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Abstract

We discuss a number of results related to mixing and decay of correlations.

Contents

1 Introduction 1

2 Discrete case 3

3 The Transfer Operator 5

4 Continuous case 7

5 Flows 9
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.2 The simplified model: Suspension semi-flow . . . . . . . . . . . . . . . . . . 10
5.3 A couple of preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

6 Other applications 19
6.1 Problems that count (closed geodesics) . . . . . . . . . . . . . . . . . . . . . 20
6.2 Multiple mixing for geodesic flows . . . . . . . . . . . . . . . . . . . . . . . . 21
6.3 Skew Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.4 Skew Products and Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.5 Euclidean Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1 Introduction

The aim of these notes is to describe the rates of mixing for various types of hyperbolic sys-
tems, and some applications. In the case of diffeomorphisms exponential mixing is classical.
For certain well known examples flows, such as geodesic flows, this is a result of Dolgopyat
and Liverani, but significantly harder to prove. However, the hypotheses required for the
proofs of these results are very special and the generality of the method is far from being
completely understood.

We begin with four definitions of “mix” taken from Google:

1. Combine together
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1 INTRODUCTION

2. Associate with others socially

3. Combine soundtracks into one

4. Be belligerent physically or verbally

In the mathematical sense, mixing is probably closer in spirit to the first definition. However,
for dynamical systems we might naturally consider two cases: The discrete case and the
continuous case. We first consider both settings in a fairly general sense.

1. Discrete transformations T : X → X where

• X is a compact metric space;

• T is a continuous map;

• µ is a T -invariant probability measure µ(X) = 1 (i.e., B ⊂ X is a Borel set and
µ(B) = µ(T−1B))

We usually denote T n = T ◦ · · · ◦ T︸ ︷︷ ︸
×n

for n ≥ 0.

This allows us to think of this as a Z+-acton: Z+ ×X → X given by (n, x) 7→ T nx.

2. Continuous (semi-) flows φt : Y → Y for t ∈ R (or t ∈ R)

• Y is a compact metric space;

• φt is family of continuous maps such that φ0 is the identity, and φs+t = φs ◦ φt
with s, t ∈ R+;

• µ is a φ-invariant probability measure µ(Y ) = 1 (i.e., B ⊂ X is a Borel set and
µ(B) = µ(φ−1

t B))

Having introduced the natural setting(s) we can now turn to the dynamical property we
want to study. We now recall the definitions of (strong) mixing.

Definition 1.1. We say µ is mixing for the discrete transformation T : X → X if for all
f, g ∈ L2(X,µ) the correlation function

ρ(n) :=

∫
f ◦ T ngdµ−

∫
fdµ

∫
gdµ, n ≥ 0

satisfies ρ(n)→ 0 as n→ +∞.

Similarly, we have an analogous definition for semi-flows.

Definition 1.2. We say µ is mixing for the (semi)-flow φt : Y → Y if for all f, g ∈ L2(Y,m)
the correlation function

ρ(t) :=

∫
f ◦ φtgdµ−

∫
fdµ

∫
gdµ, t ≥ 0

satisfies ρ(t)→ 0 as t→ +∞.

2



2 DISCRETE CASE

There is a classical hierarchy of ergodic properties of such systems, with ergodicity the
weakest and Bernoulli and K-automorphisms the strongest.

As is well known mixing is somewhere in the middle of the list: being a stronger as-
sumption than ergodicity, i.e., in the discrete case for any function F ∈ L1(X,µ) we have
that

1

N

N−1∑
n=0

F (T nx)→
∫
Fdµ, as N → +∞,

and in the continuous case for any function F ∈ L1(Y, µ) we have that

1

T

∫ T

0

F (φtx)→
∫
Fdµ, as N → +∞.

2 Discrete case

We begin with a simple example of a one dimensional discrete transformation.
A rather trivial concrete example is the doubling map.

Example 2.1 (Doubling map). Let n = 2 and x1 = 1
2
. We then specify the map by

T (x) =

{
2x for x ∈ [0, 1

2
]

2x− 1 for x ∈ [1
2
, 1].

0 1
2 1

0

1

Figure 1: The graph of the doubling map on the unit interval

This transformation preserves the usual Lebesgue measure µ on the unit interval. A little
exercise with trigonometric polynomials shows that the correlation function for Lipschitz
functions tends to zero like ρ(n) = O

(
1

2n

)
.

We can consider a more general formulation. Given a finite set of points

x0 = 0 < x1 < · · · < xn−1 < xn = 1
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2 DISCRETE CASE

we get a partition of the unit interval , i.e., [0, 1] = ∪n−1
i=0 [xi, xi+1]. We can define a map T

on the disjoint union of such intervals by specifying it on each of the intervals [xi, xi+1]. Let
us denote by

X =
n−1∐
i=0

[xi, xi+1]

a disjoint union of the interval and assume T : X → X satisfies

1. T : [xi, xi+1]→ [0, 1] is C∞

2. There exists β > 1 so that for any x ∈ X we have |T ′(x)| ≥ β (Expanding property)

3. Each image T ([xi, xi+1]), for i = 0, · · · , n− 1 is a union of intervals from the partition
(Markov property);

4. T has a dense orbit (Transitive property).

0 = x0 x1 x2 x3 = 1
0

1

Figure 2: The graph of an expanding Markov map of the unit interval

For such transformations there is a natural T -invariant measure. Moreover, there is an
exponential decay of correlations, providing the functions are sufficiently regular.

We begin by recalling the result that shows that there is a natural T -invariant measure.

Theorem 2.2 (Folklore Theorem). Under the above hypotheses (1)-(4) above there exists
a (unique) T -invariant probability measure µ absolutely continuous with respect to Lebesgue
measure.

In this case it is rather difficult to trace Theorem 2.2 back to its origins (hence the name
“Folklore”). In a posthumous paper of Bowen [4] from 1979 the Theorem is attributed to
Adler. However, in an appendix to Bowen’s paper by Adler, he claims that he actually heard
it from Flatto and, moreover, he heard it from Benjy Weiss, who in turn claimed it was easily
derived from a paper of Sinai from 1968.

The next result shows that we have an example of fast(er) mixing (under suitable regu-
larity assumptions on f, g : X → R).
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3 THE TRANSFER OPERATOR

Theorem 2.3. For an interval map T : X → X as above we have exponential mixing, i.e.,
There exists 0 < λ < 1 such that for f, g ∈ C∞(X) there exists B > 0 such that |ρ(n)| ≤ Bλn

for n ≥ 0.

The usual proof of this result uses operator theory.

