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Abstract. The first part of this work is devoted to the study of higher differentials
of pressure functions of Hölder potentials on shift spaces of finite type. By describing
the differentials of pressure functions via the Central Limit Theorem for the associated
random processes, we discover some rigid relationships between differentials of various
orders. The rigidity imposes obstructions on fitting candidate convex analytic func-
tions by pressure functions of Hölder potentials globally, which answers a question of
Kucherenko-Quas. In the second part of the work we consider fitting candidate analytic
germs by pressure functions of locally constant potentials. We prove that all 1-level
candidate germs can be realised by pressures of some locally constant potentials, as
long as number of the symbolic set is large enough. There are also some results on
fitting 2-level germs by pressures of locally constant potentials obtained in the work.

1. Introduction

This work deals with traditional topics in thermodynamic formalism [Bow, Rue1],
which originates from theoretical physics. We focus on shift spaces of finite type here,
which model dynamics of some smooth systems such as Axiom-A Diffeomorphisms
through Markov partitions. Given a symbolic set Λ of finite symbols and a continu-
ous potential (observable) φ on the shift space ΛN, a core concept in thermodynamic
formalism is the pressure P (φ). People are particularly interested in the pressure func-
tion P (tφ) with the variable t > 0 representing the inverse temperature. A sharp change
in the pressure function (or other terms) is usually called a phase transition as t varies,
see for example [IRV, IT1, IT2, KQW, Lop1, Lop2, Lop3, Sar].

For Hölder continuous potentials, Ruelle [Rue2] proved that the pressure function
P (tφ) is analytic for t ∈ (0,∞) (in fact he proved that P (ψ) depends analytically on
ψ for ψ in the Hölder space C0,h(X) with X being a transitive subshift space of finite
type and 0 < h ≤ 1 being the exponent [GT]). A key ingredient in his proof is the
use of Ruelle (transfer) operator [BDL, GLP] acting on functions in the Hölder space.
Moreover, the equilibrium measure of tφ for any t > 0 and Hölder potential φ is always
unique, so there are in fact no phase transitions in this case. Let

P (n)(t) = P (n)(tφ) =
dnP (tφ)

dtn

be the n-th differential of the pressure function P (tφ) with respect to t ∈ (0,∞) for
some fixed Hölder potential φ. We also write

P (1)(t) = P ′(t), P (2)(t) = P ′′(t), P (3)(t) = P ′′′(t), · · ·
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intermittently in the following. We discover that there is some rigid relationship between
the differentials of the pressure function.

1.1. Theorem.
For a Hölder potential φ on a full shift space of finite type, let P (t) = P (tφ) be its
pressure. Then there exists some positive number Mφ depending on φ, such that

(1.1)
√

2π3(P (2)(t))3/2|P (3)(t)| ≤ 9|P (3)(t)|+ 2|P (4)(t)|+ 3
√

2π3Mφ(P (2)(t))5/2

for any t > 0.

A potential φ is said to be generic (or we say it defines a non-lattice distribution,
cf. [CP, Fel, PP]), if for any normalised potential ψ, the spectral radius of the complex
Ruelle operator Lψ+itφ is less than 1 for any t 6= 0. For pressure functions of generic
potentials, Theorem 1.1 can be strengthened to the following result.

1.2. Theorem.
For a generic Hölder potential φ on a full shift space of finite type, let P (t) = P (tφ) be
its pressure. Then there exists some positive number Mφ depending on φ, such that

(1.2) |P (3)(t)
(
1−
√

2π(P (2)(t))3/2
)
| ≤ 3MφP

(2)(t)

for any t > 0.

This means the second differential of the pressure function of a generic Hölder potential
imposes some global subtle restriction on its third differential. It would be interesting
to try to interpret the meaning of P ′′(t) = 1

3√2π
for the pressure function at individual

parameters. Let σ : ΛN → ΛN denote the shift map. Both the proofs of Theorem 1.1
and 1.2 require use of the Ruelle operator and the Central Limit Theorem (CLT) for
the process {f ◦ σn}n∈N, with the latter one depending on a finer CLT in the generic
case. Recall that there are some expressions on the higher differentials of the pressure
function by Kotani and Sunada in [KS1] for smooth systems, and we refer the readers
to [KS2] for a CLT for random walks on crystal lattices.

It is well-known that P (tφ) is convex and Lipschitz for continuous φ, moreover, the
supporting lines of its graph must intersect the vertical axis in a closed bounded interval
in [0,∞). Kucherenko and Quas have shown that any such function can be realised by
the pressure function of some continuous potential on some shift space of finite type [KQ,
Theorem 1], whose result fits into Katok’s flexibility programme [BKR]. However, the
continuous potentials constructed in their work are not Hölder, so they ask the following
question (their original problem is set in the multidimensional case).

1.3. Problem (Kucherenko-Quas).
Can a convex, Lipschitz analytic function with its supporting lines intersecting the ver-
tical axis in a closed bounded interval in [0,∞) be realised by the pressure function of
some Hölder potential on some shift space of finite type?

Our following results are dedicated to an answer to their problem. We first point out
that any convex, Lipschitz analytic function with its supporting lines intersecting the
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vertical axis in a closed bounded interval in [0,∞) can be approximated by sequences of
pressure functions of locally constant potentials on some shift space of finite type.

1.4. Corollary.
Let F (t) be a convex Lipschitz function on (α,∞) for some α > 0 with Lipschitz constant
L > 0, such that its supporting lines intersect the vertical axis in [γ, γ] with 0 ≤ γ ≤ γ <
∞. Then there exists a sequence of locally constant potentials {φn}∞n=1 on some shift
space of finite type, such that

(1.3) lim
n→∞

P (tφn) = F (t)

for any t ∈ (α,∞).

Proof. This is an instant corollary of Kucherenko-Quas’ result. Let

Λ = {0, 1, · · · , beγc} × {bγc, · · · , dγe}} × {b−Lc, · · · , dLe},

in which b c and d e represent the floor and ceiling function respectively. According to
[KQ, Theorem 1], there exists a continuous potential φF : ΛZ → R, such that

P (tφF ) = F (t)

on (α,∞). Now let

φn(x)
.
= φn,−(x) = inf{φF (x) : x ∈ [x−nx−n+1 · · ·xn]}

for any x = · · · x−(n+1)x−n · · ·xnxn+1 · · · ∈ ΛZ and n ∈ N, in which [x−nx−n+1 · · ·xn]
means the corresponding cylinder set. φn is a locally constant potential for any fixed n.
Now fix t ∈ (α,∞), by properties of the pressure function (see for example [Rue1, 6.8]),

(1.4) |P (tφn)− P (tφF )| ≤ |t| ‖ φn − φF ‖∞ .

Since φF is continuous, this implies (1.3).
�

One can see that in the above proof the increasing sequence of pressures {P (tφn,−)}n∈N
satisfies

P (tφn,−)↗ F (t)

as n→∞ since {φn,−}n∈N is an increasing sequence tending to φF (see [Wal1, Theorem
9.7(ii)]). Alternatively, one can take

φn,+(x) = sup{φF (x) : x ∈ [x−nx−n+1 · · ·xn]},
which results in a decreasing sequence of locally constant potentials approximating
φF (x), or

φn,±(x) =
φn,−(x) + φn,+(x)

2
,

which also results in a sequence of locally constant potentials approximating φF (x), while
their pressure functions both approximate F (t). See Corollary 5.5 for an interpretation
of the result from another point of view.
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1.5. Remark.
The convergence in Corollary 1.4 is uniform for t in a bounded domain since ΛZ is a
compact metric space by considering (1.4).

1.6. Remark.
A locally constant potential is of course Hölder, so according to Ruelle’s result, the
pressure functions {P (tφn,−)}n∈N are all analytic.

The following result confirms that some convex analytic functions cannot be fitted
by the pressure of any Hölder potential on any shift space of finite type, which gives a
negative answer to Problem 1.3.

1.7. Theorem.
For any α > 0, there exists a strictly convex analytic function F (t) on (α,∞), with its
supporting lines intersecting the vertical axis in [γ, γ] ⊂ [0,∞), such that there does not
exist any Hölder potential φ on any shift space of finite type satisfying

P (tφ) = F (t)

on (α,∞).

For an explicit example of convex analytic functions in Theorem 1.7, one can simply
take

F2,3,1(t) =
2t2 + 3t+ te−t

2
+ e−t

2

t
on (α,∞) for any α > 0. See Proposition 4.2 for a family of such examples. Thus one
can see that there are in fact elementary functions which cannot be fitted by pressures
of Hölder potentials on shift spaces of finite type.

In the following we consider fitting convex analytic functions locally instead of globally,
only by pressures of locally constant potentials on shift spaces of finite type. Let

Λn = {1, 2, · · · , n}
be the symbolic set of n symbols.

1.8. Theorem.
Let t∗ > 0 and (a0, a1) ∈ R2 satisfying

(1.5)
a0

t∗
> a1.

