 log € (1)
log(2N (X log(2N (Y,
e—0 loge =0 loge

< max{dimpg(X),dimp(Y)}

by the nature of the lim sup.
On the other hand, since X,Y C X UY we have that

mB(X) < MB(X UY) and MB(Y) < mB(X U Y)

and thus
max{ﬁB(X),mB(Y)} < ﬁB(X uyY). (2)

Comparing (1) and (2) proves the result.
O

Remark 7. The corresponding result doesn’t hold for dimp. There exist
examples with

max{dimz(X),dimgz(Y)} < dimp(X UY).



3.4. BASIC PROPERTIES OF BOX DIMENSION 39

Remark 8. In particular, as we observed in the introduction example ?2%
illustrates that box dimensions are not countably dominated. In particu-
lar, the set X a countable union of points x;, each of which has zero box
dimension, but is itself of non-zero box dimension (i.e., 3 = dimp(U;jz;) >

sup,;{dimp(z;)} = 0).
We also have the following.

Lemma 9 (Products). For bounded sets X C R and Y C R! we have for
X xY C R that

diimB(X X Y) < MB(X) —{—diimB(Y)

and
dimp(X xY) > dimp(X) +dimp(Y)

Proof. Let € > 0. It is convenient to use the definition using e-grid boxes.
In particular, given that the e-grid for R4 is a product of the e-grid for R?
and the e-grid for R!, we then see that

N(;<X X Y, 6) = NG'(X, G)Ng(Y, 6).

Thus we have that

log(Ng(X x Y, ))

dimp(X x Y) < —limsup

e—0 log e
< —limsup w — limsup W
e—0 loge e—0 log e

= MB(X) erB(Y)

(where for functions a. and be we have that lim sup,_, ae+be < limsup,_,q ac+
lim sup,_, be).
The corresponding result for dimp is similar, i.e.,

dim (X x Y) > — lim inf -28VeX X ¥, €))
e—0 log e

> limint 2BNG)) g l0eWVe(Yo€))
=0 log e c—0 log e
= dimp(X) + dimp(Y)
(where for functions a and b, we have that liminfe_,¢ ac+b. > liminf._,g a.+
liminf,_,q be.

O]

This has an immediate corollary
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Corollary 2. For bounded sets X C R? and Y C R' where dimp(X) and
dimp(Y) exist

dimB(X X Y) = dimB(X) + dimB(Y)
We can illustrate this with a simple example.

Example 17. Consider the Cantor set obtained by replacing the unit square
in the plane by four equal sub-squares of side length 0 < A < % This s then
iterated to get a two dimension Cantor set X by analogy with the middle
third Cantor set.

If the 4 boxes are horizontally and vertically then the corresponding set

is X = C) x Cy where v = % The product theorem tells us that

: . log 2
dimp(X) = —2.dimp(X) =2 <lo§a>

3.5 More Examples

Let us consider a few more of the examples we encountered in the last
chapter.

3.5.1 von Koch snowflake

The von Koch curve X is a standard fractal construction. Starting from
the interval Xy = [0, 1] we associate to each piecewise linear curve X, in
the plane (which is a union of 4" segments of length 37") a new one X, ;1.
This is done by replacing the middle third of each line segment by the other
two sides of an equilateral triangle bases there. Alternatively, one can start
from an equilateral triangle and apply this iterative procedure to each of the
sides one gets a “snowflake curve”.

Lemma 10. For the von Koch curve both the Box dimension and the Haus-

. . log 4
dorff dimension are Tog3 "

Proof. We start with a star shape X; which is the union of 12 straight line
segments. When ¢, = 3%, the set X, is the union of 3 x 4™ intervals of
length €, = 37". We can cover X,, by balls of size €, by associating to each
edge a ball of radius % centred at the midpoints of the side. It is easy to see
that this is also a cover for X. Therefore, we deduce that N(e,) < 3 x 4™.
Moreover, it is easy(-ish) to see that any ball of diameter ¢, intersecting
X can intersect at most two intervals from X,,, and thus N(e,) > 3 x 4771,
For any ¢ > 0 we can choose €,11 < € < €, and we know that N(e,) <

N(e) < N(ep+1). Then

n—1 logd logN(e,) _logN(e) logN(ens1)  (n+1)log4
< < < < .
(n+1)log3 =~ log(—1-) ~ log() — log(é) - n  log3

€nt1 €
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logN(e) _ log4

Letting n — +o00 shows that dimp(X) = lim._0 og(1) = log3" We post-
pone the proof that dimp(X) = dimy(X) until later, when we shall show a
more general result. O

3.5.2 Sierpinski triangle
Let X be the Sierpinski triangle.

Lemma 11. For the Sierpinski carpet the Box dimension is equal to dimp(X) =
log 3
log 2

Proof. For any n > 1, we can consider the grid of size ¢, = 2% In particular,

at the nth step of the construction we have a union X, of 3" triangles

of size Qin . We can then write X = Np2,X,,. However, each triangle

in X,, corresponds to one half of a €,-grid box. From this we see that
Na (X, €,) = Ng(Xn, €,) = 3™ . In particular, for all n > 1 we have that

log Ng(Xe,) log3

Letting n — 400, gives that dimp(X) = %ggg u

3.5.3 Bedford-McMullen carpets

The Bedford-McMullen carpets have a satisfyingly complicated formula for
the value of the box dimension.

Recall that the construction is based on choosing rectangles in a m x [
grid of the unit square. More precisely, given

Sc{0,1,...,m—1}x{0,1,...,1—1}

we can associate an affine “Sierpinski carpet”:

Let
a = Card(S) <Im

be the total number of rsuch ectangles. Assume for simplicity that { > m > 2
and that every row contains a rectangle.

Lemma 12. If a = Card(S) then

log

a
m

dimp(A) =1+ og |
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Proof. At the nth level of the construction (denoted X,,) we have a™ rect-
angles of size [7™ x m™". More precisely, each rectangle at the n th level of
the construction corresponds to a finite string

(ilvjl)’ e (Zn]n) €S.

Fach such rectangle has shorter side =" and longer side height m™". More-
over, we can cover each rectangle by approximately (I/m)™ squares of size
[~™ and, because no rows are empty, this many are all needed. Thus we get
an upper bound on the number of [~"-squares needed to cover X,, we get a
bounds of the N(X,177) =~ a’(I/m)’. Thus

. . logN(e)
dimp(A) = lim == =
J
e loglat/m))
j—+oo log I
__loga _ logm
~ logl log
log &
=1 m
+ log
as required. O

Example 18. The Box dimension for the Hironaka curve A corresponding
to S = {(0,0),(1,1),(0,2)} can be explicitly computed. More precisely, in
this case

dimp(A) =1 + logy <;’) = 1.36907....

3.5.4 Examples where the lower box dimension is strictly
less than the upper box dimension

We now return to a comment we made earlier, to the effect that the upper
box dimension and lower box dimension may not agree. We now describe a
simple construction.

In fact, we modify the easy middle third interval construction by remov-
ing at the nth stage either:

1. the middle third interval (leaving two intervals); or
2. both the left and right third intervals (leaving the middle interval).

Of course at the nth level of the construction the intervals have the same
length 37". However, the number of intervals required varies depending on
which choice above is made.

Let us denote my = 10**. At the nth step of the construction:
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1. we take out the middle third interval (leaving two third intervals) if
mor < N < Mogy1, for some k> 1 ; and

2. we leave the middle third interval (taking out the left and right third
intervals) if mog11 < n < mogyo for some k > 1.

The length of the intervals at the nth stage of the construction will be
1

- The number of intervals at the nth level of the construction can be

denoted by N(n) We can now make some simple observations.

1. We see from the construction that the number of intervals at level
Mmag+2 is the same as the number of intervals at the level mogy1, ie.,

N (magy2) = N (mak41)

2. On the other hand the number of intervals at the level magyq is
2M2k+17M2k times the number of intervals at the level moyg, i.e.,

N(m2k+1) — 2m2k+1_m2kN(n2k)

3. Furthermore, we observe that

Mpp1 — Mi 10(k+D? _ 10k?

_ — 1 _ 10— (2k+1)
-~ T0GF1? 1—-10 — 0 as k — +o00.

In particular,
Let X denote the associated Cantor set. In particular, following the
same sort of reasoning as for the middle third Cantor set we can deduce

that
log N(magy1)  log?2

dimp(X) =1li =
mz(X) giﬁf log 3™m2k+1 log 3
and loe N
dimg(X) = limsupM =0
koo lOg 32k

This shows the required difference.

3.6 Translates of Cantor sets

We finish with a simple application to adding Cantor sets. For context we
consider the sum of the middle third Cantor set C' with itself defined by

C+C:={z+y:z,yeC}
The first observation is trivial.

Lemma 13. C + C = |0, 2]
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Proof. We can expand x,y € C as

0 a 0 b
o3 S e a e (0.2)
n=1 n=1
Therefore, we can write
oo
an + b
l’+y = Z n3n - where an+bn € {07274}
n=1

In particular, we can achieve every expansion 2> g—z where d,, € {0,1,2}
from which the result immediately follows
[

Let C be the middle third Cantor set. Given —1 <t < 1 we denote
(C+t)yNnC={yeC: Iz eC withy =x+1t}

Theorem 2. For all but a zero measure set of x € [—1,1] we have that

llog2
3log3

Proof. To begin, we observe that any t € [—1, 1] can be written in the form
> c
t=2 .5
n=1

where ¢, € {—2,0,2}. Moreover, this expansion is unique, except for finitely
many cases where there are finitely many non-zero ¢,. On the other hand,
any y € C can be written uniquely in the form

dimp((C +)NC) =

E

w

[e.9]
Cn

y =
n=1 3"
where ¢, € {0,2}. If we also assume y € (C +t) then
o
t
St oo
371

n=1

which implies that ¢, + t,, € {0,2}. This imposes the following conditions:
1. If ¢, = 2 then y,, = 2; and

2. If t, = —2 then yg =0

Thus for y € (C +t) N C the coefficient y, is completely determined
unless ¢, = 0, when it can take either of the two values. Since previously
showed almost all ¢ are normal (base 3) we know that ¢,, = 0 with frequency
1/3. In particular, we deduce that N(C' N (C +t)) = n/3(1+o()3w - From

this we see that dimp((C' +t)NC) = %Egg O




Chapter 4

Hausdorff Dimension

We now want to move onto a more sophisticated version of dimension, called
Hausdorff dimension. ! For some sets the two notions agree, for others
they disagree and then the value of the Hausdorff dimension gives more
information.

4.1 Definition of Hausdorff Dimension

Given a set X and § > 0 and € > 0 we define
N
HY(X) = inf {Z diam(U;)° : X C U, U;, diam(U;) < e}
i=1

where the infimum is taken over all finite open covers {U;} the diameter
diam(U;) of each set being atiso at most ¢ > 0. Observe from the ba-
sic defintion that € — H9(X) is monotone decreasing. The J-dimensional
Hausdorff measure of X comes by taking the limit as € tend to 0, i.e.,
H°(X) = lim H)(X).
(X) = lim HY(X)

Lemma 14. If H*(X) < +oo then H?(X) = 0 for any 8 > «. Similarly,
if HY(X) > 0 then H?(X) = 400 for any B < «

Proof. For the first part, it follows from the definition of H*(X) that
HJ(X) < " “HX(X)

Letting € — 0 gives the required result.

The other inequality follows similarly.
O

Tt is named after Felix Hausdorff, a distinguished mathematician and great intellec-
tual. Unfortunately, who came to am unfortunate end when his wife, sister-in-law and he
committed suicide in Bonn in 1942, rather than being deported to a concentration camp.

45
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Thus if we think of H*(X) as a funtion of « it must take the values 0
or 400, except possibly an one particular value. This change occurs at the
Hausdorff Dimension of the set.

Definition 8. The Hausdorff dimension of X is the value
dimpy (X) = inf{a : H¥(X) =0} =sup{f : H(X) = +}

The definition is clearly more complicated than in the case of Box di-
mension.

4.2 Hausdorff dimension is bounded above by Box
dimension

The following relationship to Box dimension is clear.

Lemma 15. The Hausdorff dimension of a set X is bounded by the lower
box dimension, i.e., dimy(X) < dimpz(X).

Proof. Let 6 > 0. Let {B(x;,0)} be a (minimal) d-cover for X by d-balls of
smallest cardinality, i.e., N = N(X,0). Then since this constitutes a cover
for X be sets of diameter less than 20 we can write

H{®(X) < N(X,8)(26)" (1)

For any ¢ > dimp(X) it follows from the definition of dimgz(X) that there
is a sequence d; — 0 such that

log N(X, &)
log o,

< 1.
In particular, we have that
N(X,68) < 6" (2)
For k sufficiently large, we can choose d; < § and then bound
H§(X) < Hj, (X) < N(X,0,)(20,)" < 2
using (1) and (2). Thus

HY(X) < lim HY{(X) < 2! < +o0.
0—0

In particular, dimpy(X) < ¢. Since ¢t > dimpg(X) can be chosen arbitrarily
we deduce that dimyg(X) < dimg(X). O
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4.3 Simple examples
As in the case of box dimension, we can test out the definition on some very
simple examples.

Example 19 (Single point). Let X — {xo} be a single point then since
dimg(X) < dimg(X) we see that

dimp (X) = dimp(X) =0

To see that there can be a strict inequality in dimy(X) < dimpg(X) we
revisit a familiar example.

Example 20. Consider the countable set

1
X:{:nEN}.
n

We have already see that dimp(X) = . However, we claim that dimp (X) =
0. To see this, observe that for any € > 0 we can cover the each point % eX
by an open set U, = B(%, €2™™) of decreasing size. Thus for any 6 > 0 we
can under this bound

0
1—2-9

o
HY(X)<H(X) <) 27% = < 4o00.
k=1

Then by definition
dimy(X) =inf{a - H*(X) =0} =0
as claimed.

We can also consider the familiar example of a Cantor set

Example 21 (Middle third Cantor set). Let X be the middle third Cantor
set. We already know that

< log 2

dimg(X) < dimp(X
g(X) <dimp(X) < log 3
We claim this is actually an equality and out method of showing this is a
blueprint for a general method used for many different examples.
We want to associate to each of the 2" intervals IYL),Ién), e ,Ié:f) occurring
in the nth levels the same weight (or mass or measure) 2%, i.e., we can write

u([lgn)) = 2% and observe that these are consistent in that for [2(211712(212 C

I,inzl) we have that

1 1 1

n n n—1
W)+ n(IY) = 5 g = g = w(Y),
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Given 6 > 0 we can consider a cover {U;} for X with max; diam(U;) < &
and then let V; = U; N X be the restriction to X. For each j we can choose

rj € N such that

1

371

Since the distance between the 2'7 level v intervals is at least ﬁ, the set
Vj can intersect at most one of the level r; intervals and thus mu(V;) < 2779,

_ log2 .
If a = log3 then we can write

p(Vy) <277 = 2,270 = 9. (375 D)° < o(diam (V)"

Thus
L= p(X) < p(Vy) <2 (diam(V;)".

Therefore, for any §-cover we have

D (diam(U;))* >

J

| =

and taking the infimum over all §-covers gives Hg (X) > % Moreover, letting
§ = 0 we still have H*(X) > 5. Since dimy(X) = inf{3 : H?(X) = 0} we
see that dimy (X) > a. Comparing this with the reverse bound which came
from the box dimension gives the result.

The same basic argument can be used in similar examples, such as the
following.

Example 22. Let us return to example ??. Since we have that

log 4
ogd _

dlmH(X) < dimB(X) = _log)\ =

It remains to get a lower bound by putting an appropriate measure on the
set. To this end we can consider the probability measure on the set X for
which each of the 4™ squares of the nth level has same mass 4%. We claim
that there exists C' > 0 such that

u(Ba,r)) < Cr (1)

for all balls. To prove this claim, assume B(x,r) intersects X and choose
n so that \"T' < r < A". Then B(z,r) intersects at most 4 of the nth
generation squares and so

1
p(B(xz,r)NX) < 447 <4 < gxdpd
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and the result follows with C = 4\~%. Using this, we see that given any
overing of X by ball {B(z;,r;)} we have

1< ZM(B(mi,Ti)) < CZT?

which shows that H*(X) < 1. Therefore dimy(X) < d

This argument proves a basic version of the Mass Distribution Principle:
upper bounds for Hausdorff dimension come from the Minkowski dimension,
but lower bounds come from finding a suitable measure supported on the set
X. We will formulate this more generally below.

4.4 Lower bounds on Hausdorff Dimension

It is convenient to formulate the method above as a general principle.

4.4.1 Mass distribution theorem

We now consider one of the basic techniques for Hausdorff dimension. The
usual way to get a lower bound on the Hausdorff dimension is to use prob-
ability measures.

For the moment we only need to associate values u(A) € R where A is
either an element of the refined partition or an open set or an intersection
of such sets. Moreover, we only need the natural properties:

1. If AC A’ then u(A) C u(A");

2. If (A;); then p(U;A;) <5, pn(Aq)

A measure p on X is called a probability measure is pu(X) = 1.

We can consider measures p as associating to appropriate sets Y a mass
or postive weight.

Moreover, if we partition such a set Y into smaller suitable subsets Y =
Y1 U- - -UY}, then the mass from Y need to be distributed between Y7, -- -, Y;.

In the previous example, the suitable sets were the 4™ squares at the nth
level.

Lemma 16 (Mass distribution principle). Let o« > 0. Assume that the
compact set X C R% supports a probability measure u and there exists C' > 0
such that for every x € X we have a uniform bound

p(B(x,r)) < Cr* for all v > 0.

Then dimpy(X) > a.
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Proof. Given € > 0, let {U;} be a e-cover for X. For each open set Uj;
can choose r; > diam(U;) and balls B(x;,r;) D U; containing the set. By
assumption we have

w(U;) < w(B(z,mi)) < Cry < C(diam(U;))”.
In particular, we see that
X wX)

Z(dlam ¢ > Z > %

)

Since this lower bound is independent of € we see that

1
H*(X)> 4 >0.
(x)> 2
Since dimg(X) > inf{t > 0: HY(X) = 0} this implies that dimg(X) >
a. O

Recall that we saw that a set X with non-empty interior has dimp(X) =
d. As an easy application we have the following.

Application. Assume that X has non-empty interior. Then dimy(X) =d
We already know that dimpy(X) < dimp(X) < dimpg([0,1]%). Let us

choose a small box Y C X. But since we are assuming X has positive
Lebesgue measure we can consider the normalization of the lebesgue measure
w(B) = A(BNY)/A(Y) where X denotes Lebesgue measure. We can then
apply the Mass Distribution Principle with o = d. 2

We can revisit an example we already saw.

Example 23 (Middle third Cantor set revisited). We already saw for the
middle third Cantor set X we have

log 2
dimp(X) = 28

log3’

We already saw p which gave equal measure 27" to each of the 2" intervals
in the nth level of the construction, which is the measure in the Mass Dis-
tribution Principle. If we choose n with 1 < 2r < 3n =1 then any x € X
the ball B(x,r) will contain at least one of the intervals at the nth level and

thus 1 _ 1\¢ 2\ ¢ o
M<B<x,r>>22n—<3n> z(3> "

2Assume that X has positive Lebesgue measure then the same conclusion holds. A
little more technical detail is needed here. If a set has positive measure then the density
points also have positive measure. For a density point x we have that for some C' > 0 we
have A(B(z,r) N X) > CAr? for r > 0 sufficiently small
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Example 24 (Koch curve). We can start from the 12 straightline segments
at the zero stage, of equal length 1, say. In the construction, at each step
we replace each segments by four segments of one third the previous length.
Thus at the nth level one has 12 x 4™ segments of length 3%

It is therefore easy to see that N (X, 3) < 12 x 4" and deduce that

- N(X, <) log4
di X) <l — 3/ _ .
imp(X) < limsup—— == = 1003

The Mass Distribution Principle can be applied where each of the seg-
ments at the nth stage each has measure ﬁ. In particular, there exists
c > 0 such that for any r > 0 we have

w(B(x,r)) > cr®

log4
log3-

where o =

We will return to these examples in the next chapter, where we will
describe a general method which recovers these values for the dimensions.

There is a converse to the mass distribution which gives a measure as-
sociated to the Hausdorff dimension. This requires the following version of
Frostman’s lemma.

Lemma 17. Assume that H*(X) > 0 then there exists a probability measure
poon X and C' > 0 such that for any x € X we have

u(B(x,r)) < Cr%, for allr > 0.

We omit the proof.

4.4.2 Energy and Hausdorff Dimension

Closely related to the mass distribution principle is the so called potential
theoretic approach to Hausdorff dimension, which is based on the notion
of “enegery” Let a > 0. We can associate to a probability measure p its
a-energy defined by

B dp(x)dp(y) -
£ = [ [ R € el

Theorem 3. If pu is a probability measure with (X) =1 and Es(p) < 400
then dimpg (X) > s

Proof. Let us consider the subset Xy C X

1 B
on{:ceX: limsupOg'u((x’e)>0}.

e—0 €’
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Thus by definition for any z € X we can choose ¢ > 0 and a sequence €, — 0
such that
w(B(x,ey)) > ce,, forn > 1.

Let us choose a second sequence t,, = E”Jr% so that
re >t >rg >t >r3 >1t3 > -

and by going to a subsequence in (r,,), if necessary, we can assume that the
annulus A,, = B(x,r,) \ B(z,qy,) satisfies

w(Ayp) > Zefw for n > 1.

Then we can write for fixed z € Xj:

(o]
Es—s:
//Xn:c—yna Z/ / ux—yu =) g’ =+,

But considering this as a function of x on Xy we see from the hypotheses

that
/xo </x H»jﬁi(ylloj / / Iz — yHa ) < oo

which means that ;(Xo) = 0, by Fubini’s theorem. We therefore conclude
that for almost every x € X we have that

log (B
lim sup og u(B(z,e€)

e—0 €’

=0
and by the mass distribution theorem we have that dimy(X) > s, as re-
quired. O

This is part of a more general result which gives an alternative definition
of the Hausdorff dimension of X.

Theorem 4 (Potential theoretic definition of Hausdorff dimension). For a
compact set X

dimpy (X) =sup{s >0 : Ip with u(X) =1 and Es(u) < +oo}

4.5 Properties of Hausdorff Dimension

A rather simple, but useful, viewpoint is to think of dimension as being a
way to distinguish between sets of zero measure. This is illustrated by the
following simple observation.

Lemma 18. If X C [0,1] has dimg(X) < 1 then the (d-dimensional)
Lebesgue measure of X is zero.
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Proof. Since dimpy(X) < 1 we can choose dimpy(X) < 6 < 1 for which
H%(X) = 0. In particular, given > 0 we can choose ¢ > 0 sufficiently
small that H%(X) < n . In particular, we can then choose a cover {U;}
(of intervals) for X with sup,;{diam(U;)} < € such that 3, (diam(U;))? < .
But then, in particular, ), diam(U;) < n which lead to our characterization
of sets of zero Lebesgue measure.

O

On the other hand, there exist examples of sets X C [0,1] with zero
Lebesgue measure and dimg(X) = 1.

We can now collect together some basic properties of Hausdorff dimen-
sion. The first few are similar to the properties of box dimension.

Lemma 19 (Inclusion). If X C Y then dimpg(X) < dimg(Y).

The proof is fairly immediate from the definitions and left as an exercise.

Another useful property is that sets which are the same up to bi-Lipschitz
maps have the same dimension (i.e., it is a invariant on classifying spaces
up to “bi-Lipschitz equivalence”). We have already seen the corresponding
result for box dimension.

Lemma 20 (Lipschitz images). Let X; C R% and X5 C R! be bounded sets.
If L : Xy — Xo is a Lipschitz homeomorphism (i.e., 3C > 0 such that
|L(z) — L(y)| < Clz —y| for all x,y € X1) then dimy(X1) < dimy(X2). In
particular, if L : X1 — X9 s a bijective bi-Lipschitz map i.e., 3C' > 0 such
that !

clr =yl <|L(@) = L{y)l < Clz —y,

then dimp (X1) = dimg(X2).

Proof. Let € > 0. Consider an open cover {U;} for X; with sup; diam(U;) <
e. Then the collection of images {U/ := L(U;)} of the open sets under the
homeomorphisms now form an open cover for X, with diam(U}) < Ce.

Let 0 > 0. From the definitions we have H? (X5) < H?(X1). In par-
ticular, letting ¢ — 0 we see that H°(X;) > H%(X,). Finally, from the
definition of Hausdorff dimension we have dimg(X;) < dimpg(X2).

For the second statement, we can apply the first part a second time with
L replaced by L1, O

Is this still true if L is merely continuous and surjective?

Example 25 (Projections and sums of Cantor sets). Consider X to be the
middle third Cantor set. We can consider the cartesian product X x X C R?
and its image under the projection 7 : R? — R defined by n(z,y) = = + y.
We see that that m(X x X) = X + X where

X+X={x+y:z,yec X}
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Moreover, one easily sees that this image X + X is the interval [0, 2] (by con-
sidering the possible triadic expansions) and thus has dimension 1. On the
other hand we already saw that dimg (X x X) = 2dimy(X) = log4/log3 >
1.

A more general result is the following.

Lemma 21 (Holder images). Let f : X — Y be a surjective a-Hélder
continuous function, i.e., there exists K > 0 such that ||f(x) — f(y)|| <
K|z —y||*. Then for any t > 0 we have that dimy(Y) < adimpy(X).

Proof. From the definition of Hausdorff dimension, we see it suffices to show
H(Y) < K'H**H*(X).

To this end Let § < 1. If {U;} be a é-cover then since f(U;) < K(U;)* < K
we have that {f(U;)}; is a (Kd%)-cover of Y.
Thus

;(/50; < Z (diam(f(U;))* < Z K (diam(f(U;))” )t

and, in particular,

HZ;; (V) < mf{z Ks/a (diam(U;))® : {U;} is a d-cover for X} = Ks/e
J

Letting 6 — 0 we have H¥/*(Y)K*/*H*(X).
For any s > dim(X) we have that H5(X) = 0 and thus H¥*(Y) = 0.
Then we can deduce dimg(Y) < dlmT(X). O

Example 26. The Holder continuous map between the middle third Cantor

set Cy 3 and the middle \-Cantor set Cy is such that dim(C)) = —iggi.

In the case of box dimension we saw the property of finite domination
for unions of sets. Not only does the corresponding result hold for Hausdorff
Dimension, but unlike the case for box dimension the result does extend to
countably infinite unions too.

Lemma 22 (Domination). Given X,Y C R? then
dimg (X UY) = max{dimg(X),dimg(Y)}

Moreover, given a countable infinity of sets X; we have that dimpg(U; X;) =
max; {dimy(X;)}.
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Proof. 1t suffices to prove the stronger second statement. ‘
Let € > 0. For each X; we can choose a cover {U]@} with diam(UJm) <e.

We can then take the union of these covers to get a cover U;{U ](Z)} for X.
Let 0 > sup;{dimp(X;). We can then write

H(X) < 37 | D (diam(U))’

But we can now individually minimize each of the terms in brackets over all
covers of diameter at most € to get

HI(X) < S H(X).
i
Letting ¢ — 0 we then have that

HY(X) < ) HO(X0). (1)

0 and so we conclude
6. Finally, since § >

But from our choice of § we have that H°(X;)
from (1) that H°(X;) = 0 and thus dimg(X)
max;{supy(X;)} was arbitrary, the result follows.

I

O

By taking the sets to be single points we immediately have the following
corollary.

Corollary 3. If X is a countable set then dimp(X) = 0.

Again, this is in contrast to the case of box dimension.
Finally, we can consider the Hausdorff dimension of products of sets.

Lemma 23 (Products). If X,Y C R? are compact then

Proof. This is a simple application of the Frostman lemma. Suppose a <
dimy(X) and 8 < dimg(Y). By Frostman’s lemma we can find measures
px on X and py on Y, and a constant C' > 0, such that for z € X and
y € Y we can bound

px(B(z,r)) < Cr®, uy (B(y,r)) < CrP, for all r > 0.
In particular, we can consider the product measure px X gy on X XY then

(ux X py)(B(x,r) x B(y,r)) < C2path
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But since B(z,r)x B(y, r) is contained in a ball B((z,y), v 2d) in the product
space of radius comparable to > 0 then by the Mass Distribution Theorem

dimg(X xY) > a+g.

But since we can choose o and 3 arbitrarily close to the relative dimensions
we have
dimH(X X Y) > dlmH(X) + dlmH(X)

as required. O

Example 27. Let C be the middle third Cantor set. Since dimy(C) =
log2/log3 we see from our earlier estimate

dimpg(C x C) =2log2/log3 = 2dimg (C)
i.e., we get equality in this case.
However, there exist examples for which there is a strict inequality

dlmH(X) -+ dlmH(Y) > dlmH(X X Y)

4.5.1 Generic maps

Although the examples for which the different notions of dimension are
slightly artificial, in some respects it is the typical case.

Let X be a compact d-dimensional manifold and let n > d. We can
consider any continuous map f : X — R"™ and its image f(X). The space
of such functions has a natural metric coming from

If =gl = sup [|f(x) = f(¥)ll2
zeX

where || - ||2 if the usual Euclidean norm on R"
The following amusing result appears in (unpublished?) lecture notes of
Milnor.

Lemma 24 (Milnor). For a dense Gy set 3 of continuous maps f : X — R"
we have that the image Y = f(X) satisfies

dimy(Y) = dimz(Y) =d < n = dimp(Y).

Proof. Given a compact set Y C R™ and € > 0, let S¢(Y) denote the largest
cardinality of a finite subset F' C X such that d(x,y) > € for z,y € F with

3By Baire’s theorem this is a countable intersection of open dense sets
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Given k > 0 let V;, € C(X,R") consist of those maps f € C(X,R) for
which there exists € < % with

log S (f(X))
log(1/e)

Each set Vi, (k > 1) is easily seen to be open.

We claim Vi, (k > 1) are also dense. We see this, we proceed as follows.
Let p > 0. Fix e = p=#/(kbn=1) 5 0 Given fy € C(X,R") let z; € X
(i=1,---,p") be (nearby) points whose images f(z;) are all close to z, € R?
. We can deform fy to f which maps the same points to lie on p™ points in
a (2¢)-grid, i.e., for some z € R

1
Zn—%. (1)

o+ (2€iy, - -+, 2€iy) for iy, ,ip €{0,1,--- ,p—1}
in R™. Then

log Se(f(X)) > nlogp = (n —1/k)log(1/e) (2)

and so (1) holds. Moreover, we can assume that ||f — fol| = O(pe) =
O(p~'/("k=1))since we are changing f in a neighbourhood of size O(pe)
which can be made arbitrarily small by choosing p larger. Thus each V}, is
dense, as claimed.
To complete the first part of the proof we observe that, if f € NV
(which we have just shown is a dense Gy set, then by (1) dimp(f(X)) = n.
Let Uy, consist of those f € C'(X,R™) such that there exists 0 < e < 1

logse(f(K)) < d—|—l (3)

log(1/e) k
To see that Uy is open observe that for fy € U, and ||f — fo|| < n/2 then
Sen(f) < Se(fo). Thus for n sufficiently small, f € Uy. We also claim that
Uy, is dense.
Given f € C(X, x) choose a cover for K by small open sets Wy, ---, W),
say, and points b; € R n close to fo(W;) (i=1,---,p). Let v : X — [0,1]
be a partition of unity (with ¢ supported in W;). The new function

f(@) = ¢1(x)by + - + dp(x)bp
approximates fo and maps X to a d-dimensional simplex in R™. Thus
dimpz(f(X)) < d. Moreover, f € Vj for all k.
O

4.5.2 translations of Cantor sets

4.5.3 examples

=3.25in europe.eps
Frontiers of different European countries
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Example 28 (Snowflake/von Koch curve). The von Koch curve X is a
standard fractal construction. Starting from the interval Xo = [0,1] we
associate to each piecewise linear curve X, in the plane (which is a union
of 4™ segments of length 37") a new one X, 1. This is done by replacing
the middle third of each line segment by the other two sides of an equilateral
triangle bases there. Alternatively, one can start from an equilateral triangle
and apply this iterative procedure to each of the sides one gets a “snowflake
curve”.

=3.25in snowflake.eps
The top third of this snowflake is the von Koch curve.

Example 29 (Middle third Cantor set and Es). . Let X denote the middle
third Cantor set. This is the set of closed set of points in the unit interval
whose triadic expansion does not contain any occurrences of the the digit 1,

i.€.,
o0 fik )

k=1

Proposition 6. the middle third Cantor set both the Box dimension and

the Hausdorff dimension are iggg = 0.690....

Proof. When €, = 3% it is possible to cover the set of X by the union of 2"
intervals

n .
X":{Zg;c+?)t7z sk €{0,2}, k> 1, andOStSl}
k=1
of length 2. Therefore, we deduce that N(e,) < 2".
Moreover, it is easy to see that any interval of length €, intersecting X
can intersect at most two intervals from X,,, and thus N(e,) > 2"~1. For
any € > 0 we can choose €,11 < € < €, and we know that N(e,) < N(e) <

N(€p+1). Then

n—1 log2 < log N(ey,) < log N (¢) < log N(€n+1) < (n+1)log2
(n+1)log3 = log(15) ~ log(z) ~ log(;) ~ n log3
Letting n — 400 shows that dimp(X) = lim_ l?fg]é(? = iggg We again
postpone the proof that dimp(X) = dimg(X) until later, when we shall
show a more general result. O

The set Fsy is the set of points whose continued fraction expansion con-
tains only the terms 1 and 2. Unlike the Middle third Cantor set, the
dimension of this set is not explicitly known in a closed form and can only
be numerically estimated to the desired level of accuracy.
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Example 30 (Sierpinski carpet). . Let

X = {(Z ZJ>  (inyn) € s}

where S = {0,1,2}x{0,1,2}—{(1, 1) }.Thisisaconnectedsetwithoutinterior.Wecall XaSierpinskicarpet.

=3.25in carpetl.eps
The Sierpinski Carpet

Proposition 7. For the Sierpinski carpet both the Box dimension and the

Hausdorff dimension are equal to iggg = 1.892...

Proof. When ¢, = % it is possible to cover the set of X by 8" boxes of size
1

37:
L o
X, = 22N ) () €Sand 0<s,t <1
(S rmrieg) Gmesmzac)

Moreover, it is easy to see that there is no cover with less elements. For
any € > 0 we can choose €,11 < € < €, and we know that N(e,) < N(e) <
N(ép+1). Then

n  log8 log N(epy1) < log N (e) < logN(en,)  (n+1)log8
1

= 1 = 1, > = :
(n+1)log3 log(-) log(¢) ~ log(:=7) n  log3
Letting n — 400, gives that dimp(X) = iggg. We postpone the proof

that dimp(X) = dimg(X) until later, when we shall show a more general
result. O

4.6 Thickness and Cantor sets

There is an alternative notion of size for Cantor sets X which we briefly
recall.

We can consider the gaps for X C [a,b], which are the maximal open
connected sets U = (¢, d) where ¢,d € X and UNK = ().

Example 31. For the middle third Cantor set the gaps (%, %), (%,
etc.

Rellog)

) (g:9);

RelEi

i

Nell\V)

Given a gap U, with a boundary point u € 0OU, we call a bridge a
maximal interval J with endpoint v € dJ and doesn’t intersect a gap U’
with £(U") > £(U).

We can now associate the idea of the thickness at a point:
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Definition 9. The thickness of X at u is defined by 7(X,u) = £(J)/L(U).
We can associate a single value for X:

Definition 10. The thickness of X is defined to be
7(X) =inf{7(K,u) : u= boundary points u of (bounded) gaps}

This definition is taken from the book of Palis and Takens. There is an
equivalent earlier definition (introduced by Hall (in 1947) and Newhouse (in
1979).

We begin by enumerating the countable collection of gaps. Let U =
{Un}>2, be a fixed labelling of the gaps of X. Given n and u € 9U let C be
the connected component of [a, b] \ U, U; containing u (where [a,b] D X is
the smallest interval containing X). We can then denote

T(X,U,u) = £(C)/L(Uy,).
This gives the alternative (equivalent) definition of the thickness.

Lemma 25. . We can write

7(X) = supinf 7(X,U, u)
u u

where the infimum is taken over all boundary points of finite gaps of X and
the supremum is taken over all orderings U.

Proof. For any U = {U,} with ¢(U,) < ¢(U,,) for all n > m the supremum
is achieved. O

The following inequality relates the Hausdorff Dimension dimension and
the thickness of Cantor sets.

Lemma 26. If X C R has thickness T then

. log 2
d X)> —=-
iy (X) = log(2+1/7)

In particular, we have the

Lemma 27. If X is a dynamically defined Cantor set then 0 < dimpg(X) <
1.



Chapter 5

Iterated Function Schemes

In earlier chapters we have introduced many examples and introduced two
different notions of dimension. Now we will bring these two themes together
for a simple class of sets covering many of the earlier examples.

In this chapter we introduce one of the basic constructions, that of iter-
ated function schemes They appear in a surprisingly large number of familiar
settings, including several that we have already described in the chapter 2.
Moreover, those sets X for which we stand most chance of computing the
dimension are those which exhibit some notion of self-similarity (for exam-
ple, the idea that if you magnify a piece of the set enough then somehow it
looks roughly the same). Often, if we have a local distance expanding map
on a compact set we can view the natural associated invariant set as the
limit set of an iterated function scheme of the inverse branches of this map
(e.g., hyperbolic Julia sets, etc.). We can think of X as being the associated
limit set A given in the following result.

In the case of many linear maps, the dimension can be found implicitly
in terms of an expression involving only the rates of contraction. In the
non-linear case, the corresponding expression involves the so called pressure
function.

5.1 Definitions

Recall that R? is equipped with the usual Euclidean metric

D (@i —i)?

=1

e —yll =

where x = (z1,--- ,zp) and y = (y1,- -, Yn)-
Another familar definition is the following

Definition 11. A map T : R — R% is a contraction if there exists 0 < ¢ < 1

61
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such that
[Tz — Tyl < cllz -yl

More generally, Let U C R% be an open set. We say that S : U — U is a
contraction if there exists 0 < o < 1 such that

15(x) = S| < alle —yl| for all z,y € U.
(Here || - || denotes the induced Euclidean norm on U.)

In particular, a contraction is a special case of a Lipschitz map, for which
the Lipschitz constant is strictly smaller than unity.

One of the most useful approachs to systematically construct examples
is to use Iterated Function Schemes. Therefore following definition is fun-
damental to what follows.

Definition 12. An iterated function scheme on an open set U C R? consists
of a family of contractions Ty, ..., T, : U — U.

=2.0in ifs.eps
The images of U under the maps Ti,...,74 in an iterated function
scheme.

Notation. Let 0 < ¢y, , ¢ < 1 be the contraction constants associated
to the maps T7,---, T} and let us denote by 0 < ¢ = max;<;<rc; < 1 the
contraction constant for the iterated function scheme.

In fact, in some examples it is convenient to broaden even slightly more
the definition of an iterated function scheme. More precisely, we might want
want to consider contractions T; : U; — U which are only defined on part of
the domain U. In this case, we consider only those sequences (x,)22, such
that Uy, D Ty, ,(Usz,_,)-

5.1.1 Open set condition

We want to introduce a very useful assumption.

Definition 13 (Open set condition). An iterated function scheme consisting
of contractions Ty, --- , Ty is said to satisfy the open set condition if exists
an open set V.C R¥ such that:

1. Ty(V), Ta(V), -, To(V) C V; and
2. ;(V)NT;(U) =0 fori+#j.

A very simple example is the following.
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Figure 5.1: Open set condition

Example 32. Consider the maps T1,T> : R — R defined by

T(x) = L and T(x) =

3 +

Wy
SN

If we let V = (0,1) then

(V) = (0, ;) and To(V) = (§1>

and we see that Ty(V) N To(V) = 0. Thus this iterated function scheme
satisfies the open set condition.