3 The Transfer Operator

The proof of Theorem 2.3 is also reassuringly simple and introduces a rather useful and
versatile tool: The transfer operator.

Sketch proof of Theorem 2.3. Since µ is an absolutely continuous probability measure we
can consider the Radon-Nikodym derivative dµ

dx
= ρ. We can then denote ω(x) = ρ(x)

|T ′(x)|ρ(Tx)

and observe that ∑
Ty=x

ω(y) = 1

(which is an easy exercise using the change of variable formula, cf. [5] for a nice account of
this).

Let C1(X) denote the space of C1 functions on X with the norm

‖f‖ := ‖f‖∞ + ‖f ′‖∞ for f ∈ C1(X).

In particular, C1(X) is a Banach space with the norm ‖ · ‖. We can now associate a linear
operator L : C1(X)→ C1(X) where we write

Lf(x) =
∑
Ty=x

ω(y)f(y).

This is what we call a transfer operator.
The good news is that we have the useful identity

ρ(n) =

∫
f ◦ T ngdµ =

∫
f(Lng)dµ, for n ≥ 0,

which relates the transfer operator to the correlation function. The even better news is that
L has the useful properties:

1. L1 = 1, where 1 is the constant function taking the value 1; and

2. the operator L : C1(X)/C → C1(X)/C on the quotient space C1(X)/C (with as-
sociated norm ‖ · ‖C1(X)/C) has spectral radius λ, say, which is strictly smaller than
1.

Thus we can combine these simple results to deduce that

|ρ(n)| ≤ ‖
∫
f(Lng)‖∞‖f‖∞‖Ln‖C1(X)/C‖g‖C1 = O ((λ+ ε)n)

for any ε > 0 (by using the spectral radius theorem, which gives that λ = limn→+∞ ‖Ln‖
1
n

C1(X)/C).
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3 THE TRANSFER OPERATOR

Remark 3.1. Of course, at the heart of the proof of Theorem 2.3 are the properties 1 and 2.
To show the “spectral gap” for L is pure functional analysis. It is also easy using two basic
ingredients:

a) The unit ball in C1(X) is compact in the C0 topology (i.e., the classical Arzela-Ascoli
Theorem); and

b) There exists C > 0 and 0 < α < 1 such that for all n ≥ 0 and all f ∈ C1(X):

‖Lnf‖C1 ≤ C‖f‖∞ + αn‖f‖C1

(by the chain rule for differentiation).

The inequality in b) is one version of a result which has been (re)-discovered many times.
It began as the Doeblin-Fortet inequality from 1937 [6], reappeared as the Ionescu-Tulcea-
Marinescu inequality from 1942 [10], and finally appeared as the Lasota-Yorke inequality
from 1975 [12]. However, for brevity, we will refer to it as the Doeblin-Fortet inequality.

Vincent Doeblin (1915-1940) was a talented young French-German mathematician (son
of the famous novelist Alfred Doeblin) who died during the German invasion of France.

Remark 3.2. The transfer operator could have made an earlier appearance in these notes in
the proof of Theorem 2.2 on the existence of the absolutely continuous T -invariant measure
µ (see [5]). In particular, µ is a fixed point for the dual transfer operator, i.e., L∗µ = µ.

Another explicit (almost) example is the continued fraction transformation.

Example 3.3 (Continued Fraction Transformation). We can consider a partition of [0, 1]
into countably many intervals [ 1

n+1
, 1
n
], plus the extra point 0. The Continued fraction trans-

formation (or Gauss map) T : [0, 1]→ [0, 1] is defined by

T (x) =

{
1
x
− n if 1

n+1
≤ x ≤ 1

n

0 if x = 0.

This has an explicit T -invariant probability measure µ:

µ(B) =
1

log 2

∫
B

dx

1 + x
, whenever B ⊂ [0, 1] is a Borel set.

called the Gauss measure.
If we consider sufficiently smooth functions f then again the correlation funcion ρ(n)

tends to zero with a bound O(αn) for some 0 < α < 1, i.e., there is exponential decay of
correlations. However, the value of α = 0 · 303663 . . . in not known explicitly, but up to a
high degree of numerical precision, starting from the work of Wirsing. Earlier, it was only
established by Kuzmin and Lévy that there was a slower subexponential (in fact, stretched
exponential) decay. This particular problem has its roots in the famous correspondence of
Gauss and Laplace from 1812.
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4 CONTINUOUS CASE

Figure 3: The graph of the Gauss map on the unit interval

Remark 3.4. There are well known results of a similar flavour for diffeomorphisms. We can
assume that T : M → M is a transitive Anosov diffeomorphism and µ is a T -invariant
absolutely continuous probability measure (if it exists, and the SRB measure if it doesn’t).
If we let f, g : M → R be smooth functions then again the corresponding correlation function
ρ(n) tends to zero exponentially fast. Moreover, the standard approach to proving this is
(at least morally) to go via the case of expanding maps. The bridge between the two is the
use of Markov Partitions for M .

4 Continuous case

Let us now move onto the case of flows, rather than getting too bogged down in the discrete
case. We begin with the most famous example of a continuous transformation: the Geodesic
Flow.

V

x

Figure 4: A surface V of negative curvature.

Let V be a compact oriented C∞ surface with κ(x) < 0 where κ is the Gaussian curvature
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4 CONTINUOUS CASE

given by

κ(x) = lim
r→0

πr2 − Vol(B(x, r))

πr4/24
.

The geodesic flow takes place not on the surface V , but on the three dimensional unit
tangent bundle.

Definition 4.1. Let SV = {v ∈ TV : ‖v‖ = 1} be the unit tangent bundle. We define
the geodesic flow φt : SV → SV by associating to v ∈ SV the geodesic γv : R → V with
γ′v(o) = v. We then define φt(v) = γ̇v(0).

V

v

φtv

γv

Figure 5: The geodesic flow on the surface V

The first basic result on geodesic flows is the following.

Lemma 4.2. There is a (unique) φ-invariant probability measure m equivalent to volume
(called the Liouville measure). Moreover, m is mixing.

This result is harder to prove than in the discrete case. However, even more challenging
is the following result.

Question 4.3. Given C∞ functions F,G : SV → R, how fast does the correlation function
ρ(t)→ 0 as t→ +∞?

One of the first settings where the question was shown to have an affirmative answer
(with an exponentially fast decay) was in the special case that V has constant curvature.

Example 4.4 (Constant curvature geodesic flows). If we assume κ = −1 then φt : SV → SV
mixes exponentially quickly (i.e., there exists α > 0 such that for any f, g there exists C > 0
with |ρ(t)| ≤ Ce−αt, t ≥ 0).