Then for any n ∈ N large enough, there exist some 0 ≤ mt∗,a0,a1,n < Mt∗,a0,a1,n < ∞
depending on t∗, a0, a1, n, such that for any a2 ∈ [mt∗,a0,a1,n,Mt∗,a0,a1,n], there exists some
sequence of reals {ci,n}ni=1, such that the locally constant potential

φ(x) = cx0,n

for x = · · ·x−1x0x1 · · · ∈ [x0] on the full shift space ΛZ
n satisfies

(1.6) P (tφ) = a0 + a1(t− t∗) +
a2

2!
(t− t∗)2 +O((t− t∗)3)

on [t∗ − δn, t∗ + δn] for some δn > 0.
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This means we can fit some germs at t∗ up to level 2 by pressures of some locally
constant potentials when the number of symbols of the shift space is large enough. The
values δn, {ci,n}ni=1 all depend on t∗, a0, a1, n and a2 in fact, while we only indicate the
dependence of mt∗,a0,a1,n and Mt∗,a0,a1,n as we are particularly interested in their values
in the context of Theorem 1.8. There are some results on the values of

{mt∗,a0,a1,n,Mt∗,a0,a1,n}n∈N
subject to t∗ > 0 and (a0, a1) ∈ R2 satisfying (1.5) at the end of Section 5.

We choose to present all our results in the one dimensional case, while many of these
results can in fact be extended to convex Lipschitz or analytic functions F (t1, t2, · · · , tm)
of m variables naturally. Most of our results also hold on transitive subshift spaces of
finite type, with some technical adjustments in their proofs involving the transition
matrix.

The organization of the work is as following. In Section 2 we introduce some basics in
thermodynamic formalism and the Central Limit Theorem for the process generated by
a potential and the shift map on the symbolic space of finite type. We give an explicit
bound on the tail term in the CLT. Section 3 is devoted to the proof of Theorem 1.1
and 1.2. We formulate some expression of the derivatives of the pressure (Corollary
3.11) linking directly to the CLT, which allows us to unveil the relationship between
derivatives of the pressure function of various orders. Section 4 is devoted to the proof
of Theorem 1.7. In Section 5 we consider fitting 1- and 2-level candidate analytic germs
locally by pressure functions of locally constant potentials (Problem 5.2) on symbolic
spaces of finite type. We conjecture that any reasonable analytic germ of finite level can
be fitted by the pressure function of some locally constant potential locally, as long as
the number of the symbols is large enough.

2. Thermodynamic formalism and the CLT

In this section we collect some basic notions and results in thermodynamic formalism
for later use. We start from the pressure. Let Λ be some symbolic set of finite symbols,
ΛN be the shift space equipped with the visual metric

d(x, y) =
1

2l(x,y)

for distinct x = x0x1x2 · · · , y = y0y1y2 · · · ∈ ΛN, in which

l(x, y) = min{i ∈ N : xi 6= yi}.
For a continuous potential φ : ΛN → R on the compact metric space ΛN, Let

Sm,φ(x) =
∑m−1

i=0 φ ◦ σi(x)

for m ∈ N, in which σ is the shift map.

2.1. Definition.
The pressure P (φ) of a continuous potential φ on ΛN is defined to be

P (φ) = limm→∞
1

m
log
∑

σm(x)=x e
Sm,φ(x).

One can refer to [Wal1, p208] for a definition for continuous potentials on general
compact metric spaces. It satisfies the well-known variational formula
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P (φ) = sup{h(µ) +
∫
φdµ : µ is a σ − invariant measure on ΛN}.

Let C0(ΛN) be the collection of all the continuous potentials on ΛN. Two potentials
ψ, φ ∈ C0(ΛN) are said to be cohomologous [Wal2] in case there exists a continuous map
ϕ : ΛN → R such that

ψ(x)− φ(x) = ϕ(x)− ϕ ◦ σ(x).

We write ψ ∼ φ to denote the equivalence relationship between two potentials cohomol-
ogous to each other. The maps in

{ϕ(x)− ϕ ◦ σ(x) : ϕ ∈ C0(ΛN)}
are called coboundaries. The importance of the cohomologous relationship is revealed in
the following result.

2.2. Proposition.
If ψ ∼ φ, then P (ψ) = P (φ). Moreover, ψ and φ share the same equilibrium state.

One can find a proof in [Rue1] or [PP]. Another important tool in thermodynamic
formalism is the Ruelle operator.

2.3. Definition.
For a continuous potential ψ : ΛN → R, define the Ruelle operator Lψ acting on C0(ΛN)
as

(Lψf)(x) =
∑

y:σ(y)=x e
ψ(y)f(y)

for f ∈ C0(ΛN).

One can see easily that its compositions satisfy

(2.1) (Lmψ f)(x) =
∑

y:σm(y)=x

eSm,ψ(y)f(y)

for any m ∈ N. In case of ψ being Hölder, it admits a simple maximum isolated
eigenvalue λ = eP (ψ) such that,

(2.2) (Lψwψ)(x) = eP (ψ)wψ(x)

for some eigenfunction wψ(x) ∈ C0,h(ΛN), refer to [Rue1]. The unique equilibrium
measure for the Hölder potential ψ is denoted by µψ. It then follows that

(2.3) (Lmψwψ)(x) = emP (ψ)wψ(x)

for wψ(x) ∈ C0,h(ΛN). A potential ψ is said to be normalized if

P (ψ) = 0 and wψ = 1ΛN ,

in which 1ΛN is the identity map on ΛN. In case of ψ being not normalized, we call

ψ̄ = ψ + logwψ − logwψ ◦ σ − P (ψ)

the normalization of ψ. It is easy to check that ψ̄ is a normalized potential. Moreover,
ψ̄ and ψ share the same equilibrium state.

Now we turn to the Central Limit Theorem for the random process {φ◦σj(x)}∞j=0 with
the equilibrium measure µψ defined by some Hölder potential ψ, while φ is also assumed
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to be Hölder. It deals with the asymptotic behaviour of the distribution of
Sm,φ√
m

with

respect to µψ as m→∞. The Ruelle operator comes in here, see [CP, Lal, Rou]. Let

Gm(y) = µψ

{
x ∈ ΛN :

Sm,φ(x)
√
m

< y
}

for y ∈ R. For a, b ∈ R and b > 0, Let Na,b(y) be the normal distribution with

expectation a and standard deviation
√
b on R, that is,

dNa,b(y)

dy
=

1
√

2πb
e−(y−a)2/2b

for y ∈ R. For Hölder potentials ψ, φ on a shift space of finite type, since the pressure
P (ψ + tφ) is analytic in a small neighbourhood around 0, denote by

∆m = P (m)(ψ + tφ)|t=0

for m ∈ N for convenience, while the readers can understand its dependence on ψ, φ
easily from the contexts in the following. Let

P (ψ + tφ) =
∑∞

m=0

∆m

m!
tm =

∑3
m=0

∆m

m!
tm + t4κ(t),

in which κ(t) =
∑∞

m=0

∆m+4

(m+ 4)!
tm.

Central Limit Theorem.
Let ψ, φ be Hölder potentials on a shift space of finite type with φ being not cohomologous
to a constant. If

∫
φdµψ = 0, we have

limm→∞Gm(y) = N0,∆2(y) +O(1/
√
m),

in which

(2.4) O(1/
√
m) ≤

9|∆3|+ 2|∆4|√
2π3m(∆2)3/2

.

The convergence is uniform with respect to y. In case of φ being generic, the result can
be strengthened to

limm→∞Gm(y) = N0,∆2(y) +Hm(y) + o(1/
√
m),

in which Hm(y) =
∆3

6
√
m

(
1−

y2

∆2

)
e
− y2

2∆2 .

This fits into special cases of the Berry-Esseen Theorem [Fel]. There is nothing new
in the version here comparing with [CP, Theorem 2, Theorem 3] or [PP, Theorem 4.13],
except the explicit bound on the tail term O(1/

√
m) in (2.4). In the following we justify

this explicit bound. To do this, let

χm(z) =

∫
e
iz
Sm,φ√
m dµψ

be the Fourier transformation ofGm(y). Note that the Fourier transformation ofN0,∆2(y)

is e−
z2∆2

2 .
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2.4. Lemma.
Let ψ, φ be Hölder potentials on a shift space of finite type with φ being not cohomologous
to a constant. For ε > 0 small enough, we have

(2.5)
1

2π

∫ ε
√
m

0

1

z

∣∣∣χm(z)− e−
z2∆2

2

∣∣∣dz ≤ √
2|∆3|

12
√
πm(∆2)3/2

for any m ∈ N large enough.

Proof. According to [PP, (4.6)], we have∫ ε
√
m

0

1

z

∣∣∣χm(z)− e−
z2∆2

2 +
iz3∆3

6
√
m
e−

z2∆2
2

∣∣∣dz = O(1/m)

for ε > 0 small enough. So

(2.6)
1

2π

∫ ε
√
m

0

1

z

∣∣∣χm(z)− e−
z2∆2

2

∣∣∣dz ≤ O(1/m) +
|∆3|

12π
√
m

∫ ε
√
m

0

z2e−
z2∆2

2 dz.

Considering ∫ ∞
−∞

z2e−
z2∆2

2 dz =

√
2π

(∆2)3/2
,

we obtain (2.5) from (2.6). �

Equipped with Lemma 2.4 we can justify the explicit bound on the tail term in the
Central Limit Theorem in (2.4).