A stronger property is the strong separation condition.

5.2 Hutchinson’s theorem

We will now describe a general method to associate to a finite number of
contractions (i.e., an iterated function scheme) a fractal set.

We can denote by K the space of compact subsets K ¢ U C R?. This
is equipped with the Hausdorff metric, which we already encountered in
Chapter 2. We can now associate to a given iterated function scheme a
single map on K.

Definition 14. Given contractions T1,--- ,Tp : U — U we can define a
map T : K = K by
T: K w— U T(K).

He we are merely using that continuous images of compact sets are com-
pact and finite unions of compact sets are again compact.
Here is a very simple example.
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Example 33 (previous example revisited). With the previous ezample, we
can start with K = [0, 1] and then

70,17 = |o, 1] U [2 1]

1 (2 1 27 8
2
0,1) =10, = | U |=, = |U|=,=|U|=,1
0.1 = |og|u 3.3 o [35] v [51]
It is no coincidence that these are the same intervals in the construction of
the middle third Cantor set.

and

The next result shows that this map on compact sets is a contraction.

Proposition 8. The map T is a contraction in the Hausdorff metric (i.e.,
d(TKl,TKQ) < Cd(Kl,KQ) for any K1, K- € ]C)

Proof. Given two (compact) sets X,Y € U C R? we want to show that
d(TX,TY) <cd(X,Y).

For any t > d(X,Y’) we have from the definition of the Hausdorff dimension
that X C B(Y,t) and Y C B(X,1).

Thus for any = € X thereexists y € Y with ||[x—y|| < tand forany y € Y’
there exists ' € X with ||z’ — /|| < t). Therefore, for each i = 1,--- |k,

1. for any T;(x) € T;(X) we have T;(y) € T(Y) with | T;(z) - Ti(y)|| < eit,
and

2. for any T;(y') € T(Y') we have T;(2") € T(X) with | T;(2") — Ti(v/)|| <
Cit

From the definition of the Hausdorff metric we see that d(7X,7Y) <
cd(X,Y) where ¢ = max; ¢; < 1, as required. O

We want to use the contraction mapping theorem to find a fixed point
X = T(X). The missing ingredient is the following property of K.

Proposition 9. The Hausdorff metric on the space K of compact sets in U
is complete.

Proof. Let (X,,)22; C K be a Cauchy sequence of compact sets (i.e., d( Xy, Xpm) —
0 as n,m — +00). We want to show that there exists a compact set X € K
such that d(X, X,,) = 0 as n — +oo.

Step 1: A subsequence. By going to a subsequence, if necessary, we can
assume that

1
d(Xn—l—laXn) <

= 1
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Moreover, since the original sequence is Cauchy its convergence is equivalent
to that of the subsequence so we don’t lose anything by this assumption.

Step 2:New sets Y;,: We can now associate new closed sets (Y},)22 ; defined
by
Y, =cl (U2, Xk), n>1,

and observe that:

1. the new sequence is nested, i.e.,

YI2Y%,DY;D:---DY, D - ;and

2. by the triangle inequality and (1):

1 n
d(XTMXl) < d(Xk7Xk+1) <
1

3
|

'

2k
1

<1, Vn>1.

e
Il
e
Il

In particular, the sets Y;, (n > 1) are all (uniformly) bounded and,
since they are closed, they are thus compact.

3. Since X,, C Y, and Y,, C B(X,,€,) where

o0
1
en=» d(Xp, Xpi1) < o0
k=n+1

again using (1), we deduce that d(X,,Y,) — 0 as n — +oc.

Step 3: Identifying the limit X: We can now identify the limit as
X :=N2,Y,, which is compact and non-empty (since it is the intersection
of a nested sequence of compact non-empty sets).

Step 4: The sequence (Y,,) is Cauchy. We first observe that
d(Yn,Yy) <d(Yn, Xpn) +d(Xn, Xm) + d( X, Yy) — 0 as n,m — 400

by 3. above and the fact that (X,,)22,; was Cauchy. Given ¢ > 0 choose
(Ng)g2 such that

d(Yy,,Y,,) < €/2F for all n,m > Ny,

Step 5: End of the proof. To complete the proof its suffices to show
that d(Y,,, X) — 0 as n — +o0, since by 3. above this implies d(X,,, X) — 0
as n — 400, i.e., that the Cauchy sequence (X))o ; converges to X. We
therefore proceed as follows.

We choose an arbitrary point y; € Yy, and from the definition of the
Hausdorff metric choose y2 € Ya, with ||y1 —y2|| < §. Proceeding iteratively,
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we can choose points yx € Y, with [|yr —yr+1]| < 57 The sequence (yx)72;
will converge to a point y € X (by completeness of R?) and (by the Euclidean
triangle inequality)

€ € €
||y1—y||§§+1+1—|—---§6.

Since y; € Yn, was arbitrary we see that Y C Y, C B(Y,2¢) and thus from
the definition of the Hausdorff metric we see that d(Yn,,Y) < 2e. Since N;

can be replaced by any value n > Nj the result follows.
O

We can now deduce the main result of this chapter.

Theorem 5 (Hutchinson). Let Ty, -+ , T : U — U (n > 2) be a finite family
of contractions then there is a unique non-empty compact set X C R¢ such
that

X = U, T(X). 2)
Proof. We need only collect together the pieces of the proof. We associate
to Ty, -+, Ty : U — U (n > 2) the contraction 7 : K. — K. The space K
is a complete metric space and thus by applying the contraction mapping
theorem we have that there exists a unique fixed point 7(X) = X. This is
equivalent to the conditon (2) O

Remark 9. Another consequence of the contraction mapping principle if
that if we take any compact set K C R? then we have exconential converge
d(T"K,X) < C.c", forn > 1, where C = d(K,X). In the case of the
middle third Cantor set example, this is well illustrated by taking K = [0, 1]

5.3 Examples

Many of the examples we have previously studied are examples of the con-
struction we discussed above. The main point is to try to find the associated
contractions for which the fractal set is a fixed point for the associated con-
traction 7 : K — K.

We begin with the standard examples of Cantor sets

5.3.1 Middle third Cantor set

Let T1,T5 : [0,1] — [0, 1] be contractions of the interval defined by
2

x T
Ti(x) = 3 and Th(z) = 3 + 3

The middle third Cantor set X can we written in terms of triadic expansions

as
00
X
X = {232 P T1,T2, 0 6{0,2}},

n=1
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However, the images of.a typical point in X under T and T ate

0 z 0 % 2z, 0
Ty <Zgn> = §+Z3n+1 and Ty <Z> 7+Zgn+1
n=1

n=1 n=1

respectively. From this it is easy to see that X = T1(X) U T»(X) is the
unique fixed point for 7. Moreover, if we start with K = [0, 1] then the sets
77([0,1]) which converge to the middle third Cantor set X correspond to
the nth stage of the construction with 2" intervals.

5.3.2 Middle M-Cantor set

We can also consider the more general examples of Cantor sets In this case,
let 71,75 : [0,1] — [0, 1] be defined by

Ti(z) = (1?) x and Ty(z) = (1?) T+ <1+2A) .

Again, it is easy to see that X = T7(X) U T5(X), i.e., that X is the unique
fixed point of 7. Similarly, if we start with K = [0, 1] then the sets 7"([0, 1])
which converge to the middle A Cantor set X correspond to the nth stage
of the construction with 2" intervals.

5.3.3 von Koch curve

Let us consider the four contractions 71, T5, T, Ty : R?2 — R? of the plane
defined by

(

fcos (1/3) + Lsin(r/3) + =, 2 sin(n/3) — L cos(n/3)
3 3 3
(

z
"3

x 1
3l in(mw/3) — 3 cos(7r/3) 6\/§>

l\DM—l W

gcos 7/3) — %sm(ﬂ/?))

Ta,y) = (3 3+§>

The limit set X corresponds to one third of the von Koch snowflake. If
we let K = [0,1] x {0} € R? then T"(K) represents the nth step in the
construction.
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5.3.4 Sierpinski Triangle
We can consider the three contractions T4, Th, T : R? — R? defined by

o= (5

= (30) + (3.3)
nen = (352) + G.)

The limit set X corresponds to the Sierpinski triangle. If we let K be
an equilateral triangle with vertices (0,1), (1,0) and (1 @) then 7"(K)

272
represents the nth step in the construction.
5.3.5 Bedford-McMullen sets
Given S € {0,--- ,n—1} x{0,--- ,m —1} we can consider the contractions

T;; : R? — R? with (i,j) € S defined by

x 1 g
E,J(:Evy) = (73 E) + <7 ]>
n’ m n’ m
The limit set X corresponds to the Bedord-McMullen carpet. If we let K =
[0,1] x {0} C R? then 7" (K) represents the nth step in the construction.

5.3.6 Apollonian circle packings

Given the four tangent circles we can consider four complimentary circles
K; each of which passes through three points from the four tangency points
(where pairs of circles touch). In each of these circles K; = {z € C: |z —
¢il — ri}, where z; € C and r; > 0, we can associate a map S; : C = C
defined by ( )
2\ — %4 .
Si(2) —rim, 1=1,---,4.
We can then define maps T; ; = S;05; : D — D with 4 # j on the unit
disk D. These maps T; ; aren’t quite contractions, and so the Hutchinson
theorem doesn’t quite apply directly. !

5.3.7 Julia sets

Let us consider the polynomial maps T : C — C defined by T'(z) = 22 + ¢,
for some c € C.

1This can be overcome by inducing which corresponds to iterating the maps to pick up
the strict contraction. However, this means we end up with finitely many contractions,
which still needs our definitions broadening in any case
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When ¢ = 0 then the Julia set is the unit circle. We can consider
neighbourhoods

U+D{ei9:0§9§7r}andU_D{ei6:7T§9§27r}

We can consider the maps T} : U* — U™ and Ty : U — U~ defined by
T1 (") = €92 and Ty(e?) = €9/2+7. For c close to zero the Julia set is close
to the unit circle and we can consider contractions in a neighbourhood of the
Julia set of the form T1(z) = /z — ¢ and Ta(2) = —v/z — c. Whereas these
maps are contractions, there are multiple domains and so the Hutchinson
theorem needs to be adapted to this situation (as mentioned in a previous
remark).

5.4 Similarities

The Iterated Function Scheme construction of fractals has the additional
benefit that it gives us the possibility to estimate the dimension of the set.
The most successful setting for this is that of similarities.

Definition 15. We say that a (contraction) T : U — U are similarities if
there exists 0 < ¢ < 1 such that

[T(z) =Tl =clle —yll, zyelU
In particular, when 0 < ¢ < 1 this is s special case of a contraction.

We are particularly interested in the case of Iterated Function schemes
consisting of contractions 17, --- , T each of which is a similarity. We can
check this in the case of our examples

o Middle third Cantor set: The two contractions here are similarities
with ¢ = %
o Middle A\-Cantor set: The two contractions here are similarities with

_ 1=)
cC= 5.

e von Koch snowflake: The four contractions here are similarities with

-1
c=3.

o Sierpinski Triangle: The three contractions here are similarities with
1

C = 5.

But the Bedford-McMullen carpets have contractions which are not sim-
ilarities since the contraction is by different amounts (namely % and %)
Moreover, the Apollonian circle packing maps and Julia sets have non-linear
contractions, which cannot be similarities either.
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5.5 Moran’s Theorem

Now that we have described a more systematic approach to constructing
examples of fractal sets X, we want to describe an associated (implicit)
expression for the dimension(s).

As a preliminary, we begin with a little calculus.

Lemma 28. Let 0 < ¢1,---,¢c < 1 with c‘f + - +c,‘§ < 1. The function
f:10,k] = R defined by

fy=> -1

i=1
is a monotone decreasing function and there exists a unique value 0 < tg < 1
with f(to) = 0.

Proof. We observe that the f(t) is continuously differentiable and the deriva-

tive satisfies
k

f(t) = Z(log ci)ct < 0.

i=1
This shows that f(t) is monotone decreasing. Moreover, since f(0) = k—1 >

0and f(d) =c{+ - +c& —1 < 0 the intermediate value theorem gives the
existence of a solution 0 <ty < d to f(tp) =0. * d

Now we see how to find the dimension of the limit set X associated to
an iterated function scheme consisting of contractions T}, - -, Tj. 2

Theorem 6 (Moran). Let {T1,---,T;} be an iterated function scheme of
similarities satisfying the open set condition with contraction constants 0 <
c1, - ¢, < 1. The associated limit set X has dimy(X) given by solution

0<D<dto
d el =1 (1)

This will follow from the next two lemmas.

Lemma 29. Let {T1,--- ,Tx} be an iterated function scheme of contractions
with contraction constants 0 < c1,--- ,c < 1. The associated limit set X
satisfies dimpy (X) < D, where 0 < D < d is the unique solution to (1).

2Tt is a common misconception that Patrick Moran was a student of Besicovitch. In
fact, he took courses at Cambridge from 1937-1939 (including those from Besicovitch)
and while it appears he wasn’t very successful at mathematics, he did used to take Mrs.
Besicovitch occasionally to the cinema. From 1939-1945 he did war work (during which
period he proved this result). He was given a studentship at Cambridge in 1945, but
Besicovitch declined to supervise him and he ended up as a student of Smithies instead.
In any event, Moran couldn’t solve the research problem he was then given and so never
received a PhD.
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Proof. Since T(X) = X, we can write
X = TNX = Uil:'”:ian o---0T; (X)

for any NV > 0. Moreover, since the maps 7; are contractions then we can
write

diam(T;, o--- o T; (X)) < ¢jy iy - - - iy diam (X))

Furthermore, we can cover each of these closed sets T;, o--- o T;, (X) by an
open ball of radius

CiyCin - - - ¢, diam (X)) < N diam(X)

where ¢ := max; ¢;. In particular, this then gives us a cover of X by open
sets of diameter at most ¢V diam(X) and thus by definition we can write

Hclf)\’diam(X)(X) = Z (CiyCiy - - - iy )P (diam (X)P
W
= (P + -+ PN (diam(X))P
=1
= (diam(X))?.

Letting N — oo we see that ¢V diam(X) — 0 and H”(X) < (diam(X))” <
+o00o. Thus we deduce that dimgy(X) < D.
O

The above lemma doesn’t require the contractions to be similarities, and
without further assumptions we cannot expect equality.

Example 34. Fiz 0 <t < % and let T1,T» : [0,1] — [0, 1] be defined by

Ti(z) = g and Thr(z) = g +1

Ifo<t< % then the limit set X is a scaled copy of the middle third Cantor
set and thus has dimension 282, On the other habd, whent = 0 then T} = Ty

log 3
and then X = {0} is a single point and so has dimension equal to 0.

To get an equality in Moran’s Theorem we need to assume that the
contractions are similarities and satisfy the Open Set Condition

Lemma 30. Assume that each T; is a similarity with constant 0 < ¢; < 1

(i=1,---,k) and they satisfy the open set condition. Then D < dimp(X)

where D is the unique solution to Zle C]D =1.
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Proof. Given the previous lemma, it suffices to show that dimg(X) > D.
In particular, we will use the Mass Distribution Principle. 3

Constructing the measure. By the Open Set Condition (with the open
set V and a little induction argument) we can assume that the sets T3, - - - T;, (V)

in
are disjoint, for iq,--- ,in, € {1, -+, k}. We define a probability measure
which associates to the nth level sets the measures

M(E1E2 T Tln (CI(V)) = (CilciQ o Cin)D'

Special image sets. Fix an arbitrary open ball B(zg,¢€). If we denote

. G
0 = min { —
1<ij< | ¢

then we can consider the family of sets

Ti, T, -+ T;, (cl(V)) = e < diam(T;, Ty, - - - T5,

(V) <e

=Ci Ciy "+ Ciy diam (V)

of comparable diameter. (The value of n can vary, so long as the condition
on the diameter is satisfied). In order to estimate p(B(zo,€)) we want to
consider those for which T}, T}, - - - Ty, (c1(V)) N B(xo, €) # 0.

Volume estimates. Next choose an open ball in B(yp, rdiam(V)) C V of
radius equal to rdiam(V'), say, for some sufficiently 0 < r < 2 (and some
point yg). Then for each image

4T, - ”Tin(v) DTyTh, - T,

in

(B(yo, rdiam(V'))) (1)

and since the maps are similarities this image of B(yo, rdiam(V)) is itself an
open ball now

a) centred at T;, Ty, - -+ 15, (yo) , and

b) radius r¢;, ¢, - - - ¢, diam (V).
In particular, the volume of T}, T;, - - - T;, (B(zo, rdiam(V))) is

MT0 T, - T, (Blyo, rdiam(V)))) = A(B(0, 1)) (reiy iy - - - ¢, diam(V))?
where A(-) represents d-dimensional volume (and, in particular, A(B(0, 8;
is the volume of the unit ball in RY. 4) Therefore, by the inclusion (1) and

3This can be avoided, as in the book of Climenhaga-Pesin
*There is an explicit formula A\(B(0,1)) = #%/?/T(1 + d/2) which we will make abso-
lutely no use of
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537 rdiam(V))

Figure 5.2: We estimate the number of (disjoint) images T3, T;, - - - T3, (c1(V))
intersecting B(zo, €) by comparing volumes

the equality (2) we have a lower bound on the volumes of each of the images
of V of the form

NI Ty -+ T (V)

v

)‘(B(THTZQ o Tln (y0)7 TCiy Cig * " Cindiam(v)))
A(B(0,1)) (rei, iy - - - ¢, diam(V))? (1)
A(B(0,1))(rf)%?.

v

To get an upper bound on the p-measure of B(xg,€) we can further
restrict attention to those images of V' that satisfy

T Tiy - - Ty, (l(V)) N B(zo, €) # 0,
but then since diam(7;, T;, - - - 15, (cl(V))) < € we see that
Ti1Ti2 e Tln (CI(V)) - B($0, 26)'

In particular, we then have a trivial upper bound of the union of all such
images of the form

A U (Tiy -+ T3y, )(cl(V)) | < A(B(xo, 2¢)) @
(Tiy T3y ) (L (V)NB(0,6) 0

= \(B(0,1)) (2¢)*
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Counting images of cl(V) intersecting B(xz,e). We can now use the
volumes to get an upper bound on the number of open sets of the form
(T, - - - T3, )(V') which intersected B(xg,€), which in turn gives an estimate
on its measure.

By the open set condition, two distinct sets of the form (7, ---T;,)(V)
are disjoint and so by (1) and (2) we have an upper bound on the number

of such sets intersecting the ball B(yp, €) of the form
Card{(Ti, --- T;, )(cl(V)) : (T, - - T5,,)(cl(V)) N Bz, €) # 0}

A (U(TH--~Tin)(cl(V»mB(xo,e)#@(Til - 'Tin)(d(v))>
min {\N(T3, T, -+ T;,,(V))}
A(B(0,1))24€d (3)
A(B(0,1))(r)ded

)

In particular, this bound is independent of the ball B(z,€).

<

Mass distribution principle. We can now bound the measure p(B(xg,€))
as follows

(B (o, €)) < > w(Ti, -+ T, ) (l(V)

(Ti, - Tin ) (CL(V))NB(20,e)#0
= Z (ciy - Cin)D
(T3, T, )(CL(V))NB(20,¢) £0
< Card{(Ty, -~ T;,)(cl(V)) = (Ty, -~ T;,)(cl(V)) N B(wo, €) # O} x €

d
2 D
< =
<M>€
(4)
by (3). In particular, this is enough to apply the Mass Distribution and
deduce that dimy(X) = D.

O

Finally, we can related this to the box dimension dimpg(X)
Lemma 31. Let {T1,--- ,Tx} be an iterated function scheme of similarities
satisfying the open set condition amd with contraction constants ci,--- ,Cg.

The associated limit set X satisfies dimp(X) = dimp(X) = D, where 0 <
D < d is the unique solution to (1).

Proof. Consider a small ball B(yg,d) C V, where V is the open set used in
the open set condition. By the similarities condition, the images (T3, - - - T3, ) (B (0, 9))
of the ball will again be balls, now of radius ¢;, - - - ¢;, 0.

n
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Given € > 0, we can then restrict to those images such that
€ <cj e, 0 <ce (1)

Because of the open set condition these sets will all be disjoint. We can
now associate a measure v such that v((T}, - -- Ty, ) B(y0,9)) = (ci, -~ ci,)P.
Then we can write

1> Y (T T)Be,d) = Y (ene)? (1)

ef<ci, -cip, 6<e ef<ci, -cip, 6<e

where the summation is restricted to those images satisfying (1) above. But
for this particular disjoint collection of open sets

(Til o Tln)(B(yOv 5)) =B ((Tll T En)(y0)7 Ciy * - clné)
of radius ¢;, - - - ¢;, 0 the inequality (1) a bound on their cardinality given by

1> Card{(T}, --- T}, )(B(y0,0)) : O < ¢;,---ci,0 < e} x (0e)P.  (2)

Given any open cover by balls of radius 629 there must be at least one ball
contained inside each of the (disjoint) balls (73, - - - T3, )(B(y0,9)) (covering

its centre, for example). We can then deduce from (2) that
N (X, 69) (6)~P
2
Therefore

- log N(X log(1/€”
dimp(X) := —limsupM < —limsupM =D.
e—0 ]Ogﬁ e—0 10g6

Since D = dimy(X) < dimg(X) :< dimp(X) (by the previous lemma and
standard bounds) we deduce the result. O

Without the open set condition, things can go hideously wrong!

Example 35 (An example without the open set condition). Consider, as
an example, the maps T;x = Ax+1, for i =0,1,3 and let Ay be the limit set

1. For almost all 1/4 < X\ < 1/3 we have that dimg(Ay) = log 1/)\ (as
expected); However,

2. For a dense set of values A\ we have that dimg(Ay) < logzgl?/\)

In particular, the dimension of the set Ay is not continuous in \. We shall
return to this example later.
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5.6 Examples of Moran’s Theorem

For the present, let us just see how Moran’s theorem allows us to deduce
the dimensions of the limits sets in three familiar simple examples.

5.6.1 Middle third Cantor set

Consider the middle third Cantor set. We have oy = oo = £ and observe

3
that that with D = iggg we have

log 2 log 2

1 ]_ log 3 1 log 3
()G

In particular, we recover dimpy(X) = %gég = 0.63093.

5.6.2 Sierpinski Carpet

Consider the Sierpinski Carpet. Consider the eight contractions defined by

rT+i y+j
gt = (Z1,519)

where 0 < 4,5 < 2, and (4,7) # (1,1). We can then identify the Sierpinski
gasket as the limit set A = A(T(g,0), "+, T(2,2))- We have a;; = % for (i,j) €

S and observe that with D = }ggg we have

log 8 log 8

1 1 log 3 1 log 3
B <3) et (3)

x8
thus dimp (Xs) = {25 = 1.89279 ...

5.6.3 von Koch curve

We consider again the Koch Curve. We can consider four affine contractions

1 z y
T [ -
Ty ( )H<1+x 1 y)
'1"7 a 7’7_7
3ihY 26203 2V3
2 xy
T. — - =
4 (‘Tvy)’_)<3+373>
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Each branch contracts by % the limit figure and observe that with D = =52

we have
log4 log 4 log 4 log 4
. 1) Tos3 1\1g3 /1) loes 1) Ios3
()76 66T

thus we recover {géé =1.2619....

The situation becomes interesting when we drop the assumption that
the iterated function scheme is made up of similarities. (However, dropping
the conformal assumption or the open set condition is, for the moment,
something we prefer not even to contemplate!)

5.7 A simple special case
We can consider the special case of two similarities and a simpler proof.

Theorem 7. If 71,75 : R — R are similarities satisfying the open set
condition, then the dimension is the unique solution s = dimg(A) to the
identity

1= (1) + (a2)*,

where a1 and ay are the associated contraction rates.

Proof. For simplicity, we consider the case of just two maps 77,75 : R — R
with limit set A. It is also convenient to write the two contractions as

A= [\ |AY 1= |Ag], for some 0 < a < 1,

say. We can assume, for simplicity, that the open set in the open set condi-
tion is a ball U = {z € R? : ||z]| < r}.
Given k > 1 we can consider a cover for A by all balls of the form
. A 1
T;, ... T;, U where M is chosen WlthE < iyl < = (2.1)
Let My, be the total number of such disks, and let Ny = N(1/k).
It is easy to see that there are constants Cq,Co > 0 with C1 N, < My <
CoNy.

For example, we are considering

ol

.. . hULT... honhhTy.. . hU---Ty... T,
— ~—— N—— N——
xn X (n—1) X (n—2) x [an]
(where [an] is the largest integer smaller than [an]).

If Th occurs [(1 — f)n] times, for some 0 < 5 < 1, then for (2.1) to be
satisfied we require that Th occurs approximately [San] times. Moreover,
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then number of contributions to the above list depends on their ordering,

which is approximately (Kl—[gl‘%ﬁ)n] )

The total number M, of disks satisfies:

mps (14 ) < M (g (05277

and to esimate this we need to maximize ( 1727 n]> in B.

[Ban]
By Stirling’s formula we know that logn! ~ nlogn, as n — +oc0. Thus

—B+af)n [(1 — /8 + alg)]
log (o) = 10g< BanI[(1 - 5]

[
where © = aff and y = (1 — 3). Writing f(z,y) = (v + y)log(z + y) —
xlogx — ylogy, we have a problem of maximizing this function subject to
the condition g(x,y) = = 4+ ay = «a. Using a Lagrange multiplier v this
reduces to solving

) ~n((x+y)log(x +y) —xzlogx — ylogy)

Vf = (log(x + y) — logz,log(x + y) — logy) = vVg = (1, )

(63
In particular, we get (xi—i-y) = (Iiy) and so setting \¢ := l%ry solves
A+ (A*)? = 1. Thus
k
log N .. log (%

d= lim —a

k—+oo logk k:—>+oo log ()\ )
as required. O

5.8 non-conformal maps

Let us now return to the problem of Hausdorff dimension for non-conformal
maps, and examples of where number theoretic properties of parameters can
lead to complicated behaviour.

Consider a family of affine maps Tjx = a;x + b;, i = 1,...,k, on R?. In
particular, a; is a d x d matrix and b; is a vector in R?. Let A denote the
limit set of this family of maps, defined precisely as before.

There are simple examples of affine maps where the dimension disagrees.
The following is a simple illustration.

Example 36. (Bedford-McMullen) Consider the following three affine maps

IO RO RE e
(- 6-6)-0-)-6)

where
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=1.5in bedford.eps
The first two steps in the Bedford-McMullen example The limit set takes
the form

A= {(Z ;%’ ;:,) 2 ('Lm]n) 6{(0,0),(1,1),(2,0)}},

n=1 n=1

and is closely related to what is called Hironaka’s curve. The Box dimension
and the Haudorff dimension of the limit set A can be explicitly computed in
such examples, and be show to be different. More precisely,

3
dimpg (A) = logy(1 + 2'°832) = 1.34968 ... < dimp(A) =1+ logy(5;) = 1.36907 ...

This is part of more general result.

Theorem 8 (Bedford-McMullen Theorem). Let | > m > 2 be integers.
Given S C {0,1,...,m — 1} x {0,1,...,1 — 1} we can associate an affine
“Sierpinski carpet”:

n=1 n=1

Assume that every row contains a rectangle. If we denotet; = Card{i : (i,j) €

S}, and a = Card(S) then

m—1
dimp (A) =1 flosim d dimp(A) =1+ log (=)
img (A) = log,, ; J , and dimp(A) + log; -
=2.0in bedford-rev.eps
The generalized construction of Bedford-McMullen

Proof. At the j the level of the construction we have S’ rectangles of size
77 x m~J. Moreover, we can cover each rectangle by approximately (I/m)’
squares of size m~7. Moreover, because no rows are empty this many are
needed.

Thus for € = [~/ we have that N(I7/) = a/(I/m)’. Thus

. e log N (€)
dimp(A) = lim ——
J
o losell/m))
j—+o00 log 17
__loga B logm
~ logl log

= 1+logl%,
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as required. The calculation of dimg(A) is a little more elaborate (and
postponed). Let 0 < a = log;m < 1. To get a measure on A we take the

bernoulli measure p = (py, ... ,pa)Z+, where p; ; = t;971/ > oG.j)es t;o L,
We can consider a cover by squares given by the union of rectangles
(20, 21y ..., ) over all 2y, ..., 7, These are a™~! rectangles of O

Example 37. One can consider “genericity” in the linear part of the affine
map (rather than the translation). Consider contractions Ty, Ty : R? — R?

defined by
(T )\1 0 T C; .
w(0)= () 0) (@) =

where A1 < Ag.

=2.5in boxes.eps
Two affine contractions There are the following estimates on the Haus-

dorff and Box dimensions of the limit set.

Theorem 9. For any choices ¢;,d; € R (i =1,2) we have:

1. For 0 < A\ < X2 < 3, dimg(A) = dimp(A) = _1})(5223

1 2o
1 - Og( )
2. For 0 <A1 <5 <X <1, dimp(A) = ~loga . and
_e(5?)
1

X
dimg (A N log A
1 H( ) - _log(gQ’\Q)

for almost every Ao, but

Tog A whenever 1/A\1 is a Pisot number.

log (21

log 2 1 log

1°gg if0 < o < —<>z'f < <1 and
(0]

dimp(A) = 3 Tog M

log2 F0< < 1 10g<2>\2>

dimp(A) =
imis(A) log 2 log A1

1
if 3 < Ao < 1 for almost every Ao

log (222

but dimp(A) < _Oi(gkl> whenever A1 is a Pisot number.

A Pisot number is an algebraic number for which all the other roots of

the integer polynomial defining it have modulus less than one. For example,

V651
2

1s a Pisot number.
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Example 38. For part (1), observe that since A\; < Ag < % the projection
onto the vertical axis is a homeomorphic to a Cantor set C in the line gen-
erated by two contractions with Ay < % In particular, dimg(A) > dimgC >
22 " On the other hand, when Ny ™t < e < A& we can cover A by 2" e-balls.

log A2 *
In particular, N(e) < 2™ and thus

The proof of the second part is postponed. ]
In particular, we conclude that
Corollary 4. dimp(A) is continuous in \1, N2, but dimg(A) isn’t.

These examples are easily converted into estimates on limit sets for in-
vertible maps (Smale horsehoes) in three dimensions, by “adding” a one
dimensional expanding direction.

Example 39. We can also consider the case of more contractions. Assume
that T; : R? - R?, i =1,2,3,4 are defined by

[ A0 x ci .
T,.(y)n—><0 )\2><y)+<di>’ 1=1,2,3,4

where A1 < Ay < i. If we let

()= (@) (2) = () ()= () ()= ()

then the limit set is the product of a point on the x-axis with a Cantor
set on the y-azis (with Hausdorff dimension —log4/log\y). In particular,
dimpg(A) = —log4/log \a. On the other hand, if we let

()= ) ()= (D) () - (6)- () - ()

then the limit set is the product of a Cantor on the x-axis (of Hausdorff
dimension —log2/log \1) with a Cantor set on the y-azis (of Hausdorff di-
mension —log2/log \2). In particular, dimg(A) = —log2/log A1 —log 2/ log As.

Since A1 # g, the dimensions of these two different limit sets do not
agree, and we conclude that dimg(A) depends not only on the contraction
rates but also on the translational part of the affine maps.
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Chapter 6

Conformal systems and
thermodynamic formalism

In the previous chapter we consider the construction of limit sets for iterated
function systems by similarities. We will now consider a generalization to
the case of contractions which are conformal maps.

6.1 Coding limit sets

An alternative approach to constructing the limit set is as follows.

Definition 16. Consider a family of contractions Ty,...,T, : U — U. Fix
any point z € U then we define the limit set X by the set of all limit points
of sequences:

X:{ lim T, 0Ty 0...0Ty (2) : wo,ml,...e{l,...,k}}
n—-+o0o

It is easy to see that the individual limits exist. More precisely, given a
sequence ()02, we can denote Ay = Ty o...0Ty (A), for each k > 0.
Since this is a nested sequence of compact sets the intersection is non-empty.
Moreover, since all of the maps T; are contracting it is easy to see that the
limit consists of a single point.

Lemma 32. The limit set A agrees with the attractor defined above. In
particular, it is independent of the choice of z.

Proof. The set of limit points defined above is clearly mapped into itself by
T : X — X. Moreover, it is easy to see that it is fixed by 7T. Since A was
the unique fixed point (by the contraction mapping theorem) this suffices to
show that the two definitions of limit sets coincide. O

This second point of view has the additional advantage that every point
s coded by some infinite sequence. We can define a metric on the space of

83
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sequences {1, ... :k}Z+ as follows. Given distinct sequences x = (Tn)peg,y =
(yn)pp € {1,..., k}2" we denote

n(z,y) =min{n >0 : z; =y; for 0 <i <k, but xx # yi}.

We then define the metric by
d(z,y) = 2 M@Y) if ¢ £ y0 otherwise

It is easy to check that this is a metric. We can define a continuous map
T {1,...,1@}ZJr — R4 by

m(x) = ngl—}-loo TpyoTy 0...0T, (%)

Lemma 33. The map w is Holder continuous (i.e., 3C' > 0,5 > 0 such that
|n(z) = m(y)l| < Cd(z,y))° for any z,y. )

Proof. By definition, if d(z,y) = 27", say, then 7(z), 7(y) € Tyyo0...0oT,, (A).
However,

|[m(z) — 7 (y)|| < diam (T, 0...0T,, (A)) < a"diam (A) < (d(z,y))’diam (A)

where 5 = log a/ log(1/2). O

We shall assume for this chapter that Ty, ..., Ty are conformal, i.e., the
contraction is the same in each direction. Of course, for contractions on
the line this is automatically satisfied, and is no restriction. In the one
dimensional setting, such iterated function schemes are often called cookie
cutters.

If we identify R? with C then this naturally leads to simple and familiar
examples of conformal maps.

Example 40. We can consider two natural examples of conformal maps.

1. Any linear fractional transformation T : C — C on the Riemann
sphere C is conformal. Moreover, if Tz = (az + b)/(cz + d) where
(2%) € SL(2,C) then T'(z) = 1/(cz + d)*. (More generally, Mobius
tranformations T : S — S% are conformal.)

2. Any analytic function T : U — C, where U C C is conformal. For
example, we could consider T to be a rational map on a neighbourhood
of U of the hyperbolic Julia set.

In addition, we shall also generalize the

Definition 17. We say that a family of maps satisfies the open set condition
if there exists an open set U C R? such that the sets T1(U),. .., Ti(U) are
all contained in U and are disjoint.
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The next result shows that for conformal iterated function schemes, the
Hausdorff dimension and Box dimension of the limit set actually coincide.

Lemma 34. For conformal iterated function schemes satisfying the open
set condition dimp(A) = dimg(A).

Proof. We need to show that dimp(A) < dimg(A). This is down using
the Mass Distribution Principle. Let us denote d = dimpg(A). In order to
employ this method, we want to show that there is a probability measure p
on A and constants C1,Cy > 0 such that

Cydiam (T 0 ... 0 Ty, (A < pu(Tyy 0 ... 0 Ty, (A)) < Codiam (T o ... 0 Ty, (A))%.

In fact, the existence of such a measure is due to ideas from Thermodynamic
Formalism, which we shall discuss later. In particular, if x = 7((2,)5%)
then

i (08 1B €) . logu(T 0. 0Ti,(A))

=d.
0 loge n—-+oo log diam (Ty, o ... 0 Ty, (A))

Thus by the Mass distribution principle we have that dimp(A) > d =
dimp (A). O O

In particular, this applies to two of our favorite examples.

Corollary 5. For hyperbolic Julia sets and Schottky group limit sets the
Hausdorff dimension and the Box dimension coincide.

We now turn the issue of calculating the dimension of limit sets. We
begin with a special case, and then subsequently consider the more general
case.

6.1.1 Expanding maps and conformal iterated function schemes

In many of our examples, the iterated function scheme arises from the in-
verse branches of an expanding map. Let T : X — X be a C' confor-
mal expanding map (i.e., the derivative is the same in all directions and
|T'(x)] > XA > 1) on a compact space.

Example 41. For the set Ey C [0, 1] consisting of numbers whose continued
fraction expansions contains only 1s or 2s, we can take T : E5 — FEo to be
T(z) = 2 — [L]. We can consider the local inverses Ty : [0,1] — [0,1] and
T5 :[0,1] — [0,1] defined by T (z) = 1/(1 + ) and T1(x) = 1/(2+ z). We
can then view Eo as the limit set A = A(T1,T3).

More generally, to associate an iterated function scheme, we want to
introduce the idea of a Markov Partition. The contractions in an associated
iterated function scheme will then essentially be the inverse branches to the
expanding maps. Let T : X — X be a C'T locally expanding map on
X C R4
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Definition 18. We call a finite collection of closed subsets P = {P}}_, a
Markov Partition if it satisfies the following:

1. Their union is X (i.e., UlePi =X);

2. The sets are proper (i.e., each P; is the closure of their interiors,
relative to X );

3. Each image TP;, for i = 1,...,k, is the union of finitely many ele-
ments from P and T : P; — TPF; is a local homeomorphism.

=3.0in partition.eps
The set X is partitioned into pieces Py, ..., Py each of which is mapped
under T onto X.

In many examples we consider, each image TP, = X, fori=1,...,k, in
condition (iii). (Such partitions might more appropriately be called Bernoulli
Partitions.)

We shall want to make use of the following standard result.

Lemma 35. For T : X — X a C'™ locally expanding map, there exists a
Markov Partition.

The proof of this result will be outlined in a later Appendiz.

The usefulness of this result is that we can now consider the local inverses
T, : TP, — P, ice., ToTi(x) = x for x € TP;, (extended to suitable
open neighbourhoods) to be an iterated function scheme for which X is the
associated limit set.

Example 42 (Hyperbolic Julia sets). Let T : J — J be a linear fractional
transformation on the Julia set. Assume that the transformation T : J — J
is hyperbolic (i.e., 3C > 0, A > 1 such that |(T™)'(z)| > C\", for all x € J
and n > 1). Then Proposition 2.3.1 applies to give a Markov partition.

If we consider the particular case of a quadratic map Tz = 2% + ¢, with
le| small then we can define the local inverses by

Ti(z) =+Vz—cand Ta(z) = =z — ¢
Of course, in order for these maps we well defined, we need to define them

on domains carefully chosen relative to the cut locus.

Example 43. Limit sets for Kleinian groups. We will mainly be concerned
with the special case of Schottky groups. In this case, we have 2n pairs of
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disjoint disks Df,Di_, with 0 < ¢ < n, whose boundaries are the isomet-
ric circles associated to the generators gi,...,gn (and there inverses). In
particular, we can define T : A — A by

T(z) = g;(2) if = € Dj g;'(2) if z € D}
If all of the closed disks are disjoint then T : A — A is expanding.

We now want to state the generalization of Moran’s theorem to the non-
linear setting . The main ingredient that we require if the following:

Example 44. Given any continuous function f : X — R we define its
pressure P(f) (with respect to T') as

P(f) := limsup 1 log Z of @)+ (Tx)+. +f(T" )

n
n—-+o0o TP e

reX

Sum over periodic points

(As we shall presently see, the limit actually exists and so the “limsup” can
actually be replaced by a “lim”.) In practise, we shall mainly be interested
in a family of functions fi(x) = —tlog|T'(z)|, z € X and 0 <t < d, so that
the above function reduces to

1 1
0,d] — Rt — P(f;) = limsup — lo § —_—
0.4 o =lmapy sl 2 @
rzeX

The following standard result is essentially due Bowen and Ruelle. Bowen

showed the result in the context of quasi-circles and Ruelle developed the
method for the case of hyperbolic Julia sets.