In this setting this can be seen by writing V = D2/Γ where

D2 = {z = x+ iy ∈ C : |z| < 1}

with Riemann metric

ds2 = 4
dx2 + dy2

1− (x2 + y2)
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5 FLOWS

Figure 6: The Poincaré disk (tessellated by hyperbolic triangles).

and covering transformations

Γ < Isom0(D2) = PSL(2,R).

Using unitary representation theory one can decompose L2(SV ) = ⊕αHα and write

ρf,g(n) =
∑
α

ρfα,gα(t).

One can show each correlation function ρfα,gα(t) → 0 with explicit bounds. (This is usually
referred to as Decay of Matrix Coefficients). The regularity of the function f, g : SV → R
guarantees the the exponential decay for the terms translates into exponential decay for the
summation.

Remark 4.5. One of the interesting consequences of this approach is that one gets explicit
information on α, which is related to the smallest non-zero eigenvalue of the Laplacian on
V .

5 Exponential Decay of correlations for flows

5.1 Overview

This brings us to a central question.

Question 5.1. What happens in the more general case that V has variable curvature?

Unfortunately, there is no representation theory available in variable curvature, but we
can try to use the transfer operators that served so well in the discrete case. We need to
replace the flow by an invertible hyperbolic map, the expanding map by a semi-flow and
the single transfer operator by a family of transfer operators. This is how Dolgopyat proved
exponential decay of correlations [7].
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Theorem 5.2 (Dolgopyat). If φt : SV → SV is the geodesic flow for a compact surface
of (variable) negative curvature, m is the Liouville probability measure, and f, g ∈ C∞(SV )
then the flow mixes exponentially fast.

Remark 5.3. In contrast to the case of constant negative curvature, using this method there
are typically no explicit estimates on the speed of mixing α > 0.

Remark 5.4. Even after more than 20 years the method of Dolgopyat is essentially the
only approach to proving exponential mixing for (semi-)flows beyond the setting of constant
negative curvature geodesic flows. However, it has been extended to a number of settings:

1. m can be generalized to Gibbs measures for Hölder potentials [7];

2. V can be extended to higher dimensions (with negative sectional curvatures) with the
Liouville measure [13]; However, in higher dimensions for other measures the problem
of exponential mixing is still fairly open (although for polynomial mixing it is known
to be true).

3. The result can be extended to contact Anosov flows, Teichmüller flows, etc. [1].

Remark 5.5. There is a connection with geodesic flows (for κ = −1) and expanding maps
of the interval and the work of Bowen–Series. The surface V gives rise to a fundamental
domain F and the geodesics which make up the sides of F extend to give points {xi} on the
boundary (i.e., the unit circle). These points partition the boundary into arcs [xi, xi+1], say.
We then define a transformation T on the disjoint union of these arcs by T |[xi, xi+1] = g,
which is one of the Möbius maps occurring as a side pairing. There is some ambiguity in the
choices, but this is resolved by using some consistent choice.

We define r : X :=
∐

i[xi, xi+1]→ R to represent the time a geodesic takes to cross F .

Example 5.6 (Classical(non)-example: Modular surface). Let V = H2/PSL(2,Z) be the
modular surface. This is not compact, but the associated surface is non-compact. The un-
derlying dynamics in this case is the classical continued fraction transformation T (x) =
1/x− [1/x]. The associated function can be taken to be r(x) = − log |T ′(x)| = −2 log x

The basic approach is to use the mixing for a simpler model and then translate this into
a result for the geodesic flow.

5.2 The simplified model: Suspension semi-flow

Let T : X → X be a piecewise C1+α expanding Markov map of the interval and let r : X → R
be a piecewise C1 function. We then define

Y = {(x, u) ∈ X × R : 0 ≤ u ≤ r(x)}/(x, r(x)) ∼ (Tx, 0)

(i.e., where we identify points at the top of the graph with certain points at the bottom of the
graph). We also define the suspension semi-flow φt : Y → Y (locally) by φt(x, u) = (x, u+ t),
subject to the identification.
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5.2 The simplified model: Suspension semi-flow 5 FLOWS

X

Y
(x, u)

(x, r(x))

(Tx, 0)

φt(x, u)

Figure 7: The suspension semi-flow (on the area under the graph).

Finally, given the T -invariant probability µ we can define a φ-invariant probability mea-
sure m defined by

dm =
dµ× dt∫

dµ

where the denominator is there to give the correct normalization.
Given F,G : Y → R we recall that

ρ(t) =

∫
F ◦ φtGdm−

∫
Fdm

∫
Gdm.

To prove exponential mixing, we want to apply the Paley-Wiener Theorem [16].
Consider the Laplace transform

ρ̂(s) =

∫ ∞
0

e−stρ(t)dt

which is easily seen to converge to an analytic function on Re(s) > 0.

Theorem 5.7 (Paley-Wiener). If ρ̂(s) extends analytically to R(s) > −ε0 (ε0 > 0) and there
is an L1-condition on the restrictions t 7→ ρ̂(σ + it) then for any 0 < ε < ε0 we have that
there exists D > 0 such that

|ρ(t)| ≤ De−εt, t ≥ 0.

The theorem is probably more familiar in the context of Fourier transforms, but it is is
more convenient for us to formulate it this way.

Remark 5.8. R. Paley (1907-1933) was an English mathematician who died aged 26 while
skiing near Banff, and is buried in the graveyard there.
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0

ε0

ε

Figure 8: The domain of the Laplace transform ρ̂(s).

We need to relate the suspension semi-flow to the Paley-Wiener Theorem.
Fix s ∈ C. For the suspension semi-flow we first associate to suitable F,G : Y → R

functions fs, gs : X → R defined by

fs(x) =

∫ r(x)

0

F (x, u)e−sudu

and

gs(x) =

∫ r(x)

0

G(x, u)e−sudu.

Assume without loss of generality, and for greater convenience, that
∫
Fdm =

∫
Gdm = 0.

The next part of the argument is very well explained in the paper of Naud [14]. However,
to work in greater generality one needs to follow the rest of the argument from the articles
of Baladi—Vallée [3] when X is one dimensional, or of Avila—Gouëzel—Yoccoz [1] when X
is higher dimensional. We need some condition on r to ensure (exponential) mixing.

Remark 5.9. For the (non)-example of a semi-flow where r takes a constant value the semi-
flow is not even mixing.