Proof of the tail term in CLT:

Proof. Without loss of generality, suppose ψ is normalized and
∫
φdµψ = 0. It suffices

for us to justify (2.4) considering [CP, Theorem 2, Theorem 3]. Similar to the proof
of [CP, Theorem 2], apply [Fel, Lemma 2] with the cumulative functions Gm(y) and
N0,∆2(y) in our case, one gets (c.f. [CP, (20)])

(2.7) |Gm(y)−N0,∆2(y)| ≤
1

2π

∫ ε
√
m

0

1

z

∣∣∣χm(z)− e−
z2∆2

2

∣∣∣dz +
24

ε
√

2mπ3∆2

.

Now let us take

1

ε
=

2

∆2

( |∆3|
6

+
|∆4|
24

+ δ
)

for some small δ > 0, such that it satisfies (c.f. [CP, (10)])

1

ε
> max

{ 2

∆2

( |∆3|
6

+ tκ(t)
)
,

2

∆2

κ(t)
}
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for any |t| < ε in (2.7). Considering (2.5), we have

(2.8)

|Gm(y)−N0,∆2(y)|

≤
√

2|∆3|
12
√
πm(∆2)3/2

+
24

√
2mπ3∆2

2

∆2

( |∆3|
6

+
|∆4|
24

+ δ
)

=

√
2|∆3|

12
√
πm(∆2)3/2

+
8|∆3|√

2π3m(∆2)3/2
+

2|∆4|√
2π3m(∆2)3/2

+
48δ

√
2π3m(∆2)3/2

≤
9|∆3|√

2π3m(∆2)3/2
+

2|∆4|√
2π3m(∆2)3/2

+
48δ

√
2π3m(∆2)3/2

.

Finally, let δ → 0 in (2.8), we get (2.4).
�

We will deal with the pressure function P (ψ + tφ) for t ≥ 0 and ψ, φ ∈ C0,h(ΛN) for
some 0 < h ≤ 1 in the following sections. By [Rue2], P (ψ+ tφ) depends analytically on
t in case that ψ, φ are Hölder. We will often assume that∫

φdµψ = 0

in the following when dealing with the higher differentials of P (ψ + tφ) because if∫
φdµψ = c 6= 0, we have

P (ψ + t(φ− c)) = P (ψ + tφ)− ct,
then

(2.9)
dnP (ψ + t(φ− c))

dtn
=
dnP (ψ + tφ)

dtn

for any n ≥ 2 while
∫

(φ − c)dµψ = 0. We can also assume that ψ is normalized when
dealing with the differentials of P (ψ + tφ). If this is not the case we can simply change
ψ to its normalization ψ̄ while

(2.10)
dnP (ψ + tφ)

dtn
=
dnP (ψ̄ + tφ)

dtn

for n ≥ 1 because

P (ψ̄ + tφ) = P (ψ + tφ)− P (ψ)

for any t ∈ R.

3. Derivatives of the pressures of Hölder potentials

In this section we formulate some explicit expressions for the derivatives of the pressure
P (tφ) = P (t) in terms of the derivatives of the eigenfunction of Ltφ for φ ∈ C0,h(ΛN) with
respect to t. We give basically two expressions of the derivatives, one of which allows
the introduction of the random stochastic process {φ ◦ σj(x)}mj=0 for m ∈ N. Upon the
expression we prove Theorem 1.1 and 1.2 in virtue of the CLT for the random process
{φ ◦ σj(x)}∞j=0.

First we define some basics to deal with the higher derivatives of compositional func-
tions by the Faà di Bruno’s formula. For an integer j ∈ N, we say
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τ = τ1τ2 · · · τq
with q ∈ N is a partition of j if the non-increasing sequence of positive integers j ≥
τ1 ≥ τ2 ≥ · · · ≥ τq ≥ 1 satisfies

∑q
i=1 τi = j. Denote the collection of all the possible

partitions of j by P(j). For example, Table 1 lists all the partitions in P(5).

Table 1. Partitions of 5

5 q=1
4,1 q=2
3,2 q=2

3,1,1 q=3
2,2,1 q=3

2,1,1,1 q=4
1,1,1,1,1 q=5

We sometimes simply write τ to denote the set {τ1, τ2, · · · , τq} for convenience in the
following, so #τ = q. Now for τ being a partition of j ≥ 1, let {Bτ

j } be the number of
different choices of dividing a set of j different elements into #τ = q sets of sizes {τi}qi=1

respectively (with no order on the sets of partitions). Set B0
0 = 1 for convenience. For

example, consider the cases j = 5 and τ = 3, 1, 1, the number of different choices of
dividing a set of 5 different elements into q = 3 sets of sizes 3, 1, 1 respectively is

C3
5 = 10 = B3,1,1

5 .

Table 2 lists all the numbers {Bτ
5}τ∈P(5).

Table 2. The coefficients Bτ
5

B5
5 = 1

B4,1
5 = 5

B3,2
5 = 10

B3,1,1
5 = 10

B2,2,1
5 = 15

B2,1,1,1
5 = 10

B1,1,1,1,1
5 = 1

For a smooth map f : X → Y between two metric spaces X, Y and some partition
τ = τ1, τ2, · · · , τq ∈ P(j) with j ≥ 1, let

f (τ)(x) = f (τ1)(x)f (τ2)(x) · · · f (τq)(x)

be the product of the derivatives. For j = 0 and τ = 0 ∈ P(0), set f (0)(x) = 1. Then
for two smooth functions f : X → Y and g : Y → Z between metric spaces X, Y, Z, we
have

(3.1)
dj(g ◦ f(x))

dxj
=
∑
τ∈P(j)

Bτ
j g

(#τ)(f(x))f (τ)(x)

in virtue of Faà di Bruno’s formula.
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Now we turn to the higher differentials of the pressure function. We start by consid-
ering some standard case, then extend the result to the general case.

3.1. Theorem.
Let ψ, φ ∈ C0,h(ΛN) with ψ being normalized for some finite symbolic set Λ. Assume∫
φdµψ = 0, in which µψ is the equilibrium state of ψ. Let w(t, x) be the eigenfunction

of the maximum isolated eigenvalue eP (ψ+tφ) of Lψ+tφ, which depends analytically on t
in a small neighbourhood of 0. Considering the differentials of the pressure function
P (ψ + tφ) at t = 0, we have
(3.2)
P (n)(ψ + tφ)|t=0 =

∑n
j=1 C

j
n

∫
ΛN(φ(x))jw(n−j)(0, x)dµψ(x)

−
∑n−2

j=2 C
j
n

∑
τ∈P(j),1/∈τ B

τ
j P

(τ)(ψ + tφ)|t=0

∫
ΛN w

(n−j)(0, x)dµψ(x)

−
∑

τ∈P(n),{1,n}∩τ=∅B
τ
nP

(τ)(ψ + tφ)|t=0

for any n ≥ 2.

Proof. According to the above notations, note that

(3.3) (Lψ+tφw(t, ·))(x) = eP (ψ+tφ)w(t, x).

The n-th derivative of (Lψ+tφw(t, ·))(x) =
∑

y:σ(y)=x e
ψ(y)+tφ(y)w(t, y) gives

(3.4)

dnLψ+tφw(t, ·)(x)

dtn

=
∑

y:σ(y)=x

∑n
j=0C

j
n

dje(ψ+tφ)(y)

dtj
w(n−j)(t, y)

=
∑

y:σ(y)=x

∑n
j=0C

j
ne

(ψ+tφ)(y)(φ(y))jw(n−j)(t, y)

=
∑n

j=0C
j
nLψ+tφ

(
(φ(·))jw(n−j)(t, ·)

)
.

All differentials are with respect to t. In case of t = 0 this means

(3.5)
dnLψ+tφw(t, ·)(x)

dtn
|t=0 =

n∑
j=0

Cj
nLψ

(
(φ(·))jw(n−j)(0, ·)

)
.

Note that the dual operator L∗ψ fixes µψ, so integration of both sides of (3.5) gives

(3.6)

∫
dnLψ+tφw(t, ·)(x)

dtn
|t=0dµψ(x) =

n∑
j=0

Cj
n

∫
(φ(x))jw(n−j)(0, x)µψ(x).
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In order to get the n-th derivative of P (ψ + tφ), differentiate eP (ψ+tφ)w(t, x) for n
times by (3.1), we get
(3.7)

dn
(
eP (ψ+tφ)w(t, x)

)
dtn

=
∑n

j=0 C
j
n

djeP (ψ+tφ)

dtj
w(n−j)(t, x)

=
∑n−1

j=0 C
j
n

djeP (ψ+tφ)

dtj
w(n−j)(t, x) +

dneP (ψ+tφ)

dtn
w(t, x)

=
∑n−1

j=0 C
j
n

∑
τ∈P(j) B

τ
j P

(τ)(ψ + tφ)eP (ψ+tφ)w(n−j)(t, x)

+
∑

τ∈P(n) B
τ
nP

(τ)(ψ + tφ)eP (ψ+tφ)w(t, x)

=
∑n−1

j=0 C
j
n

(∑
τ∈P(j),1/∈τ B

τ
j P

(τ)(ψ + tφ) +
∑

τ∈P(j),1∈τ B
τ
j P

(τ)(ψ + tφ)
)
eP (ψ+tφ)w(n−j)(t, x)

+
∑

τ∈P(n),n/∈τ B
τ
nP

(τ)(ψ + tφ)eP (ψ+tφ)w(t, x) + P (n)(ψ + tφ)eP (ψ+tφ)w(t, x).