Lemma 36 ( [Bowen-Ruelle). Let T : X — X be a C'* conformal ex-
panding map. There is a unique solution 0 < s <d to

P(=slog|T"|) = 0,
which occurs precisely at s = dimpg (X)(= dimp(X)).

Proof. We shall explain the main ideas in the proof in the next section. [
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dimH (X)

Example 45 (Reduction to the case of linear contractions). In the case of
linear iterated functions schemes this reduces to Moran’s theorem. Let us
assume that T; = a;x + d; then we can write

1 1 1 1 \"
—_— = + . e + [
2 (T () [* 2 @i, [*- -+ |ai, [ <|a1t |an\t>

Thez=z 115eenin
reX

In particular, since one readily sees that this expression is monotone decreas-
g as a function of t we see from the definitions that the value s such that
P(—slog|T'|) = 0 is precisely the same as that for which 1 = W%P—i_. : -—i—ﬁ,
i.e., the value given by Moran’s Theorem.

Finally, we observe that the function t — P(f;) has the following inter-
esting proprties

(i) P(0) =logk;
(ii) t — P(ft) is strictly monotone decreasing;
(iii) t — P(f:) is analytic on [0,d].

Property (i) is immediate from the definition. We shall return to the proofs
of properties (ii) and (iii) later. For the present, we can interpret analytic to
mean having a convergent power series in a sufficiently small neighbourhood
of each point.

One particularly nice application of the above theorem and properties
of pressure is to showing the analyticity of dimension as we change the
associated expanding map. More precisely:
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Corollary 6. Let Ty, with —e < X\ < ¢, be an analytic family of expanding
maps. Then \ — dimg(Ay) is analytic.

Proof. The function f(\,t) = P(—tlog|T}]) is analytic and satisfies %()\, t) #
0. Using the Implicit Function Theorem, we can often deduce that for an
analytic family Ty the dimension A — dim(A)) is analytic too. O O

This applies, in particular, to the examples of hyperbolic Julia sets and
limit sets for Schottky groups.

Example 46 (Quadratic maps). The map T.(z) = 2% + ¢ has a hyperbolic
Julia set J. provided |c| is sufficiently small. Ruelle used the above method
to show that ¢ — dim(J.) is analytic for |c| sufficiently small. (He also gave
the first few terms in the expansion for dim(J.), as given in the previous
chapter).

In the next section we explain the details of the proof of Theorem 2.3.2.

6.1.2 Proving the Bowen-Ruelle result

Let T : X — X be a map on X C RL. By an expanding map we mean one
which locally expands distances. In the present context we can assume that
there exists C' > 0 and A > 1 such that

|| D T" (v)|| = CA"*||v||, forn > 1.

The hypothesis that T is C'TY means that the derivative DT is a-Hélder
continuous, i.e.,

D, T —D,T
DT 1= sup 12T = DT

< 400
o2y 1T =Yl

Here the norm in the numerator on the Right Hand Side is the norm on
linear maps from R? to itself (or equivalently, on d x d matrices).

Let T : X — X be a C™ locally expanding map on X C R?. Consider
a Markov Partition P = {P;}t_, for T. If we write T; : X — P; for the local
inverses then this describes an iterated function scheme. For eachn > 1 we
want to consider n-tuples © = (i1,...,i,) € {1,...,k}"™. We shall assume
that TP, D P, forr =2,...,n. It is then an easy observation that

Pi::ﬂn'.‘EQ’Pil

18 again a non-empty closed subset, and the union of such sets is equal to
X.

We would like to estimate the dimension of X by making a cover using
the sets P;, |i| = n. A slight technical difficulty is that these sets are closed,
rather than open. Moreover, if we try to use their interiors we see that they
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might not cover X. The solution is rather easy: we simply make a cover by
choosing open neighbourhoods U; O P; which are slightly larger, and thus do
form a cover for X. Let us assume that there is 0 < 6 < 1 such that

diam(U;)

<1 " .
diam(P,) +0(0"), foralli

Let us define T; : P;;, — P; by Ty =T;, 0---0T;
We can now obtain the followz'ng bounds.

in*

Lemma 37. We have the following bounds.
1. There exist By, Bo > 0 such that for all ¢ and oll z,y € X:
T3 ()|
T3 ()]
2. There exist C,Cy > 0 such that for all i and for all x € X :
diam(F;)
Cr < ——7~7
|75 ()]
In particular, fort > 0, there exist Cp,Co > 0 such that for any x and
n>1:
> lij=n diam( 2)
> jij=n |(T9)' (= =

Proof. Part (1) is sometimes referred to as a telescope lemma. If D =
sup; || log |T}|[|a and 6 = sup; |[T][|cc < 1:

B <

< Bo

S-S

< (Ch.

C; <

og|71(0)] — g T/ )l| = 3 [0 74 (T, -+ )| — 0817, (T, -+ )
7j=1

<Dzd i T Ty - T y)®

< DZQ”ad(x, y)* < <1 ?9a> d(z,y)”

j=1

This uses the Chain Rule and Holder continuity. In particular, setting C' =
L= > 0 we have that for and z,y € X and all n > 1 and |i| = n with
Zl =1

[log [T} (z)| — log |T{ (y)|| < Cd(x,y)*.
In particular, part (1) follows since:
e—C’diam( ¢ < |T,($)|

— 177 (y)|

= exp (log [T} (x)| — log | T} (y)|) < Z2mX)” .
=:B>
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Since the contractions are conformal we can estimate
B\|T;(z)| < diam (P;) < Bs|Tj(x)|.
This suffices to deduce Part (2). O

It is not surprising that the part of the approach to proving the Bowen-
Ruelle result involves understanding the asymptotics of the expression Z\g\:n diam(Ui)d
as n — 00, since this is intimately related to definition involving covers of
the Hausdorff dimension of X. Moreover, the last Propostion tells us that
it is an equivalent problem to understand the behaviour of 3y _, (T;) (x)].
Perhaps, at first sight, this doesn’t seem to be an improvement. However,
the key idea is to introduce a transfer operator.

Definition 19. Let C*(P) be the space of Hélder continuous functions on
the disjoint union of the sets in P. This is a Banach space with the norm

A= 1[flloo + [Iflla where

|f(z) = f()l
d(z,y)*

For each t > 0 we define a bounded linear operator Ly : C*(P) — C*(P) by

Luw(@) = 3 IT/(@) ' w(T)

[ £lloe = sup | f(z)] and [|f][o = sup
zeX z#y

To understand the role played by the transfer operator, we need only
observe that iterates of the operator applied to the constant function 1 take
the required form: for x € X

L) = > (1) ()",
lil=n

i.e., the numerator in the last line of Proposition 2.4.1 (2). In particular,
to understand what happens as n tends to infinity is now reduced to the
behaviour of the operator Ly.

Lemma 38 (Ruelle Operator Theorem). The operators Ly have the follow-
ing properties.

1. The operator L; has a simple maximal positive eigenvalue Ay. Moreover
the rest of the spectrum is contained in a disk of strictly smaller radius,
i.e., we can choose 0 < 6 < 1 and C > 0 such that |L}1 — A\}| <
CA\PO", forn > 1.

2. There exists a probability measure u and D1, Do > 0 such that for any
n>1andl|il=nandz € X:
p( ;)
D)} < ——=— < Do)\
T e
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3. The map X : R — R given by \(t) = A is real analytic and N (t) < 0
for allt e R.

We shall return to the proof of this result later. However, for the present
we have an immediate corollary.

Corollary 7. We can write P(—tlog|T"|) = log A¢.

Proof. For each |i| = n we can choose a periodic point 7"z = x such that By
Proposition 2.4.1 (1), if we let Cy = B, Cy = B > 0 then for any zg € X
we have C1|(T") (xo)|7t < [(T™) (x)|7t < Co|(T™)(x0)|~t. Summing over
all possible |i| = n we have that:

Cr(LPD)(mo) < Y (T (2)7" < Co(L1)(wp). (2:2)

Trr=x
The result then follows from the definition of pressure and part (2) of Propo-
sition 2.4.2. O

In particular, properties (ii) and (iii) follow from this corollary.
By Part (2) of Proposition 2.4.1 and (2.2) we see that for some Dy, Dy >
0and 0 <t<n:

DA} <) diam(Uy)" < Do)}, forn > 1.

lil=n

Recalling the definition of Hausdorff dimension we can bound

HY{(X) = inf > diam (Up)' p <> diam(U;)" < DoAY,
U;eU lZ]=n

where the infimum is over open covers U whose elements have diameter at
most € > 0, say, and n is chosen such that € = max;—,{diam(U;)}. We
can therefore deduce that if t > d then \y < 1 and thus lime_,o H/(X) =
0. In particular, from the definition of Hausdorff dimension we see that
diamH(X) < d.

To obtain the lower bound for dimg(X) we can use the mass distribution
principle with the measure p. In particular, for any |i| = n and x € X we
can estimate

u(P) = / (Lixp)dp < DaN|T(@)|? < DoC; N (diam(P)"

Given any x € X and any € > 0 we can choose n so that we can cover the
ball B(z,€) by a uniformly bounded number of sets P; with |i| = n.

In particular, since \q = 1 we can deduce that there exists C > 0 such
that w(B(z,€)) < Ce? for € > 0. Thus, by the mass distribution we dedude
that dimpg(X) > d.

This completes the proof of the Bowen-Ruelle Theorem (except for the
proof of Proposition 2.4.2). It remains to prove Proposition 2.4.2
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Proof of Proposition 2.4.2. Fix C' > 0. We can consider the cone of func-
tions

C={f:C—=R:0< f(z)<1land f(z) < f(x)eClPVI" vz y e X}.

It is easy to see that C' is convex and closed with respect to the norm || ||oc.
If g € C then for x # y we have that

l9(z) —9()| < lg@)| (exp (Cfllallz = yl|*) = 1)
< 9llocClI S lla exp (C flla) [z =yl

from which we deduce that C is uniformly continuous in the || - ||oc norm,
and thus compact by the Arzela-Ascoli theorem.

Given n > 1 we can define L, (g) = L(g+1/n)/||L(g + 1/n)||. Since the
operator L is positive, the numerator is non-zero and thus the operator L,
is well defined. Moreover, providing C is sufficiently large we have that

Lnf(z) < Lnf(x)ecllw—yl\“

from which we can easily deduce that L,(C) C C. Using the Schauder-
Tychanoff Theorem there is a fixed point L,g, = g, € C, i.e.,

L(gn +1/n) = ||L(gn + 1/n)[|(gn + 1/n). (2.3)

Finally, we can again use that C' is compact in the || - || norm to choose a
limit point h € C of {h}$° ;. Taking limits in (2.3) we get Lih = A\¢h, where
At = [|Lth||so-

Next observe that Li(h 4+ 1/n)(z) > inf{(hn(z) + 1/n)e~/ll=} and so
|L¢(h + 1/n)||oo > e/l Taking the limit we see that \; > e~ [lflle > 0.
To show that h > 0, assume for a contradiction that h(xg) = 0. Then since
Lh(zo) = 32— AL T (zo)[h(Tizo) we conclude that h(Tize) = 0 for all
lil = n and all n > 1. In particular, h(x) is zero on a dense set, but then
it must be identically zero contradicting Ay = ||Lih||oc > 0. To see that A,
is a simple eigenvalue, observe that if we have a second eigenvector g with
Lig = Mg and we let t = inf{g(z)/h(x)} = g(x0)/h(zo) then g(z) —th(z) >
0, but with g(xg) — th(xg) = 0. Since g — th is again a positive eigenvector
for L¢, the preceding argument shows that g —th = 0, i.e., g is a multiple of
h.

Let us define a new operator Myw(z) = \; tw(2) ™1 Y2, [T (z)|the (Tiz)w(Ty).
By defintion, we have that M;1 = 1, i.e., M, preserves the constants. Let M
be the space of probability measures on X. The space M is convex and com-
pact in the weak star topology, by Alaoglu’s theorem. Since M; : M — M
we see by the Schauder-Tychanof theorem that M;u = pu, or equivalently,
Lyv = M\, where v = hy, i.e.,

/(Ltw)(m)dy(a:) =N\ /fw(x)d,u(a;) (2.4)
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for all w € C(X). We can consider the characteristic function xp, and then

pw(P;) = /XPd,Ut Ay /LtXPd,Ut /I y)|dp(y)

However, by Proposition 2.4.1 (1) we can bound

B.By (T K/W ()\dn(y) < BaBY (T ()]

for all z € X. Thus Part (2) of Proposition 2.4.2 follows.
It is a simple calculation to show that there exists C' > 0 such that

Ml < Cllklloc + a"|[Hl]a, for n > 1. (2.5)

We first claim that M*h — [ gdp in the || - ||~ topology. To see this
we first observe from (2.5) that the family {M*h}>°, is equicontinuous.
We can then choose a limit point h. In particular, since M;1 = 1 we see
that suph > sup Myh > --- > sup M*h — sup h, from which we deduce
sup M*h = sup h = h(z), say, for all n > 1. In particular, h(T;z) = h(z) for
all |il =n and n > 1 and so h is a constant function. We can denote by C*
the functions h € C*(X) which satisfy [ hdp = 0. To show that the rest of
the spectrum is in a disk of smaller radius we shall apply the spectral radius
theorem to M; : C- — Ct to show that its spectrum is strictly within the
unit disk. (The spectra of M; and Ly agree up to scaling by ;). For h € C+
the convergence result becomes ||M/'h|| — 0. By applying (2.5) twice we
can estimate:

IMZ"hllo < ClIM{hljoo + ™| MRl
< C|M{h|[oo + o™ (Cllloo + [[R]la)
— 0 asn — +o00.

In particular, for n sufficiently large we see that ||[M?"h||, < 1 and so the
result on the spectrum follows.

For the final part, we observe that since )\; is a simple isolated eigenvalue
it follows by perturbation theory that it has an analytic dependence on t
(as does its associated eigenfunction hy, say). To show that \; is monotone
decreasing we consider its derivative. Differentiating L:hy = Athy we can
write

Aéht + Athg = Lthé + Lt(log ‘T/‘ht)

Integrating with respect to p; and applying (2.4) we can cancel two of the
terms to get A, [ hedpy = [log | T} | hydpss. O



6.2. JULIA SETS AND QUASI-CIRCLES 95

6.2 Julia sets and Quasi-circles

6.2.1 Julia and Mandelbrot sets

The study of Julia sets is one of the areas which has attracted most at-
tention in recent years. We shall begin considering the general setting and
specialise later to quadratic maps. Consider a map T : C - C defined
by a rational function T(z) = P(2)/Q(z), for non-trivial relatively prime
polynomials P,Q € Clz]. To avoid trivial cases, we always assume that
d := max(deg(P), deg(Q)) > 2.

Definition 20. We define the Julia set J to be the closure of the repelling
periodic points i.e.

J=cl ({z eC : T"(2) = 2, for somen >1, and |(T™)(z)| > 1}) .

The Julia set J is clearly a closed T-invariant set (i.e., T(J) = J).
There are other alternative definitions, but we shall not require them. By
contrast, T has at most finitely many attracting periodic points, which must
be disjoint from the Julia set.

=4.50in juliaset.ps
i

We choose the point ¢ = 7 in the parameter space (left picture) and draw

the associated Julia set for T(z) = 22 + % (right picture).

Let us now restrict to polynomial maps of degree 2. We can make a
change of coordinates to put these maps in a canonical form. For a fixed
parameter ¢ € C consider the map T, : C — C defined by T. : z — 2> + c.
Let J. be the associated Julia set. To begin with, we see that when ¢ = 0
then the Julia set is easily easily calculated.

Example 47. ¢ = 0 For Toz = 22, the repelling periodic points of period n
are the dense set of points on the unit circle of the form § = exp(2wik /(2" —
1)). The corresponding derwitive is |(T§)'(§)| = 2". In particular, we have
Jo = {z € C : |z| = 1}, i.e., the unit circle. Thus, trivially we have that
dim(Jo) =1.

We next consider the case of values of ¢ of sufficiently small modulus,
where the asymptotic behaviour of the limit set is well understood through a
result of Ruelle:

Proposition 10. For |c| sufficiently small:

1. the Julia set J. for T.(z) = 2* + c is still a Jordan circle, but it has
dimp(J.) = dimg (J.) > 1; and

2. the map ¢ — dimg(J.) is real analytic and we have the asymptotic

|ef?
4log?2’

dimp (Je) ~ 14 as |c| — 0.
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In a later section we shall give an outline of the proof of this result using
ideas from Dynamical Systems.

At the other extreme, if ¢ has large modulus, the asymptotic behaviour
of the limit set is well understood through the following results of Falconer.

Proposition 11. For |c| sufficiently large

1. the Julia set for T, is a Cantor set, with dimp(J.) + dimg(J.) > 0;
and

2. the map ¢ — dimg(J.) is real analytic and we have the asymptotic

2log 2

as | — +oo  [7].

Moreover, there are also a few special cases where the Julia set (and its
dimension) are well understood. For example, the case c = —2 is particularly
simple:

Example 48. When ¢ = —2 then J_o = [-2,2], i.e., a closed interval and
in this case we again trivially have that dim(J_2) = 1. For ¢ < —2, the
Julia set is contained in the real axis.

Unfortunately, in general the Hausdorff dimension of the Julia set for
most values of ¢ cannot be given explicitly. However, the general nature of
the Julia set is characterized by the following famous subset of the parameter
space c.

Definition 21. The Mandelbrot set M C C is defined to be the set of points
¢ in the parameter space such that the orbit {T2(0) : n > 0} is bounded,
i.€.,

M :={ceC :|T*0)| 4 400, asn — +oo}.

=38.0in Mandelbrotset.eps
The Mandelbrot set in the parameter space for ¢ In fact, the importance

of z =0 in this definition is that it is a critical point for T, i.e., T.(0) = 0.
The significance of the Mandelbrot set is that it actually characterizes the
type of Julia set J. one gets for Tt.

Proposition 12. If ¢ € M then J. is a Cantor set. If c € M then J. is a
connected set.

For more specific choices for the parameter ¢ we have to resort to numer-
ical computation if we want to know the Hausdorff dimension of J.. We shall
study this problem in detail in a latter chapter. However, for the moment,
we shall illustrate this by examples of each type of behaviour.

example
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(i) Let us consider two points in the Mandelbrot set. For ¢ = i/4,say, we
can estimate

dimH(JZ-/4) = 1.02321992890309691 . . .
For ¢ =1/100, say, we can estimate

dimp (J; /100) = 1.00003662 - - -

(ii) Let us consider two points outside of the Mandelbrot set. For ¢ =
—3/2 4 2i/3, say, we can estimate

For c = —5,say, we can estimate

dimp (J_5) = 0.48479829443816043053839847...

However, an important ingredient in the method of computation of these
values is that the Julia set should satisfy an additional property which is
particularly useful in our analysis our analysis. More precisely, we need to
assume that T, is hyperbolic in the following sense.

Definition We say that the rational map is hyperbolic if there exist § > 1
and C' > 0 such that for any z € C we have (T™)'(z)| > C", for all n > 1.

Hyperbolicity, in various guises, is something that underpins a lot of
our analysis in different settings. For the particular setting of rational
maps, hyperbolicity can be shown to be equivalent to the Julia set J be-
ing disjoint from the orbit of the critical points C' = {z : T'(z) = 0} (i.e.
J N (U2 ,T™(C)) = (). However, we shall not require this observation in
the sequel.

Proposition 13. If T, is hyperbolic then dimg(J.) = dimp(J.).

Proof. Actually, in the case of hyperbolic maps we can think of the Julia
set as being the limit set of an iterated function scheme with respect to the
two inverse branches for T,.. In this case, the result is just a special case of
more general results (which we return to in a later chapter). O

As a cautionary tale, we should note that once one takes ¢ outside of
the region in the parameter space corresponding to hyperbolic maps, then
the situation becomes more complicated. For example, the dimension of the
Julia set may no longer be even continuous in ¢, in contrast to the hyperbolic
case where there is actually a real analytic dependence. This is illustrated
by the following.
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Remark 10 (Parabolic Explosions). Of course, as ¢ crosses the boundary
of the Mandelbrot set the Julia set J. (and its Hausdorff dimension) can
change more dramatically. Douady studied the case as ¢ — % (along the
real azris). As c increases the dimension dim(J.) increases monotonically,
with derivative tending to infinity. However, as ¢ increases past % there is

a discontinuity where the dimension suddenly stops.

Let us return to studying the Mandelbrot set. Although the Mandelbrot
set is primarily a set in the parameter space for the quadratic maps, it has a
particularly interesting structure in its own right. Some of its main features
are described in the following proposition.

1. The set M lies within the ball of radius 2 given by {c € C : |¢| < 2};

[\

. The set M is closed, connected and simply connected;

3. The interior int(M) is a union of simply connected components;

o

. The largest component of int(M) is the main cardioid defined by
Mi={weC:|1l-v1-4w| <1}
and for any ¢ € M; the map T, is hyperbolic;

5. For ¢ ¢ M, the map T, is hyperbolic.

Proof. For part (1), suffices to show that if |¢|] > 2 then the sequence
{T™(0) : n >0} is unbounded. If |z| > 2, then |22+c| > |2%|—|¢| > 2|z|—]c|.
If |z| > |c|, then 2|z| —|c| > |z|. So, if |z| > 2 and |z| > ¢, [22+¢| > ||, so the
sequence is increasing. (It takes a bit more work to prove it is unbounded
and diverges.) If |c| > 2, the sequence diverges.

The Mandelbrot set is known to be a simply connected set in the plane
from a theorem of Douady and Hubbard that there is a conformal isomor-
phism from the complement of the Mandelbrot set to the complement of the
unit disk.

For the other properties we refer the reader to any book on rational maps

(e.g., [?7]). O

Although we don’t have a comprehensive knowledge of which parameter
values ¢ lead to T, being hyperbolic, we do have some partial information.
For example, it is known that a component H of int(M ) contains a parameter
¢ for which T, is hyperbolic if and only if T, is hyperbolic for every ¢’ € H. In
particular, any ¢ in the central cartoid M7 the map T, has the attracting fixed
point %(1 — /1 — 4w), and thus is hyperbolic because of another equivalent
condition for hyperbolicity is: Either ¢ ¢ M or T, has an attracting cycle.
We call H a hyperbolic component.
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At first sight, one might imagine that there is little direction between
the metric properties of the Mandelbrot set and the associated Julia sets.
However, there are are a number of surprising connections. We mention
only the following.

Theorem 10 (Shishikura). The boundary of M has Hausdorff dimension
2. For generic points ¢ in the boundary the associated Julia set for T, has
Hausdorff dimension 2.

Although considerable work has been in recent years done on under-
standing the structure of the Mandelbrot set, and enormous progress has
been made, there remain a number of major outstanding questions. The
solution to these would give fundamental insights into the nature of the
Mandelbrot set.

Major Open Problems However, it is a major conjecture that the bound-
ary OM is locally connected (i.e., if every neighbourhood of OM N B(z,€)
contains a connected open neighbourhood). Another important question is
whether there exist any examples of Julia sets which can have positive mea-
sure. Finally, it is apparently unknown whether every component of int(M)
is hyperbolic.

6.2.2 Random iterated function schemes

6.2.3 [-expansions and Fat Sierpinski triangles
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Chapter 7

Projections and slices

In this chapter we discuss two important results due to Marstrand.!

7.1 The Projection Theorem

We begin with one of the classical projection theorems. Let A C R? and
po : R?2 — R correspond to the linear projection onto the line at an angle
0 to the x axis. More precisely, let § = (cos6,sinf) and for z = (z,y) we
write z - @ = (zcosf + ysinf) and then the projection is given by

po:R2 >R
po(e,y) =z -0
Example 49. Consider the middle third Cantor set C C [0,1] and let X =

C x {0} C [0,1] x [0,1] then dimy(X) = iggi For 6 # £7 then py(X) C

R is a scaled version of C which again has dimpg(pgX) = %23?,’ On the

other hand for = +m we have that pg(X) = {0} C R which therefore has
dimp (ppX) = 0.

Let A denote one dimensional Lebesgue measure on the real line.

Theorem 11 (Marstrand Projection Theorem). Let A C R? and dimy A =
S.

1. If s <1 then for almost all 6, dimp pg(A) = dimpy A.
2. If s > 1 then for almost all 6, A\(pg(A)) > 0.

1John Marstrand was essentially supervised by Besicovich and his famous results from
1954 came from his PhD thesis. Marstrand wasn’t very prolific, but he had many outside
interests including becoming the British over 50 Fell-racing champion. Falconer attributes
to him the insightful comment ” There is only one idea in mathematical analysis: you
integrate a function in two ways and apply Fubini’s theorem. The difficulty is finding the
right function.”

101
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Figure 7.1: The result shows that if the set is small enough there is no drop
in the Hausdorff dimension for typical directions.

Although this result was first proved in 1954, Kaufmann introduced an
alternative method, which we will follow. We begin with a preliminary
lemma, which is a version of Frostman’s lemma.

Lemma 39. Assume that H'(X) > 0. We require the following fact: There
ezists a compact set K C X with 0 < HY(K) < +00 and b > 0 such that
HY (K N B(z,r)) < brt

We omit the proof.
Lemma 40. Let 0 < s < t.

1. If HY(X) > 0 there there exists a measure on p on X such that for all

t'>t,
// |:c— \t' <

2. If u is a probability measure such that

// Iw—yls =

Proof. By the previous lemma we can choose a compact set K. Let p =
H'K be the restriction to K. 2
We begin with part (1).We can define ¢ : K — R by

then dimpy (X) > s.

o(x) :/ %y)t, for each z € K.
K |z —yl

2Here we are using that H'(-) gives rise to a measure. This requires a proof, which we
have omitted
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We can then bound

_ du(y) du(y)
¢($) B /a: y|<1 ‘.%' - y‘t/ - /|x—y|21 |1’ - y|t

_Z/ <lz—yl< du(y), +/| %y)t,

y|t z—y|>1 |.CE - y|
u(B(z, n)) n
< Tt/z + p(R™)
n=1
oo b .

I
—

n

for some constant C' > 0. Thus we have that

JoJ S = foemes

This completes the proof of Part (1).
To prove part (2), let us now define ¢ : K — R by

v = [ W) 1k, .

|z —y|*

In particular, by choosing M > 0 sufficiently large the set
Ay ={y e K : ¢(y) < M}

satisfies u(Apr) > 0. Let v = p|Ap be the (further) restriction to Apy.
Then for all x € A and r > 0 we have

dv(y) dv(y) 1
M /A > /B - > —u(B(z,r))

M ’x_y’S T)NAp |x_y‘s e

In particular, v(B(z,r)) < Mr® for all » > 0. Thus by the Mass Distribution
Principle we have that dimg(A) > s. This completes the proof. O

After this preparation, we now come to the proof of the theorem.

Proof of Marstrand Projection Theorem. For part (1), let A C R? where
dimg(A) < 1. We begin by observing that for any 6 we have that pg : X — R
is Lipschitz and thus dimg (pg(X)) < dimg(X). It remains to show that for
almost every 6 we have an equality.

Fix any ¢t < dimg(A) then from the definition of Hausdorff dimension
we know that H'(A) > 0. Thus by the first part of the second lemma there
exists a probability measure p on A such that

// \x—y\t = (69)
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We denote by g = pop the projection of the measure i onto the line R (i.e.,
po(I) = p(p, ' I) for any interval I C R) then

po(la, b)) = (AN py ([, b)) = p{z € A a<z-0<b}.

For any particular value of €, to show that we have that dimg(pgpA) > ¢
it sufficesto show that

[Loeseas

and apply part (2) of the second Lemma to pg. Therefore, if we can show

that
SV = o LI

then by Fubini’s Theorem we have for almost all # the inner integral (6.2)
is finite, i.e., (6.1) holds for a.e. 6 as required.

It now remains to establish (6.2). From the definition of py we can
rewrite this as

I‘///A\xe yeﬁf</ﬂ|ef|t>// |z—y|t

and we know by (6.0) that the second part of this last term is finite. Thus

it only remains to show that,
™ de
< 00. 6.3
/0 o = (63

We can rewrite this last integral as

/7r aé _/” a#
o |z-0"  Jo leos(r —0)""

Moreover, the derivative of cos(T—#) is bounded away from 0 when cos(7—6)
is equal to 0 so when | cos(7 — )| is close to 0 it can be bounded below by
Cxz! for some C > 0. Since ¢ < 1 this means

/W 6 g
o [cos(r — o)t =

Thus I < oo for any ¢ < s and so the proof is complete.
We turn to the proof of part (2). Let d = dim(K) > 1. Let us first
assume that 0 < my(K) < 400 and there exists C' > 0 such that

mg(K N B,(z)) < Cr?

for x € K and 0 < r < r. We can then define a measure p on R2 by
w(A) = pg(K N A), where A is a Borel set.

Let py be the projection of the measure onto the real line R such that
[ fdug = [(fomg)dp. It suffices to show that for almost all § € (—7/2,7/2)
the support of ug has positive measure.
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Lemma 41 (Riemann-Lebesgue). Let n be a finite measure on R with com-
pact support. Let

+oo
Alp) = / P (z)

—00

be the Fourier transform of the measure. If 0 < f_Jr;o [7(p)|2dp < +o0 then
the support of n has positive Lebesque measure.

Proof of Riemann-Lebesque Theorem. Since 0 < f+°° 7(p)|?dp < +oo we

have by Plancherel’s theorem that ¢(z) = [~ oo eipi(p)dp is well defined,
square integrable and dn¢dx and

+o0 +oo
/_ ()2 = / w2 > 0.

The support of ¢, and thus support of 1, cannot have zero Lebesgue measure.
O

We return to the proof of Part (2) of the Marstrand Theorem. We want
to show that for for almost all # € (—m/2,7/2) we have that the Fourier
transform satisfies

“+oo +oo +o0 +o0
/ / =2y (1) / / 000y () dp(v).
27r

~ ~ 1 [foo oo .
|,u9(p)|2 + |M9(p)+7r|2 — 7T/ / cos(pi(v — u).vg)dp(u)du(v)

Since

we can integrate over 6 to write

2 too oo too oo 2w
i Y Y SRO——

by Fubini’s theorem. Let J(z) = 5 f027r cos(cos #)df and then we can write

27
/0 o (p)|2d6 / / Tl — ul)))du(u)du(v).

Thus we can write

/C; /Ozﬂlﬂe(p)lzdedpg//J(pHv—u||))du(u)du(v)
=[] [ s~ uautapante

T ) g
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Since fj;o Jo(z)dz < 400 we can write [, f \1ig(p)[2dbdp < C [ [ Toal u” dp(u)dp(v)
uniformly in ¢ > 0. It is easy to see the 1ast integral is finite. Let 0 < a < 1,

1
/ T du(v)
an<|lu—v||<an—1 H’U - u”

[e.9]

1 1
[ o = / fo—a )+ 2

n=1

< u(R2) + 3 a7 (B (u)
n=1

C

< u(R?
u( )+a—ad

for all u € R2. Thus

[ [ oty < ) (e« C0) < o

Letting a — +o0 and using Fubini’s theorem we get

/QW/ g (p |dpd0<C//Hv_ (v)dp(u) < 400

Thus [ |fg(p)|*dp < 400 for almost all 6 € (—7/2,7/2).

We claim that [ |zg(p)|?dp > 0 for all 6 € (—7/2,7/2). Otherwise
f_oo |¢(x)|?dz = 0 and then ¢ = 0 almost everywhere. Since dug = ¢dz.
But this would imply ug(R) = int>,_é(x)dz = 0 and so u(R?) = 0, contra-
dicting the assumption that mg(X) > 0.

In the general case, we can choose d' < d (with mg(X) = +o0) and
then choose X’ C X with 0 < mg (X) < 400 (see [?]). The above approach
applied to X’ shows that for almost every 6 we have myg(X'). C m9(X) has
positive Lebesgue measure.

O

Example 50 (Example). Consider the iterated function scheme in R? given
by contractions 11, T>,Ts of the form

Tl(l‘) y) = (‘/1‘1/37 y/S)
Ty(z,y) = (x/3,y/3) + (0,1)
Ts(x,y) = (x/3,y/3) + (1,0)

and let A C R? be the associated Limit set. Since the iterated function
scheme theorem holds we know that this set has Hausdorff dimension dimg(A) =
1.

=2.25in projectingexample.eps
For the iterated function scheme T7,75,T5 we know the Hausdorff Di-
mension of the limit set (since Moran’s Theorem applies). Thus for “typical”
A be know the Hausdorff Dimension of the limit set for Sy, 59, S3.



7.1. THE PROJECTION THEOREM 107

Consider the projection pg : R> — R onto the line at an angle §. The
image limit set pg(A) C R is the limit set for the iterated function scheme
on R given by contractions 17,75, T5 of the form

Sl(l') = l‘/3
Sa(x) =x/3+1
Sa(x) =x/3+ A

(up to scaling the line by cosf) where A = tanf on the real line. Let us
denote Ay = pg(A).

The open set condition does not apply in this case. However, from
Theorem 6.1 we can deduce that for a.e. A (or equivalently for a.e. 6) we
have that dimy (A) = 1. Clearly, this cannot be true for all A. For example,
when A\ = 0 then S; = S5 and the iterated function scheme has a limit
set consisting only of a Cantor set (the middle (1 — 2X) Cantor set) with
Hausdorff Dimension — log 2/ log A.

There is a natural generalization to projections p : R” — R™.

Remark 11 (Fractal Sundial). Falconer proposed that it would be possible
to construct a (more complicated) Fractal set X with the property that the
projection in different directions could be prescribed sets. For example, given
a three dimension set X one could consider the different projections as shad-
ows from sunlight. As the position of the sun moves during the day so the
projection changes. Therefore, a judicious construction of X might lead to
shadows which actually display the time, i.e., a digital "fractal” sundial. In

particular, the mathematical principle here is that given sets Yy C R there
exists X C R? such that pg(X) = Yo C R (up to a set of zero Lebesgue
measure).
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7.2 The Slice Theorem

Assume that A C R? has dimension dimy(A). Let

Ly ={(z,y): y € R}

be a vertical line. We can make the following assertion about the dimension
of a typical intersection AN L,.

The next theorem shows that if the set is large enough then typical slices
have dimenstons that drop by at least 1.

Theorem 12 (Marstrand’s Slice Theorem). Assume that dimg(A) > 1,
then for almost every x € R we have that dimg (AN Ly) < dimpg(A) — 1.

=2.25in projectingtheorem.eps
For a typical vertical slice through a large set A the dimension of the
slice drops by at least 1.

We begin with a preliminary result

Lemma 42. For 1 < a <2 we can write
H*(A) > /Hal(A N Lg)dzx

Proof. Given €, > 0, let {U;} be an open cover of A with diam(U;) < € and
such that
> diam(U;) < HX(A) + 6.

We can cover each U; by a square I; x J; aligned with the axes (whose sides
are of length /; at most the diameter of U, i.e., diam(U;) < €).
Consider a function f : R? — R defined by

f(‘r7y) = ZXIiXJi(xvy)lia_za
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where
1 ifx e Iz-,y e J;

0 otherwise.

XIixJ; (%, y) = {

The sets {L, N (I; x J;)} form a cover for L, N A of diameter € > 0. Thus
using this cover we have that

HYWANL) < > I¢h (6.3)
{’i : JCEI,L}
For a fixed x we have
/ f(@,y)d / (me (, )5~ 2>dy—e >t
{i : .CBEIZ}
Thus we have that

INNCSINEaE

i x€el;

In particular, by (6.3) we have that

/Hal(AﬂLx)dxg/oo >t dx:/: /Z f(x,y)dzdy

T \i:ozel
<Zla 2l2 Zla
< HQ(A)+5

using that [%_ [% f(z,y)dzdy = >, Area(I; x )82,
Letting § — 0 gives

[ et an L < e a)
Letting € — 0 gives that H2~1(A) ~ H®~!(A) and so
/Ho‘l(A N Ly)dz < H*(A)

This completes the proof of the lemma. O
After this preparation, we now have a short proof of the Slice theorem.

Proof of Theorem 12. Let a > dimp(A) then by Lemma 42
0=HYA) = / HYAN Ly,)dx.

Thus, by Fubini’s Theorem H* '(AN L,) = 0 for a.e. z. In particular,
dimpg (AN Ly) < a—1 for such z, as required. O
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Example 51. Fiz % <AL % Consider the iterated function scheme in R?
given by contractions T1,T5,T5 of the form

Tl(.CC,y) = ()\%,)\y)
To(z,y) = (Az, \y)

—~

and let A C R? be the associated Limit set. Since X < % the Open Set
Condition holds and by Moran’s Theorem we know that the Limit set A has
Hausdorff dimension dimg(A) = —iggi > 1. Let us take the vertical slices
L, N A through this limit set.

=2.25in projectingexample2.eps
The dimension drop on typical slices is strictly greater than 1. The pro-

jection onto the x-axis is a middle (1 — 2\) Cantor set X. For x € X the
Haudorff Dimension dimg (L, N A) is in the range |0, —%ggi]. However, X
has zero measure. On the complement R — X we have that L, " A = 0. In

particular, dimpg(Ly; NA) =0 < dimg(A) — 1 (a strict inequality).

7.3 A generalized slice theorem

Assume that A C R? has dimension dimy (A). Again, let L, = {(z,y) : y €
R} be a vertical line. The following relates dimg(A) to typical values
dimpg (AN L,) for a typical z, with respect to a more general measure .

Theorem 13 (Generalized Marstrand’s Slice Theorem)). Let B C R. As-
sume that p is a probability measure on B and C' > 0 with p(I) < C(diam([))?,
for intervals I C R. If A C R? then

dimg(A) > a+dimg (AN Ly)

the for almost every x € B with respect to p.

=2.25in projectingtheorem?2.eps
For a typical vertical slice through a large set A (relative to a measure
w on B) the dimension of the slice drops by at least the value o (depending
on the measure p).

Proof. The proof is similar to that of Theorem 6.3. Fix v > dimg(A). If
we can show that

/HV_O‘(A N Ly)du(z) < +oo

then by Fubini’s Theorem HY"*(ANL;) < 400 for a.e. (p) z. In particular,
dimpg(ANLy) <~ —a for a.e. (u) z, by definition.
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We can cover B by squares I; x J; aligned with the axes whose side
lengths [; satisfy >, 1] < e. If we define

—a—1
f(ac, y) = ZXIiXJi(x’ y)lz “
i
then we can write

[ swwdvdnts) = S0 dam(au(s) < €Yk < Ce

(6.4)
We can denote

. J; ifxel;
Qi_{

0 otherwise

then these sets form cover of FNL;. By Fubini’s theorem we can interchange
integrals and write

/Z /O; f(@, y)dydp(z) = /Z /Z (@, y)dydp(x)
B / <Z diam (Q?)”‘“) du(z)  (65)

> /HQ_Q(LI N F)du(z).
Thus by (6.4) and (6.5):
0< / HI(Ly 1 F)dp(x) < Ce
Finally, letting 6 — 0 gives
[ Hr L < 1),
and then letting ¢ — 0 gives
/HW—“(F N Ly)dz = 0.

Thus Fubini’s Theorem gives that the integrand is finite almost everywhere,
ie, H'™*(FNL,) =0 for a.e. (1) z. In particular, dimg(ANL,) <v—«
for a.e. (u) z. Since 7 can be chosen arbitrarily close to dimpg(A) this
completes the proof. O O

The slicing theorems generalize to k-dimensional slices of sets in R™.