Consider the (formal) identity

F (φt(x, u)) =
∞∑
n=0

∫ r(Tnx)

0

F (T nx, v)δ(u+ t− v − rn(x))dv

where δ(·) represents the Dirac delta function on the real line and

rn(x) =
n−1∑
j=0

r(T jx) for n ≥ 1.
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We can then rewrite

ρ̂(s) =

∫ ∞
0

e−stρ(t)dt

=

∫ ∞
0

e−st
(∫

Y

F (φt(x, u))G(x, u)
dµ(x)du∫

rdµ

)
dt

=
1∫
rdµ

∞∑
n=0

∫
X

e−sr
n(x)

(∫ r(x)

0

e−sr(x)F (x, u)du

)(∫ r(Tnx)

0

esr(x)G(T nx, u)du

)
dµ(x)

=
1∫
rdµ

∞∑
n=0

∫
X

e−sr
n(x)fs(x)g−s(T

nx)dµ(x).

Whereas for expanding interval maps we used a single transfer operator, for suspension
semi-flows we need to consider a family of transfer operators Ls, in light of the need to
accommodate the dependence on s ∈ C.

Definition 5.10. For each s ∈ C we associate a linear operator Ls : C1(X) → C1(X)
defined by

Lsf(x) =
∑
Ty=x

e−sr(y)f(y).

Thus Lsf(x) = L(e−srf) and we are looking at a family of complex operators.
Moreover, we can write the expression for ρ̂(s) more succinctly as:

ρ̂(s) =
1∫
rdµ

∞∑
n=0

∫ (
L(fsg−s ◦ T ne−sr

n

)
)
dµ(x)

=
1∫
rdµ

∫
g−s(1− Ls)−1fsdµ

(5.1)

Thus the analytic extension of ρ̂(s) will come from the spectral properties of the transfer
operator.

Lemma 5.11 (“Claim 1”). There exists ε > 0 and |Im(s)| sufficiently small such that the
spectral radius of Ls is strictly smaller than 1, i.e.,

spr
(
Ls : C1([0, 1])→ C1([0, 1])

)
< 1

Establishing this result is the core of the proof. Then we have the following chain of deduc-
tions:

(I) Establishing uniform bounds on the spectral radius of Ls (Lemma 5.11);

(II) gives analytic extension of the complex function ρ̂(s) (by equation (5.1)); and

(III) then applying the Paley-Wiener theorem (Theorem 5.7) to get estimates on the rates
of mixing.
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5.3 A couple of preliminaries

We next need to establish some basic properties of transfer operators. Let σ > 0. We begin
with a classical result in the case of a real positive transfer operator due to Ruelle.

Theorem 5.12 (Ruelle Operator theorem). Consider Lσ : C1(X)→ C1(X), for σ ∈ R.

1. There exists a simple positive eigenvalue λσ > 0 of maximum modulus;

2. The associated eigenfunction hσ is strictly positive; and

3. The associated eigenmeasure νσ is positive.

In particular, we can write

Lσhσ = λσhσ ∈ C1(X)

and
L∗σνσ = λσνσ ∈ C1(X).

Remark 5.13. This is completely analogous to the Perron-Frobenius theorem for positive
matrices, and for this reason the result is sometimes called the Ruelle-Perron-Frobenius
Theorem.

As we have seen above, in order to establish the necessary properties of Ls we need to
consider the more general case of a complex transfer operator, and in particular establish
Lemma 5.11.

Definition 5.14. Let s = σ+ it. It is convenient to make a simplification by first replacing
Ls by L̃s : C1(X)→ C1(X) where

L̃s(f) =
1

λσ

1

hσ
L(hσf).

In particular, L̃σ1 = 1 and we can think of L̃σ as being a normalized version of Lσ.
For the next ingredient in establishing Lemma 5.11 we need some bounds on iterates of

the operator(s). One can compare the second inequality below for a family of operators with
the, perhaps, better known version for a single operator in the sketch proof for interval maps
in Remark 3.1.

Lemma 5.15 (Doeblin-Fortet Lemma (for families of operators)). Let σ0 < σ1. There exists
C > 0 and 0 < θ < 1 such that for all s = σ + it with σ0 < σ < σ1 and t ∈ R:

1. ‖L̃nsf‖∞ ≤ ‖f‖∞ (uniform contraction), for n ≥ 1; and

2. ‖(L̃nsf)′‖∞ ≤ C(|t|‖f‖∞ + θn‖f ′‖∞), for n ≥ 1.

The first inequality is a direct consequence of the simplification above. The second
inequality follows by simple calculus and the product rule for differentiation.

It simplifies the notation a little if we make the norm depend on the value |t|.

14
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Modifying the norm. Let s = σ + it. We can change the norm on C1(X) to be

‖f‖t : = ‖f‖∞ +
1

t
‖f ′‖∞.

Remark 5.16. A simple consequence of the above version of the Doeblin-Fortet inequality is
the following:

‖L̃nsf‖t = ‖L̃nsf‖∞ +
1

|t|
‖(L̃nsf)′‖∞

≤ ‖f‖∞ +
1

|t|
(C|t|‖f‖∞ + θn‖f ′‖∞)

≤ (C + 1)‖f‖∞ +
‖f ′‖∞
|t|

≤ (C + 1)‖f‖t,
where we use the notation ‖f‖t as introduced above.

A slightly stronger (and more applicable) version of Lemma 5.11 is the following.

Lemma 5.17 (“Claim 2”). There exists C > 0, β > 0 such that for all σ sufficiently close
to 1 and all |t| sufficiently large we have

‖L̃n(t)
s f‖t ≤

‖f‖t
|t|β

,∀f ∈ C1(X)

where n(t) := [C log |t|].
This fundamental result is due to Dolgopyat [7].

Remark 5.18. To see that Claim 2 implies Claim 1 (i.e, Lemma 5.17 implies Lemma 5.11)
we proceed as follows. The spectral radius of Ls satisfies

lim sup
n→+∞

‖Lns‖
1/n
t ≤ λσ lim sup

n→+∞
‖L̃ns‖

1/n
t

≤ λσ lim sup
n→+∞

‖L̃n[C log |t|]
s ‖1/(n[C log |t|])

t

≤ λσ exp(−β/C) < 1

provided σ is close to 1, by perturbation theory.

Moreover, Claim 2 (Lemma 5.17) follows from the following (apparently weaker) lemma
describing contraction of the operator in the L2-norm.

Lemma 5.19 (“Claim 3”). There exists C > 0 and ∃β > 0 such that ∀|t| sufficiently large
and σ sufficiently close to 1:(∫

X

∣∣∣L̃n(t)
s f

∣∣∣2 dµσ)1/2

≤ 1

|t|β
‖f‖t, for f ∈ C1(X),

where n(t) = [C log |t|].