Remember P (ψ) = 0 and w(0, x) = 1 as ψ is normalized ([PP, p66]). Take t = 0 in
(3.7) we get
(3.8)

dn
(
eP (ψ+tφ)w(t, x)

)
dtn

|t=0

=
∑n−1

j=0 C
j
n

(∑
τ∈P(j),1/∈τ B

τ
j P

(τ)(ψ + tφ)|t=0 +
∑

τ∈P(j),1∈τ B
τ
j P

(τ)(ψ + tφ)|t=0

)
w(n−j)(0, x)

+
∑

τ∈P(n),n/∈τ B
τ
nP

(τ)(ψ + tφ)|t=0 + P (n)(ψ + tφ)|t=0

Since
∫
φdµψ = P ′(ψ + tφ)|t=0 = 0 and

∫
w′(0, x)dµψ = 0 ([PP, p66]), integrate both

sides of (3.8) with respect to µψ, we get

(3.9)

∫ dn
(
eP (ψ+tφ)w(t, x)

)
dtn

|t=0dµψ

=
∑n−1

j=0 C
j
n

∑
τ∈P(j),1/∈τ B

τ
j P

(τ)(ψ + tφ)|t=0

∫
w(n−j)(0, x)dµψ

+
∑

τ∈P(n),{1,n}∩τ=∅B
τ
nP

(τ)(ψ + tφ)|t=0 + P (n)(ψ + tφ)|t=0.

Finally, combining (3.6) and (3.9) together we get (3.2).
�

3.2. Remark.
The terms

−
∑n−2

j=2 C
j
n

∑
τ∈P(j),1/∈τ B

τ
j P

(τ)(ψ + tφ)|t=0

∫
ΛN w

(n−j)(0, x)dµψ(x)

and
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−
∑

τ∈P(n),{1,n}∩τ=∅B
τ
nP

(τ)(ψ + tφ)|t=0

in (3.2) are null in case of n ≤ 3. This also applies to the corresponding terms later.

3.3. Remark.
These appear to be inductive formulas, while one can always get non-inductive ones
via substituting the lower differentials P (τ)(ψ + tφ)|t=0 by their non-inductive versions
depending only on φ(x), {w(j)(0, x)}nj=1 and µψ(x). This also applies to Theorem 3.7.

One can find some description of derivatives of the pressure function by covariance
of the sequence of functions {φ ◦ σj}j∈N in [KS1, Corollary 1] for smooth φ. Without
the assumptions of ψ being normalized and

∫
φdµψ = 0, Theorem 3.1 evolves into the

following form.

3.4. Corollary.
Let ψ, φ ∈ C0,h(ΛN) with some finite symbolic set Λ. Lψ+tφ admits a maximum isolated
eigenvalue eP (ψ+tφ) close to eP (ψ) with eigenfunction w(t, x) whose projection depends
analytically on t in a small neighbourhood of 0. Considering the differentials of the
pressure P (ψ + tφ) at t = 0, we have
(3.10)

P (n)(ψ + tφ)|t=0 =
∑n

j=1 C
j
n

∫
ΛN

(
φ(x)−

∫
φdµψ

)j
w(n−j)(0, x)dµψ(x)

−
∑n−2

j=2 C
j
n

∑
τ∈P(j),1/∈τ B

τ
j P

(τ)(ψ + tφ)|t=0

∫
ΛN
w(n−j)(0, x)dµψ(x)

−
∑

τ∈P(n),{1,n}∩τ=∅B
τ
nP

(τ)(ψ + tφ)|t=0

for any n ≥ 2.

Proof. Let

ψ̄ = ψ + logwψ(x)− logwψ ◦ σ − P (ψ)

in which wψ(x) is the eigenfunction of Lψ corresponding to the eigenvalue eP (ψ). Take
pressure in the following equation

ψ̄ + tφ = ψ + tφ+ logwψ(x)− logwψ ◦ σ − P (ψ),

then apply Proposition 2.2, we see that

P (ψ̄ + tφ) = P (ψ + tφ)− P (ψ).

This implies

(3.11)
dnP (ψ̄ + tφ)

dtn
=
dnP (ψ + tφ)

dtn

for any n ≥ 1. Now apply Theorem 3.1 to the normalized potential ψ̄ and φ−
∫
φdµψ,

(note that
∫ (

φ −
∫
φdµψ

)
dµψ = 0 and µψ = µψ̄), we justify the corollary considering

(3.11). �

In the following we present some concrete formulas of some special order n in virtue
of Theorem 3.1 for later use.
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3.5. Corollary.
Let ψ, φ ∈ C0,h(ΛN) with ψ being normalized. Let µψ be the equilibrium state of ψ and∫
φdµψ = 0. Let eP (ψ+tφ) be the maximum eigenvalue of Lψ+tφ with eigenfunction w(t, x)

for small t. Then we have

(3.12) P
′′′

(ψ + tφ)|t=0 = 3

∫
φw

′′
(0, x)dµψ + 3

∫
φ2w

′
(0, x)dµψ +

∫
φ3dµψ.

Proof. This follows instantly from Theorem 3.1 with n = 3, along with some direct
computations on the Faà di Bruno’s coefficients {Bτ

3}τ∈P(3). �

3.6. Corollary.
Let ψ, φ ∈ C0,h(ΛN) with ψ being normalized. Let µψ be the equilibrium state of ψ and∫
φdµψ = 0. Let eP (ψ+tφ) be the maximum eigenvalue of Lψ+tφ with eigenfunction w(t, x)

for small t. Then we have
(3.13)

P
′′′′

(ψ + tφ)|t=0

= 4
∫
φw

′′′
(0, x)dµψ + 6

∫
φ2w

′′
(0, x)dµψ + 4

∫
φ3w

′
(0, x)dµψ +

∫
φ4dµψ

−6P
′′
(ψ + tφ)|t=0

∫
w
′′
(0, x)dµψ − 3(P

′′
(ψ + tφ)|t=0)2

= 4
∫
φw

′′′
(0, x)dµψ + 6

∫
φ2w

′′
(0, x)dµψ + 4

∫
φ3w

′
(0, x)dµψ +

∫
φ4dµψ

−6(
∫
φ2dµψ + 2

∫
φw′(0, x)dµψ)

∫
w
′′
(0, x)dµψ − 3(

∫
φ2dµψ + 2

∫
φw′(0, x)dµψ)2.

Proof. The first equality follows instantly from Theorem 3.1 with n = 4 along with some
direct computations on the Faà di Bruno’s coefficients {Bτ

4}τ∈P(4). The second one is
true as

P
′′
(ψ + tφ)|t=0 =

∫
φ2dµψ + 2

∫
φw′(0, x)dµψ.

The latter description depends only on φ(x), {w(j)(0, x)}3
j=1 and µψ(x). �

One can also get some precise formulas for some particular n in Corollary 3.4, and
some non-inductive ones as we indicate in Remark 3.3. While the formulas (3.2, 3.10,
3.12, 3.13) all give interesting descriptions of the differentials of the pressure function
P (ψ + tφ), it seems to us difficult to discover any essential rigid restriction on them,
or relationships between them. In the following we turn to the description of them by
the random stochastic process {φ ◦ σj(x)}∞j=0. This is not a new idea on exploring the
regularity of the pressure function P (ψ + tφ), as one can recall it from many others’
work in thermodynamic formalism. Again we first consider some standard case, then
extend to the general case.

3.7. Theorem.
Let ψ, φ ∈ C0,h(ΛN) with ψ being normalized. Let µψ be the equilibrium state of ψ and∫
φdµψ = 0. Let eP (ψ+tφ) be the maximum isolated eigenvalue of eP (ψ+tφ) with eigenfunc-

tion w(t, x) whose projection depends analytically on t. Considering the differentials of



RIGIDITY OF PRESSURES OF HÖLDER POTENTIALS 15

the pressure P (ψ + tφ) at t = 0, we have

(3.14)

P (n)(ψ + tφ)|t=0

= limm→∞
1

m

(∑n
j=2 C

j
n

∫
ΛN

(Sm,φ(x))jw(n−j)(0, x)dµψ(x)

−
∑n−2

j=2 C
j
n

∑
τ∈P(j),1/∈τ m

#τBτ
j P

(τ)(ψ + tφ)|t=0

∫
ΛN
w(n−j)(0, x)dµψ(x)

−
∑

τ∈P(n),{1,n}∩τ=∅m
#τBτ

nP
(τ)(ψ + tφ)|t=0

)
for any n ≥ 2.

Proof. The proof follows the routine of Proof of Theorem 3.1. Considering (2.1), we do
n-differentials on both sides of (2.3), take t = 0, then integrate both sides with respect
to µψ(x), divided by m, we get

(3.15)

P (n)(ψ + tφ)|t=0

=
1

m

(∑n
j=1C

j
n

∫
ΛN

(Sm,φ(x))jw(n−j)(0, x)dµψ(x)

−
∑n−2

j=2 C
j
n

∑
τ∈P(j),1/∈τ m

#τBτ
j P

(τ)(ψ + tφ)|t=0

∫
ΛN
w(n−j)(0, x)dµψ(x)

−
∑

τ∈P(n),{1,n}∩τ=∅m
#τBτ

nP
(τ)(ψ + tφ)|t=0

)
as (3.2). Now since w(n−1)(0, x) is bounded on X, the ergodic theorem guarantees

(3.16) lim
m→∞

1

m

∫
ΛN
Sm,φ(x)w(n−1)(0, x)dµψ(x) = 0.