A popular way to get one fractal from another is to drop down to a
lower dimension, either by projecting or slicing. In the interests of clarity
of exposition we will concentrate on the case of two dimensions and one
dimension.
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7.4 Application

Example 52. Let X be the gasket (with 3 squares in a 2 X 2 grid). Almost
every vertical slice X, has dimension dim(X,) = 1 < dim(X)—1= iggg —1.
For almost every x € [0,1] we can consider the binary expansion x =
Yoy 5w Then for almost all x the frequency with which x, = 1 equals %

Example 53. Let X be the gasket (with 3 squares in a 2 x 3 grid). The
vertical sets X, consist of a single point.

On the other hand, the horizonal projection corresponding toy = > > | g—ﬁ
with yn, € {0,1,2} The dimension of the intersection is

N
1
(logy 2) liminf = (1 — yn)

n=1

which s % for almost every y.
For almost every x € [0,1] we can consider the binary expansion x =
S 22 0 <m <d. Then for almost all x the frequency with which z,, =1

n=1 2n

A higher dimensional generalization is the following

Theorem 14. Let 0 < m < d. Let A C R? such that diam(A) > d —m
and let E be an m-dimensional subspace. Then for almost every x € E+ we
have that

dim(AN(E+z)) < dim(A4) — (d —m).

Exercise 9. Show that the proof of 22¢ generalizaes to prove Theorem 7972
Example 54. Fiz % <AL % Consider the iterated function scheme in R?
given by contractions 11,15, T3 of the form

TI(J:? y) = ()\CL‘, )\y)

Tg(l',y) = ()‘xvy) + (17 0)
and let A C R? be the associated Limit set. Since A < % the Open Set
Condition holds and by Moran’s Theorem we know that the Limit set A has

Hausdorff dimension dimpg(A) = —%ggi > 1. Let us take the vertical slices
L, N A through this limit set.

=2.25in projectingexample2.eps
The dimension drop on typical slices is strictly greater than 1. The pro-

jection onto the x-axis is a middle (1 — 2X\) Cantor set X. For x € X the
Haudorff Dimension dimg (L, N A) is in the range |0, —%ggi]. However, X
has zero measure. On the complement R — X we have that L, " A = 0. In

particular, dimpg(Ly NA) =0 < dimpg(A) — 1 (a strict inequality).
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Assume that A C R? has dimension dimg (A). Again,let L, = {(z,y) : y €
R} be a vertical line. The following relates dimg(A) to typical values
dimg (AN L,) for a typical =, with respect to a more general measure .

Theorem 6.5 (Generalized Marstrand’s Slice Theorem) Let B C R.
Assume that p is a probability measure on B and C' > 0 with p(l) <
C(diam(I))®, for intervals I C R. If A C R? then

dimy(A) > a+dimy (AN Ly)
the for almost every x € B with respect to u.

=2.25in projectingtheorem?2.eps
For a typical vertical slice through a large set A (relative to a measure
p on B) the dimension of the slice drops by at least the value a (depending
on the measure p).

Proof. The proof is similar to that of Theorem 6.3. Fix v > dimg(A4). If
we can show that

/HVQ(A N Lz)dp(z) < +oo

then by Fubini’s Theorem H"~*(ANL,) < +oo for a.e. (i) z. In particular,
dimg(ANL,) <+ — «for a.e. (u) z, by definition.

We can cover B by squares I; x J; aligned with the axes whose side
lengths ; satisfy Y, 1] < e. If we define

Flay) = X ()l 77
then we can write
/ / (@, y)dydu(z) = 177 diam(A;)u(B;)

(6.4)
<CY IF < Ce

We can denote

z J; if.Z‘EIZ‘
Qi:{

0 otherwise

then these sets form cover of FNL,. By Fubini’s theorem we can interchange
integrals and write

/_Z /_Z f @, y)dydp(z) = /_C: /_Z f(z,y)dydp(x)
B / (Z diam (Qf)”“”‘> dp(x) (6.5)

> / HY (L, 1 F)dp(a).
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Thus by (6.4) and (6.5):
0< /Hgo‘(Lx NEF)du(z) < Ce
Finally, letting 6 — 0 gives
/H;’_O‘(F NLy)de < H™(F),
and then letting ¢ — 0 gives
/H“’O‘(F N Ly)dx = 0.

Thus Fubini’s Theorem gives that the integrand is finite almost everywhere,
ie, H'™*(FNLg) =0 for a.e. (1) z. In particular, dimg(ANL,) <v—a
for a.e. (u) z. Since 7 can be chosen arbitrarily close to dimg(A) this
completes the proof. O O

The slicing theorems generalize to k-dimensional slices of sets in R".

7.5 Slices

Let A € R? be a Borel set. We can consider the one dimensional vertical
slices
Ay ={h: (z,y) e A} forz € A

We can formulate the following classic slice theorem.

Theorem 15. Asume that A C R? has dimy(A) > 1. Then dimg(A,) <
dimg(A) — 1 for almost every x € R with respect to Lebesque measure.

If dimpg(A) < 1 then A, = ) for almost all 2 (in fact, except on a set of
dimension at most dim(A))

Proof. We begin with the following

Claim. For 1 < a <2
H*(A) > /Ha_l(Ax)dx
Assuming this claim, we can choose o > dimp(A) and then by the claim
0=H*A) > /H“‘l(Am)dx

and the result follows since H* !(A,) = 0 for almost every z, and thus
dimpg(A;) < o — 1, for almost every x.
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Proof of claim. Fix €,6 > 0 and let {U;} be a cover for A with diam(U;) < e
and such that
> (diam(U;))* < H¥(A) +6.R
J

For each open set U; we can choose a square U; C S; with sides of length
diam(Uj;), aligned with the axes of R?.

Let I; C R? be the vertical projection onto the horizontal axis and define
a function f:R? — R by

Flay) = xs, (@, y)(diam(U;))* 2.
J
For each x the slices S, := S; N {(z,y) : y € R} form a cover for the slices
A, and have length

diam(U;) =z € I;
)‘(Sj,w) = {0 ! z ¢ I]-
J

Using this cover for A, we can bound

Ho (A <Z)\ (Sj2)*t < Z (diam(U

j i x€l;

If we fix z then

/ Z xs; (2, y)( dlam(Uj))O‘_Qd:L‘dy: Z (diam(Uj))o‘_2

D z€l; J - ozel;

which implies
//f(w,y)d:vdyz/sz:(diam(Uj))“_l-

Therefore,

inf H YA + z)dz < / Z diam(U. dx

— [ [ fa.vdzay

= Zdlam ) 2diam(U;))?

—Zdlam ) < HXAz) + 9.
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Letting § — 0 gives
/Hea_l(Ax)d:v < HZ(A).

Finally, as ¢ — 0 we have that H®"1(A,) — HY '(A;) and so ® we have
that

/Ho‘_l(Ax)dx < H*(A).

as required.

O]

7.6 Differences of Cantor sets: Hausdorff Dimen-
sion and positive measure

Let X,Y C R then we define the difference
X-Y={teR: dreX,yecY such that z —y = t}.

As a corollary to the projection theorem we have the following result on
the difference of Cantor sets.

Theorem 16. Let X,Y C R be Cantor sets.

1. If dimy(X) + dimg(Y) < 1 then for almost all A > 0 the set
X-AXY={zr—y:z,ye X, Y} CR
has Hausdorff Dimension dimg X + dimg Y.

2. If dimp(X) +dimg(Y) > 1 then for almost all A > 0 the set X — Y

has positive Lebesgue measure.

Proof. We can consider the product space X x Y which has Hausdorff di-
mension dimg(X) + dimg(Y). We can now consider the projection 7y :
X xY — R in the direction with angle 6 with tan(f) = A. In particular,
mo(x,y) = xcosf — ysinf. In particular, assuming cos @ # 0 we can divide
by cos @ to get x — Ay.

By the projection theorem we have that if dimpy(X) + dimg(Y) < 1
then dimpy(X — AY) = dimgy(X x Y) = dimpy(X) + dimg(Y) for almost
all directions @, which is equivalent to almost all A. On the other hand, if
dimy(X) + dimg(Y) > 1 then X — AY and X x Y has positive Lebesgue
measure for almost all \. O

Proposition 14. If dimp(X) + dimp(Y) < 1 then dimp(X —Y) <1 and
X —Y has zero Lebesgue measure.

3By the Monotone Convergence Theorem
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Proof. We can choose dimp(X) < d; and dimp(Y) < do with di + da < 1.
There exists ¢ > 0 such that for any 0 < € < ¢y we can cover X by [¢~%]
intervals of length ¢ and we can cover Y by [¢~%] intervals of length e. If T
and J are intervals of length ¢ then X — Y has length 2¢. Thus X —Y is
covered by e~ (11+42) thus Ny (X —Y) < e (ditd2), O

Lemma 43. Let X, Y C R be Cantor sets with thickness 71 and 1o with
T1.79 > 1 then one of the following occurs:

1. X is contained in a gap of Y

2. 'Y is contained in a gap of X

3. XNY #0

We have the following version of the Marstrand projection theorem.

Theorem 17. Let X,Y C R with dimp(X) + dimp(Y) > 1 then X — \Y
has positive Lebesgue measure for almost every A € R.

It is possible to show that for dynamically defined limit sets:

Theorem 18. For a dynamically defined Cantor set X we have dimpg(X) =
dimp(X).

Theorem 19. Let X be a limit set and d = dimy(X) then 0 < mg(X).
Moreover, for allz € X and 0 <r <1 and

LB _
c rd

This also holds in two dimensions.

Lemma 44. For dynamically defined Cantor sets the Hausdorff dimension
and thickness depend continuously on the contractions.

7.7 Sums of Continued fraction cantor sets

We can consider dynamically defined Cantor sets given by finitely many
branches of the Gauss maps, i.e., let S C N be a finite set and then let
T; : [0,1] — [0,1] by T;(z) = x}ﬂ for i € S. Let Xg be the limit set for this
iterated function scheme. In the next result we can take S = {1,2,3,4}.

Theorem 20. For S = {1,2,3,4} we have that Xg+Xg = (vV2—1,4v/2—4).
In other words, every number in the interval (\/§ — 1,4\[ —4) is the sum
of two continued fractions whose coefficients do not exceed 4.

As it is explained in Cusick-Flahive book (cf. the first two lines of the
proof of Theorem 1 in Chapter 6), M N [v/5,1/10) C U + U, where U is the
set of continued fractions with 1 and 2 in which 121 never occur.
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Lemma 45. dim(U + U) < 2dim(U) < 0.93

Cusick and Flahive explain (still in the proof of Theorem 1 of Chapter 6)
Hall’s theorem from 1971 using an explicit description of the structure of U
ultimately leading him to the fact that U 4+ U has zero Lebesgue measure. In
fact, this gives an (implicit) upper bound on the dimension of U + U (and, a
fortiori, on the dimension of MN[v/5,/10)) along the following lines. Among
several estimates, Cusick and Flahive mention that Hall noticed that U is
a Cantor set obtained by a subdivision process where each interval I of a
given stage is decomposed into four intervals I(11), I(12), 1(21), 1(22) such
that either

a) |II(11)]| < 0.15, [|I(12)]| < 0.015, ||[I(21)]| < 0.013, ||I(22)|| < 0.007;
or

b) |[I(11)]| < 0.131, | I(12)]| < 0.013, | I(21)]| < 0.059, | 1(22)]| < 0.003

From this fact, Hall showed that U 4+ U has zero Lebesgue measure, but
Hall morally got an upper bound on dimension because it is not hard to see
that dim(U) < s for any s such that there is A < 1 with

LAD" + [LA2)[° + DI + [(22)[1° < Af*

for all I. Since
(0.15)(0.465) + (0.015)(0.465) + (0.013)(0.465) + (0.007)(0.465) < 0.79; and

(0.131)(0.465) + (0.013)(0.465) + (0.059)(0.465) + (0.003)(0.465) < 0.986
we derive that dim(U) < 0.465 and, a fortiori, dim(U + U) < 2dim(U) <
0.93.
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Falconer’s Theorem

The situation of estimating the dimension of non-conformal maps, or maps
whose images have overlaps, can be quite challenging. However, there are
some approaches to this which work for “typical points”

8.1 Affine contractions of the line with overlaps

Assume that we have a finite set of affine contractions 7T; : R — R of the

intervals of the form T;(z) = a;x+b; (i =1,--- , k) for 0 <z < 1. However,
we will not necessarily assume the open set condition.
Let us fix 0 < a1, -+ ,aq < 1 but consider the d-tuple b = (by,--- ,bg)

within R%. Let X be the associated attractor, i.e., the smallest closed non-
empty set such that U} ;T; X = X. The following theorem looks a little like
Moran’s theorem, except that we don’t assume the Open Set condition, but
instead we have a conclusion that only holds for typical maps (corresponding
to almost all allowed b with respect to d-dimensional Lebesgue measure).

Theorem 21 (after Falconer). For almost all (by,--- ,by) € R¥ the Haus-
dorff dimension and Box dimension of X coincide (i.e., dimpg(X) = dimp(X)).
Moreover, their common value d is then the unique solution to

ail_|_..._|_ag:1_

Proof. The upper bound follows from the part of the proof of Moran’s theo-
rem that dimp(X) < d. It remains to show that dimy(X) > d to complete
the present proof.

Fix € > 0. We recall that in order to show that dimg(X) > d — €, say,
it suffices to show that there exists a probability measure d on X such that

[ [t <o

dimpg (Xp) > d—€

This implies that

119
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To achieve this we can associate the space of sequences ¥ = {1,--- ,d}.
There is then a natural well defined map 7 : X — B, given by

mp(z) = lim T Ty Ty, ( Z bz, Azi Azy -+ Az,

- n—-+o00
which is easily seen to converge since
n
0<agap,- -ag <c"

We can then define a Bernoulli measure v on X associated to the probabil-
ity vector (p1,--- ,pq) where we make the choices p; = ad for 1 <i<k. We
can then push the measure down to X to the probability measure py, = v -1
on Xy, i.e., pup(B) = I/(T('b B) for any Borel set B C Xp.

For any R > 0 we can consider the integral over the box [~R, R]* and
then hope to show that

dyy(z)d
/ <// i Zb5>db<+oo.
—R,RJ* |z -y

In particular, this implies that for almost all b € [~ R, R]¥ (with respect to
the usual Lebesgue measure)

dup(z)d
// () dps(y <+oo
|z — y|d—e

This would imply that dimp (Xp) > d — € for almost all b € [~ R, R (with
respect to the usual Lebesgue measure).

Returning to the double integral, we can use the definition of y4 to write
the inner integral as

//dub x)dpp(y // dv(i)dv(j)
yld=c | (2) — mp(5) ]9 ¢

where 4, j € ¥. We can substitute this expression into the double integral
and then switch the order of integration (formally using Fubini’s lemma) to
write

/ ~R.RJ* <//dlr£_;i’l;be )db / —R,R]¥ <//2\7rbdy—7rb ])\ )db
// (/ —R.R)* |T() _d;b( )|d—< ) dv(i)dv(j).

In summary, since R > 0 and € > 0 can be chosen arbirarily it only remains
to show that this final double integral is finite to complete the proof. To
this end, given j € ¥ and m > 1 we can partition

%= Un=oAm(J) U {7}
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where
Ap(j) ={ieX i, = j, for 1 <r <m but ini1 # jms1}

for which we have by definition u(An,(j)) = (aj, - - - aj,)?
We can now observe that for i € A,,(j) that

oo
71-b( ) - 7Tb(_7) Z (binailazé e ain - bjnajlan U ajn)
n=m
= i, iy - g,y (biyey — by + Elar, -+, aq))

where for |c| < % we have that the linear map E : R? — R has norm

|E| < £% < 1. ! This is the crucial observation in the proof. It has echos
later in the idea of “transversality”

Changing variables to y = b;, ., — bj,., + E(a1,--- ,aq) for fixed i €
A, (j) we can bound

/ db - C
belra 1m(0) — () ) = (aj,a5, - aj, )4

for some constant C' > 0.
We can now bound the double integral as

// </e[ R.R)F |6 () _7Tb( )Id€> dv(i)dv(j)
/ (Z/A (a5, aj, - a]n)d 6) dv(j)

< /Z (;mn(m( ey <>) av(j)

A5, Ay
d C

(aj,aj, - - aj,)

d—e

[o.¢]
<> (aja5--a;,)
n=0

o0
<C en:
<C) =1z
n=0

E<—1—oo

as required.

LAs observed by Peres, this condition can be relaxed to c%.
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Chapter 9

Transversality

9.1 The {0,1,3}-Problem

A similar technique to the one outlined in the previous section can be used to
help calculate the dimension of certain self-similar sets where the similarities
overlap. Let F' = {fo, f1, fo} be an IFS on where,

fo(z) = A\x
filz)= A +1
fQ(.T) = A+ 3.

For A < i the Open Set Condition applies and the Hausdorff dimension
of the attractor A()) is thus —loggi. When A € (1,1) the OSC can not

lo

be applied and the problem of whether dim A(\) = 1033 is still not fully

~log
solved. A generic solution was found by Pollicott and S1mon in [?].

Theorem 22 (Pollicott-Simon, 1994). For almost all A € (1, 1],

log 3
dimA(\) = — 22,
A
The method of proof is extremely similar to that of the projection the-
orem. Let u be (%, %, é) Bernoulli measure on X3. A projection II : X3 —

can be defined by,

[e o]

(i) = Y ixA".
k=0
Thus on each possible attractor A(\) a self-similar measure vy can be defined

by vy = poIly'. Let € > 0 and s.(\) = —logl;zii). Note that the proof is

complete, using Lemma ?7? if it can be shown that,

I—/ / dvy(z)dvy(y )\<oo
2 =y

123
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for all € > 0. Using the projection II the inner two integrals can be trans-

f(fI"I‘ed lO 23.
||| )‘ € )‘

We then turn I into a product of two expressions using Fubini’s theorem.
We let ¢t = max) sc(\) and note that ¢ < 1. It can be seen that,

fe’e) se(A)
[MA(6) = T (Q)[<®) = Al (ZW)

k=0

1 se(A)ing [ o0 . t
> <3+e> kzoak)\

where {a}re, is a sequence such that a; € {0,£1,£2,£3} and ag # 0.
Substituting this back into I and using Fubini’s Theorem we get

I</W/23/23”

By simple integration on X3 it can be seen that,

//du ‘ZA” - i Z u([io,ill,...,ik,l])

k=0 [i0,i1,.ip_1] (5+ f)k
00 lk—‘—l

= Z 713 F <00
o (519

Thus to show that I < oo it remains to show that,

/ dA
— 3 <X
(> ko ap k)’
for any sequence {aj}re, where each a; € {0,£1,£2, £3} and ap = 0. Let
g(A) be a power series of that form. In Lemma 1 of [?] it is shown that
whenever such a power series g(\) is close to 0 its derivative is bounded
away from 0. Thus a transversality condition is satisfied. The integral can
be shown to be finite by splitting it into two parts, one part where g(\) is
bounded away from 0 and one where g(\) is close to zero but the derivative
is bounded away from 0. The first part is clearly finite and the second part
is finite because t < 1 and g(\) can be bounded below by linear functions
in this region. This method will be used again in chapters 4 and 5.

In [?] a general result about when specific power series satisfy a transver-
sality condition is given. Let

2

Fy={f(N) =>_ fix": gx € [-b,0]}.
k=0
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As in [?] we now define,
y(b) = min{x > 0: If € F}, where f(z) = f'(z)}.

Theorem 23 (Peres-Solomyak,1996). The function y(b) : [1,00) — [0,1]
is strictly decreasing, continuous and piecewise algebraic. y(1) ~ 0.649,
y(2) = 0.5 and y(b) > (Vb + 1)~ with equality when b > 3 + /8.

A proof can be found in [?]. The following corollary is crucial when trying
to use the transversality technique to calculate the dimension or measure of
self-similar sets.

Corollary 8. Let f € Fy,. We have that,
1. for any s < 1 there exists K(s) > 0,

y®) g
[ o <K

2. There exists C' > 0 such that,
LINe (0,b(k—1)):|f(N)] <€} <Ce.

The first part is extremely useful when proving theorems of a similar
type to Theorem 25. The second part is useful in the case when we wish
to show that a class of self-similar sets have positive Lebesgue measure for
almost all parameter values. We will now look at the {0,1,3} problem in
the region A € [4,y(3)] to outline how this method works. Let y and vy be
defined exactly as in the proof of Thereom 25.

Theorem 24. For a.e. )\ € [%,y(?))] vy is absolutely continuous and hence

L(AN)) > 0.

This result was proved in [?]. The method of proof relies that because
of Lemma 77 to show that a measure vy is absolutely continuous it suffices

to show that,
.. I/)\(B(.’L’, 7"))
/hgl_}glf B dvy(z) < oo.

Thus to show that v, is absolutely continuous for a.e. A € (1,y(3)) it is
sufficient to show for any € > 0

I_/;e/Mmﬁ )Mw(mx<m.

r—0

The first step is to apply Fatou’s Lemma and lift to the shift space. Thus

y(3)
hmlnf/ /V)\ (x,7))dvy(z)dA

r—0

I

IN

IN

r—0

hmmf/ / (w7 [Ty (@) =TTy ()| <ry dpp(w) d e (T)d.
+eJ¥3 /X3
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Applying Fubini’s Theorem bounds I by an expression which allows part
(ii) of Corollary 9 to be used. This gives

I< liminfi /23 s L{\ € (1 + 6,y(3)> Dy (w)—=IIx(7)] < r}dp(w)dp(r).

r—0 T 3
It can be seen that,
T\ (w) = TIA(7)] = A Tg(A)

where g(\) € F) for all w, 7 € 33. Thus (ii) of Corollary 9 gives that,

Lire (; ; e,y<3>> () — Ty ()] < 7} <20 (; n ) o

for some C' > 0. This gives,

I< 0/23 /E (; + e) T @)

which can be seen to be finite by simply integrating on the shift space as in
Theorem 25. This is the standard method for using transversality that for a.e
parameter a family of measures are absolutely continuous. This method has
been successfully used in many contexts. These include self-affine sets ([?]),
Bernoulli convolutions ([?],[?],[?]), non linear hyperbolic IFS ([?]), Parabolic
IFS and random continued fraction expansions ([?]).

The {0,1,3}-Problem A similar technique to the one outlined in the
previous section can be used to help calculate the dimension of certain self-
similar sets where the similarities overlap. Let F' = {fo, f1, f2} be an IFS
on where,

fo(x) = Az fi(x) = Ax + 1fa(z) = Az + 3.

For A\ < i the Open Set Condition applies and the Hausdorff dimension

of the attractor A()) is thus —fgggi. When A € (4,3) the OSC can not
be applied and the problem of whether dim A(\) = —}ggf’\ is still not fully
solved. A generic solution was found by Pollicott and Simon in [?].

Theorem 25 (Pollicott-Simon, 1994). For almost all A € (1, 1],

log 3
A

dimA(\) = — .
The method of proof is extremely similar to that of the projection the-
orem. Let u be (%, %, %)—Bernoulli measure on 3. A projection ITy : X3 —
can be defined by,

(i) = > ixA".
k=0
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Thus on each possible attractor A(\) a self-similar measure vy can be defined

by vy = poIly'. Let € > 0 and s.()\) = —bgl;z%. Note that the proof is

complete, using Lemma ?7? if it can be shown that,

I—/ / dvy(z)dvy(y )\<oo
o~ )

for all € > 0. Using the projection IIy the inner two integrals can be trans-

ferred to X3.
/ // Iy ( e

We then turn I into a product of two expressions using Fubini’s theorem.
We let ¢ = max) s¢(A) and note that ¢ < 1. It can be seen that,

00 5¢(A)
NG _H/\(Z)‘se(k) — \liAdlse(N) (Z ak.)\k>

k=0

1 se(ANing [ oo . t
> —
> <3 + 6) ;Oak)\

where {a}re, is a sequence such that a; € {0,£1,£2,£3} and ag # 0.
Substituting this back into I and using Fubini’s Theorem we get

I</(Zk 0 akAF) /Es/Esdﬂ—i—e Aj)l

By simple integration on 33 it can be seen that,

d - i0yi1, - - ik1])?
// p(i W\]l < Z Z p(lio 11 k—1))

k
k=0 [i0,i1,...,i_1] (3+¢)
oo lk+1
_ 3
- Z 1 k < o0

=0 (5+¢)

Thus to show that I < oo it remains to show that,

/ _d
(> ko ak)‘k)t

for any sequence {ay}re, where each a; € {0,£1,£2,£3} and ap = 0. Let
g(\) be a power series of that form. In Lemma 1 of [?] it is shown that
whenever such a power series g(A) is close to 0 its derivative is bounded
away from 0. Thus a transversality condition is satisfied. The integral can
be shown to be finite by splitting it into two parts, one part where g(\) is
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bounded away from 0 and one where g(\) is close to zero but the derivative
is bounded away from 0. The first part is clearly finite and the second part
is finite because t < 1 and g(\) can be bounded below by linear functions
in this region. This method will be used again in chapters 4 and 5.

In [?] a general result about when specific power series satisfy a transver-
sality condition is given. Let

Fy={f(N) =>_ fix": gx € [-b,0]}.
k=0

As in [?] we now define,
y(b) = min{x > 0: If € F}, where f(z) = f'(z)}.

Theorem 26 (Peres-Solomyak,1996). The function y(b) : [1,00) — [0,1]
is strictly decreasing, continuous and piecewise algebraic. y(1) =~ 0.649,
y(2) = 0.5 and y(b) > (Vb + 1)~ with equality when b > 3 4 /8.

A proof can be found in [?]. The following corollary is crucial when trying
to use the transversality technique to calculate the dimension or measure of
self-similar sets.

Corollary 9. Let f € Fy,. We have that,

1. for any s < 1 there exists K(s) > 0,

y(®) g\
L o < KO

2. There exists C > 0 such that,
LA € (0,b(k—1)) : |f(N)] <€} <Ce.

The first part is extremely useful when proving theorems of a similar
type to Theorem 25. The second part is useful in the case when we wish
to show that a class of self-similar sets have positive Lebesgue measure for
almost all parameter values. We will now look at the {0,1,3} problem in
the region A € [$,y(3)] to outline how this method works. Let y and vy be
defined exactly as in the proof of Thereom 25.

Theorem 27. For a.e. A € [3,y(3)] vx is absolutely continuous and hence
L(A(N)) > 0.

This result was proved in [?]. The method of proof relies that because
of Lemma 77?7 to show that a measure vy is absolutely continuous it suffices

to show that,
B
/liminf Wdu,\(:c) < 00.

r—0 r
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Thus to show that vy is absolutely continuous for a.e. A € (%,y(3)) it is

sufficient to show for any € > 0

1_/+6 /hmmf >)du,\( JdA < oo,

r—0

The first step is to apply Fatou’s Lemma and lift to the shift space. Thus

y(3)
hmmf/ /I/)\ (x,7r))dvy(z)dA

r—0

hmlnf/ / / {w,r:|II) (w)— H)\(T)|<7"}dlu( )d:u( ) A
r—0 33

Applying Fubini’s Theorem bounds I by an expression which allows part
(ii) of Corollary 9 to be used. This gives

~
INA

IN

1 1
I< hmmf / L{\ € ( + e,y(3)> D (w) =TI (7)| < ridp(w)dp(T).
=0 21 [y, Jy, 3
It can be seen that,
[T (w) — TIx(7)] = A< Tlg ()

where g(\) € F) for all w, 7 € ¥3. Thus (ii) of Corollary 9 gives that,

Lire (; + e,y<3>> (@) — (7)) < 7} < 2C (; n ) o

for some C' > 0. This gives,

I< C’/23 /23 (; —|—6)|W\T| dp(w)d(7)

which can be seen to be finite by simply integrating on the shift space as in
Theorem 25. This is the standard method for using transversality that for a.e
parameter a family of measures are absolutely continuous. This method has
been successfully used in many contexts. These include self-affine sets (]?]),
Bernoulli convolutions ([?],[?],[?]), non linear hyperbolic IFS ([?]), Parabolic
IFS and random continued fraction expansions ([?]).

We shall formulate a simple version of this result in one dimension, al-
though a version is valid in arbitrary dimensions.

Let us fix 0 < A < % We want to consider affine maps T; : R — R
(it =1,...,k) of the real line R defined by Tjz = Az + b;, for i = 1,... k,
where by, ...,b; € R. Let us use the notation b = (by,...,by) € RF and then
let us denote by Ay the associated limit set.
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Theorem 28 (Theorem 6.6 (Falconer’s Theorem)). For almost all b =
(bi,...,br) € RF we have that dimy Ay = —logk/ log \.

Of course, this if T7,...,T} satisfy the Open Set Condition then the
formula for Hausdorff Dimension automatically holds by Moran’s Theorem.
We begin with a preliminary result.

Lemma 46. Consider a power series fo(z) = ao + Y poy anz" where a, C
{b; —bj : 1<i,j <k} and ag #0. Then f‘b‘ |fa(2)]?db < 400

Proof of Theorem 6.6. Let U C R be an open set chosen such that T;U C U
for all 1 < ¢ < k. Given § > 0 we can choose n sufficiently large that
A'diam(U) < 6. Let us cover Ay by open sets {T;(U) : |i| = n}. Given
5 > 0 can estimate

H(Ay) < Zdlam 5) < (kA"

In particular, for any s > —logk/log A we have that (kA*) < 1 and so we
deduce that dimg Ay < s|. In particular, dimpy Ay < —log k/log \.

On the other hand, let us consider the Bernoulli measure v = (%, cee %)Z+
on the associate sequence space ¥ = {1,... ,k}Z+. Let mp : ¥ — Ay be
the natural coding given by mp(2) = limy, 400 Ti, - - - 15, (0). We can con-
sider the associated measure p, = mv (i.e., pp(I) = (7; '1)). Let us fix

—log k/log A For any R > 0 we can write B

fyen </Ab/b|<R du(\i—y\s(b)> B[ (/ /Erwbd“dy )r )

where we integrate over the ball of radius R with respect to lebesgue mea-
sure. Moreover, using Fubini’s theorem we can reverse the order of the
integrals in the last expression to get

// </b|<R |75 ( )_ ﬂb( s >dV( i)dv(j) (6.6)

If the sequences i, j agree in the first n spaces (but differ in the (n + 1)st
place) then we can write

m=1

Wb(l) - WQ(Z) = >\n+1 <(bin+1 - bjn+1) + Z Am(bi7l+m+1 - bjn+m+1))

where b;, ., # bj,,, are distinct elements from {by,...,bx}. In particular,
differentiating in the direction corresponding to b;,., (whilst fixing the other
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directions) we see that

’3(7%(2') — Wb(i))’ \nt

1 m Z'n,+'m,+1 Jn+m+1

7:'n,+1 tn+1
> )\n+1 (1 _ Z Am) > C)\TL+1
m=1
for some C' > 0. We can then write
db
/ = < D)\t (6.7)
b<r |Tp(i) — mp(d)[*

for some D > 0. Substituting (6.7) into (6.6) we have that

dpy () dpy(y / . .
db < C*® iy - ip] AT5HD | dp(i
/ </Ab /Ab |’:C - y|s ) o Z Z 0 N(i)

n=11igp,.. ,zn ( ynt

o) A8 n+1
scsz( k) < 400

n=1

By Fubini’s Theorem we deduce that for almost every b we have that the
integrand is finite almost everywhere, i.e.,

dup(z)d
/ / Hb m; < 400
Ay J Ay ’95 - y!

provided s < —logk/logA. In particular, we deduce from lemma 6.2 that
for such b we have dimg(Ap) > s. Since s can be chosen arbitrarily close to
—log k/log A the result follows. O
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Chapter 10

Measure and dimension

10.1 Hausdorff dimension of measures

Let 1 denote a probability measure on a set X. We can define the Hausdorff
dimension g in terms of the Hausdorff dimension of subsets of A.

Definition 22. For a given probability measure p we define the Hausdorff
dimension of the measure by

dimg (p) = inf{dimg (X) : p(X) =1}

We next want to define a local notion of dimension for a measure p at a
typical point x € X.

Definition 23. The upper and lower pointwise dimensions of a measure
are measurable functions d,,d, : X — R U {oo} defined by

ay(fC) = lim sup w

and d.(z) = liminf 22HBE 1)
r—0 log r 1

r—0 log r

where B(x,r) is a ball of radius r > 0 about x.

=2.0in pointwise.eps
The pointwise dimensions describe how the measure p is distributed.
We compare the measure of a ball about x to its radius r, as r tends to
zero. There are interesting connections between these different notions of

dimension for measures.
Theorem 29. Ifd,(z) > d for a.e. (u)z € X then dimp(n) > d.

Proof. We can choose a set of full g measure Xo C X (i.e., u(Xp) = 1) such
that d,(z) > d for all z € Xo. In particular, for any ¢ > 0 and x € X

133
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we have limsup, o u(B(z,7))/r%¢ = 0. Fix C > 0 and § > 0, and let us
denote
Xs={r € Xy: p(B(z,r)) < Cri=¢, Y0 <r <d}.

Let {U;} be any é-cover for X. Then if x € U;, u(U;) < Cdiam(U;)4¢. In
particular,
p(Xs) < > uU) <CY diam(U;)4C
U;NXs i

Thus, taking the infimum over all such cover we have u(Xs) < CHZ~¢(X5) <
CHY¢(X). Now letting § — 0 we have that 1 = u(Xo) < CH?¢(X). Since
C > 0 can be chosen arbitrarily large we deduce that H%¢(X) = 4oc0. In
particular, dimg(X) > d — € for all € > 0. Since € > 0 is arbitrary, we
conclude that dimg(X) > d. O

We have the following simple corollary, which is immediate from the
definition of dimg(u).

Corollary 10. Given a set X C R, assume that there is a probability
measure p with p(X) = 1 and d,(x) > d for a.e. (u) x € X. Then
dimg(X) > d.

In the opposite direction we have that a uniform bound on pointwise
dimensions leads to an upper bound on the Hausdorff Dimension.

Theorem 30. If d,(z) < d for a.e. (n)x € X then dimpg(p) < d.
Moreover, if there is a probability measure p with ;1(X) =1 and dy(x) <
d for every x € X then dimpy(X) <d.

Proof. We begin with the second statement. For any ¢ > 0 and z € X we
have limsup,_,o u(B(z,7))/r%"¢ = co. Fix C > 0. Given § > 0, consider
the cover U for X by the balls

{B(Z‘,T’) 0<r < 6 and IU,(B((E’T)) > CT’d+€}.
We recall the following classical result.

Besicovitch covering lemma. There exists N = N(d) > 1 such that for any
cover by balls we can choose a sub-cover {U;} such that any point z lies in
at most IV balls.

Thus we can bound

1 N
HITE(X) <) diam (U;)*€ < — B) < =.
) ( )Elam(l) C;/’L( ’L)—C
Letting 6 — 0 we have that H9T¢(X) < % Since C' > 0 can be chosen
arbitrarily large we deduce that H%+¢(X) = 0. In particular, dimy(X) <
d + € for all € > 0. Since € > 0 is arbitrary, we deduce that dimg(X) < d.

The proof of the first statement is similar, except that we replace X by
a set of full measure for which d,(z) < d. O
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Let us consider the particular case of iterated function schemes.

Example 55 (Iterated Function Schemes and Bernoulli measures)). For an
iterated function scheme 11, -+, T : U — U we can denote as before

S = {z = @)y : @m € {1+, k}}

with the Tychonoff product topology. The shift map o : ¥ — X is a local
homeomorphism defined by (0x)py = Tmi1. The kth level cylinder is defined

by,
[0, .oy The1] = {(im) e € X ¢ iy = Ty, for 0 <m < k — 1},

(i.e., all sequences which begin with xg,...,xk_1). We denote by Wy =
{[xo,...,xk_1]} the set of all kth level cylinders (of which there are precisely
k™).

Notation For a sequence i € ¥ and a symbol r € {1,...,k} we denote by
kr(i) = card{0 < m < k — 1 : i, = r} the number of occurrences of r in the
first k£ terms of <.

Consider a probability vector p = (po, ..., pn—1) and define the Bernoulli
measure of any kth level cylinder to be,

ko(é)plkl(i) . kn—1(2)

lu([i()w"aik—l]) = Do Pn—1 .

A probability measure y on o is said to be invariant under the shift map if
for any Borel set B C X, u(B) = pu(o=(B)). We say that p is ergodic if
any Borel set B C ¥ such that o0 71(X) = X satisfies u(X) = 0 or pu(X) = 1.
A Bernoulli measure is both invariant and ergodic.

We now introduce the concept of entropy. Entropy We start by defining
entropy for general ergodic systems before going back to shift spaces. All of
the details given here can be found in Chapter 4 in [?]. Let (X, B, i) be a
probability space and let T': X — X be a measure persevering transforma-
tion. A partition of (X, B, u) is a finite or countable collection of elements
in B whose union is X. For example if we take X = >,,, B to be the stan-
dard sigma algebra for 3, and u to be evenly weighted Bernoulli measure
the cylinders {[0],. .., [n — 1]} form a partition of ¥,,. For a finite partition
A={A1,...,A,} we define

m

Ho(A) = =3 u(A;) log(u(4:)).

=1

For two partitions A = {43, Aa,..., A} and C = {C1,...,C;} we define
the join to be,

A\/C:{AzﬂCJlgzgm,lgjgl}
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This definition also holds for countable partitions. The partition 77%(A)
for k € is defined as,

TFA) = {T7%A), T 5(Ay),..., T*(A,).

We define the entropy of T with respect to A to be,

1 k-1
h, (T, A) _klggokH<\/l - 1A>
This limit is shown to exist in [?]. The entropy of the transformation can
now be defined as,

hu(T) = sup h(T, A).

To directly calculate the entropy of a transformation using this definition is
usually extremely difficult. The idea of a generating partition often makes
the calculation much easier. A countable partition A is said to be a gener-
ating partition if

Ve __T™(A) =B

—00

where B is the Borel sigma algebra for the measure space. If A is a generator
and H,,(A) < oo then h,(T) = h,(T, A).

We now return to ¥,,. In this case the set of cylinders {[0],...,[n — 1]}
is a generating partition.

Definition 24. For any ergodic and invariant measure p on 3 the entropy
of 1 is defined to be the value

hu(o) = lim —% D plwn) log(p(wr))-

k—o0
wr EWpR

In particular, for a Bernoulli measure pu associated to a probability vector
p = (po,...,pn—1) the entropy can easily seen to be simply

n—1
=—> pilogp;.
=0

An important classical result for entropy is the following.
Theorem 31 (Shannon-McMillan-Brieman Theorem). Let i be an ergodic

o-invariant measure on . For pu almost all i € 33,

. 1 . .
Jim ——log pfio. - -y in—1]) = hy(0)-

We can define a continuous map Il : ¥ — A by I1(2) = limy_,o0 L5, - - - T3, (0).
We can associated to a probability measure p on 3 a measure v on A defined
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by v =po H;\l. In particular, when p is a p-Bernoulli measure the measure
v satisfies,

n—1
v(A) = Z PiV(fz‘_l(A))-
=0

In the case where all the contractions 71,...,7T; are similarities it is
possible to use the Shannon-Mcmillan-Brieman Theorem to get an upper
bound on the Hausdorff dimension of v. Let T; have contraction ratio |T]| =
r; < 1, say, and let

n—1

X = Zpilogri <0
i=0

be the Lyapunov exponent of v.
Proposition 15. Consider a conformal linear iterated function scheme

T1,- -+, Ty satisfying the open set condition. Let v be the image of a Bernoulli
measure. Then

n—1
dimg(v) = if_olp o8P (Z u(0)>
> pilogr; x|

Without the open set condition we still get an inequality <.

Proof. The idea is to apply Theorem 5.1 and Theorem 5.2.