Continuing to work through the implications of these claims, let us next explain why
Claim 3 (Lemma 5.19) implies Claim 2 (Lemma 5.17).

Proof (that Claim 3 implies Claim 2). There are 2 steps.
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5.3 A couple of preliminaries 5 FLOWS

Step 1 (uniform contraction). Assuming Claim 3 we can first show a bound on the supre-
mum norm of the operator:

∥∥∥ L̃2n
s f︸ ︷︷ ︸

L̃ns (L̃ns f)

∥∥∥
∞
≤
∫ ∣∣∣L̃nsf ∣∣∣ dµσ +O

(
αn‖L̃nsf‖t

)
(using the spectral gap) (1)

≤
(∫ ∣∣∣L̃nsf ∣∣∣2 dµσ)1/2

︸ ︷︷ ︸
Cauchy—Schwarz

+ O (αn‖f‖t)︸ ︷︷ ︸
Doeblin—Fortet

(2)

≤
(

1

|t|β
‖f‖t

)
︸ ︷︷ ︸

(by assumption)

+O

(
1

|t|
C| logα|‖f‖t

)
︸ ︷︷ ︸

since n=[C| log t|]

(3)

By choosing C > β
| logα| and β slightly smaller we have this is bounded above by ‖f‖t

|t|β .
This completes the sketch of the proof of Step 1.

Step 2 (norm contraction). It remains to bound the derivative of the operator acting
on functions. The additional hypothesis needed comes from the non-integrability of the
horocycle foliations

1

|t|

∥∥∥ (L2n
s f)′︸ ︷︷ ︸

=Lns (Lns f)

∥∥∥
∞
≤ C · ‖Lsf‖∞ +

θn

|t|
‖(Lsf)′‖∞ (4)

(by using the Doeblin—Fortet inequality)

≤ C

|t|β
‖f‖t +

θn

|t|
(C|t|+ 1)‖f‖t (5)

(by using Step 1, and the Corollary to the Doeblin—Fortet inequality)

≤ ‖f‖t
|t|β

+
‖f‖t

|t|1+C| log θ| (6)

(since n = [C log |t|]).
By choosing β slightly smaller, if necessary, we can assume that C > β−1

| log θ| and we can

choose |t| larger, if necessary, so that we can assume the we can bound (6) by 1
|t|βR‖f‖t.

This completes the sketch of the proof of Step 2.

Step 3 (L2 contraction) It remains to prove (or at least, in our case, to sketch the proof of
) claim 3 (Lemma 5.19). In order to do this we now need to use some additional hypothesis
(which is implied by the geodesic flow).

Additional hypothesis : There does not exist a function u : X → R such that
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5.3 A couple of preliminaries 5 FLOWS

1. u is C1 on each interval [xi, xi+1]

2. ψ : = r + u ◦ T − u︸ ︷︷ ︸
coboundary

is constant on each [xi, xi+1].

This hypothesis is simple to state and is equivalent to what is actually used in the proof.
We will actually make use of the following:

Technical version of hypothesis : There exists ε > 0 such that T : X → X has inverse branches
Ti, Tj : X → X (i.e. locally T ◦Ti = identity and T ◦Tj = identity) and Rij : = r(Tix)−r(Tjx)
satisfies |R′ij(x)| ≥ ε. 1

X
xTi(x) Tj(x)

r(Ti(x)) r(Tj(x))

Figure 9: The difference between the values of r evaluated at the pre-images Ti(x) and Tj(x)
of x under T determine the (locally defined) function Rij(x)

The basic idea of the proof of Claim 3 (Lemma 5.19) if the following. We can write that

Lsf(x) =
∑

y : Ty=x

(
ω(y)f(y)e−σr(y)

)
e−itr(y)

and thus taking the absolute value we have that

|Lsf(x)| =

∣∣∣∣∣ ∑
y : Ty=x

(
f(y)e−σr(y)

)
e−itr(y)

∣∣∣∣∣ .
However, in Claim 3 (Lemma 5.19) it is the integral in x of this function which we need
to bound. But, by the technical hypothesis, for every x we have that the contribution of

1Actually, one needs a slightly weaker assumption: There exists ε > 0 and (an arbitrary large) n such
that Tn : X → X has inverse branches Ti, Tj : X → X (i.e. locally Tn ◦Ti = identity and Tn ◦Tj = identity)
and Rij : = r(Tix)− r(Tjx) satisfies |R′

ij(x)| ≥ ε.

17



5.3 A couple of preliminaries 5 FLOWS

two pre-images y = Tix and y′ = Tjx, say, satisfy that |R′ij(x)| ≥ ε. In particular, for any
given sufficiently large |t| there is a fixed proportion of the µσ measure of X for which locally
|t|Rij(·) lies in an interval [π/2, 3π/2] (mod 1), say.

Comparing the arguments of the terms in the summation we see that |Lnsf(x)| is uniformly
smaller than 1 on a fixed proportion of the measure of X. Moreover, these bounds can be
made uniform in |t|.

1

|Lσ1(x)|

X

Figure 10: The absolute value of Lσ1(x) is uniformly smaller than 1 for sets whose µσ
measure is uniformly bounded away from 0 (independent of t, for |t| sufficiently large )

(In particular, as |t| increases the arguments in the summation change more rapidly but
still the proportion of the measure of X for which |t|Rij(·) lies in an interval [π/2, 3π/2]
(mod 1) is uniformly bounded from below).

In summary, by assumption at least two of the terms are “out of phase” since |R′ij(x)| ≥ ε.
This leads to the bound on ‖Lns‖L1 .

Remark 5.20. In the case of geodesic flows on n-dimensional manifolds with negative sectional
curvature the proof is very similar. The main difference is in the proof of the analogue of
Claim 3. The integral over the corresponding n-dimensional space X is approached by
integrating over the one-dimensional leaves of a foliation of X. The argument that served us
well in one dimension applies along the leaves of the foliation. This explained in the original
article of Dolgopyat and in the related article of Avila-Gouëzel-Yoccoz, for Teichmüller flows.

This very simplified account of Dolgopyat’s original approach makes use of the origi-
nal formulation using Markov sections, which was still a standard approach at that time.
However, it does suggest the following question:

Question 5.21. Why can’t we just work with the original space SV ?

The short answer is that one can, and that this approach was advanced by Liverani. It
leads to slightly stronger results, although it may not be technically simpler. We give a brief
description of the method, without entering into any of the technical details.