Then (3.14) follows from (3.15) as m→∞ considering (3.16). �

Theorem 3.7 establishes some link between the differentials of the pressure function
and the the process {φ ◦ σj(x)}∞j=0 through Sm,φ with respect to the equilibrium state
µψ. We also formulate a general version of the result.

3.8. Corollary.
Let ψ, φ ∈ C0,h(ΛN) with µψ be the equilibrium state of ψ. Lψ+tφ admits a maximum
isolated eigenvalue eP (ψ+tφ) close to eP (ψ) with eigenfunction w(t, x) whose projection
depends analytically on t in a small neighbourhood of 0. Considering the differentials of
the pressure function P (ψ + tφ) at t = 0, we have

(3.17)

P (n)(ψ + tφ)|t=0

= limm→∞
1

m

(∑n
j=2 C

j
n

∫
ΛN

(
Sm,φ −m

∫
φdµψ

)j
w(n−j)(0, x)dµψ(x)

−
∑n−2

j=2 C
j
n

∑
τ∈P(j),1/∈τ m

#τBτ
j P

(τ)(ψ + tφ)|t=0

∫
ΛN
w(n−j)(0, x)dµψ(x)

−
∑

τ∈P(n),{1,n}∩τ=∅m
#τBτ

nP
(τ)(ψ + tφ)|t=0

)
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for any n ≥ 2.

Proof. Equipped with Theorem 3.7, the proof follows in line with the Proof of Corollary
3.4. �

Now we give some precise descriptions of the third and fourth differentials of P (ψ+tφ)
in virtue of Theorem 3.7.

3.9. Corollary.
Let ψ, φ ∈ C0,h(ΛN) with ψ being normalized. Let µψ be the equilibrium state of ψ and∫
φdµψ = 0. Let eP (ψ+tφ) be the maximum eigenvalue of Lψ+tφ with eigenfunction w(t, x)

for small t. Then we have

(3.18) P
′′
(ψ + tφ)|t=0 = lim

m→∞

1

m

∫
S2
m,φdµψ.

3.10. Remark.
P
′′
(ψ + tφ)|t=0 is called variance of the random process {φ ◦ σj(x)}∞j=0, whose name can

be interpreted from the Central Limit Theorem. See [Rue1, PP].

3.11. Corollary.
Let ψ, φ ∈ C0,h(ΛN) with ψ being normalized. Let µψ be the equilibrium state of ψ and∫
φdµψ = 0. Let eP (ψ+tφ) be the maximum eigenvalue of Lψ+tφ with eigenfunction w(t, x)

for small t. Then we have

(3.19) P
′′′

(ψ + tφ)|t=0 = lim
m→∞

3

m

∫
S2
m,φw

′
(0, x)dµψ + lim

m→∞

1

m

∫
S3
m,φdµψ.

Proof. This follows instantly from Theorem 3.7 with n = 3. �

3.12. Corollary.
Let ψ, φ ∈ C0,h(ΛN) with ψ being normalized. Let µψ be the equilibrium state of ψ and∫
φdµψ = 0. Let eP (ψ+tφ) be the maximum eigenvalue of Lψ+tφ with eigenfunction w(t, x)

for small t. Then we have

(3.20)

P (4)(ψ + tφ)|t=0

= limm→∞

( 6

m

∫
S2
m,φw

′′
(0, x)dµψ +

4

m

∫
S3
m,φw

′
(0, x)dµψ +

1

m

∫
S4
m,φdµψ

−6P
′′
(ψ + tφ)|t=0

∫
w
′′
(0, x)dµψ − 3m(P

′′
(ψ + tφ)|t=0)2

)
= limm→∞

( 6

m

∫
S2
m,φw

′′
(0, x)dµψ +

4

m

∫
S3
m,φw

′
(0, x)dµψ +

1

m

∫
S4
m,φdµψ

−
6

m

∫
S2
m,φdµψ

∫
w
′′
(0, x)dµψ −

3

m
(

∫
S2
m,φdµψ)2

)
.
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Proof. The first equality follows instantly from Theorem 3.7 with n = 4, while the second
one is true considering (3.18). The last description depends only on φ(x), {w(j)(0, x)}2

j=1

and µψ(x). �

Through the above formulas we see the importance of the asymptotic distribution of
the random variable Sm,φ with respect to µψ, which is describe by the Central Limit
Theorem for the process {φ ◦ σj(x)}∞j=0. Equipped with all the above results, now we
are in a position to prove the rigidity results on the third differentials of P (ψ+ tφ) upon
Corollary 3.11. We first show Theorem 1.2.

Proof of Theorem 1.2. From now on we fix t∗ ∈ (0,∞). Let ψ = t∗φ. Simply by making
a change of variable we can see that

P (n)(t∗) = P (n)(tφ)|t=t∗ = P (n)(ψ + tφ)|t=0

for any n ≥ 0. So (1.2) is equivalent to

(3.21) |P ′′′(ψ + tφ)|t=0

(
1−
√

2π(P ′′(ψ + tφ)|t=0)3/2
)
| ≤ 3MφP

′′(ψ + tφ)|t=0.

We can assume ψ is normalized as otherwise we can change it to its normalization
considering (2.10). Moreover, it suffices for us to prove it under the assumption

∫
φdµψ =

0 in virtue of (2.9). If P ′′(ψ+tφ)|t=0 = 0, then φ is cohomologous to a constant according
to [PP, Proposition 4.12]. This forces P ′′′(ψ + tφ)|t=0 = 0, so (3.21) is satisfied in this
case. In the following we assume P ′′(ψ + tφ)|t=0 > 0. We resort to Corollary 3.11 to

justify (3.21) under the above assumptions. We first estimate the term
1

m

∫
S3
m,φdµψ in

(3.19). Now the Central Limit Theorem comes in.

1

m

∫
S3
m,φdµψ

=
√
m

∫ (Sm,φ√
m

)3

dµψ

=
√
m

∫
y3dGm(y)

=
√
m

∫
y3dN0,P ′′(ψ+tφ)|t=0(y) +

√
m

∫
y3dHm(y) +

√
m · o(1/

√
m)

=
√
m · 0 +

∫
y3d
(P ′′′(ψ + tφ)|t=0

6

(
1−

y2

P ′′(ψ + tφ)|t=0

)
e−y

2/2P ′′(ψ+tφ)|t=0

)
+
√
m · o(1/

√
m)

= P ′′′(ψ + tφ)|t=0

√
2π(P ′′(ψ + tφ)|t=0)3/2 +

√
m · o(1/

√
m).

By taking m→∞ we get

(3.22) lim
m→∞

1

m

∫
S3
m,φdµψ = P ′′′(ψ + tφ)|t=0

√
2π(P ′′(ψ + tφ)|t=0)3/2.
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Considering (3.19) we have

(3.23) P ′′′(ψ + tφ)|t=0

(
1−
√

2π(P ′′(ψ + tφ)|t=0)3/2
)

= lim
m→∞

3

m

∫
S2
m,φw

′
(0, x)dµψ.

Since w
′
(0, x) depends continuously on x ∈ X, there exists some Mφ depending on φ,

such that

(3.24) |w′(0, x)| ≤Mφ.

Now taking absolute values on both sides of (3.23) we justify (3.21), considering (3.24)
and (3.18).

�

The proof of Theorem 1.1 on the pressure functions of non-generic Hölder potentials
follows a similar way.

Proof of Theorem 1.1. Fix t∗ ∈ (0,∞), we can simply assume ψ = t∗φ is normalised
and

∫
φdµψ = 0. In case that P ′′(ψ + tφ)|t=0 = 0, so φ is cohomologous to a constant,

(1.1) holds obviously. In the following we assume φ is not cohomologous to a constant,
so P ′′(ψ + tφ)|t=0 > 0. We again resort to Corollary 3.11 to justify (1.1) under these

assumptions. Now for the term
1

m

∫
S3
m,φdµψ in (3.19), in virtue of the Central Limit

Theorem,

(3.25)

1

m

∫
S3
m,φdµψ

=
√
m

∫ (Sm,φ√
m

)3

dµψ

=
√
m

∫
y3dGm(y)

≤
√
m

∫
y3dN0,P ′′(ψ+tφ)|t=0(y) +

√
m

9|P ′′′(ψ + tφ)|t=0|+ 2|P (4)(ψ + tφ)|t=0|√
2π3m(P ′′(ψ + tφ)|t=0)3/2

=
√
m · 0 +

9|P ′′′(ψ + tφ)|t=0|+ 2|P (4)(ψ + tφ)|t=0|√
2π3(P ′′(ψ + tφ)|t=0)3/2

=
9|P ′′′(ψ + tφ)|t=0|+ 2|P (4)(ψ + tφ)|t=0|√

2π3(P ′′(ψ + tφ)|t=0)3/2

for m large enough. By taking m→∞ in (3.25), we get

(3.26) lim
m→∞

1

m

∫
S3
m,φdµψ ≤

9|P ′′′(ψ + tφ)|t=0|+ 2|P (4)(ψ + tφ)|t=0|√
2π3(P ′′(ψ + tφ)|t=0)3/2

.
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Taking modulus on both sides of (3.26) we get