For two distinct sequences w,7 € ¥ we denote by |w A 7| = min{k :
wi # Tk} the first term in which the two sequences differ. For two sequences
w,T € ¥ we denote by |w A 7| = min{k : wi # 7%} the first term in which
the two sequences differ. Given w,7 € ¥ let m = |w A 7|, then we define a

metric by
k—1 k—1
d(w,T) = H rzni(w) (: H ani(T)> .
i=0 i=0

We can apply Theorem 5.1 (1). To show dimv > s for some s it is sufficient

to show that | B
lim jnf 08Y(B2:7)
r—0 log r

for a.e. (v) o € A. Since v = po I}, it is sufficient to show that for
p-almost all 7 € X,
logv(B(II~ 17, 7))

lim inf <s.
7—0 logr

A useful property of this metric d is that the diameter of any cylinder in the
shift space is the same as the diameter of the projection of the cylinder in
R™. Fix 7 € ¥, and let x = II"*7. For r > 0 there exists k(r) such that,

[i15 5 () T(ry1] <21 < [in, .o iger))
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and k(r) — oo as r — 0. Hence

i 08w (B(z,1)) _ . log(u([n, ..., Tk—1]))
r—0 log r k—oo log(diam([7o, ..., 7k—1]))

(Without the open set condition v(B(z,r)) can be much bigger than p([r, .. .
By the Shannon-McMillan-Brieman Theorem we have that,

n—1
.1
nlgr{:@ - log(u([m0y .-y Tn=1])) — ;pi log p; = hy,(0)

for p almost all 7 and by the Birkhoff Ergodic theorem we have that

-1
N S S
7}1—{20 ;log diam[ro, ..., Th-1] — z;pi logr; = x
1=

for p almost all 7. Hence for pu almost all 7 where x = II7 (or equivalently,
v almost all z)

o loa((B(a.r))) _ hy(o)
r—0 log r X

Thus by Theorem 5.1 and Theorem 5.2 the result follows . O

It is follows from the proof that we still get an upper bound dimy (v) if
we replace p by any other ergodic o-invariant measure on X or if we don’t
assume the Open Set Condition.

A more general statement is the following:

Proposition 16. Let T : X — X be a conformal expanding map on a
compact metric space. If p is an ergodic invariant measure then the pointwise
dimension d,(x) exists for p-almost every x. Moreover

hy(T)

dy(z) = —t )
#(@) Jx log|T"| du

for p-almost every x.

s Th(r)—1])-)

Proof. The proof follows the same general lines as above. Let P = {P,..., Py}

be an Markov partition for T and let Cy(z) = N}y T~°P,, be a cylin-
der set containing a point x. By the Shannon-McMillan Brieman theorem
—% log u(Cy) — h(p), a.e. (). By the Birkhoff Ergodic Theorem we ex-
pect 1log|diam(Cy)| ~ —Llog |(T") ()| = [log|T'|dp, ae. (p) O O
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10.1.1 Multifractal Analysis

For a measure p on a set X we can ask about the set of points x for which

the limit | (Blz.r))
. logu(B(z,r
d(w) = lg% logr
exists. Let Xo = {x : the limit d,(z) = o} be the set for which the limit

exists, and equals a. There is a natural decomposition of the set X by “level
sets”:

X = U —00 < a < 00X, U {z € X |d,(z) does not exist} .

To study this decomposition one defines the following:

The dimension spectrum is a function f, : R — [0,d] given by f.(a) =
dimg (X,), i.e., the Hausdorff dimension of the set X,,.

The “multifractal analysis” of the measure p describes the size of the
sets X, through the behaviour of the function f,.

Example 56. Let us consider an iterated function scheme T1,..., T} with
similarities satisfying the open set condition. Consider the Bernoulli mea-
sure pi associated with the vector (p1,...,px). We have already seen that:

. dy(z) exists for a.e. (1) x and is equal to dimp (p). (In this particular case,
b Ingi)'

this limit is equal to S og

We claim that the following is also true.

7(2)” Except in the very special case p; = r?imH(A), fori=1,...,k, there is

an interval (a,b) containing dimg(A) such that f, : (a,b) = R is analytic.

=2.0in multifractal.eps
Multifractal analysis describes the size of sets X, for which the pointwise
dimension is exactly .

Sketch proof of (2). For each «, we can write

" log p,.
Xo=T{zex: lim w:a .
n—+oo 3 0 ) logry,

For each ¢ € R, we can choose T(q) € R such that P(—T(q)log |rz,| +
qlogpy,) = 0. There exists an associated Bernoulli measure v, and constants
C4,Cy > 0 such that

n—1 —

Cl S ]/q([ll’--- ,/L’FL:I) < 02' (5.1)
[Ti=y exp (—T'(q)log re, + qlog ps;)
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Furthermore, we associate to g the particular value

_ [ log pgydyy
0g Tz, dVg

For a.e. (v5) z € Xy () we have that d,,(z) = a(q) by the Birkhoff er-
godic theorem and the definition of X,. In particular, v,(X,) = 1. ! If
(ri,...,7%) # (p1,-..,pr) then f,(a) and T(q) are strictly convex (and are
Legendre transforms of each other).

We then claim that:

"(a)” a(q) is analytic

7(b)” fulalq)) = (dimp Xaq)) = T(q) + qa(q). and then (2) follows.

For part (a) observe that since P(-) is analytic, we deduce from the
Implicit Function Theorem that the function T'(¢) is analytic as a function
of q. Observe that T(0) = dimyg X. We can check by direct computation
that T7(¢) <0 and T"(q) > 0.

Part (b) follows from the observation that d,, (x) = T'(q) + qa(q) for a.e.
r € Ky and d,, (z) = T(q) + qa(q) for all x € K, by (5.1). We then apply
Theorem 5.1 and Theorem 5.2. Ul Ul

Example 57 (Expanding maps). Let T'I — I be an expanding transfor-
mation on the unit interval I. Let p be a T-invariant ergodic probability
measure. We say that u is a Gibbs measure if ¢(x) = log% 18 plecewise
Ct (or merely Hélder continuous would suffice. The most familiar example
of a Gibbs measure is given by the following.

Proposition 17 (‘Folklore Lemma’). There is a unique absolutely continu-
ous invariant probability measure v (i.e., we can write dv(x) = p(x)dzx).

The main result is the following.
Proposition 18. Assume that p is a Gibbs measure (but not v):

. The pointwise dimension d,(x) exists for p-almost every x € I. Moreover,
du(z) = dy = hu(T)/ [y log|T'|dp for p-almost every x € I.

. The function f,(a) is smooth and strictly convex on some interval (min, Cmaz)
containing d,,.

Let v be a positive function defined by logy = ¢ — P(¢), where P(¢)
denotes the pressure of ¢. Clearly i is a Hélder continuous function on
I such that P(logv) = 0 and p is also the equilibrium state for log.
We define the two parameter family of Hoélder continuous functions ¢4 =
—tlog |T'| +qlog®. Define the function t(q) by requiring that P(¢q(q)) =0
and let pg be the equilibrium state for ¢g )

"We can also identify a(q) = —1"(q), then it has a range [a1, ] C RT.
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10.2 Computing Lyapunov exponents

In many ezamples, the Lyapunov exponents [log|T'(z)|du(z) can be com-
puted in much the same way that Hausdorff dimension was. More precisely,
this integral can be approximated by periodic orbit estimates. In the interests
of definiteness, consider the absolutely continuous T-invariant measure v.

Lemma 47. Let
ZxEFiz(T") 6$/|(Tn)/(x)’
ZzeFiz(T”) 1/‘(Tn)/(x)| ’

where Fig(T™) = {x € [0,1] : T"z = x} and 0 is the Dirac measure sup-
ported on x. Then my, — u in the weak-star topology.

My = n>1,

However, for any f € C*(]0,1]) we have exponential convergence, i.e., 30 <

0 <1, C >0 such that | [ fdm, — [ fdu| < CO™.

Aim.  We will present a different family of invariant measures pp; with
super-exponential convergence for f € C*([0.1]), i.e., 0 <O < 1, C >0
such that | [ fdp, — [ fdu| < com.

For example, taking f(x) = log |T'(x)| gives approzimations to the metric
entropy h(y). Similarly, taking f(x) = €™ n € Z gives approzimations to

the Fourier coefficients
. 1 omi
fi(n) = [y " du(z) of p.

For definiteness, let us consider the case of the absolutely continuous
mwvariant measure v. We construct the family of approrimating measures by
a more elaborate regrouping of the periodic points to define new invariant
probability measures. Let A\, be the sequence of numbers given by

(=1)"r(k)
Ay = jg; L S kilog|T(a)]
k=(k1,....km)k1+...+km<n i=1,...,mx€ Fig(T":)

(=1)™r(k) .
ZE:(M ~~~~~ km),k1+...+km<n m! (Zizl,...,'aneFix(Tki) kl)
where we write

1
kil(Th ) (2) = 11

r(k) =11

m
I=1 L eFix(T)

and Fix(T") = {z € [0,1] : T"x = x}.
We have the following superexponentially converging estimate.
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Theorem 32. IfT :[0,1] — [0, 1] is a C¥ piecewise expanding Markov map
with absolutely continuous invariant measure y then there exists C > 0 and
0< 0 <1 with |\, — [log|T'|dv| < CO™

Example 58. Consider the family T% :[0,1] — [0, 1] defined by
T%(x) =2z + esin 2wz (mod 1),

1 1
for —5-<e<s-.

=2.0in graphexponent.eps
A plot of the non-linear analytic expanding map of the interval T% (z) =
2z + esin 2wz (mod 1)

We can estimate the Lyapunov ezponent [ log \Tl’/47r| dv in terms of the
estimates

An — /log|T1'/47r| dv [super-exponential rate]

’ n using Ap
6 0.6837719
7 0.68377196
8 0.68377196024

9 0.6837719602421451
10 0.6837719602421451396
11 0.683771960242145139619160
12 0.68377196024214513961916071




Chapter 11

Besicovich and Multifractal
Analysis

Besicovich studied the dimension of the set of points in the unit interval for
which the frequency of the digits takes given values. For the purposes of
illustration, we will consider the dyadic expansions, to base 2. Given

where z,, € {0,1} we can ask what the frequency of the digits z,.

e
3

Definition 25. Given o € R we let

o0
I‘n .
Aa:{x: 2n . N*>+OONZ:B”_O[}

n=1

For a full measure set of x we can show using the Birkhoff Ergodic
Theorem that for a = % the set A; /5 has full Lebesgue measure.

Theorem 33 (Besicovich). For any 0 < a < 1,
dim(A,) = —aloga — (1 — a)log(l — ).
The proof uses the following result.

Lemma 48. Let v be a probablity measure and let f,, € L*(X,v) be an othog-
onal family of functions, i.e., [ fijjdv(xz) =0 fori # j, with [ |fi(z)|dv(z) <

1. Then
N
Nan(x)—w
n=1

for almost all x (with respect to v.)

143
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We can define a measure v which on the dyadic intervals

N N
T T 1 N N
(BB p e s]) -
n=1 n=1

We begin with then following observation which illustrates why this mea-
sure is useful.

Claim 1. v(4,) =1

Proof of claim 1. Let us define f,(z) = x,, —a. Then A, is the set of points
x for which

LN
— fn(z) — 0.
Py

To show this is a set of full ¥ measure we want to apply the previous lemma.
This requires proving two properties:

L[ fidv <|/falloo < 1.

2. To show orthogonality, we can write

/ Fufmdy = / (1tn — ) (n — 0)di(z)
— (~)?0([0, 1/4)) — o1 — a)(v[1/4, 3/4]) + 020([3/4,1])

but then v([0,1/4]) = o2, v([3/4],1) = (1 — a)? and v[1/4,3/4] =
2a(1 — o). Thus we can see [ f,, frndv =0 for n # m.

We next need Billingsley’s lemma. Let I,(x) be the nth level dyadic
interval containing .

Lemma 49. Billingsley] Let p be a finite measure on [0,1]. Let A C [0, 1]
with v(A) > 0. Let 0 < ag < g with

1 I,
a1 < liminfM < o
n—+oo log(1/2")
for all x € A then ag < dimp(A) < ag.’
Proof. The upper bound implies that

1
i sup 2 ()
n—-+o0o 1/2na2

We can fix € > 0 and choose an open set V'O A with u(V) close to u(A).
For every z € A we can choose n sufficiently large that

pIn())
W > C
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covers A and let {J;} be a disjoint subcover. Let n(z) be the smallest n
satisfying this inequality and als 2" < € and I,,(z) C V.

By assumption {I,,;)(z)} covers A and let {J;} be a disjoint subcover.
Clearly diam(Jy) < € for each k, and

SRl <> i) < (V)
k k

In particular, we can deduce
HZ(A) < u(A)/C (3)
and since the right hand side of (3) is independent of € we have that

H?(A) < p(4)/C 3)

The lower bound implies
1
lim sup M <1
n—-+o0o 1/27“11

Let
Ap ={z € A: p(I(x)) < Cdiam(|I,(z)|) for all n > m}

Since A = Uy, Ay, and Appp1 O Ay, we have that p(A) = limy,— 400 (Am)
and thus it suffices to prove the result for A,,.
Fix € < 27" and consider an cover of A by dyadic intervals. Then

Z |Jk‘a > ZM(‘]]C) > /’L(gm)

k k

Thus H(X) > “(‘ém). Letting € — 0 and m — 400 gives the result. O
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Chapter 12

IF'S and overlaps

12.1 One dimensional Iterated Function Schemes
with overlaps

In this chapter we shall consider one dimensional iterated function schemes
with over laps (i.e., such that the Open set condition fails). In this context
we will concentrate on two particular examples. We will be interested in:
the Hausdorff dimension of the limit set; and the properties of naturally
associated measures (absolute continuity, dimension, etc.), The key tool in
our study here is the application of the so called “transversality method”
which helps in showing certain integrals are finite. We have already seen
this in another guise, in the proofs in the previous chapter.

7.1 Transversality: Properties of Power Series A general result about
when specific power series satisfy a transversality condition is given. Let Fj
be a family of analytic functions such that f(0) = 1 and whose coefficients
are real numbers that lie all in an interval [—b, b], for some b > 0, i.e.,

F, = {f(t) =1 —|—icktk D Ccp € [—b,b]} .
k=1

In practise, we shall only need to consider the case where b € N. Of course,
every function f € Fj converges on the interval (—1,1). ' We now define,

y(b) = min{x > 0: 3f € F}, where f(z) = f'(z) = 0},

i.e., the first occurrence of a double zero for any function Fp.

=2.25in transversality.eps

LOf course, the power series converges on the unit disk D on the complex plane. As an
aside, we recall that any analytic function F' : D — C which is simple (i.e., it is one-one
onto its image) must necessarily have a bound on its coefficients of the form |cx| < k
(Bieberbach Conjecture)

147
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The dotted line shows the function which has the first double zero (at
y(b)). Any other function which gets d-close to the horizontal axis before
y(b) — € must have slope at least ¢ (in modulus).

The basic idea is that we can deal with real valued functions f € Fj on
an interval [0,y(b) — €], for any § > 0, which have the property that when
they cross the z-axis their slope has to be bounded away from zero. For
example, when § > 0 a function is said to be J-transversal if whenever its
graph comes within § of t-axis then its slope is at most —d or at least ¢ (i.e,
|f(t)| < 0 implies | f'(¢)| > 0). In particular, given € > 0 we can find § = §(e)
such that every f € [} is d-transversal on [0, y(b) — €.

Claim It is possible to numerically compute y(1) ~ 0.649... and also to
show that y(2) = 0.5.

Example Consider the series f(t) =1—> 32, tF =1 — ;& € Fy (with
b =1). The first zero is at t = 5 < y(1) but the derivative f'(t) = —(1_1t)2
takes the value f/(3) = —4 < 0.

Approach to Claim To illustrate the method consider the case b = 1.
The basic idea is to consider functions h € Fj of the special form

1
2

k—1 o0
h(z)=1-— Z:c’ +apzt + Z ' (7.1)
i=1

= i=k+1
\/-/ H/—/
z—xkt+1 2k+1

1—z 1—x

with |ax| < 1. We claim that if we can find any such function, a value
0 <xzy < 1land 0 < < 1such that h(zg) > ¢ and h'(xp) < —d then
y(1) > x9. More precisely, for f € F, we have that if g(z) < ¢ then
g'(z) < —0.
Observation: By construction h”(z) is a power series with at most one sign
change, and thus has at most one zero on (0,1). In particular, h(z) > § and
R (x) < —06 for all 0 < z < xp.

There are two cases to consider:
If £ = 1 then A/(0) = a;. In particular, h'(0) < h'(xg) < —§ (by the
observation above); and
If £ # 1 Then A/(0) = —1 < —¢.

Let g € F} and let

k—1 0o
ft):=g@) —h(t) =1+ (by—1)t" —+ (a), — bp) t* — (1—by)t.
; ¢; 20 ka - izl—;l ¢;i>0
(7.2)

Since for 0 < z < zp we have h(z) > § then if g(x) < § we have that
f(z) = g(x) — h(z) < 0. However, because of the particular form of f(x) in
(7.2), with positive coefficients followed by negative coefficients, one easily
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sees that f(z) < 0 implies f'(z) = ¢’(x) — h'(xz) < 0. Finally, since by the
observation h/(z) < —0 we deduce that ¢'(z) < —d, as required.
In particular, if let

1 oo ]

1.2 3,14 i

h(z)=1—z—=x a:+2x +25x
1=

then one can check that h(27%/3) > 0.07 and A'(27%/3) < —0.09 and so
y(1) > 272/3 A more sophisticated choice of h(z) leads to the better bounds
described above. O
A general result shows the following.
Proposition 7.1 The function y : [1,00) — [0,1] is strictly decreasing,
continuous and piecewise algebraic function. Moreover,

y(b) > (Vb+1)"! for 1 <b< 3++/8; and

y(b) = (Vb4 1)"! for b > 34 +/8 The proof uses a variation on the proof of
the claim above.

The following technical corollary is crucial when trying to use the transver-
sality technique to calculate the dimension or measure of the limit sets for
self-similar sets.

Proposition 7.2 (“Transversality Lemma”) Let b > 0.

Given 0 < s < 1 there exists K > 0 such that
y(®)  q\
[ e
o IfN]
for all f € Fy;

There exists C' > 0 such that,

LIHO <A <y(b) : [fAN)| < e} <Ce

for all f € F, and all sufficiently small € > 0. Proof To see part (1), we can
write

[0,y(0)] = {z € [0,y(0)] : |f(2)| > 6} U{z € [0,y(b)] : |f'(z)] > 6} .
=:51 =:5p

In particular, we can bound

/y(b) dA < / dA +/ dA < l N l
o ST Js [FNP - Jsy [f(N)]F 705 6°

For part (2) we need only observe that if |f(z)] < e < ¢ then x is con-
tained in an interval I upon which —e < f(t) < ¢ is monotone and, by
d-transversality, we have that |f/(t)] > §. In particular, the length of I is
at most (2/0)e and I contains a zero. The result easily follows form the
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observation that the number of zeros of f is uniformly bounded. (For exam-
ple, by Jenson’s formula from complex analysis the number n(zg) of zeros

21, s Zn(zo) (Ordered by modulus) of f(z) with [z;| < zo satisfies
nzo) x 2m ; bz
[T 2> =exp / log | f(re?)|df | <14 —>
i—1 ‘ZZ| 0 1-— o

and we also have
n(zo—e)

n(zo) 0 c n(xo—e)
1= 5= (")

Comparing these two expressions gives a uniform bound. [The first part
is extremely useful when proving theorems involving generic conclusions.
The second part is useful in the case when we wish to show that a class
of self-similar sets have positive Lebesgue measure for almost all parameter
values.

7.2 The {0, 1, 3}-Problem We want to describe the dimension of certain
self-similar sets where the images of the similarities overlap. Given 0 < A\ <
1, let {Ty,T1, T2} be an iterated function scheme on R where,

To(x) = AT (x) = Az + 1T (z) = Az + 3.

Observe that:

”(i)” For A € (0, 1) the Open Set Condition holds (since T;([0, 1])NT} ([0, 1]) =
0, for i # j) and the dimension of the associated limit set A(\) is dimg A(\) =

dimp A(N) = _L())gi? by Moran’s Theorem.

”(ii)” When A € (1,1) the Open Set Condition does not hold, and we

13
only know that dimy A(A) < dimp A(A) < —123. The problem of whether
dimg A(N) = log 3 holds for a specific value of )\ is far from well understood,

in general. This class of problems was studied by Keane, Smorodinsky and
Solomyak. In particular they showed:

7 (iii)” For 2 < A < 1 we have that A()) is an open interval.
A generlc description of the behaviour of dimy(A(X)) in the region (1, %)
is given by the following result.
Theorem 7.3

”(a)” For almost all A € (1, %]7

dimy A(\) = dimp A(\) = — 283,

?

log A

and
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”(b)” There is a dense set of values D C (1, 3] such that for A € D we have

that dimyg A(A) < dimp A(\) < —fé’gi

=2.25in zeroonethree.eps
In the range 0 < A < 1 we always have dimpy A(X) = —log3/log A; but
for i <A< % we only know the result for a.e. A; for % < A <1 we always
have dimg A(\) = 1.

Proof To prove part (a), it is first easy to see from the definitions that

dimg A(\) < dimg A(\) < — %ggi We now consider the opposite inequality.

Let pu = (%, %, %)W be the usual (%, %, %)—Bernoulli measure on the space
of sequences ¥ = {0, 1,2}Z+. For any 0 < A < 1 we can define the map

II, : Z—>Rby

oo
A1) = Y ixA".
k=0
Thus on each possible attractor A(\) a self-similar measure v can be defined
by vy = polIl, 1. Given € > 0 let sc(\) = —10;((?_?;6). Note that the proof can
be completed (as in the proofs in the previous chapter) if it can be shown

that,
dl/)\ dl/)\ )
/ (/ |z — y[s<® )d)\<oo

for all € > 0. In particular, the finiteness of the integrand, for almost all
A, allows us to deduce that for those values dimg A(A) > sc(A). Since the
value of € > 0 is arbitrary, we get the lower bound dimg A(\) > —i()’g 3,

Using the map II, the inner two integrals can be rewritten in terms of

the measure p on ¥ and we can rewrite the last expressions as

I= /j (//m)\(?)ufﬁf(%)yse(/\)) dA.

We then turn [ into a product of two expressions. More precisely, let t =
maxi_y1 5¢(A) and note that ¢ < 1. In particular, if i # j then they agree

until the |i A j|-th term and we can write

se(N) 1 se(N)ing] 0o t
(D) =TI = AR (Za“k) =(5+) (Zw’“>,
k=0

where {ay}rez+ is the sequence ay := ipyjinj| — Jrling] € 10,1, £2, £3}
and ag # 0. Substituting this back into the integrand in I and using Fubini’s
Theorem we get

1<// du+6 A% </3 = jimk)) (7.3)
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We can estimate the first integral in (7.3) by

dp(D)dp(j) & TR TR T >
//i‘ szAleZ >y M([oll kl]):Z

% %
5+ =0l is] (5+e€) i (5 +¢€)

Thus to show that I < oo it remains to bound the second integral in (7.3)
by

dA
o <
(2ok=o arA®)
for any sequence {ay }rez+, where a; € {0,£1,£2} and ag # 0. Let f(\) =
1+, (Z—’g) M* then we can apply part (1) of Proposition 7.1 to deduce

that the integral is finite, since y(2) > 3.
To prove part (b), we need only observe that if for some n we can find
distinet (41, ...,%n), (J1,---,Jn) € {0,1}" such that
n n
D i =D Ak
k=1 k=1

then at the n-th level of the construction at least two of the 2™ intervals of
length A" coincide. In particular, it is easy to see that

n —1log3

dlmB(A()\)) <

n log\’

It is then an easy to matter to show that the set D of such A is dense in
(3:3)- O

Remark It is also possible to show a corresponding result where generic A
is understood in a topological sense: for A is a dense Gy set (i.e., a countable
intersection of open dense sets).

Remark Of course one can prove somewhat similar results where {0, 1,3}
is replaced by some other finite set of numbers. These are usually called
deleted digit expansions.

7.3 The Erdos-Solomyak Theorem We recall some results about the prop-
erties of self-similar measures. Let A € (0,1). We let,

To(z) = AaTy(z) = Ax + 1.

Let v = vy be a measure such that for all J C [O, ﬁ},

V() = T () + AT ). (74)

In fact, is unique probability measure satisfying this identity called the self-
similar measure. Equivalently, we say this is a Bernoulli convolution with

respect to p = (3, 3).
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In particular, we wish to know whether the measures v, are absolutely
continuous or not (i.e., whenever B is a Borel set with Leb(B) = 0 then
vA(B) = 0). To begin with, it is an easy exercise to see that if 0 < A < 1
then the Iterated Function Scheme {7}, T} } satisfies the Open Set Condition,
thus A()) is a Cantor set with

log 3
log \’

dimgr (A(X)) =

by Moran’s Theorem and, in particular, has zero Lebesgue measure. Thus
vy is singular with respect to Lebesgue measure.

Jessen-Wintner Theorem The measure v, is either absolutely continuous
or singular with respect to Lebesgue measure Leb (i.e, either every set B
with Leb(B) = 0 satisfies vy (B) = 0, or there exists a set B with Leb(B) =0
and v\(B) =1).

Proof Every measure vy can be written in the form vy = v + psing,
where 1% << Leb and v*™ 1 Leb (This is the Lebesgue decomposition
theorem). However, substituting into (7.4) we see that both v%** and ™9
satisfy the identity. By uniqueness we have that one of them must be zero.

O

Next we recall one of the classical theorems in Harmonic Analysis. Let

us define the Fourier transform 7 : R — R by

v(u) = /ei“tdy(t), for u € R.

The following result describes the behaviour of v(u) as |u| — +oo.

Riemann-Lebesgue Theorem If the measure v is absolutely continuous
then U(u) — 0 as |u| = +o0.

We can use the Riemann-Lebesgue Theorem to show that for some value
of A € [$,1] the measure v, is singular.

Pisot Numbers We recall that 6 > 1 is an algebraic integer if it is a zero
of a polynomial P(z) = 2" +a,_12" ' +---+a1z+ag with a,_1,...,a9 € Z.
Let 61,...,60,—1 € C be the other roots of P(x). We call X\ a Pisot Number
if |91|, cee |9n71| < 1.

Clearly, there are at most countably many Pisot numbers (since there
are at most countably many such polynomials P(x)). The smallest Pisot
numbers are § = 1.3247 - - - (which is a root for 2 —x—1) and § = 1.3802- - -
(which is a root for 3 —z—1). However, perhaps the most important feature
of these numbers is the following:

min |0" — k| = O(O") as n — 400
keN

where © = max{|01],...,|0nh—1|} < 1.
The following highly influential Theorem was published by Erdés in 1939.
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Erdés’s Theorem If 6 := 1/X is a Pisot number then the measure v is
singular.

Proof This is based on the study of the Fourier Transform of the measure
vy. In fact, if we let d(x) be the Dirac measure on = € R then

Qin Z ) iij)\j — V)

i1in€{0,1}  \J=1

(where convergence is in the weak star topology) as n — 400, and so we

can write
0o n —ju)k iulk
~ L it . e +e
U\ (u) :== /Ooe dvy(z) = nlingo H (2 )

For a Pisot number 6 we can choose for each n > 1 a natural number k,, € N
such that [0" — k,| = O(©7"). In particular, if we let u € N then we can
show that there exists ¢ > 0 such that

n (e—iu)\k +eiuAk
0

5 >>cforalln20

k=

In particular, we can bound inf,,en vy (m) > 0. Thus vy(u) 4 0 as u — 4o0.

By the Riemann-Lebesgue Lemma vy is not absolutely continuous. Thus,

by the Jessen-Wintner theorem, we deduce that vy is singular. O
Erdos also showed the following;:

?(1)” If A = 271/* for some k > 1, then vy is absolutely continuous; and

”(ii)” There exists € > 0 such that for almost all A € [1 — ¢, 1] the measure
vy is absolutely continuous. He went onto conjecture that for almost all
A€ [%, 1] the measure is absolutely continuous. This was eventually proved
in 1995 by Solomyak:

Erdos-Solomyak Theorem For almost all A € [%, 1] the measure vy is
absolutely continuous.

There is a useful criteria for the measure vy to be absolutely continuous.

Absolute Continuity Lemma The measure vy, is absolutely continuous if

[ (it 2 ) <

r—0 T

Proof of the Absolute Continuity theorem From the hypotheses we see
that for a.e. (v)) x we have that D(x) := (liminfr_>0 %@) < +o0.
It therefore suffices to show that if leb(A) = 0 and u > 0, then the set
Xy :={z € A: D(x) <u} satisfies v)(X,) = 0.

Let us fix € > 0. For each x € X, we can choose a sequence r; \, 0
with pu(B(x,r;))/2r; < u+ €. Let us denote A = X,,. By the Besicovitch
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covering lemma, we can choose a cover {B;} with is a union of two families
{BZ-(O)} U {BZ-(U} (each of which consists of balls which are pairwise disjoint).

In particular, let us assume that M(UiBZ-(O)) > % In particular, we can bound

(A —U;B") < u(A) - p(uiBY) <

1
for n > 0. We can proceed inductively, replacing A by A — UZBZ.(O). Finally,
taking the union of the families of balls at each step we arrive at a countable
family of balls {B;} such that:

(X — U;B;) = 0; and
w(B;) < (u+ €)A(B;) = (u+ €)2r; In particular,

u(Xu) < D p(B) < (ut ) 3 AB) < (ut €)(leb(Xa) + ).

In particular, since € > 0 is arbitrary we have that p(X,) < uleb(X,) =
0. O
We follow a variation on Solomyak’s original proof (due to Peres and
Soloymak) which makes use of this lemma.
Proof of the Erdds-Solomyak Theorem We will also let p = (%
be the usual (%, %)—Bernoulli measure defined on the sequence space, ¥ =
{0,1}B%Z7 " Ag usual, we let Iy : {0, 1} — R be defined by,

3"

[e.e]

MA() = ) inA™.

n=0

We can also write vy = Iz p (i.e., va(B) = (I, ' B) for all intervals B C R).
To begin with, we want to show that vy is absolutely continuous for a.e.
A€ (3,y(2)), where y(2) = 0.68- - -. In this case, it is sufficient to show for

any € > 0
y(2)
I= / (/ lim inf de(x)) d\ < oo.
1
2

+e r—0 r

In particular, since € > 0 is arbitrary we can then deduce that for almost
every \ € (%, y(2)) we have that the integrand is finite. Thus for such A we
can apply the previous lemma to deduce that vy is absolutely continuous,
as required.

The first step is to apply Fatou’s Lemma (to move the liminf outside of
the integral) and then reformulate the integral in terms of integrals on the
sequence space Y. Thus

1 v 1 y(2)
< Tim < Tim '
I< llggf % /§+e (/ VA(B(:U,T))dV)\(SC)) dx < hg{glf o /;_|r€ (/E /E{W,T,Hk(w)—HA(rﬂgr}d/L(w)du@
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Applying Fubini’s Theorem bounds I (to switch the oder of the integrals)
gives

reimipto [ [ at{ae (Gres@) s m - mol < )

r—0

To simplify this bound observe that
T (w) — T\ (7)] = A=Al

where g(A) € F), for all w,7 € . Thus by definition of y(2) and Proposition
7.2 we have that

EH{)\ € <; + 6>y(2)> D A (w) — M (7)] < r} <20 (; n 6) o r

for some C' > 0. This allows us to bound:

reo [ [ (5w <o (35 (3ee) Yam <

which can be seen to be finite by simply integrating on the shift space.
Since € > 0 is arbitrary, this shows that v, is absolutely continuous for a.e.

e b)),

We shall just sketch how to extend this result to the larger interval [, 1].
Recall from the proof of Erdos’s theorem that the Fourier transform of the
measure vy takes the form

0 —iulk iulk
~ e +e
o ()

and then we can write

—iulk 4 eiu)\k —iulk 4 eiu/\

ﬁk(u):Hk:()k:;éQ (mod) 300 (e2> ka::0k:2 (mod) 300 ((32

—.7
—.V)\

Absolute continuity of 4 would imply absolute continuity of v (since it is a
classical fact that convolving an absolutely continuous measure with another
measure gives an absolutely continuous measure again). However, modifying
the above proof we can replace Fy, be F{ C Fy, in which the coefficients satisfy
c3i+103i+2 = 0 for all ¢ > 0. For such sequences one can show that the region
of transversality can be extended as far as zg = 1/ /2 and so we can deduce

that vy is absolutely continuous for a.e. % <AL % Finally, since we

can write Uy (u) = Uy2(u)Vy2(Au) we can deduce that vy is also absolutely
continuous for a.e. % <A< 21% Proceeding inductively completes the
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proof. [ORemark The original proof of Solomyak used another
result from Fourier analysis: If 7 € L?(R) then vy is absolutely continuous
and the Radon-Nikodym derivative dd% € L?(R). In particular, he showed

the stronger result that for a.e. 2 < A <1 one has % € L*(R).
Remark It is also possible to show that for a.e. A we have % > 0 for

a.e x € [—ﬁ, ﬁ] 7.4 Dimension of the measures v, Unlike the case of

the {0,1,3}-problem, the limit set in the above example is an interval and
thus its Hausdorff dimension holds no mystery. However, the dimension of
the measure is still of some interest. We shall consider the slightly more
general of different Bernoulli measures. Let p = (po,p1) be a probability
vector (i.e., 0 < pg,p1 < 1 and let py + p; = 1)7.

Let vy = ufo’p ! now denote the unique probability measure such that

vA(J) = pova(Ty () + pra(Ty ().

for all J [0, 5.
The main result on these measures is the following.
Theorem 7.4

For almost all A € [3,y(1) = 0.649.. ],

1 1
dimp Vg\po,pl) — min Do log po + p1 log p1 1),
log A

For almost all A € [php{",y(1) = 0.649] we have that vy is absolutely
continuous.

Unfortunately, it is not possible to move past the upper bound y(1)
on these intervals using properties of the Fourier transform 7, (as in the
previous section) because this function is not as well behaved in the case of
general (pp,p1) as it was in the specific case of (%, %) in the Erdés-Solomyak
Theorem.

Proof We shall show the lower bound on the dimension of the measure
in part (1). The proof of Part (2) is similar to that in the special case
bo =Dp1 = %

We let 1 = ppypr = (po,pl)z+ denote the usual (pg, p1)-Bernoulli mea-
sure defined on the sequence space, ¥ = {0, 1}Z+. We again let ITy, : ¥ — R
be defined by,

I,(i) = f: i A"
n=0

As usual, we have that I/>(\p 0P plPory) o H;l. We shall use the following
lemma.
Claim For any « € (0,1] we have that for almost all A € [0.5,y(1) =

0.649.. ]
1 a+1 a+1 é
dimu&po’pl)zmin og((pg " + pf ))’1 .
log A
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Proof of Claim Fix (pg,p1) and let € > 0. For brevity of notation we de-

note d(a, €) = (p a+1+pa+1+e)é Let us write S¢(\) = min (%, 1-— e).

We can first rewrite

I_/Oy(l /< |xd_VA‘S> dvy(y)d\ = 05”/(/ - du NEIET )adﬂ(j)dk.

To prove the claim it suffices to show that I < +o0o0. Next we apply Fubini’s
theorem and Holder’s inequality [ f* < C([ f)* for a € (0,1]) to get

y(1) @
1<c/ / / d“ o) <cl/ / / du(d)dA
0.5 [TIx(2) )’SE 0.5 LAY lag + 32 ay, /\nyse

for some C7 > 0, where a, € {—1,0,1} for n > 1 and ag € {—1,1}. By
transversality,

07

y(1)
Iscl/ / / dp(z)dA . du(j)gCl/ / dX
0.5 )Se( - 05 |ag+ D .2 a

Oé 6 |2/\]‘ ‘a +Zn 1 n)\n‘

for some Cy > 0. Consider the inequality (3, b;)* < >, b for b; > 0 and
€ (0,1], then

w(
1263 T M S 0 g
k=0 weWy

Thus since d(a, €)* > pSH + p{fﬂ we have I < oo and hence, since the
integrand must be finite almost everywhere, we deduce that

dim vy > min d(o, ) ,1—
log A’

for almost all A € [3,y(2)]. To complete the proof of the claim we let e = 1
for n € N and let n — oo. O
To complete the proof of the Theorem we let o, = % for n € and observe

that,
an+1 + p?n‘f'l)

lim log(pg _ pologpo + pilog P
n—00 Oy log A log A

7.5 The {0, 1, 3} problem revisited: the measure vy Finally, We can also
consider the question of absolute continuity for the {0, 1,3} problem in the
region A € [%,y(2)]. Let vy be defined as before. The analogue of the
Erdés-Solomyak theorem is the following.

Theorem 7.5 For a.e. \ € [%, y(2)] the measure vy is absolutely continu-

ous. In particular, A()\) has positive Lebesgue measure.
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This result was also proved by Solomyak. The method of proof is very

similar to that in the case of section 7.3 and we only outline the main steps.

Thus to show that vy is absolutely continuous for a.e. A € (3,y(3)) it is

sufficient to show for any € > 0

I= ﬁy@) </ lim inf V)‘(Bz(f’mdl/)\(x)) d\ < oo.

e r—0

The first step is to apply Fatou’s Lemma (to take the liminf outside of the
integral) and to rewrite this as an integral on ¥. Thus

1 (v 1 y(2)
< Timi < Timi ‘
I< hrTnJgf % /éJrE (/ VA(B(QI,T’))dVA(%‘)) dX < hgl_)l(l;lf o /§+e </E /2:{(,;)77'.HA(w)—HA(T)|<T}dM(W)d/,L(7

Applying Fubini’s Theorem (to switch the order of the integrals) gives

I< liminler/zfzﬁ{)\ e <;+e,y(2)> () — Ty (7)] < T}d,u,(w)d,u(T).

r—0

As usual, one can write
[T (w) = TIx(7)] = A Tg(N)

where g(\) € F; for all w,7 € ¥. Thus transversality gives that
1 1 |wAT|
EH{)\E <3+e,y(2)> sy (w) — I (7)| gr} §C<3+6> T
for some C' > 0. This gives,

1< ¢ /E /E (; + €>-|W| dp(w)d(7) < +oo

which can easily be seen to be finite, as in the earlier proofs.
. . . 7+
Finally, we can consider a general Bernoulli measure pu = (po, p1, p2)

on ¥ and associate the probability measure 1{°7""* = ITyp. In particular,
v =13"""P2 will be the self-similar measure such

v(J) = pov(Ty (1)) + prv(Ty () + pav(Ty (),

that for all J C [0, ﬁ .

The analogue of Theorem 7.4 is the following;:
Theorem 7.5

For almost all A € [3,4(2) = 0.5],

1 1 1
dimy vPP2) — in (po 0g o +p11 ogApl +p2logpy 1) ‘
og
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For almost all A € [ph°p{*ph?,y(2) = 0.5] we have that v, is absolutely
continuous.

This is the standard method for using transversality that for a.e pa-
rameter a family of measures are absolutely continuous. This method has
been successfully used in many contexts. These include self-affine sets ([?]),
Bernoulli convolutions ([?],[?],[?]), non linear hyperbolic IFS ([?]), Parabolic
IFS and random continued fraction expansions ([?]).



12.1. ONE DIMENSIONAL ITERATED FUNCTION SCHEMES WITH OVERLAPS161

8. Iterated function schemes with overlaps: Higher dimensions

We now turn to the study of Iterated Function systems in R?. The
starting point is the study of classical Sierpinski carpets. However, we want
to modify the construction to allow for overlaps (i.e., where the Open Set
Condition fails) by increasing the scaling factor A\. This can be viewed as
a multidimensional version of the results from the previous chapter. More
precisely, for some range of scaling values we can study the Hausdorff di-
mension of the limit set for typical values (as in the {0, 1,3}-problem) and
for another range of scaling values we can study the Lebesgue measure on
the limit set (as in the Erdos problem).