18



6 OTHER APPLICATIONS

Consider the perhaps more natural operators:

Ut : L2(SV,m)→ L2(SV,m)

Ut : f 7→ h ◦ ϕt

for t ≥ 0, say. As is well known, these operators have rather poor spectral properties on
L2(SV,m). However Liverani (and Butterley) introduced a (bigger) space of distributions B
and then defined a family of linear operators by:

R(s) : B → B R(s)f =

∫ ∞
0

e−stUtfdt

For such Banach spaces we have the following properties:

1. The spectrum has no eigenvalues in a half plane Re(s) > −β, say, where β can be
made arbitrarily large by choosing an appropriate B; and

2. The Banach space B is based on functions in the stable direction and distributions in
the unstable direction.

In particular, 1. leads one to the same conclusion on ρ̂(s) that allow the application
of the Paley-Wiener theorem. The underlying mechanism to prove these results is a useful
reformulation of the approach of Dolgopyat. One might hope that there are many different
techniques available, but unfortunately this doesn’t appear to be the case.

Confession: The only two ways I know how to get exponential mixing for geodesic flows
are:

1. Unitary representations (κ = −1); and

2. Dolgopyat method (κ < 0).

6 Other applications of transfer operators

Now that we (or, more precisely, Dolgopyat) has done the hard work — can we use the same
machinery to prove other results? That is, can we use the properties established for families
of transfer operators in other contexts? The following diagram helps to summarize some of
the other applications:

Property of Ls =⇒



Counting Problems

Teichmüller Flows

Skew Products

Algorithms

Exponential Mixing
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6.1 Problems that count (closed geodesics) 6 OTHER APPLICATIONS

6.1 Problems that count (closed geodesics)

Let V be a C∞ compact surface. Let γ denote a closed geodesic (there are a countable
infinity of closed geodesics - one in each free homotopy class of V ). We can then denote by
`(γ) the length of γ (where the lengths tend to infinity).

Vγ

Figure 11: A closed geodesic on the surface V .

We want to consider the growth of the number of closed geodesics and begin with the
following definition.

Definition 6.1. For each T > 0, we let

π(T ) : = #{γ : `(γ) ≤ T}

count the (finite) number of closed geodesics whose lengths are at most T .

The function π(T ) is clearly monotone increasing, and tends to infinity as T increases.
As we have already seen in the case of the mixing rates for ρ(t), in the particular case of

constant curvature the strongest results have been well known for many years.

Example 6.2 (κ = −1). Let V be a surface of constant curvature κ = −1. Recall that the
isometries of D2 are isomorphic to PSL(2,R) and that D2 is the Universal Cover of V . Thus
we can write V = PSL(2,R)/Γ where Γ < PSL(2,R) is a discrete subgroup with Γ = π1(V ).
The closed geodesics γ correspond to conjugacy classes 〈g〉 of elements g ∈ Γ− {e}.

In this specific setting the asymptotic formula is due to Huber [9]:

Theorem 6.3 (Huber : κ = −1). There is an asymptotic formula

π(T ) ∼ eT

T
, as T → +∞

(i.e., limT→+∞
π(T )T
eT

= 1). In fact there is an even stronger estimate

π(T ) = li(eT )
(
1 +O(e−εT )

)
as T → +∞

for some ε > 0, where li(v) =
∫ v

2
du

log u
(i.e., there exists C > 0 with |π(T )− li(eT )| ≤ Ce−εT ).
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6.2 Multiple mixing for geodesic flows 6 OTHER APPLICATIONS

The method of proof makes use of the Selberg trace formula.
More generally, we can consider the case that V is a compact surface with a C∞ Rie-

mannian metric of variable negative curvature.

Theorem 6.4 (Margulis). (κ < 0): For surfaces of variable negative curvature there exists
h > 0 such that

π(T ) ∼ ehT

hT
as T → +∞.

The proof of Margulis’ more general result is dynamical, but it doesn’t naturally lead to
an error term. However, one can use the transfer operator estimates of Dolgopyat, which
served so well in showing exponential mixing, to get these stronger results [15].

Theorem 6.5 (Pollicott-Sharp, after Dolgopyat). For surfaces of variable negative curva-
ture:

π(T ) = li(eT )(1 +O(e−εT )), as T → +∞,
for some ε > 0.

The proof parallels that of exponential mixing for geodesic flows. For this problem the
associated analytic tool is now a zeta function (rather than the Laplace transform of the
correlation function ρ(t)). In this setting one of the theorems which gets one from the
properties of the analytic domain to the asymptotic formula for the counting function π(T )
is the Ikehara-Wiener Tauberian Theorem (famous for its use in the proof of the Prime
Number Theorem).

This comparison is summarized in the following table.

Object Complex Function Analytic Tool
Exponential mixing ρ(t) ρ̂(s) Paley—Wiener

Counting problem π(T ) ζ(s) =
∏(

1− e−s`(γ)
)−1︸ ︷︷ ︸

zeta function

Ikehara—Wiener

6.2 Multiple mixing for geodesic flows

Let V again be a compact surface of negative curvature κ < 0. One can also consider the
case of multiple mixing for the associated geodesic flow. In particular, we can consider (for
simplicity) three smooth functions

F,G,H : SV
C∞
−→ C

satisfying ∫
Fdµ =

∫
Gdµ =

∫
Hdµ = 0.

Given the geodesic flow gt : SV → SV we can define the multiple correlation function:

ρ(t1, t2) : =

∫
SV

F (gt1+t2x)G(gt2x)H(x)dm (t1, t2 ≥ 0)

where m is the normalized Liouville measure.
There is a natural analogue of the exponential mixing result of Dolgopyat (Theorem 5.2).
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Theorem 6.6 (Multiple Exponential Mixing). There exists ε > 0 such that for F,G,H there
exists C > 0 such that

ρ(t1, t2) ≤ C exp(−εmin{t1, t2}) as t1, t2 → +∞.

The proof is a natural generalization of the proof of exponential decay of correlations in
the case of two functions.

Sketch of Proof. We briefly outline the main steps in the proof.

Step 1: We first replace the geodesic flow gt : SV → SV by a model suspension semi-flow
ϕt : Y → Y .

Step 2: We can write the Laplace transform of the correlation function (this time in two
variables)

ρ̂(s1, s2) =

∫ ∞
0

∫ ∞
0

e−(s1t1+s2t2)ρ(t1, t2)dt1dt2 (s1, s2 ∈ C),

for the suspension semi-flow ϕt : Y → Y in terms of transfer operators:

ρ̂(s1, s2) =

∫
X

fs1 (1− Ls1)
−1 (gs2(1− Ls2)−1hs1+s2

)
dµ,

where fs(x) =
∫ r(x)

0
f(x, u)e−sudu, etc.