(3.27)

|P ′′′(ψ + tφ)|t=0|

≤
∣∣∣ limm→∞

1

m

∫
S3
m,φdµψ

∣∣∣+
∣∣∣ lim
m→∞

3

m

∫
S2
m,φw

′
(0, x)dµψ

∣∣∣
≤

9|P ′′′(ψ + tφ)|t=0|+ 2|P (4)(ψ + tφ)|t=0|√
2π3(P ′′(ψ + tφ)|t=0)3/2

+ 3Mφ

∣∣∣ limm→∞
3

m

∫
S2
m,φdµψ

∣∣∣
=

9|P ′′′(ψ + tφ)|t=0|+ 2|P (4)(ψ + tφ)|t=0|√
2π3(P ′′(ψ + tφ)|t=0)3/2

+ 3MφP
′′(ψ + tφ)|t=0

for some |w′(0, x)| ≤Mφ, which results in (1.1). �

One can predict from Corollary 3.12, Theorem 3.7 and the proof of Theorem 1.1, The-
orem 1.2 that some more rigid relationships between higher differentials of the pressure
function {P (n)(tφ)}n∈N are possible. These rigidity relationships impose restrictions on
fitting convex analytic functions whose supporting lines intersecting the vertical axis in
some bounded set in [0,∞) by pressures of Hölder potentials.

4. Global Fitting of convex analytic functions via pressures of
Hölder potentials

This section is dedicated to the proof of Theorem 1.7. We start from the following
result on some global behaviour of the pressure functions of generic Hölder potentials.

4.1. Theorem.
Let α > 0. If a strictly convex analytic function F (t) on (α,∞), with its supporting lines
intersecting the vertical axis in [γ, γ] ⊂ [0,∞), such that

(4.1) sup
t∈(α,∞)

{∣∣∣F ′′′(t)
F ′′(t)

−
√

2πF ′′(t)
∣∣∣} =∞,

then there does not exist any generic Hölder potential φ on any shift space X of finite
type satisfying

P (tφ) = F (t)

on (α,∞).

Proof. This follows directly from Theorem 1.2 in fact. Suppose on the contrary that there
exist some shift space X of finite type and some generic Hölder potential φ ∈ C0,h(X)
satisfying P (tφ) = F (t) on (α,∞), then according to Theorem 1.2, we have

supt∈(α,∞)

{∣∣∣F ′′′(t)
F ′′(t)

−
√

2πF ′′(t)
∣∣∣} ≤ 3Mφ

for some finite Mφ > 0. This contradicts (4.1). �
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Be careful that we cannot exclude the possibility that one can locally fit some convex
analytic function through the pressure of some generic Hölder potential on some shift
space of finite type by Theorem 1.2. This is because for any strictly convex analytic
function F (t) on (α,∞) and α ≤ α ≤ α, we always have

supα≤t≤α

{∣∣∣F ′′′(t)
F ′′(t)

−
√

2πF ′′(t)
∣∣∣} <∞.

So one cannot exclude the possibility that there exists some generic Hölder potential φ
on some shift space of finite type satisfying

P (tφ) = F (t)

on [α, α] through Theorem 1.2. See Section 5 for more results on the problem of local
fitting of some convex analytic functions through the pressures of Hölder potentials.

Now for α > 0, let

Fα = {F (t) : F (t) is a strictly convex analytic function on (α,∞) satisfying (4.1),

its supporting lines intersect the vertical axis in a bounded interval in [0,∞)}.

We will show that Fα 6= ∅ for any α > 0 in the following.

4.2. Proposition.
For any α > 0, we have

F̃α =
{
Fa,b,c(t) =

at2 + bt+ te−ct
2

+ e−ct
2

t

∣∣∣
(α,∞)

}
a,b>0,c>1/2

√
2
⊂ Fα.

Proof. The restricted functions on (α,∞) are of course analytic. Considering the second
derivative of a function Fa,b,c(t) ∈ F̃α, we have

F
′′

a,b,c(t) = 4c2t2e−ct
2

+ 4c2te−ct
2 − 2ce−ct

2
+ 2ct−1e−ct

2
+ 2t−3e−ct

2

for t ∈ (0,∞). Now since

4c2t+ 2ct−1 ≥ 2
√

8c3 > 2c

considering c > 1/2
√

2, we can see that F
′′

a,b,c(t) > 0 on (0,∞). This shows that for

any α > 0, Fa,b,c(t) ∈ F̃α is a convex function. Considering the third differential of a

function Fa,b,c(t) ∈ F̃α, we have

F
′′′

a,b,c(t) = −8c3t3e−ct
2 − 8c3t2e−ct

2
+ 12c2te−ct

2 − 6ct−2e−ct
2 − 6t−4e−ct

2

for t ∈ (0,∞). Then we have

limt→∞

(
F
′′′

a,b,c(t)

F
′′
a,b,c(t)

−
√

2πF
′′
a,b,c(t)

)
= limt→∞

− 8c3t3e−ct
2

4c2t2e−ct2
= −∞.

This means that Fa,b,c(t) ∈ F̃α satisfies (4.1). To see that the supporting lines of a

function Fa,b,c(t) ∈ F̃α intersect the vertical axis in a bounded domain in [0,∞), write
the function as
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Fa,b,c(t) = at+ b+ e−ct
2

+ t−1e−ct
2
.

Its graph on (0,∞) is a strictly convex smooth curve with asymptotes y = at + b and
t = 0. �

In Figure 1 we provide the readers with the graph of the function

F2,3,1(t) =
2t2 + 3t+ te−t

2
+ e−t

2

t

on (0,∞).

-2 -1 0 1 2

-10
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0
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10

t

F

0 t

F

0

Figure 1. Graph of F2,3,1(t)

This means that any function in the family F̃α cannot be fitted by any generic Hölder
potential on any shift space of finite type globally, considering Theorem 4.1. In the
following we deny the possibility that they can be fitted by non-generic Hölder potentials
on shift spaces of finite type.

4.3. Definition.
A continuous potential φ : X → R on a shift space X of finite type is said to be non-
generic if for some normalised potential ψ, the spectral radius of the complex Ruelle
operator Lψ+itφ equals 1 for some t 6= 0.
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One can show that if φ is non-generic then there exists a continuous function u : X →
R, cφ ∈ R and a locally constant potential φ̃ : X → R, such that

(4.2) φ(x) = u ◦ σ(x)− u(x) + cφ + φ̃(x).

4.4. Proposition.
For any α > 0 and any Fa,b,c(t) ∈ F̃α with a, b > 0, c > 1

2
√

2
, there does not exist any

non-generic Hölder potential φ on any shift space of finite type such that

P (tφ) = F (t)

on (α,∞).

Proof. Note that for a non-generic Hölder potential φ on a shift space of finite type,
according to (4.2), we have

P (tφ) = tcφ + P (tφ̃),

in which φ̃ is some locally constant potential. By the explicit formula (see Lemma 5.3)
for the pressure functions of locally constant potentials on shift spaces of finite type, we
see that any Fa,b,c(t) cannot be fitted by pressure of any non-generic Hölder potential φ
globally. �

Equipped with all the above results, Theorem 1.7 follows instantly from Proposition
4.2 and 4.4.

5. Local fitting of analytic germs via pressures of locally constant
potentials

In this section we deal with the local fitting of analytic functions by the pressures of
Hölder potentials, especially the pressures of piecewise constant ones. Firstly we borrow
some notion originating from analytic continuation.

5.1. Definition.
A germ at t∗ is the sum of infinite power series

g(t) = a0 + a1(t− t∗) +
a2

2!
(t− t∗)2 +

a3

3!
(t− t∗)3 + · · ·

for some (a0, a1, · · · ) ∈ R∞.

The convergent radius (the superior of values δ ≥ 0 on [t∗−δ, t∗+δ] the germ converges)
of the power series is called the radius of the germ. We are only interested in germs of
radius δ > 0. The following problem will be our concern in this section.

5.2. Problem.
For a germ

g(t) = a0 + a1(t− t∗) +
a2

2!
(t− t∗)2 + · · ·

at t∗ with some strictly positive radius, does there exist some Hölder potential φ on some
shift space of finite type and some δ > 0, such that

P (tφ) = g(t)
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on [t∗ − δ, t∗ + δ]?

The question can still be understood in Katok’s flexibility program in the class of
symbolic dynamical systems, or even in some smooth systems. Obvious conditions to
guarantee a positive answer to the problem are (1.5) and

(5.1) a2 > 0.

Condition (5.1) guarantees convexity of the germ (in some neighbourhood of t∗) while
(1.5) guarantees the supporting lines of the germ intersect the vertical axis in a bounded
set in [0,∞) (also in some neighbourhood of t∗). We are especially interested in its answer
when the Hölder potential in Problem 5.2 is required to be a piecewise constant one. We
have seen the importance of the family of locally constant potentials in approximating
convex analytic functions in Corollary 1.4. In fact Corollary 1.4 has some interesting
interpretation in approximation theory [Tim], when we consider the explicit expressions
of the pressures of locally constant potentials on the shift space of finite type. For n ∈ N,
recall that

Λn = {1, 2, · · · , n}.