8.1 Fat Sierpinski Gaskets Let 0 < A < 1 and natural numbers n > k.
We consider a family of n contractions given by,

Ti(z,y) = (A, My) + (¢, ),

i =20,...,n— 1 where (cgl),cgz)) €{(,)eZ?:0<jl<k—1}aren

distinct points in a k x k grid. If A € (0, %] then it immediately follows from
Moran’s Theorem that the attractor A(\) has dimension —igg;‘.

Example 1 Our first example is the fat Sierpinski carpet. Here we take
n = 8 and k = 3 and choose ¢g = (0,0),c1 = (0,1),c2 = (0,2),¢3 =
(1,0),ca = (1,2),¢c5 = (2,0),¢6 = (2,1),c7 = (2,2). In Theorem 8.1, we can
take s = (%)% 0.338.... Thus we have that for almost all A € [£,0.338- -]
that

log 8
di AN) =— .
impr AR log A
=2.0in carpetl.eps =2.0in carpet2.eps

The usual Sierpinski carpet (with A\ = %) and the Fat Sierpinski carpet
(with A = 0.338) Example 2 Our next example is the Vicsek set. Here we

take n =5 and k =3 and ¢y = (1,0),c; = (0,1),co = (1,1),¢c3 = (2,1),¢c4 =

3 2
(1,2). We can take s = (£)° (1)° = 0.3866.... Thus we have that for
almost all A € [},0.386] that

log b
di AN =— .
imy AQY) log A
=2.0in vicsekl.eps =2.0in vicsek2.eps

The Vicsek cross (with A = %) and the Fat Vicsek (with A = 0.386)

Our main results are rather similar in nature to those in the last chapter.
However, our approach requires a detailed study of the measures supported
on fat Sierpinski carpets.

Theorem 8.1 There exists + < s < —= such that for almost all A € (1, s)

n

S

we have,
logn

dimpg A(\) = “log X




162 CHAPTER 12. IFS AND OVERLAPS

There are a dense sets of values in (%, ﬁ] where this inequality is strict.

Of course, for Theorem 8.1 to have any value we need to give an explicit
estimate for s which, in most cases, satisfies s > % Let denote the number
of images in the jth row by

nj = Card{1 <1 <k: c§2) =j},

for 1 < j < n. If we assume that each n; > 1 then, as we see from the proof,
we can take

n

k k
. 1 n; —n;
s=mind 2 (T[7 | { T
n J j
j=1 j=1

It should be noted that if all the values of n; are the same then s = % and

then Theorem 8.1 yields no new information.

8.2 Measures on Fat Sierpinski Carpets As usual, upper bounds on the
Hausdorff Dimension are easier. In particular, it follows immediately from
a consideration of covers that dimy A(X) < dimp A(M) < —}Zé 1. Moreover,
for the sets which we consider an argument analagous to that in the previous
chapter that there are a dense sets of values \ € (%, ﬁ] where this inequality
is strict.

To complete the proof Theorem 8.1 by the now tried and tested method
of studying measures supported on the fat Sierpinski carpets and using these
to get lower bounds on dimpg A(A). More precisely, let p be a shift invariant
ergodic measure defined on %,, = {1,--- ,n}ZJr and define a map ITy : X, —
A(A) by,

n

M\(i) = lim Tjy0---0T;,_,(0,0) =Y ¢ X

—00
J =0

Thus we can define a measure vy supported on A(\) by vy = ull ! (ie.,
A (A) = u(H;\lA), for Borel sets A C R). We also introduce a map p :
Yn — Xk which is given by,

p(io, il, .. ) = (CE?, 6512), . )

(i.e., we associated to symbol ¢ the label for the vertical coordinate of
(e, ).

We define a shift invariant measure i on ¥ by i = up~! (i.e., @(B) =
u(p~1B), for Borel sets B C ). We have already defined the entropies h(u)
and h(f) (in a previous chapter) and we can obtain the following technical

estimates on the Hausdorff Dimension of the measure of vy.
11

Proposition 8.2 For almost all A € [E? ﬁ} we have that,

“log A log A7 log \?

_ hw)=h(@)
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Example (Bernoulli measure) In fact, for the proof of Theorem 8.1, it suf-

fices to consider only Bernoulli measures. If = (&, ,%)W then h(pu) =
logn. If there are ny,--- ,ny squares in the k-rows then iz = (21, -- -, %’V)W
and

_ n; n; 1
h() = — —log— =1 - = i1 ;-
() ; —log— =logn n;m og n;
This is then used to prove the following;:

Proposition 8.3 For almost all A in the set,

{H,y(k)} : min{h(p) — h(m), h(m)} > —log)\}

the measure vy is absolutely continuous.

Examples

Our final example is contrived to have a region of values of A where the
dimension is definitely not equal to — }ggt\l for almost all \. We take k = 3 and
n =5 and choose ¢y = (0,0),¢1 = (1,0),c2 = (2,0),¢c3 = (0,2),ca = (2,2).
In Theorem we can take s = 272/% %« 373/5 = 0.3920.... However if we
added to the iterated function system the map T5(z,y) = Az,y) + (1,2)
the attractor would simply be the cartesian product of an interval with the
middle (1 —2\) cantor set and thus has dimension 1 — %ggi The attractor of
our original system must be contained inside this set and so the dimension

must be bounded above by 1 — %35/2\ For A > 0.4 we have that 1 — Eéz\ <

—}g’gi and thus dimA()\) < —%gg’\ for all A > 0.4. In fact if we take pu
11111

to be (g, 506 1> Z)—Bernoulli measure we can use Theorem to show that
dimvy, >1— %ggi for almost all A > 0.4082. This gives dimA(\) =1 — %ggi
for almost all A > 0.4082. It is not clear whether the other examples we
have considered also have regions where the dimension drops below —}gé 1
for a set of A with positive measure.

The rest of this section is devoted to the proof of this Proposition. In
the next section we shall deduce Theorem 8.1. For § € X we define p¢ to be

the conditional (probability) measure on p~!(¢) defined

H(A) = /E we(ANp ' )da(e),

for any Borel set A C %,,. Let B(X,) and B(3)) denote the Borel sigma
algebras for ¥, and ¥, respectively. Let A = p~'B(Z;) C B(X,) be
the corresponding o-invariant sub-sigma algebra on ,. In particular, this
is a smaller sigma algebra which cannot distinguish between symbols in
{0,1,...,n — 1} that project under p to the same symbol in .

We recall the following result:

Ledrappier-Young Lemma For p almost every z € 3,

i OBz VD) ) ) = ),
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Proof We omit the proof in the general case, but observe that for Bernoulli
measures it is fairly straight forward to see this. In particular, for a.e. (u),
x € ¥, the symbols in p~1(i) occur with frequency 2 and have associated
weight ¢, Thus the limit is

hA) = "og ().

as required. O
Let us define ITy : ¥, — R by

(i) =Y 2N,

J
Jj=0

In particular, IT, corresponds to mapping sequences from Y, to points on R
by first mapping the sequence i to the limit set A(\) C R? followed by the
horizontal projection of A()) to the y-axis. For any sequence £ € X it is
convenient to write ye = IT\(£). It is easy to see that I (p~1¢) € A(\) C R?
is actually the part of the limit set A(A) lying on the horizontal line L,, :=
{(z,9) : y=ye}. 2 7

We define two new measures. Firstly, 7y = @ o I, on the vertical axis
R and, secondly, on the horizontal axis vy ¢ = pi¢ o H;l on A(A) N Ly,. The
following lemma allows us to relate the dimensions of these various measures.

Lemma 8.3 Let s > 0. If for a.e. (1) £ € X, we have that dimpg vy¢ > s
then

dimg vy > dimy Uy + s.

Proof Let A C R? be any Borel set such that v,(A) = 1. It follows that
u(TI 1(A)) = 1 and thus by the decomposition of p, we have that

1= (5 (4)) = [ eI A0 57 ) dn().

Thus for a.e. (1) € € ¥ we have pue(II ' (4) Np~1€) = 1 and, hence,
again from the definitions, vy ¢(A N L, ) = 1. However, dimvye > s
for a.e.(i) € and thus dimpy (A N Ly, ¢)) > s for a.e.(z) £ In particular,
dimpg(ANLy) > s for a.e. (7)) y. By applying Marstrand’s Slicing Theorem
to the set B = {y : dimy(A N Ly) > s}, which is of full 7) measure, we
deduce that dim A > s+ dim7,. Since this holds for all Borel sets A where

v\(A) = 1we conclude that dimwvy(A) > s+ dim D). O
2To see this, let w € %, satisfy pw = £ then we know that cffi) = &;. Thus if we consider
(W) = > (cl), @A =3 (), e )N’
i=0 i=0

then the y-co-ordinate of ITx(w) is equal to IIx(£). Thus any point in (z,y) € M(p™'€)
lies on the line Y=y = HA(&) which we denote LH*)\(@
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Since 7y is a measure on the real line, its properties are better under-
stood. In particular, we have the following result. Lemma 8.4 For almost
all X € [1,y(k — 1)] we have that

dim(7,) = min (1, —ﬁg‘i) .

Proof The proof makes use of transversality and the Shannon-McMullen-
Brieman theorem, and follows the general lines of Theorem 7.3.
Firstly, it is easy to see from the definitions that dimg A(A) < dimp A(\) <

—fg (gﬁ;; We now consider the opposite inequality. Given € > 0 let sc(\) =
—logh((ﬂrﬁ). Note that the proof can be completed (as in the proofs in the

previous chapters) if it can be shown that,

y(k—1)
1—/ </ dva(z)dvaly )>d)\<oo,
|z — y|seX)

for all € > 0. In particular, the finiteness of the integrand, for almost all A,
allows us to deduce that for these values dimg A(X) > sc(A). Since the value
of € > 0 is arbitrary, we get the required lower bound dimg A(X) > —{(L) ?/)\

The inner two integrals can be rewritten in terms of the measure y on

Y and we can rewrite this as

kD) dp(i)du(j)
= /i <//IHA(2') - HA(J'NSE(A)) >

Let t = MAaxX1 )y 1) s¢(A) and note that ¢ < 1. In particular, if i # j

then they agree until the |i A j|-th term and we can write

s5e(A)
_ 1/\
Ty (3) — HA@FE( ) — Alindlse(N) (Z ak)\k> > <€—h(u) + ) Aling] (Z ak)\k> :

where {ay}rez+ is the sequence ay := i |inj| — Jetlinj| € {0, £1, ..., £(k —
1)} and ag # 0. Substituting this back into the integrand in I and using
Fubini’s Theorem we get

I<// Y +6;2 (/1 y(k—1) m) )

We can estimate the first integral in (8.1) by

i)dp(s) > 0, 1, -
// M)JzJ<Z Z M([(Ofi(u —l—e E ZO _|_€) < 00

m=0 [ig,i1,...,i5—1]
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Thus to show that I < oo it remains to bound the second integral in (8.1)

by
dA

T kit < o0

(Xokzo arA®)
for any sequence {aj}pcz+, where a; € {0,£1,... £ (kK — 1)} and ag # 0.
Let f(A) =1+>72, (Z—’S) M¥ then we can apply part (1) of Proposition 7.1
to deduce that the integral is finite. O

The next lemma allows us to associate to the measure 7y a set Y C R.

Lemma 8.5 For almost every A € [1,y(k — 1)] there exists a set Y C R
with dimg(Y) = dimg(7y) such that for any ¢ € (IIy)~'Y C ¥; we can

bound _—
dimpg (vy¢) > min {— l(ng’)\> , 1} .

Proof Given & > 0, it is enough to show that for almost all A € [+, y(1)]
there exists a set X = X5 C ¥j with #(X) > 1 — ¢ and such that for any
e X, dimpg(ven) > %’LLA). In particular, we can take Y = ﬂ;’leX%.

Fix €, > 0. By Ergorov’s Theorem there exist sets X, C X; and a
constant K > 0 such that:

(Xe) >1—¢€; and

for any § € X there exists Y such that for any x € X we can bound
pelzo, ..., xn] < Kexp(— (h(pu|A) —€)N), for N > 1.

Let us denote s = s¢(\) = —% — 2e. We want to consider the measure
Tt restricted to X and the measure vy ¢ restricted to II\(Ye) N Lg¢, where
¢ € Xo. This allows us to use the explicit bound in (2). Consider the

multiple integral

=L L ) g

We want to prove finiteness of this integral by lifting v¢ ) to pe on p~!¢ and
then using Fubini’s Theorem to rewrite the integral as:

I‘//// Muh m()\sd“&”d“f //// o o Do

where we have that a,, € {0,%1,...,£(k—1)} and ap # 0. Thus we can use
transversality to write

[e.9]

I< C/X /Y /Y M|A)+26)l/\jd’u€( )d,ug dM S Z h(u|A) -1-26)('u » M{) ({( ]) €
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In particular, from this we deduce that that for almost every A € [+, y(k—1)],
there is a set Y = Y(\) C IIy(X) of ¥ measure 1 — € such that for y € YV

one can choose £ € ﬁ;l(y) such that

dvy ¢(x)dy,
[ ]t
LY, JI\Y. [z —y

By results in a previous chapter, this allows us deduce that dimg (vy¢) > s
Finally, since € > 0 was arbitrary, the result follows. O

Proof of Proposition 8.2 By combining the estimates in Lemma 8.4 and
8.5 and the Marstrand Slicing Lemma we can see that for almost every

A€ [yl —1)]
A _
dimg vy > min {_hl(olg)\) , 1} + min (1, —lh(;))\)
Thus if — h(“‘A) <1and — {l(g”;\ < 1 we have that
h(ulA) — h(g)
d > —
LA log A log A

for almost every A\ € [%, br—1]. However, from the definitions:
h() = h(i) + h(ulA)

and thus for almost every A € [%, br—1] we have,

. h(p)
d > ——,
oA = log A
This completes the proof of Proposition 8.2. 0

8.3 Proof of Theorem 8.1 To prove Theorem 8.1 it remains to apply
Proposition 8.2 with a suitable choice of i to get the lower bound.

More precisely, let © denote the Bernoulli measure p = ( .,%
Thus h(pn) = logn. We saw before that transversality gives bk 1> (1+
k —1)~! and thus since k < n we have that y(k — 1) > (1 + vk —1)"1 >

n~2. We need to find conditions on A such that — log A > h(p) and —log A >
h(p]A) and then we can calculate

k=1 . = = k—1
h(m) = _Z %log (%) T Z(nz logn; —n;logn) = —— Zlogn”’ +logn = — <logH n”’) + 1o

i=0 i=0 i=0 i=0
We can write

k—1

h(ulA) = Z —lognl log (H n"l> .

1=0
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Thus, if we choose

1 1
k—1 n k—1 n
— mi 1 7 —ni
S = 1nin - ni y ni
n . .
=0 1=0

then for almost every A € [, s] we have that,

h(p) _logn
logA  log\’

dimgv > —
In particular, for almost every A € [%, s] we have that

logn
i AN) > —
dimg A(N) > Tog A’

as required. O

8.4 Fat Sierpinski Carpets As the value of A increases the limit set A(\)
becomes larger. Eventually, we have a similar type of result where for typical
A the set A(A) has positive measure.

More precisely, we have the following result we obtain concerning the
two dimensional measure of the attractor.

Theorem 8.6 There exists ﬁ <t < y(k — 1) such that for almost all
A € [t,y(k —1)] we have that leb(A(X)) > 0.

Examples For the Sierpinski Carpet, we can take t = 0.357.... For the
Vicsek cross we can take and t = 0.4541. =2.0in carpet3.eps

A fat Sierpinski carpet (with A\ = 0.357) and a fat Vicsek cross (with
A = 0.455)

The following simple lemma shows how we can show absolute continuity
of vy using absolute continuity of the conditional measures.

Lemma 8.7 If 7y is absolutely continuous and v) ¢ is absolutely contin-
uous for a.e. (fi) & then vy is absolutely continuous. Proof Let A C R? be
any set such that Leb(A) = 0. We need to show that vy(A) = 0. Using the
definiton of vy and the decomposition of p we get that

() = Wl A) = [ eIt A (o).

k

From the definition of v¢ ) we have that

pe(I P AN PTHE) = vy (KNI T AN p~1E)).

Since Leb(A) = 0, we know that the set {y € R : Leb(L,NA) > 0} has zero
Lebesgue measure. Thus from the absolute continuity of vy we have

f{€ € 3y : Leb(Li,e N A) >0} = vy {y € R : Leb(L, N A) >0} = 0.

=2.0in vicsek3
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Since v} ¢ is absolutely continuous for 7z almost all £ we know that vy ¢(I1 A(H)_\lAﬂ
p~1€)) = 0 for @z almost all £. Thus we have that vy(A4) = 0, as re-
quired. [JWe now need to determine when the measures 7 and v) ¢ are
absolutely continuous. The following result concerning v, is useful.

Lemma 8.8 For almost all A € [e_h(m, bx—1] the measure 7 is absolutely
continuous with respect to one dimensional Lebesgue measure.

Proof We omit the proof since it is similar to the proof of the next
lemma. CJOf course, it is possible that e ™% > p;_;. In this
case the lemma does not give any new information. We now prove a result
about the absolute continuity of measures supported on the fibre.

lemma 8.9 For almost all A in

{A € H,bk_l] : h(ulA) > —log)\}

there exists a set X C ¥ such that n(X) = 1 and for any £ € X the measure
V) is absolutely continuous on LﬁA ©)" Proof It suffices to show that given
€ > 0, there exists a set X C 3y such that m(Xo) > 1 — € and for any
§ € Xo there exists a set Yo ¢ C Ly, (o) where pg(Y/) > 1 — € and vy is
absolutely continuous on Y. ¢. We can then take X = N%_; X 1

Let €,¢ > 0. From Ergorov’s Theorem we know that there exists K > 0
and a set X C 3, such that 7i(X¢) and for £ € X there exists Yo ¢ C plE
with p1g(Yer¢) > 1 — € and for 2 € Y ¢ we have that

pelzo, ... an—1] < Kexp (= (h(pulAd) —€) N), for N > 1.

We recall that to show that ¢ is absolutely continuous it suffices to
show that D(vg\)(x) is finite, for a.e.(vg ) x € II\Yy¢. In particular, it
suffices to show that

/ Q(V&)\)((L')dl/&,\(x) < +00.
H)\Yel’g

Moreover, to show that for almost every A there exists a set of £ of & measure
at least 1 — ¢’ such that v ) is absolutely continuous, it suffices to show that

by (k—1)
I :—/ / (/H . D(Vg,A)(x)dV&)\(a:)> du(€§)d\ < +oo,
t Y At ¢

h(ulA)+2¢ For w, T € p~1¢ we

providing ¢ is sufficiently large. We take t > e
define

Gr(w, 7) = {A: [\ (w) = IIx(7)| < 7},
for r > 0. We start by lifting to the shift space, applying Fatou’s Lemma
and Fubini’s Theorem

1 by (k—1) 1
I <liminf / / / / (w, T)pe (w)dpe (7)dp(&)dA < liminf / / / leb(¢,(w, T))c
r—0 2r J, X Iy Iy, r=0 21 Jx, Jy. v,
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where is the characteristic function for {(w,7) : [IIx(w) — IIx(7)| < r}. We
can deduce

rscf [ [ e <o [ [ [ et 20, g
X YE/£ Yél’f X Yelé 3/6/’6

where Ay, = {(1,w) € Yo ¢ X Yo ¢t wy =71,...,Wn = Ty }. This completes
the proof. O
We can give an explicit value for ¢ by,

k k k
t = sup Hnj_qj : qulog <:‘Z) = O,qu =1landg; >0
j=1 j=1 j=1

Of course is possible that in some examples ¢t > y(k — 1), in which case
Theorem 8.6 tells us nothing new.

Proof of Theorem 8.6 Of course, to prove Theorem 8.6 we want to use
Lemma 8.7 once we know that 7) and A¢ ) are absolutely continuous. It
remains to relate the value of ¢ to the entropies in Lemma 8.8 and Lemma
8.9. Let ¢ = (qo,-.-,qr—1) be a probability vector. Let p; = Z’;—((i)) for
i=1,...,n and u be the p-Bernoulli measure on %,. If we let & = pp~—*
then we have that B

k-1 k—1
= Z and h(ulA) = Z% log n;.
=0 i=0

If we let ¢ be defined as above then for € > 0 let ¢ satisfy Z _0 n; >
then for any A > t — ¢ we have that —log\ < h(g) = h(,u|A) Thus for
almost every A > t — ¢ the measure v, is absolutely continuous and hence
Leb(A(N)) > 0. The proof is completed by letting € — 0. O

Example: Higher dimension The results in this chapter can be gener-
alised without difficulty to higher dimensional setting. We consider two
such setting in R3. Firstly we consider the Sierpiniski tetrahedron. This
consists of the following four similarities.

To(z,y,z) = Mz, y,2) + (0,0,0)T1 (2, y, 2) = ANz, y, z) + (1,0,0)Ta(z,y, 2) = Az, y,2) + (0,1,0)

In the case where A = % this iterated function system would satisfy the

logd __
log2 — 2.

We consider the case when A > % Let p be evenly distributed Bernoulli
measure on ¥4 and vy be the natural projection of p to A(X). We can
define a map p : ¥4 — X3 which maps symbols 0,1,2 to themselves but
maps 4 to 0. If we let 7 = up~' and project it onto the tetrahedron as
V) then we can see that it is supported on the perpendicular projection to
the (x,y)-plane. This would be a Sierpinski gasket. We can then define a

open set condition and the attractor, A(A) would have dimension
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set of conditional measures which would be supported on vertical fibres.For

almost all A € [%,0.569...] that dimrvy = —W. We can also show
that the conditional measures will for almost every A € [0.5,y(1)] and for f-

almost every & € Y3 have dimension —W. Thus by using Marstrand’s

Slicing Theorem we can see that for almost every A € [0.5,0.569...] we have

dimvy > —llggil\. This immediately gives A similar argument shows that
g
log 4
dimA(N\) = —
im A(A) log A

for almost every A € [0.5.0.569. . .].

The menger sponge is another example of a self-similar set in R3. In
the standard case it consists of 20 contractions of ratio % The values of ¢;
consists of all triples of (z,y,z) € (0,1,2)® where at most one of , y of z
takes the value 1. The perpendicular projection of the attractor to any of the
(z,y)-plane, the (x, z)-plane and the (y, z)-plane is the standard Sierpinski
carpet. If we consider the case where the contraction ratio (\) are bigger
than § we have that dim A(\) = —lﬁ)gg%\o for almost all A < 0.348 and that
A(X) has positive measure for almost every A > 0.393.

8.5 Limits sets with positive measure and no interior Consider the fol-
lowing problem (posed by Peres and Solomyak): Can one find examples of
self-similar sets with positive Lebesque measure, but with no interior?

A variant of the method in the preceding section leads to families of
examples of such sets.

The construction Let t = (t1,t2) with 0 < ¢1,t3 < 1. We consider ten

similarities (with the same contraction rate %) given by

1 1 1 1 1 1 1 1
To(zx,y) = <3$7 3y> Ti(z,y) = (3557 gy + tl) Ty(z,y) = (3557 gy + t2> T3(x,y) = (3557 gy + 1> Ty(z,y

This construction is similar in spirit to those in the previous section. To see
that the associated limit set A; has empty interior, we need only observe
that the intersection of A; with each of vertical lines {(k+1)37"} x R, with
n > 0and 0 < k£ < 3" — 1 has zero measure. It remains to show that
typically A; has positive measure.
=3in noint.eps

A typical limit set A;

Let 319 = {1,2,--- ,10}Z+ denote the full shift on 10 symbols and let
II; : ¥10 — A; be the usual projection map. Let

/111 111111 1\
P\ 1212127667127 127 127 12

be a Bernoulli measure on X19. To show that A; has non-zero Lebesgue
measure it suffices to show that v = pull; 1'is absolutely continuous. By
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construction, v projects to Lebesgue measure on the unit interval in the
x-axis, thus it suffices to show the conditional measure v;, on Lebesgue
almost every vertical line {x} x R is absolutely continuous.

Let ¥3 ={1,2, 3}Z+ be a full shift on 3 symbols corresponding to coding
the horizontal coordinate. As before, there is a natural map p : Y19 — X3
corresponding to the map on symbols given by

1 11 1)Z+

Then pup™ =p = (g, 3,3 is the Bernoulli measure on ¥3. Given £ € X3
let y1¢ denote the induced measure on p~1(¢). Clearly, if ;¢ : p~ (&) —
{z} xR is the restriction of Il;, then by construction ,u,gH;g = V. We also
let 7w : ¥3 — [0, 1] be the natural projection from X3 to the z-axis given by

ee} 1 n+1
Xafs)

The analogue of transversality is the following:
Lemma 8.10 There exists C' > 0 such that

Ag(riw, 7)== Leb{t € [0,1]% : | ¢(w)-TL ()] <7} < C3Mly for r > 0.

Proof Let w,7 € p~1(¢) with |[w A 7| = n (i.e., 73 = w; for i < n and
Tn 7# wp). Since w, T € p—l(g) we have i(wy,) = i(7,) for all n, and Hg,g(w) _
HLﬁ(T) = (0, ¢re(w,T)), where

d)i,{(wv 7-) =3 ((tj(wn ](T + Z 3~ wk+n) (Tk+n))>

and jlioa6y = 0,5l(1,7 = Lilgasy = 2,4l350) =3, and to = 0,13 = 1 for
convenience. If {j(wy),j(m)} = {0, 3}, then

|Pre(w, T)[ 237" <1 - 3_k> =37"/2,

k=1
in view of t; € {0,1} for all j, and (1) follows. Otherwise, let j € {j(wy), j(m)}N
{1,2}. Then

8(25275 (w’ T)
ot

o0
>3 (1 - Z?r’f) =37"/2,
k=1

which also implies (1). O

Now we use Lemma 8.11 to prove that 14, is absolutely continuous for
a.e. z. For a sequence £ € X3 we define n;(£) to be the number of ’s in the
first n terms of £. By the Strong Law of Large Numbers, given €, > 0 we can
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use Egorov’s theorem to choose a set X C [0, 1] of measure leb(X) > 1 —¢
(equivalently 7i(m~1X) > 1 — ¢) such that there exists N € N where for
n> N, n;(&) > (% - 5)”, for i = 0,1,2. We can bound

/ / / D(v2)(y)dvy o (y) d(leb)(a:)dtgliminfl/ / / Ag(r;w, T)dpe (w)dpe
0,12 Jx \J{z} xR - - r=0 2r Jeix \Jp-1¢) Jp1(e)

for some C7 > 0 bounding the first N terms of the series, and observe
that the series is finite for ¢ sufficiently small. This implies the absolute
continuity for a.e. t.

We have proved the following result.

Theorem 8.12 For almost every ¢ € [0,1]? the limit set A; has positive
Lebesgue measure and empty interior.

We can also construct examples with fewer similarities using different
contraction rates. Let 0 < A < 1 and t = (t1,t2,t3) € [0,1]3. Consider the
six similarities of R? defined by

To(z,y) = Az, Ay)Th(z,y) = (Az, Ay + 0)To(z,y) = (Az, Ay + t2) T3(z,y) = (A + Az, \y) Tu(z, y) = |
+

Let A; again denote the self-similar set. Let p = (%, %, %, %, %, (1-— 2)\))Z

be the Bernoulli measure on g, Let 7 = (A A, (1 — 20))%" denote the

induced measure on 3. The proof of Theorem A can be adapted to this
setting provided

—(h(p) — h(@)) = —Alog2 — Alog 3 < 2Alog A + (1 — 2X) log(1 — 2)),

which is true provided A is sufficiently close to % More precisely, we have

the following result. Theorem B If A € (0.4759, %) then for almost every
t € [0,1]? the limit set A; has positive Lebesgue measure and empty interior.
Remark In General
We can also obtain results about some overlapping self-affine fractals in
2 Let m > k > 2 and write 8 = 1255 We consider n affine contractions

logm -
{Ty,...,Tp_1} :>=?2 given by,

Ti(z,y) = (A%w, Ay) + ¢

where ¢; € {0,...,m — 1} x {0,...,k — 1}. In the case where A = L these
are exactly the self-affine maps considered by Bedford and McMullen. The
Hausdorff and Box counting dimensions of the attractor A(\) are given by
Theorem ??. We wish to calculate the Hausdorff dimension of A()) for
larger values of A where the images overlap. For 0 < 7 < k — 1 we define

t; = Card{c; : cl@) =j}

We obtain the following result about the Hausdorff dimension of the attrac-
tor.
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Theorem 34. There exists s such that for almost every A € [%, s] we have

that
tog (245 nf)
T leh

As was the case with the fat Sierpinski carpets there will be cases where
5§ = % and hence Theorem 34 gives no new information. However in most
cases this will not be the case. An explicit values for s will be given in the

proof.

dimA(N) = —

Proof of Theorem 34
We start by showing that

tog (245 )

imA(N) > —
dim A(\) > Tog \

holds for almost every \ € [%, 5]. Let IIy : ¥,, — A()) be given by,
NG
=0

We then let p be a shift invariant Ergodic measure on ¥,. As before we
define vy = p o H;l. We define p : ¥, — X, by

p(j07j17 .- ) = (Cgi)v Cgi))

Now let i = pop~!. Once again we can use the Rohlin decompsition of
measures. We define a family of measures i where £ € 3, and for all Borel

subsets A C X,
p() = [ pe(Anp (o).

m

Projections ITy : £, — and I\ ¢ : p~1¢ — r are given by

(&) =D &N and My g(w) = > w;A,
j=0 j=0

By the definition of p we have that if w € p~'¢ then for all j €y there exists
¢; such that (wj,p;) = w;. Thus
(e (W), TA(£)) € A(N).

Let .
Uy = o H; and Vrg = Mg © HAvf

be measures defined on . using exactly the same methods as for the Sierpinski
carpets we can obtian the following Lemma.
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Lemma 50.
1
. For almost all \ € [%, b(m — 1)5} we have that,

MM}‘

log A

dim7y > min {1, —

. For almost all X € [1,b(k — 1)] we have that for i almost all &,

h(p) — h(@
dimuvy ¢ > —M.
B 10g )\
. For almost all A € [%min {b(k - 1), e~ hm) eh(m_h(“)}} we have
eh(@)  ph(w)—h(m)

log A B %log/\

dimvy > —

To complete the proof of the almost sure lower bound we let p; =
(2)

1.7 for i = 0,...,n;. We then let u be (po,...,Pm—1)-Bernoulli

n (2) 250 M

measure on Ym. If we let

s = min{b(m — 1), e ") ImD=hn)y
then for almost every A € [1, s] we have that
M(E) |, b~ ()

dimvy > —

log A % log A
8
However if we let ¢; = "711ﬁ for i =0,. — 1 we can calculate,
j=0 "
m—1 m—1
h(m) =log [ ¢ and h(n) — h(m) =1log [ n¥.
§=0 §=0

Thus for almost every A € [4, s]
hm) | h(m) = h(p)

dimA(\) >

- _log)\ llog)\
g[S ¢ — Blog [T} nf
N log)\

nf
IOgHJ —0 W BlogH] Yo ny

log A
log | =+ B B
— g<Z;nO1 f) IOgHJ 0 njqj logH] 0 njqj
N log A log A
log (Z;n:_ol nf)

log A
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We complete the proof by showing that McMullen’s arguments from [?]
can be adjusted to give us a uniform upper bound in the overlapping case.

12.2 Non-linear Contractions

In this section we show how the results can be generalised to certain specific

families of non-linear contractions. Let Ti(j)"a) 22—, where 0 <i < k—1, be
defined by

Ty« (w.y) = (£, 00X )

where fi(’\) :[0,1] = [0,1] and gi(;-() :[0,1] = [0, 1] are Cl14-a] parameterized
by some A and ¢ respectively. A and ¢ will be from ™ for some m; when
Lebesgue measure is referred to it will be m dimensional. Suppose that there
are n different maps and let ¥,, be the space of sequences with symbols (i, j)

and o : 3, — X, the usual shift map. Let II 4 : 3, —2 be defined by,

Myo(a) = lim Ty, - Ty, 0,0).

This is the natural projection from the shift space to the attractor of the
iterated function system, A(\, ¢). Let 1Ty : ¥ — Xi be defined by,

Mi(z) = lim fyy 00 fu, ,(0).

m—ro0

We deifne p : 3,, — ¥; by mapping each element (7, ) of a sequence in %,
to j. Let p be an Ergodic shift invariant map measure on 3, and let g = pu.
We then decompose p so that for any Borel set A C X3,

p() = [ ne(A)d(e).
Xk
Let IIy ¢ be the restriction of II 4 to p~1¢. We define measures by

_ _ =1
Uang = poll Ty =olly ", vye = peollpe.

Note that v4¢ is entirely supported on a vertical line with z-coordinate
I, (¢). In this setting we need to define Lyapunov exponents both on the
projection and along the fibres. These are the analogues of the contraction
rates in the linear cases. Let

X1 = / log |5, |oTydi(x) and x; = / / Lo [gl | 0Tl el () ATE(E).
g X JpiE

To use these Lyapunov exponents we need the following two Lemmas.

Lemma 51.
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. For @i almost all x we have that

. 1 =
Aim —log(Ix([zo, - . &m-1])) = x1
. For 1i almost all § for p¢ almost all x
, 1
lim — log(IIx([xo, - .., Tm—1])) = X2-

m—o0 M,

Proof.
. By the Mean Value Theorem for all x € ¥, there exists x such that,

(ﬁk([m()v ce ,:En,ﬂ = fl“o O O)fxm—1)/(x)'

By the Holder continuity of each f! and the chain rule there exists a constant
¢ > 0 such that,

m—1

log C' + Z Ing:/cl(fIz+1 O ofik(o)) :

=0

1
p—T log | fugo---ofy, _,(x)| = e—

(12.1)
If we let h : ¥ — be defined by h(i) = log f/_, o IL\(c0(i)) then we can
rewrite the right hand side of 12.1 as

m—1

logC + Y h(c'(z))
=0

m—1

The proof can then be completed by the Birkhoff Ergodic Theorem.

. A similar method can be used to prove this part.
O

We need the following two transversality conditions to be satisfied. There
exists a constant C; > 0 such that for w, 7 € 3 with wg # 79:

L{A : |ﬁ)\(w) —ﬁ,\(T)‘ < 7“} < 017”
There exists a constant Co so that for w, T € p~1¢ where wy # 79 we have
L{x: [Mype(w) = Txge()| <7} < Cor.

Let Ay 4 be the set where both transversality conditions are satisfied. The
following results hold when Ay 4 has positive measure. A is the Borel sigma
algebra defined by p~!B(%,,).

Proposition 19. For almost all (X, ¢) € A\ we have

Xl’ X2 J

dim(vyg) > —(’“‘Mh(“'f“)) if max{_hw Al A))

dim(vy) > 1+ min {_h(u)’ _hlul4) } otherwise.

X1 X2
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Proposition 20. For almost all (X, ¢) in the set

Ux,x s absolutely continuous.

Both of these Theorem can be proved using the same transversality tech-
niques as used earlier in this chapter. Details of the slight changes needed
to deal with the non-linear case can be found in [?] and [?].

Families where Proposition 19 can be applyed

We now find a family of iterated function systems on 2 where Proposition
19 can be applied. Let f,g : [0,1] — [0,1] be C'*% contractions where
||, |19]]o0 < 3 Let (to,...,tx—1) €. For 0 <i<k—1
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Chapter 14

Estimating dimensions

We now come to one of the main themes we want to discuss: How can one
compute the Hausdorff Dimension of a set?

14.1 A basic approach

In the case of linear contractions there is a very effective way to estimate
the dimension using the Moran formula.

More generally, assume that Ty,--- , T : [ — I are a family of (non-
linear) C? contractions of an interval I. We can associate to each 1 < i < k
the lower and upper bounds on the derivative of the form:

0 < a; = inf [T} (z)| < B; = sup [T} (z)|.
xel zel

Let A = A(Ty,--- ,T}) be the associated limit set then we have the following
elementary bounds.

Proposition 21. Let 0 < d_ < d4 <1 be the solutions to:

k

k
Za;j* =1 and Zﬁj* =1
=1

i=1

then
d_ < dimg(A) < dg

To proceed we need to prove basic distortion bounds.

Lemma 52 (Distortion bounds). There exists a constant A > 0 such that
for any iy, -+ ,ip € {1,--- ,k} and all x,y € I:

1_|(Tyo 0T, )()
ATy 0o, ) ()

181
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Proof. Since the maps T; are C? we have that log|T!| is C! and this is
Lipschitz, i.e.,

£ ()]
|fi ()]

where we use the Mean Value Theorem. By the chain rule we can write

log |T/(x)| — log [T/(w)]] < Clz — y| where C =3~
xzel

< +00

(Tyy oo Ty,) (@) = [ [ T4, (Tiysy 0 0 T, ) (@)

and then for x,y € I we have

llog [(T;, 0+~ o T3,) (x)| —log (T}, o+~ o T3,) ()]

n
<> |log T, (Tiypy 0 0 T3, ) (@) = log | T, (Tiy 0+ 0 T, ) ()|
j=1

n
<O [Ty 00 Tiy() = Ty 00 T (0)]|
j=1

n o C
< C;(ﬁz) -1 < m

where we have used the Mean Value Theorem to bound

Yy
Ti, 0 0T (2) ~ Ty 0 0 T (3)| s/ (T, 000 T, ) ()dt
xT

< gt

Exponentiating both sides of (1) and writing C' = exp (%)
Given ¢ = (i1, -+ ,iy) € {1,--- ,k}" we denote [; = T;, o --- o T; (1)
denote the images of I. We have the following corollary.

Corollary 11. The length |1;| of the interval |I;| satsifies

1 1]

=< <A
A=

(Tiy 0+ 0 T5,,) (wo)| —

for any xg € I.
Proof. We can use the change of variables formula to write
(it 173 oo 7Y@ ) 1 < I8l = [ 1Ty 00T
I
< (sl oo @) ) 1
zel

then the result follows by the lemma. O
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Recall that the limit set can be written as
X =N, Ulij=n I;.

Let § = inf;;infier, yer, [ —y| > 0 be the smallest gap between different
images T;(I) and T};(1).

Lemma 53. For x,y € I with x # y we can choose n > 1 and i =
(i1, yin) € {1, ,k}"™ with

1. z,yel, and

. there exists i # j such that x € I; and y € 1;;

where i = (i1, ,in,i) € {1,--- ,k}"TL. Moreover, for any xo € I we can
bound 5 | |
r—Yy
- < <A
A5 (T o oty =V

Proof. We can choose an interval J from I — Ulefl- which lies between I;
and ;. We denote J; = Tj, o---oT; (J). In particular, |z — y| > |J;| and
by the change of variable formula and the corollary

il = / (Tiy 00 T;,)'(8)|dt > |‘;]1’y|<Tn o---oT,,) (o)l
J

and by definition |J| > ¢ > 0. On the other hand
|z —y| < L] < A[(Ty 0+ 0 T;,,) (xo)|- .
This complete the proof. O

Let us assume that 81 +---+ 0 < 1—6 < 1. We can then associate an
affine linear function scheme S; : [0,1] — [0,1] (i =1,--- ,k) by

Si(z) = Biz + i

where we choose the v; = 81 + -+ Bi—1 +i0/k (i =1,--- , k). Let X be the
limit set associated to {Si}le, i.e., X is the smallest closed non-empty set
such that X = UF_| T, X.

This leads to the following.

Lemma 54. The natural map 7@ : X — X given by

7T< lim 52'151'20"'051‘”(900)) = lim T3, 0--- 0T, (20)

n—-+00

18 Lipschitz.
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In particular, this implies that dimgy(X) < dimg(X). But by Moran’s
theorem we have dimgy (X) = d.