Step 3: We can use spectral properties of the transfer operator, in particular Lemma 5.11,
to show ρ̂(s1, s2) is analytic for <(s1),<(s2) > σ0 for some σ0 < 0.

Step 4: Finally, we can apply a version of the Paley-Wiener theorem for two variables to
deduce the result.

Remark 6.7. One would expect that for the Teichmüller geodesic flows the same argument
would give multiple exponential mixing.

Remark 6.8. If we assume weaker conditions on the flow then we would anticipate weaker
conditions on the behaviour of ρ(t1, t2). For example, we consider more general Axiom A
or hyperbolic flows for which the period of at least one of the closed orbits is a diophantine
number (i.e., badly approximated as a real number). Although in this case we have weaker
estimates on the spectra and norm of the family of transfer operators there is a corresponding
result with polynomial bounds, i.e., there exists ε > 0 such that for F,G,H there exists C > 0
such that

ρ(t1, t2) ≤ C min{t−ε1 , t−ε2 } as t1, t2 → +∞.

6.3 Skew Products

One can also use the uniform estimates on the transfer operators which have served us well
for flows in a different setting. In the case of flows the estimates are needed to deal with the
flow (or neutral) direction. In the case of skew products the neutral direction corresponds
to the second component.
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6.3 Skew Products 6 OTHER APPLICATIONS

To illustrate this, let T : X → X be C2 expanding interval and let µ be a T -invariant
absolutely continuous probability measure. Given a C1-function Θ: X → R/Z valued on
the unit circle, we can consider the skew product defined on the product space X ×R/Z by

T̂ : X × R/Z→ X × R/Z
T̂ (x, z) = (T (x), z + Θ(x)),

where x ∈ X and z ∈ R/Z.

X

R/Z

x T (x)

z

z + Θ(x)

Figure 12: The skew product T̂ : X × R/Z

We can associate the natural T̂ -invariant product measure

dm = dµ× dHaar.

We can then introduce the correlation function for two C∞ functions F,G : X × R/Z → R
such that

∫
Fdm = 0 and

∫
Gdm = 0.

Definition 6.9. We define the correlation function by

ρ(n) =

∫
F ◦ T̂ nGdm−

∫
Fdm ·

∫
Gdm, for n ≥ 0.

We recall that we say that the measure m is mixing with respect to the skew product
transformation T̂ if ρ(n) → 0 as n → +∞. Clearly, we need some extra criteria for m
to be even mixing. For example, choosing the function Θ ≡ 0 to be identically zero is a
poor choice, since the associated skew product cannot be mixing as any set X × B, where
B ⊂ R/Z is Borel. The following is a standard result that guarantees that the measure m is
mixing:

Lemma 6.10. Assume that there do not exist non-trivial C1 solutions χ : X→C to the
equation

χ ◦ T = eiθχ. (6.1)

Then the measure m is strong mixing for the skew products.
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6.3 Skew Products 6 OTHER APPLICATIONS

The C1 condition on the solution χ is not essential, but is equivalent to the existence of
a solution χ ∈ L∞(µ).

As before, we can consider a stronger property that ρ(n) tends to zero exponentially fast.

Definition 6.11. We say that the skew product and the measure m is exponential mixing if
there exist constants C > 0 and 0 < λ < 1 with |ρ(n)| ≤ Cλn.

We need a stronger hypothesis to guarantee that the skew-product is exponentially mix-
ing.

Hypothesis 6.12. Assume there does not exist a C1 function u : X → C such that r+u◦T−u
is constant on each [xi, xi+1].

We call such a function u ◦ T − u a coboundary. In fact, the hypothesis above implies
that the function r actually satisfies a stronger condition corresponding to that coming from
the joint non-integrability condition for the geodesic flow. (This comes from the work of
Avila-Gouëzel-Yoccoz [1].)

The next theorem guarantees the exponential mixing.

Theorem 6.13. Under the above hypothesis on the skew product the measure m mixes ex-
ponentially fast.

If we use the Fourier series expansion in the second co-ordinate to write

F (x, z) =
∑
k∈Z

ak(x)e2πikzand G(x, z) =
∑
l∈Z

bl(x)e2πilz

then substituting into the expression for ρ(n), for n ≥ 0, gives

ρ(n) =
∑
k,l∈Z

∫
ak(T

nx)eikΘn(x)bl(x)dµ(x) =
∑
k,l∈Z

∫
ak(x)(LnikΘbl)(x)dµ(x)

where
Θn(x) := θ(x) + Θ(Tx) + · · ·+ Θ(T n−1x)

and we denote
LiΘw(x) =

∑
Ty=x

g(y)eiΘ(y)w(y) for w ∈ C1(X)

where
∑

Ty=x g(y) = 1, with g corresponding to the measure µ.
The proof of exponential mixing comes from uniform estimates in k ∈ Z on families of

transfer operators, coming from the Fourier modes in the R/Z. These, in turn, follow from
a similar (and equally long) argument to that for suspension flows in §5.

Remark 6.14. The formulation of the discussion above for skew products over expanding
maps is primarily for convenience. The same basic argument would work both for higher
dimensional C1 uniformly expanding base maps, and for hyperbolic invertible diffeomor-
phisms. In the latter case, there are additional complications whereby we need to reduce
the diffeomorphism to an expanding map by a Markov partition. This requires the stable
foliation to be C1 and one also has to address the problem of changing the skewing function
so that it is defined on the space for the (new) expanding map.
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6.4 Skew Products and Flows

It is more challenging to deal with the issue of exponential mixing for skew products of
(semi-)flows, which combines the features (and problems) of the last two cases. However,
this becomes easier when one realises the correct formulation of the mechanism to use.

Consider the basic model of a suspension semi-flow φt : Y → Y we considered before in
§5 where Y is given by the graph of the function r : X → R. To this we can add the skewing
function Θ : X → R/Z and then define a (semi-)flow skew product by

φ̂t : Y × R/Z→ Y × R/Z

φ̂t(x, u, z) = (x, u+ t, z)

subject to the natural identification (x, r(x), z) = (T (x), 0, z + Θ(x)).