5.3. Lemma.
For an integer k ≥ 0, consider some locally constant potential

φ(x) = cx−kx−k+1···x0···xk−1xk

for x = · · ·x−1x0x1 · · · ∈ [x−k · · ·xk] on the shift space ΛZ
n, we have

P (tφ) = log
∑

(x−k,··· ,xk)∈Λ2k+1
n

etcx−k···xk

for any t ∈ (−∞,∞).

Proof. This follows from [Wal1, Theorem 9.6] by some direct calculations through Defi-
nition 2.1 of the pressure. See also [Wal1, p214]. �

5.4. Remark.
The result can be extended to transitive subshifts of finite type. In this case the pressure
is the logarithm of the maximal eigenvalue of some appropriate matrix.

Now combining Corollary 1.4 and Lemma 5.3, we have the following result.

5.5. Corollary.
Let F (t) be a convex Lipschitz function on (α,∞) for some α > 0, such that its sup-
porting lines intersect the vertical axis in [γ, γ] with 0 ≤ γ ≤ γ <∞. Then there exists
some K ∈ N and some sequences of constants

{cn,j}K
n

j=1,

such that

(5.2) lim
n→∞

log
Kn∑
j=1

etcn,j = F (t)

for any t ∈ (α,∞).
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Proof. Take K = #Λ for the symbolic set in the proof of Corollary 1.4, then the locally
constant potential φn(x) = φn,−(x) admits Kn constant values respectively on corre-
sponding level-n cylinder sets. Denote these values by {cn,j}K

n

j=1 for n ∈ N. According
to Lemma 5.3,

P (tφn,−) = log
∑Kn

j=1 e
tcn,j

for any n ≥ 1. This gives (5.2) by virtue of (1.3).
�

Corollary 5.5 indicates that logarithm of the finite sums of the exponential maps in
the family {etc}c∈R are dense in the space of certain convex Lipschitz maps on (α,∞).
The above approximation is uniform with respect to t in a bounded set. This makes
the family {etc}c∈R (family of locally constant potentials) important in detecting the
properties of certain convex Lipschitz maps (among continuous or Hölder potentials).

From now on we turn our attention to Problem 5.2, but with restriction on locally
constant potentials. We focus on locally constant potentials defined on the level-0 cylin-
der sets, whose theory is presumably parallel to the ones defined on the deeper cylinder
sets. On the shift space ΛZ

n with n ≥ 2, consider the locally constant potential

φ(x) = zx0

for x = · · ·x−1x0x1 · · · ∈ [x0], in which {zi}1≤i≤n are all constants. Let

Q0(t, z1, z2, · · · , zn) =
∑n

i=1 e
tzi ,

so

P (tφ) = logQ0(t, z1, · · · , zn)

by Lemma 5.3. Let

Q1(t, z1, z2, · · · , zn) =
∑n

i=1 zie
tzi

and

Q2(t, z1, z2, · · · , zn) =
∑

1≤i<j≤n(zi − zj)2et(zi+zj).

Through some elementary calculations one can check that

P ′(tφ) =
dP (tφ)

dt
=
Q1(t, z1, · · · , zn)

Q0(t, z1, · · · , zn)

while

(5.3) P ′′(tφ) =
d2P (tφ)

dt2
=
Q2(t, z1, · · · , zn)

Q2
0(t, z1, · · · , zn)

.

Let

R2(t, z1, z2, · · · , zn) =
∑n

i=1 z
2
i e
tzi ,

one can check that

Q2(t, z1, · · · , zn) = Q0(t, z1, · · · , zn)R2(t, z1, · · · , zn)−Q2
1(t, z1, · · · , zn).

In the following we will often fix t = t∗ > 0, so we will frequently write

Q0(t∗, z1, z2, · · · , zn) = Q0(z1, z2, · · · , zn)
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with t∗ omitted for convenience. Similar notations apply to other terms above. Let

(5.4) Q0(z1, · · · , zn) =
n∑
i=1

et∗zi = ea0 ,

(5.5) Q1(z1, · · · , zn) =
n∑
i=1

zie
t∗zi = a1e

a0

be two equations with unknowns {z1, z2, · · · , zn} for fixed t∗ > 0, (a0, a1) ∈ R2 and some
n ≥ 2. Let

Γn5.4 = {(z1, z2, · · · , zn) ∈ Rn : z1, z2, · · · , zn satisfy (5.4)}
and

Γn5.5 = {(z1, z2, · · · , zn) ∈ Rn : z1, z2, · · · , zn satisfy (5.5)}.
They are both n− 1 dimensional smooth hypersurfaces. We first present readers with

the following result on fitting an analytic function

a0 + a1(t− t∗) +O((t− t∗)2)

with t∗, a0, a1 subject to (1.5) around some fixed t∗ > 0 by pressures of locally constant
potentials on general shift spaces of finite type.

5.6. Theorem.
Let t∗ > 0, (a0, a1) ∈ R2, n ≥ 2 satisfying (1.5) and

(5.6)
a0 − log n

t∗
< a1.

Then there exists some δn > 0 and some sequence {ri,n}ni=1 ⊂ R, such that the locally
constant potential

φ(x) = rx0

for x = · · ·x−1x0x1 · · · ∈ [x0] on the full shift space ΛZ
n satisfies

P (tφ) = a0 + a1(t− t∗) +O((t− t∗)2)

on [t∗ − δn, t∗ + δn].

Proof. In fact it suffices for us to show that the system of equations{
(5.4),
(5.5)

with unknowns {z1, z2, · · · , zn} admits a solution under conditions of the theorem. With-
out loss of generality we assume

(5.7) z1 ≤ z2 ≤ · · · ≤ zn.

Under this assumption, it is easy to see that

a0 − log n

t∗
≤ zn <

a0

t∗
.

Now we estimate the values of Q1(z1, · · · , zn) with zn approaching the terminals. When
zn approaches the right terminal from below, we have
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lim(z1,z2,··· ,zn)∈Γn5.4, zn↗
a0
t∗
Q1(z1, · · · , zn) =

a0

t∗
ea0 > a1e

a0

in virtue of (1.5). When zn approaches the left terminal from above, we have

lim(z1,z2,··· ,zn)∈Γn5.4, zn↘
a0
t∗
Q1(z1, · · · , zn) =

a0 − log n

t∗
ea0 < a1e

a0

in virtue of (5.6). Since Γn5.4 is a smooth hypersurface, by the mean value theorem, there
exists some (r1,n, r2,n, · · · , rn,n) ∈ Γn5.4 satisfying (5.4) and (5.5) simultaneously. At last,
for x = · · ·x−1x0x1 · · · ∈ [x0] on the full shift space ΛZ

n, let

φ(x) = rx0,n

be the locally constant potential. As P (tφ) is analytic, there exists some δn > 0 such
that

P (tφ) = a0 + a1(t− t∗) +O((t− t∗)2)

for t ∈ [t∗ − δn, t∗ + δn]. �

5.7. Remark.
The core step in the proof of Theorem 5.6 is in fact finding the extremes of the function
Q1(z1, · · · , zn) subject to (5.4), (1.5) and (5.6). One can detect the points of extremes
by the Karush-Kuhn-Tucker (KKT) conditions [Kar, KT], which generalizes the method
of Lagrange multipliers by allowing inequality subjections.

Be careful that those {ri,n}ni=1 all depend on n in fact. Theorem 5.6 induces the follow-
ing interesting flexibility result on fitting certain analytic functions locally by pressures
of locally constant potentials on general shift space of finite type.

5.8. Corollary.
Let t∗ > 0 and (a0, a1) ∈ R2 satisfy (1.5). Then there exists some N ∈ N, such that for
any n ≥ N , there exist some some δn > 0 and some sequence {ri,n}ni=1 ⊂ R, such that
the locally constant potential

φ(x) = rx0,n

for x = · · ·x−1x0x1 · · · ∈ [x0] on the full shift space ΛZ
n satisfies

P (tφ) = a0 + a1(t− t∗) +O((t− t∗)2)

on [t∗ − δn, t∗ + δn].

Proof. Under conditions of the corollary, for the given values t∗, a0, a1 satisfying (1.5),
choose N ∈ N large enough such that

a0 − logN

t∗
< a1.

This means that for any n > N condition (5.6) is satisfied for t∗, a0, a1, n. Then the
conclusion follows from Theorem 5.6. �
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Note that on some particular symbolic spaces Theorem 5.6 and 5.8 may be trivial. For
example, for given (t∗, a0, a1) ∈ R3 without any subjections, by choosing β = ea0−t∗a1 ,
consider the constant potential

φ(x) = a1

on the β-shift space with symbols {0, 1, · · · , bβc}. It is easy to see that

P (tφ) = a0 − t∗a1 + a1t = a0 + a1(t− t∗)
on (−∞,∞). However, our results guarantee conclusions on general shift spaces.

From now on we go towards the proof of Theorem 1.8. For fixed t∗ > 0, (a0, a1) ∈ R2

and n ≥ 3, let

Γn5.4,5.5 = Γn5.4 ∩ Γn5.5 = {(z1, z2, · · · , zn) ∈ Rn : z1, z2, · · · , zn satisfy (5.4) and (5.5)}.
We describe some topological properties of the set Γn5.4,5.5 in the following result.