Similarly, we can then associate an affine linear function scheme R; :
[071] - [O¢1] (Zzla 7k) by

Ri(z) = cix + i

where we choose the vy, = a1 +---a;—1 +id/k (i =1,--- , k). Let X be the
limit set associated to {Ri}i?“:l, i.e., X is the smallest closed non-empty set
such that X = UleTZ-X.

This leads to the following.

Lemma 55. The natural map 7 : X — X given by

n—-+00 n—-+00

( lim T;,T;, o- Tin(ﬂU0)> = lim R; Rj,0o---oR; (x0)

is Lipschitz.

In particular, this implies that dim(X) < dimg(X). But by Moran’s
theorem we have dimy(X) = d.
This completes the proof of the proposition.

Example 59. Let 2 < a < b be integers and let Ty,T : [0,1] — [0,1] be
defined by

1 1
T (z) = . and Ty (z) = P
In particular, we see that
1 1 1 1 1 1
— < |T! =— < — d—— < |T} = < —.
@t = MOl= e = o o < 1ROl = e < 3

(a) For example, when a =2 and b =3 we have that

1

1
& <T@ < 5 and 5 < |TY(2)] <

.-JM'—'

and we can solve for 0 < d < d < 1 with
Ne /1\¢ N /1\?
(6) + (i) =1 (5) + (5) =

d=10.2802... and d=0.3939--- .

and get

(b) For example, when a =12 and b = 13 we have that

1 1 1
< — < —
Teo = T < 196 and 7o < 1T(@)l < 37
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and we can solve for 0 < d < d < 1 with

1\¢ /14 1\? [/ 1\¢
— — ) =1and [— — ) =1
(169) * <196> o <144> * (169)

d=0.1332... and d =0.1372--- .

and get

In fact, we don’t need to bound the derivatives of |T}(z)| and |T5(x)| for
all x € I, but only on sub-intervals

1, = [[pa). )] ond I, = [[a), 8]

where we have periodic continued fraction expansions

a = [bababa - - -]
b = [bbbbb - - -]
a = [aaaaaa - - |
ab =|ababab - - -]
Since [a] = ﬁ@ and [b] = ﬁ[fb] we can solve to get
@ =+ (—a +y/a® —4(a— 1)) and [B] = © (—b+ N 1))
2 2
Since [ab] = —21r— and b = —2— we can solve to get
e at[bal

(b = % (~ab+/@@b)? —dab) and [ba] = 1 (~ba + v/{ab)? — dab)

N | —

14.2 Algorithms

In some of the simpler examples, particularly those constructed by affine
maps, it was possible to give explicit formulae for the Hausdorff dimension.
In this chapter we shall consider more general cases. Typically, it is not
possible to give a simple closed form for the dimension and it is necessary
to resort to algorithms to compute the dimension as efficiently as we can.
The original definition of Haudorff Dimension isn’t particularly convenient
for computation in the type of examples we have been discussing. However,
the use of pressure for interated function schemes provides a much more
promising approach.

We shall describe a couple of different variations on this idea. The main
hypotheses on the compact X is that there exists a transformation 7" : X —
X such that:
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. Markov dynamics: There is a Markov partition (to help describe the local
inverses as an interted function scheme);

. Hyperbolicity: There exists some A > 1 such that |T"(z)| > \ for all z € X;
. Conformality: T is a conformal map;

. Local mazimality: For any sufficiently small open neighbourhood U of the
invariant set X we have X = N5 T~ "U (such an X is sometimes called a
repeller).

Our two main examples are the following:

Example 3.1.1 Consider a hyperbolic rational map T : C — C of degree
d > 2 and let J be the Julia set. This satisfies the hypotheses (1)-(4). We
let U be a sufficiently small neighbourhood of J.

Using the Markov partitions can write J = UleJi and inverse branches
T;: J — J;such that ToT;(z) and i = 1,...,k for all z € J;. J is the limit
set for this iterated function schemes. O

Example 3.1.2 Consider a Schottky group I = (g1, -+ , gn, gn+1 = gl_l, e

g, 1) and let A be the limit set. We let U = U",U; be the union of the dis-
joint open sets U; = {z € : |¢gi(z)] > 1} of isometric circles. We define
T:A— Aby T(z) =gi(z), for z€ UyNA and i = 1,...,2n. This satisfies
the hypotheses (1)-(4).

We can define inverse branches T; : g;(U;NA) — U;NA such that ToT;(z)
andi=1,...,nfor all z € U;NA. The limit set A is the same as that given
by the iterated function scheme.

We now describe three different approaches to estimating Hausdorff di-
mension.

A first approach: Using the definition of pressure. The most direct approach
is to try to estimate the pressure directly from its definition, and thus the
dimension from the last chapter.

Lemma 3.1 For each n > 1 we can choose s, to be the unique solution

;bg( ) r<T”>'<x>rSn> -1

Trhr=x

to

Then s, = dimy(X) + O (3).

1
n

Proof. Fix a point xg. There exists C' > 0, we can associate to each preimage
y € T~ "xq a periodic point 7"z = x with [(T™) (y)|/|(T™) (z)| < C (in the
last chapter). We can estimate

e Y TS Y T @) <e® Y [T ()

Try=xg Trx=x Try=xg

y92n =
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We can identify

L1™x) = Y (T (y)| (3.1)

Try=x

Recall that the Ruelle operator theorem allows us to write that L71(z) =
A2(1+o(1)), where s > 0, and thus

log A, = %log ( 3 \(T”)’(a:)]s> +0 (i) |

Trr=x

We can deduce the result from the the Bowen-Ruelle Theorem (since the
derivative of log A4 is non-zero). O O

In particular, in order to get an estimate with error of size € > 0, say, one
expects to need the information on periodic points of period approximately
1/e. This does not suggest itself as a very promising approach for very
accurate approximations, since the number of periodic points we need to
consider grows exponentially quickly with n =< %

A second approach: Using the transfer operator. McMullen observed that
working with the transfer operator one can quite effectively compute the
pressure and the dimension. In practise, the numerical competition uses the
approximation of the operator by matrices. Some of the flavour is given by
the following statement.

Proposition 3.2 Given z € X, and then for each n > 1 we can choose
s$n to be the unique solution to > rn,_, [(T")'(y)|"*" = 1. Then s, =
dimg (X) + O(6"™), for some 0 < 6 < 1.

Proof. We begin from the identity (3.1). The stronger form of the Ruelle
operator theorem means we can write that L?1(z) = A\ (1 + O(a™)) where

0 < a < 1. The derivative %58§95 of log As can be seen to be non-zero, and
so we can deduce the result from the Bowen-Ruelle Theorem. O O

For many practical purposes, this gives a pretty accurate approximation
to the Hausdorff dimension of X. However, we now turn to the main method
we want to discuss.

A third approach: Using determinants. Finally, we want to consider an
approach based on determinants of transfer operators. The advantage of
this approach is that it gives very fast, super-exponential, convergence to
the Hausdorff dimension of the compact set X. This is based on the map
T : X — X satisfying the additional assumption:

1. 7(5)” Analyticity: T is real-analytic.
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We need to introduce some notation.
Definition Let us define a sequence of real numbers

1 |Ti(2:)|~*
"o det (1 - [Ti(z0)] )

where the summation is over all n-strings of contractions, 7}(z;) denotes
the derivative of T; at the fixed point z; = T;(z;), and |T}(z;)| denotes the
modulus of the derivative. Next we define a sequence of functions by

AN(S):l—I-Z Z (_1)man1...anm,

Qp = , forn>1,

where the second summation is over all ordered m-tuples of positive integers
whose sum is n.

The main result relating these functions to the Hausdorff dimension of
X is the following.

Theorem 3.3 Let X C R? and assume that 7 : X — X satisfies condi-
tions (1)-(5). We can find C' > 0 and 0 < 6 < 1 such that if sy is the largest
real zero of Ay then

(1

1
dim(X) — sy| < CON ) for cach N > 1.

In the case of Cantor sets in an interval then we would take d = 1. In
the case of Julia sets and Kleinian group limit sets we would take d = 2.
Practical points

1. In practise, we can get estimates for C' > 0 and 0 < 6 < 1 in terms
of T'. For example, 0 is typically smaller for systems which are more
hyperbolic.

2. To implement this on a desktop computer, the main issue is amount
memory required. In most examples it is difficult to get N larger than
18, say.

3.2 Examples
Example 1: Es We can consider the non-linear Cantor set

1
Ey=4q ——5— i €{1,2}
nt i2+i3i—4.4
For X = E5, we can define Tz = % (mod 1). This forms a Cantor set in the

line, contained in the interval [§(v/3—1),v/3—1], of zero Lebesgue measure.
1

1Tt represents sets of numbers with certain diophantine approximatibility conditions
and its Hausdorff dimension has other number theoretic significance in terms of the
Markloff spectrum in diophantine approximation, as we shall see in the next chapter.
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A number of authors have considered the problem of estimating the
Hausdorff dimension dimg(Fs) of the set Fy. In 1941, Good showed that
0.5194 < dimpy(F>) < 0.5433. In 1982, Bumby improved these bounds to
0.5312 < dimpy(F2) < 0.5314. In 1989 Hensley showed that 0.53128049 <
dimg (E2) < 0.53128051. In 1996, he improved this estimate to 0.5312805062772051416.
We can apply Theorem 3.3 to estimating dimg(Fs). In practice we can
choose N = 16, say, and if we solve for Ajg(s16) = 0 then we derive the
approximation

dimg (Ey) = 0.5312805062772051416244686 . . .

which is correct to the 25 decimal places given.

Example 2: Julia sets We can consider Julia sets for quadratic polyno-
mials f.(z) = 2% + ¢ with different values of c.

Example 2(a). Inside the main cardioid of the Mandelbrot set Let
¢ = —0.06, which is in the main cardioid of the Mandelbrot set. Thus
the quadratic map T is hyperbolic and its Julia set is a quasi-circle (which
looks quite “close” to a circle).

=2.5in frogb.eps
The Julia set for 22 — 0.06 is the boundary between the white and black
regions. (The white points are those which do not escape to infinity)

Bodart & Zinsmeister estimated the Hausdorff dimension of the Julia
set to be dimpg(J.) = 1.001141, whereas McMullen gave an estimate of
dimg(J.) = 1.0012. Using Theorem 3.3 we can recover and improve on
these estimates. Working with NV = 8 we obtain the approximation

dimp (J.) = 1.0012136624817464642 . ..

Example 2(b). Outside the Mandelbrot set Let ¢ = —20, which is outside
the Mandelbrot set. Thus the quadratic map 7, is hyperbolic and its Julia
set is a Cantor set. With N = 12 this gives the approximation

dimy(J.) = 0.3185080957 . ..

which is correct to ten decimal places. This improves on an earlier estimate
of Bodart & Zinsmeister.

=2.5in trig.eps
Figure 9 Contraction (a) in the r-plane; and (b) in the 6-plane

3.3 Proof of Theorem 3.3 (outline) The proof of this Theorem is based on
the study of the transfer operator on Hilbert spaces of real analytic functions.
To explain the ideas, we shall first outline the main steps in the general case
(without proofs) and then restrict to a special case (where more proofs will
be provided). The difficulties in extending from the particular case to the
general case are more notational than technical.
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(i) Real Analytic Functions We have a natural identification
R? = R? x {0} c R? x iR? = C%.

A function f : U — R* on an neighbourhood U C R? is real analytic
if about every point x € U there is a convergent power series expansion.
Equivalently, it has a complex analytic extension to a function f : D — CF,
where U ¢ D c C% is an open set in C%.

(ii) Expanding maps and Markov Partitions We start from an expanding
map T : X — X with a Markov Partition P = {X}, say. For each 1 <
J < k, let us assume that U; is an open neighbourhood of a element X;
of the Markov Partition. We may assume that for each (i,j), the local
inverse Tj; : X; — X; for T : X; N T_lXj — X are contracting maps
in an interated function scheme. Using analyticity (and choosing a smaller
Markov partition P, if necessary) we can assume that U; x {0} C D; where

D; = Dj(.l) X ... X D§d) C C% is chosen is an open polydisc, i.e., a product of

open discs D](-l) in C. Thus, we can assume that these extend holomorphically
to maps Tj; : D; — Dj, and |DTj;(+)| : D; — C too, such that both

Tj(D;) C D; and sup |DTj;(2)| < 1, (3.1)
ZGDi

i.e., the discs are mapped are mapped so that their closures are contained
inside the interior of the range disk, and the derivative is smaller than 1.

(iii) A Hilbert space and a linear operator For any open set U C C, let
As(U) denote the Hilbert space of square integrable holomorphic functions
on U equipped with the norm

1L a(er) = /U | Pd(vol).

For any s € R, and any admissible pair (i,7), define the analytic weight
function wy ;) € H(D;) by wg j(2z) = |[DTji(z)|*. > We then define the
bounded linear operator L (;; : H(D;) — H(D;) by

Ls,(j,i)g(z) = g(Tjiz)ws,(j,i)(Z)'

For a fixed i we sum over all (admissible) composition-type operators
L, (j+) to form the transfer operator Ly ;, i.e.,

Lyih(z) = Y W(Tjiz)w, )(2): (32)
j:A(i,5)=1

2Tt is here that we need to consider real analyticity, because of the need for the modulus
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Finally, let D =[], D; be the disjoint union of the disks, then we define
the transfer operator L : Aa(D) — Aa(D) by setting

Lsh|p, = Ly ih

for each h € Aa(D) and each i € {1,...,k}.

The strategy we shall follow is the following. The operators Ls are de-
fined on analytic functions on the disjoint union of the disks D;. This in
turn allows us to define their Fredholm determinants det(I —zLg). These are
entire function of z which, in particular, have as a zero the value z = 1/\;.
In this context we can get very good approximations to det(I — zLs) using
polynomials whose coefficients involve the traces tr(LY). Finally, these ex-
pressions can be evaluated in terms of fized points of the iterated function
scheme, leading to the functions An(s) introduced above.

(iv) Nuclear operators and approximation numbers Given a bounded
linear operator L : H — H on a Hilbert space H, its i*" approximation
number s;(L) is defined as

si(L) = inf{||L — K|| : rank(K) < i — 1},

where K is a bounded linear operator on H.

Definition A linear operator L : H — H on a Hilbert space H is called
nuclear if there exist u,, € H, l,, € H* (with ||u,|| = 1 and ||l,|| = 1) and
Yoo lpn] < 400 such that

L(v) = anln(v)un, for all v € H. (3.4)
n=0

The following theorem is due to Ruelle.

Proposition 3.4 The transfer operator L : Aa(D) — A2(D) is nuclear.

(iv) Determinants We now associate to the transfer operators a function
of a two complex variables.

Definition For s € C and z € C we define the Fredholm determinant
det(I — zL;) of the transfer operator Ls by

det(I — zLs) = exp (— i itr(L?)) (3.5)

n=1

This is similar to the way in which one associates to a matrix the determi-
nant.

We can compute the traces explicitly.

The key to our method is the following explicit formula for the traces of
the powers L7 in terms of the fixed points of our iterated function scheme.
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Proposition 3.5 If Ly : Ax(D) — Axo(D) is the transfer operator asso-
ciated to a conformal iterated function scheme then

w(L) = D S T

where T}(-) is the (conformal) derivative of the map 7;. This allows us to
compute the determinant:

> 2n |DT;(2)|°
det(I — zLs) =exp | — Z n Z det(I — DT;(z;))
n=1 ' ieFix(n) T

(iv) Pressure, Hausdorff Dimension and Determinants We can now make
the final connection with the Hausdorff dimension.

Proposition 3.6 For any s € C, let A\.(s), r = 1,2,... be an enumeration
of the non-zero eigenvalues of L, counted with algebraic multiplicities. Then

oo

det(I — 2Ls) = [ J(1 — 2An(9)).

r=1

In particular, the set of zeros z of the Fredholm determinant det(I — zL;),
counted with algebraic multiplicities, is equal to the set of reciprocals of
non-zero eigenvalues of Lg, counted with algebraic multiplicities.

This brings us to the connection we want.

Proposition 3.7 Given an iterated function scheme, the Hausdorff di-
mension dim(A) of its limit set A is the largest real zero of the function
s+ det(I — Ly).

Proof. If s is real then by the previous section the operator Ly has simple
maximal eigenvalue \s, which equals 1 if and only if s = dim(A). But
Proposition 3.7 tells us that 1 is an eigenvalue of L if and only if s is a zero
of det(I — Lg).

To see that dimg(A) is actually the largest real zero of det(l — L),
observe that if s > dim(A) then the spectral radius of L, is less than 1,
so that 1 cannot be an eigenvalue of L, and hence cannot be a zero of
det(l — Ly). ]

The reason that det(I — zLs) is particularly useful for estimating \s is
because of the following result.

Proposition 3.8 The function det(/ —zL;) is entire as a function of z € C
(i.e., it has an analytic extension to the entire complex plane). In particular,
we can expand

det(I —zLs) =1+ Z b (s)z"

n=1
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where |by,(s)] < Co""? for some C >0 and 0 < 6 < 1.

We can rewrite det(I — Ls) by applying the series expansion for e™* =
1+ 3% (=1)™Z% to the trace formula representation of det(I — zLy), and
then regrouping powers of z. More precisely, we can expand the presentation

S

det(I — zL,) = exp Z Zde“_ T‘ 1+Zb

lZ]=n
(3.6)
using the Taylor series e™* = 1 + Z;’;:l(—l)m%. Collecting together the
coefficients of 2"V we have the following:
Proposition 3.9 Let det(I — zLs) = 1+ >.%_; dn(s)z" be the power
series expansion of the Fredholm determinant of the transfer operator L.
Then

1 \DT %)|°

i(21))

bv(s) = Y o

('ﬂl ~~~~~ 7lm) ’ =1 | | =Ny
ni+...4+nm=N

(3.7)

where the summation is over all ordered m-tuples of positive integers whose
sum is N.

In conclusion, (3.7) allows an explicit calculation of any coefficient dy (s),
in terms of fixed points of compositions of at most N contractions.

3.4 Proof of Theorem 3.3 (special case) We shall try to illustrate the
basic ideas of the proof, by proving these results with in the simplest setting;:
d=1. Let A, ={z € C: |z| < r} denote the open disk of radius r centered
at the origin in the complex plane. Assume that X is contained in the unit
disk A1 and that T : X — X has two inverse branches T7, T which have
analytic extensions 77 : A1 — Ay and T5 : A1 — Ay which have analytic
extensions to Ajy. satisfying 77 (A14¢) UTo(A14e) C Ay. Thus Ty and Tp
are strict contractions of Aj4e into A; with the radii being reduced by a
factor of 0 = 1/(14¢€) < 1.

Let Aa(A,) denote the Hilbert ert space of analytic functions on A, with
inner product (f,g) := [ A, z) dx dy.

Let us assume that |T1( )\ and \TQ( )| have analytic extensions from X
to Aj+e. We define the transfer operator L : Aa(A1) — Az(A1) by

Lsh(2) = |T1(2)|PW(T12) + |T5(2)|°h(Tyz), for 2 € Ajie.
Observe that Ls(A2(A1)) C Az(Aq4e) and then

_ Lh(€) . 1 RS <z> Nl Lsh(§)
Lgh(z) = /Ig e = |€|ﬂﬁm(&) <§§% : >d€ Zoz 5 /E i et

2

where u,(2) = 2" € Ay(A1ye) and I,(h) = lel=142¢ 5n+(1) € Aa(Ar4e)*
is a linear functional. We can deduce that L, is a nuclear operator, the
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uniform convergence of the series coming from |z/¢| = 0 < 1. Aside on

Operator Theory. A bounded linear operator 7' : H — H on a Hilbert space
H is called compact if the image T'(B) C H of the unit ball {x € H : ||z|| <
1} has a compact closure. In particular, a nuclear operator is automatically
compact.

We denote the norm of the operator by ||T'||g = sup) =1 |[T(f)Il-

We recall the following classical result.

Weyl’s Lemma Let A : H — H be a compact operator with eigenvalues
(An)S2 ;. We can bound [AAg---Ap| < s182-- 8y,

Proof. Given a bounded linear operator A : H — H on a Hilbert space
H we can associate a bounded self-adjoint linear operator B : H — H by
B = A*A. Since B is non-negative (i.e, (Bf, f) = ||Af||?> > 0 for all f € H)
the eigenvalues p1 > ps > -+ for B are described by the minimax identity:

(1 = max (B, §> andj,11 = max max (B, £>
120 |11l dimL=n fert || f|]

forn>1,
where L denotes an n-dimensional subspace.

Claim 1 p,, < s,(A) Proof of Claim 1 For any linear operator K : H — H
with n-dimensional image K(H) C H we can use the minimax identity to
write

B B-K
reker(k) |fIF perer(x) S]]
Taking the infimum over all such K proves the claim. O O

Claim 2 Given an orthonormal set {¢;}!' ; C H we can write

det((Ags, Agj))7 oy < sts5- - sp det({(di, 9))7 =1

Proof of Claim 2 Let {e,}°_, be a complete orthonormal basis of eigenvec-
tors for B. We can write (A¢;, Ap;) = (Bdi, ¢j) = > oo m (D), €m) (€m, Pr)-
In particular, we can write the original matrix as a product of two infinite
matrices.

[e.e]

((Adi, A¢3))ij=1 = (Vim (D), em))m=1;—1 X (VHm(€m, k) i1y~ (3.7)

Considering determinants gives:

det({(Agi, Ag;))i =y = Y _ det(C) det(C"),
c,c!

where the sum is over all possible n x n submatrices C' and C’ of the two
matrices on the rights hand side of (*3.7), respectively. In this latter ex-
pression, we can take out a factor of /-~ fiy, from each matrix to leave
det((¢i, ¢;))7 j—1- Since, by Claim 1, pipig -+ py, < s182 -+ s, this gives the
desired result. O
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It remains to complete the proof of Weyl’s Lemma. Since A is a compact
operator we can choose an orthonormal basis (e)72, for H such that Ae, =
apie1+an2ea+- - -+apnen, (i.e., the matrix (any,) is triangular) and ap, = A,
is an eigenvalue. In particular, if ¢ < j than

i
(Aei, Aej) = > (Ady, dr) (Adr, Ad))

k=1

and thus
—\ N
det ((Ae;, Aej))",_, = det ({Aei, e)))F,_, det ((Aei,eﬁ)ij:l - "
This completes the proof ]
We now return to the explicit case of analytic functions.
Lemma 3.10 The singular values of the transfer operator L, : A(Aq) —

As(Aq) satisfy

[ Ls|] Az (A1)

g 67, for all j > 1.

sj(Ls) <

Proof. Let g € A2(A1) and write Lsg = > e lk(9)pk, Where py(2) = 2*. We

can easily check HPkHAQ(Al) = /57 and HpkHAz(AHe) = ,/ﬁ(l + )k F1,
The functions {p;}7°, form a complete orthogonal family for A3(Ai4), and
80 (Lsg, Pk) Ax(Arse) = lk(g)HpkHL(AHe). The Cauchy-Schwarz inequality
implies that

16(9)] < 1 Lsgll az(arso) 10Kl 2y a -
. . . j 1 —1
We denote the rank-j projection operator ng) by ng) (9) = >i—o k(9)pk-
For any g € A3(A) we can estimate

o0

H (Ls - Lg])> (g)HAz(Al) < HLSQHAQ(Al) Z@’H’l.
k=j

It follows that

[1Es[4s(a0) IEsllaaan g1
1-0 1-6 ’

and the result follows. O O

1Ls = LD || ay(ay) < 67! and so s;(Ls) <

We now show that the coefficients of the power series of the determinant
decay to zero with super-exponential speed.
Lemma 3.11 If we write [[72; (1 +zs;) = 1+ 377 ¢y 2™, then

m(m+1)

|Cm’ <B (”LSHAQ(A1))m0 2

where B =[[00_,(1 —6™)~! < oc.

}det(<f4€i,€j>)” = | A1+

Anl?
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Proof. The coefficients ¢, in the power series expansion of the determinant
have the form ¢y, = >, . _; si, ++ $i,,, the summation is over all m-tuples
(i1,...,1m) of positive integers satisfying i1 < ... < 4,. Thus by Lemma
3.10 we can bound

o] < || Ls|| a5 (1) grm(m+1)/2 oy || Ls|[ a5 (1) mgm(m+1)/2'
=\ og =000 (1—pm) = -0

For some B > 0. O
O

The coefficients of det(I — zLs) = 14 >, b, 2™ are given by Cauchy’s
Theorem:

1
b | < — Sup |det(I — zLs)|, for any r > 0. (3.8)

|z|=r

We recall the following standard bound of Hardy, Littlewood and Polya Let
{an}, {bn} be not increasing sequences of real numbers such that 37, a; <
> j-1bj and let ® : R — R be a convex function then 377 ( i) <
Zil 1<I>(b-). Letting a; = log|\j|, b; = logs; and ®(z) = log( + tz)
(and letting n — 400) we deduce that if |z| = r then

[e.e] o0
|det(I — zLs) H 1+ |z|A;) H 1+ |2s;) < <1+B Z (ra) m("2L+1)>

(3.9)

where o = || Ls|[ 4,(a,)- If we choose r = r(n) := 972/
(ra)m0m2/2 <P form=1,..., [g} gm—n)*+nm)/2 < (6™/%)™ for m > [g]

(3.10)
Comparing (3.8), (3.9) and (3.10) we can bound

(9n/2)n/2

nl < [5] 077+ T4

This proves the super-exponential decay of the coefficients provided we re-
place 6 by a value larger than /4.
Lemma 3.12 We can compute the traces:

" |7 ()*
tr (L7) = HE_Z T[Tt

Proof. For each string i = (i1, ..., i5) € [[;_;{0, 1} let us first define opera-
tors Lg; : A2(A1) = Aa(A1) by Lsi9(2) = g(Tjz)ws i(2), where the analytic
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weight functions w; ; are given by ws ;(2) = |DT;(2)|*. The n'" iterate of the
transfer operator L; is given by

= L
lil=n

The additivity of the trace means we can write

tr(L7) = Y tr(Lsy). (3.11)
lil=n

For each i there is a unique fixed point z; of the contraction 7T; : Ay — Aj.
We can compute the trace of Ls; by evaluating the eigenvalues of this
operator and summing. In particular, consider the eigenfunction equa-
tion Lg;h(z) = Ah(z). We can evaluate this at z = 2; to deduce that
ws,i(zi)h(2zi) = Ah(z;). If h(z) # 0 then we see that the only solution cor-
responds to A = 1. If h(z;) = 0, then we can differentiate the eigenvalue
equation to get that

w;i-(z)h(z) + ws i (2)R (2) = AR/ (2)
Evaluating this at z = z; (and recalling that h(z;) = 0) we get that
wei(2:)h'(2:) = A (22)

If h'(z) # 0 then we see that the only solution corresponds to A = ws ;(2;).
Proceeding inductively, we can see that the only eigenvalues are {\,}2°; =
{ws,i(z)* : k> 0}. (Moreover, one can see that these eigenvalues are real-
ized). Summing over these eigenvalues gives:

T!(z)]*
ZA Ws,j /Zz) _ ‘ 1( /l)‘ ) (312)
(1 =T(z)) (1 =Ti(z))
Finally, comparing (3.11) and (3.12) completes the proof. O

We will consider the Banach space
k k
{h e C( H : h is holomorphic on H Vz} ,
i=1 i=1

equipped with the norm ||h|| = sup{|h(z)|: z € Hle Vi} < 0.
Proposition 2 The operator Ls : A — A is nuclear.

Proof. Because property (iii) holds, this follows from Lemma 3.3 in [?]. O

In order to study periodic points it is useful to consider a more general
setting. Let V' C C? be an open set and consider an analytic contraction
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T :V — V such that T(V) C V. The contraction T': U — U has a unique
fixed point z* € U.

For future reference, we write the components 7' = (11, ...,Ty).

The operator L7 : A — A defined by Ly rh(z) = 1 (Tz)h(Tz) is nuclear
(by the same proof as the above proposition). If Ly 7 has eigenvalues A,
n > 0, then the trace tr(Ly 1) :== Y ooy An is well defined.

Proof. For each admissible string i = (i1, ..., i,+1) let us first define composition-
like operators L ; : Aoo(Di, ) = Aso(Di;) by

int1
Lyi9(2) = g(Tiz)wsi(2), (3.22)

where the weight functions ws; € Ax(D;,) are given by

ws,i(2) = [DTi(2)[".

For a fixed i; = i, the nt" iterate of the component transfer operator Lg;
(see (3.7)) is given by
L?,i = Z L,

lil=n+1
iy =i
where the summation is over those length-(n + 1) admissible strings ¢ =
(il, - ,in+1) with 71 = 1.
Then note that the nt” iterates of the operators M;;: Axs(D) = Ax(D)
(defined by (3.10)) satisfy

SO We can express

k
Ly =Y M, (3.23)
=1

The additivity of the trace means we then have

k k k
tr(L7) =Y te(MP) =) te(Ll) =Y > tr(Leg)= Y tr(Leg) = Y tr(Lsg).
i=1 i=1 i=1 m;zrl li|l=n+1 i€Fix(n)
(3.24)

The last equality in the above follows because if iy # i,41 then the
domain and target spaces of the operator Lg; : Ao(D;,,,) = Aso(D;,) are
not the same, so it has no eigenvalues.

If 1 € Fix(n), however, we have the following trace formula for the oper-
ators Lg; in terms of the fixed point z; of the composition 77,

int1

ws i (2) _ |DTy(z)|°

tr(Ls,Z) = det(I _ DTQ('ZL)) - det([ — DTZ(ZE))

(3.25)
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The above formula (3.25) has its origins in the work of Atiyah & Bott
[?] on the Lefschetz fixed point theorem, and in our context is proved in
[?] (see also [?]). Note that since T; : U;; — U;, is a contraction, then the
determinant det(I — DT;(z;)) > 0.

Combining (3.24) and (3.25) completes the proof. O

Remark Fried actually corrected a minor error in Grothendieck’s original
paper which was reproduced in Ruelle’s paper. O

Combining the above gives us the following bound of Fried.

Lemma 2
b, ()| < C™n™? exp (cn — ban/d) , forn >0 (3.3)

for some C' = C(s) > 1, and ¢,b > 0.

3.5 Julia sets For practical purposes, our algorithm is effective in com-
puting the dimension dimg(J.) of the Julia set J. if we choose ¢ either in the
main cardioid of the Mandelbrot set M, or ¢ outside of M, say. In the latter
case all periodic points are repelling, while in the former case all periodic
points are repelling except for a single attractive fixed point. We can give
explicitly estimate v = . for ¢ close to 0.

For quadratic maps we know that 7”(z) = 2z and if T7"(z) = z then by
the chain rule

(T (2) =T(T" L2) - T/ (T2). T (2) = 2" (T" '2)-- - (T2).2

and so the coefficients in the expansions take a simpler form.

Example 3.5.1 (¢ = i/4) First we consider the purely imaginary value ¢ =
i/4, which lies in the main cardioid of the Mandelbrot set. Table 1 illustrates
the successive approximations sy to dimg(J;/4) arising from our algorithm.

=2.5in frog2.eps

The Julia set for 22 + i/4 is the boundary between the white and black
regions. (The white points are those which do not escape to infinity)
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=

N*h approximation to dim(.J; /4)

— =
D2 ©ow-o ot w

N e e e e e S e
S © 0O Tk W

1.1677078534172827136
0.9974580934808979848
1.0169164188641603339
1.0218764720532313644
1.0230776911089017648
1.0232246810534996595
1.0232072525392922127
1.0231992637099065199
1.0231993120941968028
1.0231992857944621198
1.0231992888227184780
1.0231992890455073830
1.0231992890300189633
1.0231992890307255210
1.0231992890309781268
1.0231992890309686742
1.0231992890309691466
1.0231992890309691251

Table 1 Successive approximations to dim(J;/4)

CHAPTER 14. ESTIMATING DIMENSIONS

Example 3.5.2 (¢ = —% + %z) If we take the parameter value ¢ = —% + %i,
which lies outside the Mandelbrot set, then the sequence of approximations
to the dimension of J. are given in Table 2.

=2.5in frogd.eps

The Julia set for 22 — % + %z is a zero measure Cantor set - so invisible to
the computer. The lighter regions are points "nearer” the Julia set which

take longer to escape.
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N N*'™ approximation to dim(.J_3 2+ 9;/3)
1 0.7149355610391974853
2 0.9991996994914223217
3 0.8948837401931045135
4 0.8990693400138277172
) 0.9048525377869365908
6 0.9040847144651654898
7 0.9038472818583009063
8 0.9038738383368002502
9 0.9038748469934538668
10 0.9038745896021979531
11 0.9038745956441220338
12 0.9038745968650866636
13 0.9038745968171929578
14 0.9038745968108846487
15 0.9038745968111623979
16 0.9038745968111848616

Table 2 Successive approximations to dimpy (J_3/242i/3)

Example 3.5.3 ¢ = —5 For real values of ¢ which are strictly less than
—2, the Julia set J. is a Cantor set completely contained in the real line.
For such cases we have, by Corollary 3.1, the faster O(5" 2) convergence rate
to dim(J.), as illustrated in Table 3 for the case ¢ = —5.

=

N*h approximation to dim(J_5)

0.4513993584764174609675959101241383349
0.4841518684194122992464635900326070715
0.4847979587486975778612282908975662571
0.4847982943561895699730717563576367090
0.4847982944381635057518511943420942957
0.4847982944381604305347487891271825909
0.4847982944381604305383984765793729512
0.4847982944381604305383984781726830747

00 3 O T Wi

Table 3 Successive approximations to dimg(J_5)

Example 3.5.4 (¢ = —20) For larger negative real values of ¢, the hyper-
bolicity of f.: J. — J. is more pronounced, so that the constant 0 < § < 1
in the O(N") estimate is closer to zero, and the convergence to dimpg(J,.)
consequently faster. Table 4 illustrates this for ¢ = —20.



202 CHAPTER 14. ESTIMATING DIMENSIONS

=

N approximation to dimpg(.J_20)

0.31485651652009699091265279629753355933688857812644665851918
0.31850483144363986562810164826944017431378984622904321285835
0.318508095765910857259429840042072534520159138048800554 77625
0.31850809575800523882867786043747732330759968092023152922729
0.31850809575800524988789850335472906645586111530021825766595
0.31850809575800524988789848098884346788677292871828344714065
0.31850809575800524988789848098884348414792438297975066097358
0.31850809575800524988789848098884348414792438305840652044425

0 g O U i W N

Table 4 Successive approximations to dimg (J_20)

Remark Of particular interest are those c¢ in the intersection M NR =
[—2, 1], i.e., the where the real axis intersects the Mandelbrot set. For values
—3/4 < ¢ < 1/4 (in the main Cartoid) the map T, is expanding and the
dimension ¢ — dim(J.) changes analytically. Indeed, about ¢ = 0 we have
the asymptotic expansion of Ruelle, mentioned before. However, at ¢ = 0
the map T,,_ 1 is not expanding (since T,_ 1 has a parabolic fixed point of

derivative 1 at the point z = ). Moreover, ¢ — dim(J.) is actually dis-

continuous at ¢ = 1/4. This phenomenon was studied by Douady, Sentenac
& Zinsmeister. Havard & Zinsmeister proved that when restricted to the
real line, the left derivative of the map ¢ — dim(J.) at the point ¢ = 1/4 is
infinite.

One advantage of this method is that it leads to effective estimates on
the rate of convergence of the algorithm. This is illustrated by the following
result.

Proposition 3.13 For any n > 1/2 there exists ¢ > 0 such that if |c| < €
then the expansion coefficient for T, is less than 7.

The proof is very easy.

Proof. First consider the (unperturbed) map T(z) = 22, whose Julia set
is the unit circle S'. We have a natural Markov partition consisting of
the upper and lower semi-circles, and corresponding local inverse branches
To(z) = 2'/2 and Ty (z) = —z/2. Let us think of T, Tp, T} as maps defined
on subsets of R? (and by abuse of notation we will continue to denote f, Ty,
Ty). Taking polar coordinates (r,#), define the rectangular regions

Uy=[1—0,1+0] x[0,2r] CR?* and U; = [1 — p,1 + g] x [-27,0] C R?,

for some as yet undefined 0 < ¢ < 1. We then have formulae Ty(r,0) =
(r1/2,0/2) and Ty(r,0) = (r'/2,-0/2). Thus

ToUp = [(1—0)"/?, (140)/?x[0, 7] and Ty U, = [(1—0)"/?, (140)"/?]x [~ 0].



14.2. ALGORITHMS 203

Both maps T; : U; — R? are real-analytic, so we may consider their
holomorphic extensions to suitable subsets of C2. Define the poly-disc

V = D,(1) x Dy, (0) C C?

(i.e. the product of the radius-p disc around 1 in the complex r-plane with
the radius-27 disc around 0 in the complex #-plane). Both Tj and T extend
holomorphically to V', and as usual we continue to denote these extensions
Ty, T1. Let us concentrate on the map Ty, the other map being similar.

We see that the image TV is contained in the poly-disc Dl_(l_g)l/Q (1) x
D.(0).

In the f-plane this gives a contraction ratio of 1/2. In the r-plane the
contraction ratio is

1—(1—0)Y/2
il Ul Y 7 S

which can be made arbitrarily close to 1/2 by choosing ¢ small.
Therefore the overall contraction ratio is also 1/2, as expected. [ [

3.6 Schottky groups Limit sets

Example 3.6.1 Fix 2p disjoint closed discs D1, ..., D9, in the plane, and
Mobius maps g1, ..., gp such that each g; maps the interior of D; to the
exterior of Dy1;. The corresponding Schottky group is defined as the group
generated by gi,...,gp. The associated limit set A is a Cantor subset of
the union of the interiors of the discs D1, ..., Da,. We define a map 7" on
this union by T'|;n(p,) = gi and T|int(Dp+¢) = gi_l. A reflection group is a
Schottky group with D; = Dpy; for alli =1,...,p.

Example 3.6.2. Quasifuchsian groups Such groups are isomorphic to the
fundamental group of a compact Riemann surface, and are obtained by a
quasiconformal deformation of a Fuchsian group (a Kleinian group whose
limit set is contained in some circle). The limit set A of a quasifuchsian
group is a simple closed curve. We can associate an expanding map T with
the limit set of any Fuchsian group, and the quasiconformal deformation
induces an expanding map on A.

We show that the Hausdorff dimension of the limit sets A of both Schot-
tky and quasifuchsian groups can be efficiently calculated via a knowledge
of the derivatives (T™)'(z), evaluated at periodic points T"z = 2.

Theorem 3.14 (Kleinian groups) Let I be a finitely generated non-elementary
convex cocompact Schottky or quasifuchsian group, with associated limit set
A. The algorithm applies.

First suppose I' is a Schottky group. We define a map T on the union
U?Zle by Tline(p;) = 95 and T'ling(p,, ;) = gj_l, for j =1,...,p, A Markov
partition for this map just consists of the collection of interiors {mt(Dz)}?ﬁ .-
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The corresponding 2p x 2p transition matrix A has entries A(i,p + i) =
0= A(p+i,i) foreachi =1,...,p, and all other entries are 1 (in the reflec-
tion group case, the transition matrix has zeros along the leading diagonal,
and 1’s elsewhere).

Now T is not quite an expanding map, since the conformal derivative
|Dgj(z)] = 1 on the boundary of D;. However, the second iterate of T
is expanding. Conformality and real-analyticity are clearly satisfied, so by
Theorem 3 we deduce the result for Schottky groups.

Suppose I is quasifuchsian, with limit set A. Now T is quasi-conformally
conjugate to some Fuchsian group IV. Bowen & Series proved there exists
an expanding Markov map S : S — S which faithfully models the action
of IV, and the quasiconformal deformation conjugates this to an expanding
Markov map T : A — A. Conformality and real-analyticity are clearly
satisfied.