X

R/Z

(x, 0) (T (x), 0)

z

z + Θ(x)

(x, z, u)

(x, r(x))

φt(x, z, u)

Figure 13: The skew product over the suspension semi-flow φ̂t : Y × R/Z→ Y × R/Z

Given C1 functions F,G : Y × R/Z→ R we can write the correlation function as

ρ(t) =

∫
Y×R/Z

F ◦ φ̂tGdµ(x)dtdz
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As in the case of skew products, we can use the Fourier series expansion in the z coordinate
to write

F (x, u, z) =
∑
k∈Z

ak(x, u)e2πikzand G(x, u, z) =
∑
l∈Z

bl(x, u)e2πilz

and then, as in the case of (semi-)flows in §5, the analysis of this correlation function reduces
to the study of the Laplace transform of the individual terms (for each k and l):

ρ̂(s) =
1∫
rdµ

∞∑
n=0

∫
Ln(asb−s ◦ T ne−sr

n

eikΘn)dµ(x)

=
1∫
rdµ

∫
a−s(1− Ls,Θ)−1bsdµ

where :

(a) the functions as, bs : X → R are defined by

as(x) =

∫ r(x)

0

ak(x, u)e−sudu

and

bs(x) =

∫ r(x)

0

bl(x, u)e−sudu;

and

(b) the operator Ls,Θ : C1(X,C)→ C1(X,C) is defined by

Ls,kw(x) =
∑
Ty=x

g(y)e−sr(y)eiΘ(y)w(y)

for w ∈ C1(X,C).

In order to show that ρ(t) tends to zero exponentially fast, we want to show that the spectral
radius of Ls,k is strictly smaller than 1 uniformly. But now we need uniformity in two
variables:

1. for Re(s) > 1− ε and |Im(s)| > 1, say; and

2. for k ∈ Z

In order to deal with both variables at the same time we first restrict to the case that
dimX ≥ 2. Moreover, we want to assume that there is a one-dimensional C1 foliation
{Wt}t∈T of local neighbourhoods of X given by level sets of the corresponding functions
Θij(x) := Θ(Ti(x)) − Θ(Tj(x)). In particular, we require the following condition (using the
notation from §5).

Hypothesis 6.15. Along the leaves {Wt}t∈T we can assume that the derivative of Rij(x) is
bounded away from zero.
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We can decompose the measure as µσ =
∫
T
µσ,tdµσ. In particular, we can replace the

integral ∫
X

|L̃n(t)
s,kΘf |

2dµσ by

∫
T

(∫
Wt

|L̃n(t)
s,kΘf |

2dµσ,t(u)

)
dµσ(t).

This was the approach used in the original article of Dolgopyat and in the article of Avila-
Gouëzel-Yoccoz, corresponding to the choice k = 0. In the present context we have that the
L2(µt) bound on |L̃s,kΘf(x)| (or more generally on |L̃ns,kΘf(x)|) along the leaves Wt of the
foliations contains contributions to the summation of the form

Wt 3 x 7→ e−σr(Tix)e−itr(Tix)eiΘ(Tix) − e−σr(Tix)e−itr(Tjx)ejΘ(Tjx).

However, on each leaf Wt the difference Θ(Tix) − Θ(Tjx) is constant and then the same
argument as in the proof of Step 3 applies, and thus the corresponding statement to Claim 3
in §5 holds. Moreover, the bounds in Claim 1 and Claim 2 generalize to the present setting
and thus we can deduce the analogous statement to Lemma 5.17 for the operators L̃s,kΘ.
As in the case of semi-flows, one can now deduce exponential decay of correlations to the
component functions in the expansions for F and G. Providing the individual coefficients ak
and al tend to zero sufficiently quickly (reflecting the regularity of the functions F and G)
then this exponential mixing will hold for the original functions.

Remark 6.16. With a little extra work this method can be applied to frame flows. These
are SO(d − 1)-skew products over the geodesic flow gt : SV → SV on the unit tangent
bundle of a compact d-dimensional manifold. In particular, orthonormal d-frames are parallel
transported along the geodesics defining the orbits of the geodesic flow. In particular, one
can use this approach to show that the frame flow on a compact manifold with sectional
curvatures close enough to −1 are exponentially mixing with respect to the natural invariant
measure equivalent to volume. This again involves the reduction from the geodesic flow to a
semi-flow. The condition for {Wt}t∈T that the derivative of Rij is bounded away from zero
can be checked explicitly in the case of metrics for which all of the sectional curvatures are
equal to −1 and holds for nearby Riemannian metrics by continuity.

6.5 Euclidean Algorithm

Finally, we recall an application of the transfer operator results to algorithms. We begin
with the following simple classical question on natural numbers.

Question 6.17. Given two natural numbers 0 < u ≤ v how do we find their greatest common
divisor? (i.e. largest ω ∈ N such that ω | u and ω | v).

This leads naturally to the oldest and best known algorithm in number theory, the
Euclidean algorithm (due to Euclid circa 300 B.C.). According to Donald Knuth “The
Euclidean algorithm is the granddaddy of all algorithms, because it is the oldest nontrivial
algorithm that has survived to the present day.”

Euclidean algorithm. Given a pair of natural numbers (u, v) with 0 < u ≤ v:

(i) Let (u, v) 7→ (r, u) where v = qu+ r, where r < u; then
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(ii) Repeat part (i) N = N(u, v) times to get (0, k), then k is the greatest common divisor
of u and v.

To relate this algorithm to transfer operators we can reformulate this in terms of the
Gauss map T : [0, 1]→ [0, 1], which we recall is defined by

T (x) =

{
1
x
−
[

1
x

]
if 0 < x ≤ 1

0 if x = 1.

More precisely, N = N(u, v) ≥ 0 is also the smallest natural number for which the rational
number u

v
satisfies TN

(
u
v

)
= 0. (In particular, this means that u

v
can be written as a finite

continued fraction u
v

= [a1, . . . , an], say).
One can ask about the distribution of the values N(u, v) as we consider different pairs

1 ≤ u < v. Given n ≥ 1, we can associate the finite set of pairs

Ωn = {(u, v) : 1 ≤ u < v ≤ n}

and let Pn be the normalized counting probability on Ωn, i.e.,

Pn =
1

#Ωn

∑
(u,v)∈Ωn

δ(u,v),

where δ(u,v) is the Dirac measure supported on (u, v). The following result is a special case
of the interesting work of Baladi-Vallée which describes the statistical properties of these
measures [3]. In particular, this result takes the form of a Central Limit Theorem.

Theorem 6.18 (Baladi-Vallée). There exist constants µ = 6 log 2
π2 and σ2 > 0 such that for

any α ∈ R:

lim
n→∞

Pn
({

(u, v) ∈ Ωn :
N(u, v)− µ log n√

log n
< α

})
=

1√
2πσ

∫ α

−∞
e−

t2

2σ d t+O

(
1√

log n

)
These, and the various generalizations, are nicely described in the books of Knuth [11]

and Hensley [8].
The proof again uses transfer operators and generalizations of the the work of Dolgopyat,

but in addition to Tauberian Theorems it also uses a Quasi-Powers theorem of Hwang.
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