Example 3.6.3 The following family of reflection groups was considered
by McMullen. Consider three circles Cy, Cy,Cs C C of equal radius, ar-
ranged symmetrically around S!, each intersecting the unit circle S or-
thogonally, and meeting S' in an arc of length §. We do not want the C;
to intersect each other, so we ask that 0 < # < 27/3. For definiteness let us
suppose each C; has radius r = ry = tan g, and that the circle centres are at
the points zp = a, z1 = ae?™/3 and zy = qe27/3 (wherea = ap = V1 +1r? =
sec g) =2.5in limitplus.eps

Figure 5 Reflection in three circles The reflection p; :~

C—="

C inthecircleC; takes the explicit form

7”2

pi(2) (z — zi) + 2.

- |z — 2|2

Let Ay C S' denote the limit set associated to the group I'y of transfor-
mations given by reflection in these circles. For example, with the value
¢ = 7/6 we show that the dimension of the limit set A, /g is

dim(A,/6) = 0.18398306124833918694118127344474173288 . ..

which is empirically accurate to the 38 decimal places given. The approxi-
mations are shown in Table 5.



14.2. ALGORITHMS

=

Largest zero of Ay

00 N O U = W N

9

10
11
12
13
14
15
16
17
18
19
20

0.14633481296007741055454748401454596
0.18423440272351767688822531747382350
0.18399977929621235204864644 797773486
0.18398305039516509087579859265399133
0.18398305988417009403195596234810316
0.18398306122261622100816402885866734
0.18398306124841998285455137338908131
0.18398306124833255797187772764544302
0.18398306124833929946685349025674957
0.18398306124833918404985469216386875
0.18398306124833918700689278881066430
0.18398306124833918693967757277042711
0.18398306124833918694121655021916395
0.18398306124833918694118046846226018
0.18398306124833918694118129222351397
0.18398306124833918694118127301338345
0.18398306124833918694118127345475071
0.18398306124833918694118127344451095
0.18398306124833918694118127344474707

Table 5 Successive approximations to dim(A /g)

205
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Chapter 15

Applications

15.1 Circle packings

We begin with a brief history. Apollonius (c. 240 - 190 BC) who was known
as the ”The Great Geometer”and was a greek geometer born in Perga (now
in Turkey). He proved the following basic theorem.

Theorem 35 (Apollonius). Given three mutually tangent circles C1,Ca,Cs
with disjoint interiors there are precisely two new circles C, C'ar which are
tangent to each of the original three.

Proof. One can choose a M6bius map g : C — C which takes the tangency
point of two of the circle (C N Cq, for example) to co. The circles C1 and
Cy are mapped to parallel lines with the image g(Cs3) being a circle sitting
between then and tangent to both. But we can then translate g(C3) (twice)
to two images tangent to both g(C3) and the parallel lines. Mapping this

configuration back under g—! gives the required result. O
NeZ “
@,
Y

But one can ask: How are the radii of these circles related? This problem
was studied by royalty. Princess Elizabeth of Bohemia (1618-1680) was the
daughter of King Frederick V of Bohemia (whose brief reign lasted 1 year and
4 days). Her education included correspondence with Rene Descartes (1596-
1650), the french mathematician and philosopher on many topics, including
Apollonian circles. When she wrote to Queen Christina of Sweden asking

207
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help regaining her Father’s lost lands, the Queen instead invited Descartes
to Stockholm, which proved unfortunate for him since he died of pneumonia
caught during his 5am audiences in a draughty palace.

In 1643, Descartes set Elizabeth the following problem: Assume that the
radii of the original 3 circles are r1,7r9,73 > 0 determine the radius ro of a
fourth mutually tangent circle. Her solution was the following.

Theorem 36 (Descartes - Princess Elizabeth). We can write

1 1 1 1 1 1 1 1\?
ag ay

Proof. Given circles
C; = {(xgi),xg)) : (cgi) - argi))2 + (cg) - xg)) =r?}fori=1,---,4,

with centres ¢; = (cgi)7 cgi)) € R? and radii r; > 0 we associate

2 2 2
s —r; =13

<Civ Cj> =

2Ti7“j
where d = ||¢; — ¢j|| is the distance apart of the centres. In particular, if we

are assuming C; and C; are tangent if i # j then we easily see that

1 ifi=j

1 ifi# M)

(C;,Cj) = {

We can associate to the circle C; the vector

xgi)/ri -1 0 0 0

D, . 0 -1 0 0

v; = xi/{:’ and write g = | " I
i i 1

() + @) 0020
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and then we can rewrite (C;, Cj) = vl gv;. We can then combine the four
column vectors to get a 4 x 4 matrix C = (v1, v2, v3,v4). By (1) we can write

1 1 1 1
1 -1 1 1

T _
CoC=|, 1 1 1
1 1 1 -1

A simple observation is that the square of this matrix is (CT¢gC)? = 41,
where I is the identity matrix, and thus (CTgC)~! = %(CTgC). Taking
inverses and rearranging gives g~ = iC(CTgC)CT, ie.,

-1 0 00 * * * * -1 1 1 1
0 -1 0 0] 1 * * * * 1 -1 1 1
0 0 0 2| 4|1/r 1/ry 1/r3 1/r4 1 1 -1 1
0 0 2 0 * * * * 1 1 1 -1

But comparing the entry in row 3 and column 3 gives the result. O

Since this is a quadratic polynomial in cg, given r1,72,73 > 0 (and thus
c1, ¢2, c3) we actually have two possible solutions

Cat =1+ o+ c3 £ 2V ciea + cacs + c3cp (2)
i.e., the curvatures of the two circles of Apollonius. The solution car will
be positive, but the solution ¢, will be negative. We interpret the latter as
corresponding to a circle of radius ro = 1/|cy | > 0.

The formula of Descartes and Elizabeth was later rediscovered by Fred-
erick Soddy (1877-1956) the winner of the Nobel prize for chemistry in 1921.
He chose to publish it as a poem in the journal Nature.

Adding the two solutions

ca' =c1+ o+ 3+ 2v/cieo + cacs + c3cp and

¢y =c1+ 2+ 3 —2v/cica+ cac3 + ez

from (2) gives
e +cg =2(c1+e2tc3).

Therefore, we easily deduce that:
Lemma 56. If ¢, ,ci1,c2,c3 € Z then cg € 7.
Proceeding inductively proves the following.

Corollary 12. If the four initial Apollonian circles have curvatures that are
integers then so do all of the others.

L

L

1/7’1
1/?”2
1/r3
1/’1”4

S G R
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E——
A Theorem on Apollonian Circle Packings For every integral Apollonian circle packing there is a
unique ‘minimal’ quadruple of integer curvaturgs, b, c. d), satisfyingac 0 <b< c < d, atb+c+d >0
and a+ b+ ¢ > d. This so-calledoot quadrupleompletely specifies the packing.

(-2, 3, 6, 7)

A Descartes configuration consists of four mutually tangsetes. Above right, for example, is a circle of radiy tontaining circles of
radius 112, Y17 and 120, each of which has a point of contact with the other threbe Titegers labelling the circles are thervatures
(the reciprocals of the radii) and in the root quadruple atatures, ¢7, 12,17,20), the enclosing circle of radius7is determined to have
negative thataallfour circles i Any such specifies four more les — above right, these
have curvatures 24, 33, 48, and 105, producing four new amaigns (-7, 12,17, 24), (~7.12.20.33), (-7, 17,20,48) and (1217, 20,105).
Repeating this process produces a system of infinitely packekds: anApollonian circle packing!f our inital configuration is integral, as in
each of the above examples (which are drawn fiedint scales), then we will get ntegral packing with every curvature an integer.

This theorem comes from a series of four pivotal papers by the AT&T team of Rona?d@raerer Lagarias, Colin Mallows

and Allan Wilks, together with Catherine Yan of Texas A&M University. Thesther show that all |nlegra| Apclloman circle

packings may be derived from root quadrup\es whu:h like those depicted above, héewhbse gedis 1.

Web link henl. The packing images were provided by Emil Vaughan.

Further reading: Introduction to Circle Packing: The Theory of Discrete AriigFunctionsby Kenneth Stephenson, CUP, 2005.

Clearly these curvatures tend to infinity (i.e., the sequence of radii (r,)
tends to zero) since the total area enclosed by the circles is

[e.e] o0
ZT("I“?L = Zﬂ'c;2 < 400. (3)
n=1 n=1

Example 60. Let us start with an example with radit

1 1 1 _ 1
= Tne=3 m=g3 and 7, =-3
i.e., curvatures c; = 5, ca = 8, c3 = 8 and ¢, = —3. We can consider the
values of the curvatures ¢, (n > 1) we get for all of the circles

(en)2, = 5,8,8,12,12,20,20,21,29,29,32,32, - - -

Example 61. Let us next consider the example with

1 1 1 1
= r3 = — and'ro_z—g,

i.e., curvatures ¢ = 3, ca = 6, c3 = 7 and ¢, = —2. We can consider the
values of the curvatures ¢, (n > 1) we get for all of the circles

(en)ory =3,6,7,7,10,10,15,15,19, 19, 22, 22,
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Definition 26. Let N(T') be the number of circles with curvature at most
T>0.

An improvement on the basic result N(T) — 400 as T — 0, which
follows from (3). is the following.

Theorem 37 (Kontorovich-Oh, 2009). There exist K,§ > 0 such that
N(T) ~ KT? as T — +o0, i.e.,

N(T)

i ~ 1.
75 oo KT0

This doesn’t require integral curvatures. The original proof used spectral
theory of the Laplacian and hyperbolic geometry.

Lemma 57. We denote by A the closure of the union of all the circles.

. The exponent § is equal to the Hausdorff dimension of A.

. All of these Apollonian circle packings have the same dimension 9.

Proof. The second part comes from the fact that any two such circle packings
are related by a Mobius maps. This is because M6bius maps take circles to
circles and once the initial circles are aligned the remaining circles match up

because of this property. Then, in particular, they have the same dimension.
O

Curt McMullen calculated 6 = 1.30568. . ..
One might compare this with a similar looking problem. Let

2,3,5,7,11,13,17,19, 23,29, 31, . ..

be the prime numbers. Let 7(T) denote the number of prime numbers less
than 7" > 0. Since there are infinitely many primes, we see that 7(7T") — oo
as T tends to infinity.

Theorem 38 (Prime Number Theorem: Hadamard (1896)).

m(T) ~ T i.e., lim mT) =1
logT T—+o00 é

The Prime Number Theorem was proved by Jacques Hadamard.

Hadamard
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For primes: use Riemann (-  For circles use complex function
function ((s) = 300 | L. n(s) =00 ¢,°.

e ((s) converges to a non- e 7)(s) converges to a non-
zero analytic function on zero analytic function on
Re(s) > 1. Re(s) > 4.

e ((s) has a simple pole at s = e 7)(s) has a simple pole at s =
1. J.

e ((s) has no zeros on Re(s) = e 7)(s) has no poles on Re(s) =
1. J.

One can apply classical tauberian theorems to get the asymptotic for-
mula (i.e., a theorem which converts properties of series into counting re-
sults).

1. using the above strategy from Number Theory, with circle radii re-
placing prime numbers,

2. using transformations of A whose images systematically generate cir-
cles (originally observed by mancunian Philip Beecroft in 1842, in the
wonderfully named journal Lady’s and Gentleman’s diary) and

3. some ideas from dynamical systems to prove the necessary results on
n(s)-

This method is fairly flexible and applies to quite different problems and
can be used to prove other types of related results.
15.2 The Zaramba conjecture

The Zaremba conjecture [?] was formulated in 1972, motivated by problems
in numerical analysis. It deals with the denominators that can occur in finite
continued fraction expansions using a uniform bound on the digits. A nice
account appears in the very informative survey of Kontorovich [?].

Zaremba conjecture. For any natural number ¢ € N there exists p (co-
prime to ¢) and a1, - ,a, € {1,2,3,4,5} such that

1

52[0;%-“ Lapl: =
ag + ——
ag + ——
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Let us denote for each for N > 1 and m > 2,
D,,(N) :=

Card{1§ g< N |3IpeN(pq)=1,a1, - ,a,€{1,2,--- ,m} with gz[();al,---
q

i.e., the number of 1 < ¢ < N which occur as denominators of finite con-
tinued fractions using digits |a;| < m. The Zaremba conjecture would cor-
respond to D5(N) = N for all N € N. The conjecture remains open, but
Huang [?], building on work of Bourgain and Kontorovich [?], proved the
following version of Zaremba conjecture.

[Bourgain—Kontorovich, Huang] There is a density one version of the
Zaremba conjecture, i.e.,

There have been other important refinements on this result by Frolenkov—
Kan [?], [?], Kan [?], [?], Huang [?] and Magee-Oh-Winter [?].
Let us introduce for each m > 2,

Em: :{[O;al’az’-"]|an€{1,2,"' 7m} fOl" aHTLGN}

which is a Cantor set in the unit interval. Originally, Bourgain—Kontorovich [?]
proved an analogue to Theorem 15.2 for Ds5¢(/N). Amongst other things,
their argument, related to the circle method, used the fact that the Hausdorff
dimension dimy (Es5g) is sufficiently close to 1 (more precisely, dimg(Fsg) >
%). In Huang’s refinement of their approach, he reduced m to 5, i.e. re-
placed the alphabet {1,2,---,50} with {1,2,3,4,5}, as in the statement
of Theorem 15.2. In Huang’s approach, it was sufficient to show that
dimpy (E5) > %. In [?] there is an explicit rigorous bound on the Haus-
dorff dimension of this set which confirms this inequality. The approach
used there is the periodic point method, whereas in this article we use a
different method to confirm and improve on these bounds.
As another example, we recall the following result for m = 4 and the
smaller alphabet {1,2,3,4}.
[Kan [?]] For the alphabet {1,2,3,4} there is a positive density version
of the Zaremba conjecture, i.e.,
lim inf
N—+o00

Du(N)
N > 0.

The proof of the result is conditional on the lower bound dimpg(FE4) >
@. In [?] this inequality is attributed to Jenkinson [?], where this value
was, in fact, only heuristically estimated. In [?] there is an explicit rigorous
bound on the Hausdorff dimension of this set which confirms this inequality.
The approach used there is the periodic point method, whereas in this article
we give a different method to confirm and improve on these bounds, as well

as give new examples. These results are presented in §77.
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15.3 Diophantine Approximations

Given any irrational number o € R, we can approximate it arbitrarily closely
by rational numbers, since they are dense in the real numbers. The following
is a very classical result. !

Theorem 39 (Dirichlet, 1840). Let « be an irrational number. We can find
infinitely many distinct p,q € Z (q # 0) such that

<= (4.1)

Proof. The proof just uses the “pigeon-hole principle”. Let N > 1. Consider
the N + 1 fractional parts {a},{2a},{3a},--- ,{(N 4+ 1)a} € [0,1] (where
0 < {ja} < 1 is the fractional part of ja, i.e., ja = {ja} + [ja] with
[ja] € N). If we divide up the unit interval into N-intervals [0, %], [%, 2],
vey [%, 1], each of length -+, then one of the intervals must contain at
least two terms {ia}, {ja}, say, for some 1 <1i < j < N + 1. In particular,

0 < {ia} — {ja} < % from which we see that

. . . . ‘ 1
O0<a(i—j)=([od —ag]) = {ia} — {jo} =
—_
=iq =ip
where 0 < ¢ < N. In particular, writing p = [«i] — [aj] and ¢ = i —j we have
that |a — %] < q%. Moreover, by successively choosing N sufficiently large
we can exclude previous choices of 2 and thus generate an infinite sequence

of approximations (4.1) O O

In particular, since almost every number is irrational, almost every 0 <
a < 1 satisfies (4.1). We want to consider what happens if we try still
stronger approximations.

First version: Replace exponent in the denominator by a larger value: Con-
siders instead the inequality (4.1) with the Right Hand Side decreased from
1 to qz%n, say, for some 7 > 0. In this case, the set A, of 0 < a < 1 for
which the stronger inequality

P ’ 1

has infinitely many solutions is smaller. In fact, the set has Hausdorff Di-
mension strictly smaller than 1 and so, in particular, has zero measure. This
follows from the following classical result.

'Dirichlet was a distinguished mathematician, and was married to the sister of the
composer Mendelhson
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Theorem 40 (Janik-Besicovitch Theorem). For n > 0, the set of a with
infinitely many solutions to (4.2) has zero measure. Moreover this set has
Hausdorff dimension, i.e.,

1 2
a—p‘< - formﬁm'telypeZ,qu—{O}}—<1
q

=:Ay

Proof. The upper bound on the dimension is easy to prove. Given ¢ > 0,
we can choose g > 2 such that qz%n <6< W. For each ¢ > 1, we can
choose a cover for this set by the g(¢q + 1)/2-intervals

p_ 1 p 1
<q_q2+77’q+q2+77>’ for 0 <p<yq.

Since these each have diameter ¢~ < ¢ we deduce that H Ed < gFd@tn),
In particular, if d > WQ?? then we see that lim._.¢ Héi = 0. We thus deduce

that the Hausdorff dimension is at most ﬁ We omit the other inequality,
referring to the book of Falconer for the details. O O

Second version: replace 1 in numerator by a different value C: A natural
question to ask is how big a value of C' = C(«) > 1 we can choose such that
we can still find infinitely many distinct p,q € Z (¢ # 0) such that

‘oz - p' ! (4.3)

1< .

q]  C¢?
To begin with, we recall that there is a slightly stronger version of Dirichlet’s
theorem due to Hurewicz.

Theorem 41 (Hurewicz’s Theorem). Let o be an irrational number. We
can find infinitely many distinct p,q € Z (q # 0) such that

1
V5q?2

In particular, we can always choose C' > /5 = 2.23607.... (The proof,
which is not difficult, uses Continued Fractions and can be found in the book
of Hardy and Wright).

Notation For a given irrational number 0 < a < 1 we define C'(a) > /5
to be the largest C' such that |a — p/q| < 1/(Cq?), for infinitely many p, g,
ie.,

oz—p’<
q

C(a) = liminf |max |¢*a — pg| 7| .
q—r00 peEN
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We next want to consider the set of all possible values C(«a), where o
ranges over all irrational numbers between 0 and 1, say. We define the
Lagrange spectrum to be the set L = {C(a) : a € (0,1) — Q}.

=2.25in markov.eps
The Lagrange spectrum

By Hurewitz’s theorem we know that L. C [v/5,+00). Moreover, it is
also known that for a = 1/v/2, say, we have C(1/v2) = /5 € L. In
particular, we see that /5 is the smallest point in L. In fact, the portion of
the spectra below the value 3 is a countable set which is known exactly. For
completeness, we quote the following result without proof.

Proposition 22. We can identify
1

LN[0,3] = {\/m s 2?4+ % + 2% = 3azyz, where z,y,z € N and x,y < z}
z

In particular, the smallest value in the spectrum is \/5 and the next smallest
values (in ascending order) are: /8 = 2.82843..., v/221/5 = 2.97321...,
V1517/13 = 2.99605. .., v/7565/29 = 2.99921 ... ..

Since this portion LN [0, 3] is countable, we have the following corollary.
Corollary dimg (L N [v/5,3]) = 0. At the other extreme, the spectrum is
known to contain the whole interval [u, +00), where u ~ 4.527829566.

It is an interesting question to ask how large an interval [v/5,t] (t > 3)
we can choose such that we still have dimg (L N [v/5,]) < 1 or L N [/5,1]
has zero Lebesgue measure. We shall return to this in a moment.

There is an alternative definition of I which is particularly useful in
studying the region L N [v/5,4.527. . .].

Proposition 4.2 The set L. can also be defined in terms of doubly infinite
sequences of positive integers. Given a = (a,)nez we define

)\Z(a) =a; + [ai+1,ai+2 .. ] + [az;l,ai,g, .. .], 1 €7

where, as usual, [co,c1,...] = 1/(co + (1/c1 + ...)) denotes the continued
fraction with cg, cq,... € N. We then have

L= {L(a) = limsup A;(a) : a € NZ} .

The proof is outside the scope of these notes, and is so omitted.
A little calculation shows:

1. If @ = (an)nez has at least one entry greater than 2 then L(a) > v/13.
and indeed L(a) = /13 if and only if a = (..., 3,3,3,...). However,

2. if a has entries only 1’s and 2’s then L(a) < /12
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In particular, we can deduce the following result.

Corollary There are gaps in the spectrum (i.e., intervals which don’t
intersect I

Proof. This is apparent, since (v/12,v/13) "L # (), as we saw above. [0 [

We can now consider the problem of finding the Lebesgue measure and
Hausdorff dimension of various portions of the spectrum. Let us define
L; =L nNJ0,t]. We have the following result.

Theorem 4.3 We can estimate

dimH(Lm) ~ (0.8121505756228 and dimH(}L\/@/s) ~ 0.9716519526

(where sqrt10 ~ 3.1622... and v/689/8 ~ 3.2811...).

Sketch Proof If we consider A1 C E5 to be those numbers whose con-
tinued fraction expansions do mot have consecutive triples (igigi1igt2) =
(121) then L 55 = L N[0, V10] C Ay + Ay In particular, dimpg (L 55) <
2dimg (A1), and we can estimate the numerical value of dimg (A1) by the
method in Chapter 3. Similarly, if we consider Ao C Fs to be those num-
bers whose continued fraction expansions do not have consecutive quadruples
(iipsrin2inrs) = (1212) then L gggs = LN [0,/689/8] C Az + Ag and
dimg (L \/ﬁ) < 2dimg(A2). Using degree-16 truncated equations we can es-
timate dimz (A1) &~ 0.4060752878114 and dimg (A2) ~ 0.4858259763, giving
the upper bounds on the dimension in the theorem. On the other hand, a
result of Moreira-Yoccoz implies equality. O

In particular the above result implies that:

Corollary L /=5 /8 has zero Lebesgue measure. Observe that 1/689/8 ~
3.2811... The strongest result in this direction is due to Bumby, who showed
that L3 33437 has zero Lebesgue measure.

Remark The triples (z,y,z) are known as Markoff triples. A closely
related notion is that of the Markoff spectrum. M. Consider quadratic forms
f(z,y) = ax® + bry + cy? (with a,b,c € Z) for which d(f) := b*> — dac > 0.
If we denote m(f) = inf|f(x,y)|, then Markoff spectrum M is defined to be
the set of all possible values of \/d(f)/m(f). which can be defined in terms
of minima of certain indefinite quadratic forms. The Lagrange spectrum L
is a closed subset of R. It is clear from this definition that the Lagrange
spectrum is a subset of the Markoff spectrum. It is in the interval (3, u)
where the Markof and Lagrange spectra differ. The largest known number
in M but not in L is 8 ~ 3.293 (the number is known exactly).
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15.4 Fuchsian groups

15.5 Kleinian groups

The Limit sets of Kleinian groups often have similar features to those of
Julia sets. Indeed, in the 1970’s Sullivan devised a “dictionary” describing
many of the corresponding properties.

Let H3 = {z +jt e COR : t > 0} be the three dimensional upper half
space. We can equip this space with the Poincare metric

o da? + dy* + dt?

ds 2

With this metric the space has curvature kK = —1. For a detailed description
of the space and its geodesics we refer the reader to Bearden’s book on
Discrete groups.

We can identify the isometries for H? and this metric with the (orienta-
tion preserving) transformations

+b
(z,t) — (Zj+d,t+210g]cz+d\>,

where a, b, c,d € C with ad — bc = 1. In particular, the first component is a
linear fractional transformation and we can identify the space of isometries
with the matrices G = SL(2,C).

Defintion A Kleinian group I" < G is a finitely generated discrete group
of isometries. Let I'g be the generators of T

Although the action of g € G is an isometry on H?, the action on the
boundary is typically not an isometry. In particular, we can associate to
each g € T its isometric circle C(g) := {z € C: |¢'(2)] = 1}. This is a
FEuclidean circle in the complex plane C.

Defintion We define the limit set A = Ap C CU{oo} for I to be the set of
all limit points (in the Euclidean metric) of the set of points {g(j) : g € T'}.

By way of clarification, we should explain that since I is a discrete group
these limit points must necessarily be in the Euclidean boundary. Moreover,
we should really take the limit points using the one point compactification
of C (where the the compactification point is denoted by co. Depending on
the choice of I, the limit set Ar may have different properties.

These include the possibilities that Ap is a Cantor set, or all of CU{o0}.
We begin by considering one of the most famous examples of a Limit set for
a Kleinian group - which happens to be neither of these cases.

Example 1.4.1 Apollonian circle packing. Consider three circles Cy, Co, Cs
in the euclidean plane that are pairwise tangent. Inscribe a fourth circle Cy
which is tangent to all three circles. Within the three triangular region whose
sides consist of the new circle and pairs of the other circles inscribe three new
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circles. Proceed inductively. The limit set is call an Apollonian circle pack-
ing. =4.50in apollonian.ps

The Apollonian circle packing

We can associate to each circle C; = {z : |z — z;| = r;} (with z; € C and
r; > 0) an element g; € G associated to the linear fractional transformation

1
gi:Z > 2G—)
These correspond to generators for a Kleinian group I' < G. The limit set
is estimated to have dimension 1.305686729. . ..

Let us consider some special cases:

Example 1.4.2. Fuchsian Groups: Let K = {z € C: |z| = 1} be the
unit circle in the complex plane C. If each element g preserves K then I is
a Fuchsian group. In this case the isometric circles for each element g € I’
meet K orthogonally.

The standard presentation for a (cocompact) Fuchsian group is of the
form

d
T'={(g1,....92a € G: [[lgzi-1, 2] =1).

=1

where [g2;—1, g2i] = g2i—1 gm;g;:ll 92_1-1. We can also consider the limit sets of
such groups.

Theorem 1.4.1 The Limit set of a non-cocompact convex cocompact
Fuchsian group is either:

1. a Cantor set lying in the unit circle; or

2. the entire circle.

=3.25in limitset.eps
For Fuchsian groups (a subclass of Kleianin groups) the limit set could
be the entire circle or a Cantor set.

Example 1.4.3. Quasi- Fuchsian Groups: We can next consider a Kleinian
group whose generators (and associated isometric circles) are close to that
of a Fuchsian group. Such groups are called quasi-Fuchsian. In this case the
limit set is still homeomorphic to a closed circle. This is called a quasi-circle.

=4.25in quasifuchsian.eps
Perturbing the generators of a Fuchsian group changes the limit circle to
a quasi-circle. (The dotted circles represent the generators for the Fuchsian
group (left) and quasi-Fuchsian group (right).)

However, although the quasi-circle is topologically a circle it can be quite
different in terms of geometry.
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Theorem 1.4.2 The Hausdorff dimension of a quasi-circles is greater than
or equal to 1, with equality only when it is actually a circle. This result was
originally proved by Bowen, in one of two posthumous papers published
after his death in 1978. Quasi-circles whose Hausdorff dimension is strictly
bigger than 1 are necessarily non-rectifiable, i.e., they have infinite length.

15.6 Horseshoes

Example Consider the example of a linear horseshoe. Taking the horizonal
and vertical projections we have Cantor sets in the line with smaller Haus-
dorff dimensions —log2/log a and —log2/log f.

The next result says that Hausdorff dimension behaves in the way we
might have guessed under addition of sets.

Proposition 1.6.3 Let A1, Ay C R and let

A+ Ay = {)q—i—)\g t A EAL N EAQ}
then dlmH(A1 + AQ) < dlmH(Al) + dll’nH(Az)

Proof. Tt is easy to see from the definitions that dimg (A1 xAg) = dimg(Aq)+
dimg(Asz). Since the map L : R? — R given by L(z,y) = x + y is Lipshitz,
the result follows. O O

15.7 Kleinian groups

Given any Kleinian group I' of isometries of n-dimensional hyperbolic space
H™ we can associate the quotient manifold M = H"/I'. The Laplacian
Ay 2 C®(M) — C®°(M) is a self-adjoint second order linear differential
operator. This extends to a self-adjoint linear operator Aj; on the Hilbert
space L2(M). In particular, the spectrum of —Aj; is contained in the in-
terval [Ag, +00), where )¢ is the smallest eigenvalue. If M is compact then
the constant functions are an eigenfunction and so A\g = 0. More generally,
we can have A\g > 0.

Perhaps surprisingly, Ao is related to the Hausdorff dimension dimg(A)
of the Limit set by the following result.

Sullivan’s Theorem A9 = min {d(1 — d),1/4}

McMullen’s Example This problem is very closely related to the geom-
etry of an associated surface of constant curvature x = —1. Consider the
unit disk

D? ={z+iycC: 2?+y* <1}

with the Poincaré metric
dx? + dy?

2
gy T
ds (1— 22— 42)2
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then (D?,ds?) has constant curvature k = —1. Let C;,Cq,C3 C C be
the three similar circles in the complex plane which meet the unit circle
orthogonally and enclose an arc of length 6.

radii 7 = v/2 centres ¢1 = V3, co = V3e2™/3 ¢5 = /343

We can identify the reflections in these circles with isometries R1, Re, R3 C

Isom(D?) and then consider the Kleinian group Iy they generate. where
Riiz— 359 46 (i=1,2,3). Let T = (R, Ry, Ry : R} = R} = R} =

1) C Isom(D?). We can then let M = D?/T be the quotient manifold.
The Laplacian Ay : C°(M) — C*°(M) is given by

0? 02
292
Am = (1=2"=y) (8302 8y2> '

The smallest eigengvalue of —A )y is related to the dimension d of the bound-
ary by Sullivan’s Theorem. In particular, we have the following corollary.

Proposition 4.4 When 6 = 7/6 then we can estimate A\g = 0.24922656...

Proof. In Chapter 3 we estimated that dimy(A) = 0.4721891278821... 2. By
applying Sullivan’s Theorem, the result follows. O O

On can also study the asymptotic behavior of dimg(Ag). McMullen
showed the following;:

Propositon 4.5 The asymptotic behaviour of dimg(Ag) is described by
the following result:

1.

dimg(Ag) ~ as 6 — 0;

1
|log 0

. 1 /27 2

(Equivalently, the associated smallest eigenvalue A\o(0) satisfies A\o(0) ~
maSH%Oand)\o(Q)w%(%"— )a39—>2§.)

Proof. For small 6, the radii of the circles C; is well approximated by 6/2.
The derivative on C; (i # j) of the hyperbolic reflection in C; is approx-
imately (6/2)?/|C; — Cj| ~ 6%/12. Every periodic orbit 7"z = z satis-
fies a uniform estimate |(T7)(z)|'/™ ~ 62/12 from which we deduce that
P(—tlog|T"|) 2 —t(6%/12), since there are 32"~! periodic orbits of period n,
for n > 2. Thus, solving for 2 — tlog(#?/12) = 0 gives that t ~ “%g@"

2McMullen previously estimated d = dim g (X) = 0.47218913...
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The proof for 6 ~ %’r relies of Sullivan’s theorem and asymptotic be-
haviour of the eigenvalues, as controlled by a minimax principle. In par-
ticular, dimg(Ag) ~ 1 — Ag(6) — 1. However, one can write \o(f) =
infs [ |V f|2dvol/ [ |f|?dvol ~ lg, where ly is the length of the boundary
curves on the quotient surface. For 6 close to 27/3 on can estimate lg ~
V2r/3—0. O

O

1.5 Horseshoes We now recall a famous Cantor set in Dynamical Systems.
The “Horseshoe” was introduced by Smale as an example of invariant set
for a (hyperbolic) diffeomorphism f : S? — S? on the two sphere SZ.

=3.25in horseshoe.eps
f bends the rectangle into a horseshoe. The Cantor set A is the set of
points that never escape from the rectangle.

In the original construction, f is chosen to expand a given rectangle R
(sitting on S?) vertically; contract it horizontally; and bends it over to a
horseshoe shape. The points that remain in the rectangle under all iterates
of f (and f~!) are an f-invariant Cantor set, which we shall denote by A.
The rest of the points on S? are arranged to disappear to a fixed point.

In an more general construction, let M be a compact manifold and let
f M — M be a diffeomorphism. A compact set A = A(f) C M is called
invariant if f(A) = A. We say that f : A — A is hyperbolic if there is a
continuous splitting Th M = E*® E" of the tangent space into D f-invariant
bundles and there exists C' > 0 and 0 < A < 1 such that

[| Dy f"(v)|| < CA"||v|| and v € E*

| Dy f~™(v)|| < CA*||v]| and v € E“.

We say that A is locally maximal if we can choose an open set U D A such
that A = N2> _  f"U. In general, we can take a horseshoe A to be an locally
maximal f-invariant hyperbolic Cantor sets a diffeomorphism f on M.

Theorem 1.5.1 (Manning-McClusky) For Horseshoes A(f) on surfaces we
have that dimg(A(f)) = dimp(A(f)).

Moreover, Manning and McClusky gave an implicit formula for the Haus-
dorff dimension, which we shall return to in a later chapter.

Example Consider the case of the original Smale horseshoe such that f :
RN f~'R — R is a linear map which contracts (in the horizontal direction)
at a rate o and expands (in the vertical direction) at a rate 1/3. For a linear
horseshoe A the work of Manning-McClusky gives that:

dimg(A) = dimp(A(f)) = log2 (; + ;) .
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Let us now consider the dependence of the dimension X on the diffeome-
orphism f. Let D C C?(M, M) be the space of C? diffeomorphisms from
M to itself. This comes equipped with a standard topology. We can con-
sider a parmeterised family of diffeomorpisms (—e€,€¢) 3 A — fy. The first
part of the next result shows smooth dependence of the Hausdorff dimen-
sion of horseshoes on surfaces. However, the second part shows this fails
dramatically in higher dimensions.

Theorem 1.5.3

1. On surfaces the Hausdorff dimension dimg(A(fy)) of the horseshoe
varies continuously (even differentiably).

2. There exist examples of horseshoes on three dimensional manifolds for
which the Hausdorff dimension does not change continuously.

Palis and Viana originally showed continuity of the Hausdorff dimension
in the case or surfaces, and Mane subsequently showed smoothness. Both
results used a study of the “structural stability conjugacy map”. Pollicott
and Weiss showed the failure in higher dimensions by exploiting number
theoretic results of two dimensional expanding maps.

Example Consider an extension of the original construction of Smale
where the rectangle is now replaced by a cube C (sitting on the sphere S3).
We can arrange that f expands the cube in one direction; contracts it in
the remaining two directions; and maps it back across C is in the Smale
construction. In this case, the dimension depends on the alignment of the
intersection of f(C) and C' in the two dimensional contracting direction.

15.8 Differences of Cantor sets

15.9 Microsets

15.10 Fourier dimension
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Appendix: A little belated history

Felix Hausdorff

Felix Hausdorff was born on 8th November 1868 in Breslau, Germany
(which is now Wroclaw, Poland) into a wealthy family. His Father was a
textile merchant. In fact, Felix grew up in Leipzig after his parents moved
there when he was a child. He studied Mathematics at Leipzig University,
completing his PhD there in 1891.

He was subsequently a Privatdozent,
and then an Extraordinary Professor in
Leipzig. However, Hausdorff really wanted
to be a writer and actually published
books on philosophy and poetry under a
pseudonym. In 1904 he even published
a farce which, when eventually produced,
turned out to be very successful. Following
this literary phase, he concentrated again
on mathematics, and during the next dozen
years he made major contributions to both Figure 15.1: Felix Hausdorff
topology and set theory. In 1910 he moved (1868-1942)
to Bonn, and then in 1913 he moved again
to take up an ordinary professorship in Greifswalf before finally, in 1921, he
returned again to Bonn. In 1919 he introduced the notion of Hausdorff di-
mension in a seminal paper on analysis. This was essentially a generalisation
of an idea introduced earlier by Carathéodory, but Hausdorff realised that
the construction actually allows a definition of “fractional dimensions”. In
particular, Hausdorff’s paper includes a proof of the famous result that the
dimension of the middle-third Cantor set is log2/log 3. Unfortunately, the
final years of Hausdorff’s life were tragic. He had come from a Jewish family,
and in 1935 he was forced to retire by the Nazi regime in power in Germany.
In 1941 he was scheduled to be sent to an internment camp, but managed to
avoid being sent through the intervention of the University. However, this
was merely a postponement, and on 26th Januray 1942 Hausdorff, his wife
and sister-in-law committed suicide when internment seemed inevitable.

Constantin Carathéodory
Constantin Carathéodory was
born on 13th September 1873, in
Berlin. He was of Greek extraction,
being the son of a secretary in the
Greek embassy in Berlin. As a stun-
dent, he studied as a military engi- 3
neer at the Ecole Militaire de Bel- T
gique. Subsequently, he joined the = e

Figure 15.2: Constantin
Carathéodory (1873-1950)
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British colonial service and worked

on the construction of the Assiut

dam in Egypt in 1900. He then went

on to study for his PhD in Berlin,

and then Gottingen, before becom-

ing a Provatdozent in Bonn in 1908. The following year he married - his
own aunt! In the following years Carathéodory went on to hold chairs at
Universities in Hanover, Breslau, Gottingen and Bonn. However, in 1919 the
Greek Government asked him to help establish a new university in Smyrna.
However, this was not a happy experience since the project was thwarted by
a turkish attack. Eventually, following this interlude he was appointed to a
chair in Munich, which he held until his retirement in 1938. He died there
on 2nd February 1950.

Anton Julia

Anton Julia was born on 3rd
February 1893 in Sidi Bel Abbés,
in Algeria. As a soldier in the
First World War, he was severely
wounded during an attack on the
western front. This resulted in a dis-
figuring injury and he had to wear a
leather strap across his face for the
rest of his life. In 1918 Julia pub-
lished “Mémoire sur l'itération des
fonctions rationnelles” on the itera-
tion of a rational function f, much of
the work done while he was in hos-  Figure 15.3: Anton Julia(1893-1978)
pital. In this, Julia gave a precise
description of the set of those points whose orbits under the iterates of the
map stayed bounded. This received the Grand Prix de ’Académie des Sci-
ences. Julia became a distinguished professor at the Ecole Polytechnique in
Paris. He died on 19 March 1978 in Paris. His work was essentially forgot-
ten until B Mandelbrot brought it back to prominence in the 1970s through
computer experiments.

Benoit Mandelbrot

Benoit Mandelbrot was born
on 20th November 1924, in War-
saw. When his family emigrated
to France in 1936 his uncle Szolem
Mandelbrojt, who was Professor
of Mathematics at the Collége de
France, took responsibility for his

Figure 15.4:  Benoit Mandelbrot
(1924-2077)
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early education.  After studying

at Lyon, he studied for his PhD

at the Ecole Polytechnique and af-

ter a brief spell in the CNRS, ac-

cepted an appointment with IBM.

In 1945 Mandelbrot’s uncle had

recommended Julia’s 1918 paper.

However, is wasn’t until the 1970s that he had returned to this problem.
By this time rudimentary computer graphics allowed a study of the compli-
cated fractal structure of Julia sets and Mandelbrot sets. This, and subse-
quent work, has provided and immense impetus to the study of Hausdorff
Dimension.

Abram Besicovitch

Abram Besicovitch was born on
24th January 1891 in Berdyansk,
Russia. His Father used to own a
jeweller’s shop. He studied mathe-
matics at the University of St Pe-
tersburg, taking a chair there in
1991, during the Russian Civil War.
Following positions in Copenhagen
and Liverpool he moved to Cam-
bridge in 1927, where he worked un-
til his retirement in 1958. His work
on sets of non-integer dimension was
an early contribution to fractal ge-
ometry. Besicovitch extended Haus-
dorff’s work to density properties of
sets of finite Hausdorff measure. He
died in Cambridge on 2nd Novem-
ber 1970.

Figure 15.5:  Abram Besicovitch
(1891-1970)