5.9. Lemma.
For fixed t∗ > 0, (a0, a1) ∈ R2 subject to (1.5) and n ≥ 3, in case Γn5.4,5.5 6= ∅ and

a1 6=
a0 − log n

t∗
, it is a compact (n− 2)-dimension smooth manifold.

Proof. The Jacobian of the functions Q0(z1, · · · , zn) − ea0 and Q1(z1, · · · , zn) − a1e
a0

with respect to z1, z2, · · · , zn is

J =

(
t∗e

t∗z1 t∗e
t∗z2 · · · t∗e

t∗zn

et∗z1 + t∗z1e
t∗z1 et∗z2 + t∗z2e

t∗z2 · · · et∗zn + t∗zne
t∗zn

)
.

Its rank is strictly less than 2 if and only if

z1 = z2 = · · · = zn.

Since a1 6=
a0 − log n

t∗
, this is excluded from points in Γ5.4,5.5. By the implicit function

theorem [Lan], if Γn5.4,5.5 is not empty, it is an (n−2)-dimension smooth manifold locally.
The gradient of the function Q0(z1, · · · , zn)− ea0 is

5(Q0(z1, · · · , zn)− ea0) = (t∗e
t∗z1 , t∗e

t∗z2 , · · · , t∗et∗zn),

whose individual components will always be strictly positive. The gradient of the func-
tion Q1(z1, · · · , zn)− a1e

a0 is

5(Q1(z1, · · · , zn)− a1e
a0) = (et∗z1 + t∗z1e

t∗z1 , et∗z2 + t∗z2e
t∗z2 , · · · , et∗zn + t∗zne

t∗zn),

with the i-th individual component vanishes if and only if zi = −
1

t∗
for 1 ≤ i ≤ n. So

Γn5.4 and Γn5.5 cannot be tangent to each other. Moreover, note that

et∗zi + t∗zie
t∗zi > 0

if zi > −
1

t∗
while

et∗zi + t∗zie
t∗zi < 0
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if zi < −
1

t∗
for any 1 ≤ i ≤ n. These force the intersection of zeros of the two functions

Q0(z1, · · · , zn)−ea0 and Q1(z1, · · · , zn)−a1e
a0 to be connected, if the intersection is not

empty. This implies Γ5.4,5.5 is a manifold globally in case of being nonempty. Γn5.4,5.5 is
compact since it is a bounded set. �

Let

Γ3
5.4,1,2,1 = {(z1, z2, z3) ∈ R3 : z1, z2, z3 satisfy ez1 + ez2 + ez3 = e2}

and

Γ3
5.5,1,2,1 = {(z1, z2, z3) ∈ R3 : z1, z2, z3 satisfy z1e

z1 + z2e
z2 + z3e

z3 = e2}
be the corresponding surfaces with t∗ = 1, a0 = 2, a1 = 1. Figure 2 depicts parts of the
two 2-dimension surfaces, whose intersection will be a 1-dimension smooth curve.

Figure 2. Γ3
5.4,1,2,1 (green) and Γ3

5.5,1,2,1 (red)

Equipped with all the above results, now we are ready to prove Theorem 1.8.

Proof of Theorem 1.8. First, for the given t∗ > 0 and (a0, a1) ∈ R2 satisfying (1.5), if n
is large enough, Γn5.4,5.5 is not empty according to Corollary 5.8. So Γn5.4,5.5 is a compact
(n−2)-dimension smooth manifold for n large enough. In the following we always assume
n is large enough. Now let

mt∗,a0,a1,n = min
{R2(t∗, z1, z2, · · · , zn)

ea0
− a2

1 : (z1, z2, · · · , zn) ∈ Γn5.4,5.5

}
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while

(5.8) Mt∗,a0,a1,n = max
{R2(t∗, z1, z2, · · · , zn)

ea0
− a2

1 : (z1, z2, · · · , zn) ∈ Γn5.4,5.5

}
.

For any mt∗,a0,a1,n ≤ a2 ≤ Mt∗,a0,a1,n, since Γn5.4,5.5 is a smooth manifold, there exist
{ci,n}ni=1 ⊂ R, such that (c1,n, c2,n, · · · , cn,n) satisfies (5.4), (5.5) and

(5.9) a2 =
Q2(t∗, c1,n, · · · , cn,n)

Q2
0(t∗, c1,n, · · · , cn,n)

=
R2(t∗, c1,n, · · · , cn,n)

ea0
− a2

1

simultaneously. Now let

φ(x) = cx0,n

for x = · · ·x−1x0x1 · · · ∈ [x0] on the full shift space ΛZ
n. It is a locally constant potential.

According to (5.3) and (5.9), we have

(5.10) P ′′(t∗φ) =
Q2(t∗, c1,n, · · · , cn,n)

Q2
0(t∗, c1,n, · · · , cn,n)

= a2.

Since (c1,n, c2,n, · · · , cn,n) satisfies (5.4) and (5.5), we have

(5.11) P (t∗φ) =
Q2(t∗, c1,n, · · · , cn,n)

Q2
0(t∗, c1,n, · · · , cn,n)

= a0

while

(5.12) P ′(t∗φ) =
Q2(t∗, c1,n, · · · , cn,n)

Q2
0(t∗, c1,n, · · · , cn,n)

= a1.

Note that P (tφ) is analytic with respect to t on (α,∞) for any α > 0, so there exists
some δn > 0, such that (1.6) holds on [t∗ − δn, t∗ + δn], considering (5.10), (5.11) and
(5.12). �

In the following we illustrate some dependent relationship between

{mt∗,a0,a1,n,Mt∗,a0,a1,n}n∈N
and some particular t∗, a0, a1, n satisfying (1.5). There should be some universal rela-
tionship between them, while we hope the following observations will provide some hints.
The first one is that it is possible for mt∗,a0,a1,n = 0 for some t∗, a0, a1, n.

5.10. Proposition.
Let t∗ > 0 and (a0, a1) ∈ R2 satisfy (1.5). Then mt∗,a0,a1,n = 0 for n ≥ 2 if and only if

(5.13) a1 =
a0 − log n

t∗
.

Proof. Note thatmt∗,a0,a1,n = 0 is equivalent to say that there exists some locally constant
potential φ on ΛZ

n such that P ′′(t∗φ) = 0 according to Theorem 1.8. By [PP, Proposition
4.12], this happens if and only if φ is a constant potential on ΛZ

n. In this case we have

φ(x) =
a0 − log n

t∗

for any x ∈ ΛZ
n, which implies (5.13). �
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This result does not tell things about the sequence

{mt∗,a0,a1,n} n∈N large enough

for given t∗, a0, a1, since (5.13) will never be true for any n large enough for fixed t∗, a0, a1.
The following result describes some limit behaviour of the sequence

{Mt∗,a0,a1,n} n∈N large enough
for t∗ = 1, a0 = 2, a1 = 1.

5.11. Proposition.
Let t∗ = 1, a0 = 2, a1 = 1, in symbols of Theorem 1.8, we have

(5.14) lim
n→∞

M1,2,1,n =∞.

To justify Proposition 5.11, we first illustrate some basic properties about the function
zet∗z for t∗ > 0.

5.12. Lemma.

For t∗ > 0, zet∗z is strictly decreasing on (−∞,−
1

t∗
), strictly increasing on (−

1

t∗
,∞),

while it attains its minimum −
1

t∗
e−1 at z = −

1

t∗
. It admits one and only one inflection

in (−∞,−
1

t∗
).

Proof. One can check these conclusions by some direct computations on the first and
second derivatives of the function zet∗z. �

In Figure 3 we depict the graph of ς(z) = zez.

Proof of Proposition 5.11. Since we are considering the limit behaviour of M1,2,1,n, we
always assume n is large enough throughout the proof. Now consider the following two
equations

(5.15) (n− 1)eza + ezb = e2

and

(5.16) (n− 1)zae
za + zbe

zb = e2

with unknowns za, zb. Let

Γ5.15 = {(za, zb) ∈ R2 : za, zb satisfy (5.15)}

and

Γ5.16 = {(za, zb) ∈ R2 : za, zb satisfy (5.16)}.

We describe the graph of Γ5.15 and Γ5.16 separately in the following. Γ5.15 is a 1 dimen-
sional smooth curve with two asymptotes za = 2 − log(n − 1) and zb = 2. It is strictly
decreasing when we consider the curve as the graph of the function

zb = log
(
e2 − (n− 1)eza

)
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for za ∈ (−∞, 2 − log(n − 1)). Γ5.16 is also a 1 dimensional smooth curve with two

asymptotes za = ς−1(
e2

n− 1
) and zb = ς−1(e2). When we consider the Γ5.16 as the graph

of the function

zb = η(za)

as the implicit function induced by (5.16), it is strictly increasing for za ∈ (−∞,−1),

strictly decreasing for za ∈ (−1, ς−1(
e2

n− 1
)), with its maximum ς−1(e2 + (n − 1)e−1)

attained at za = −1. Let ς−1
l (−

e2

n− 1
) be the smaller one of the two intersections of

zb = 2 and Γ5.16, then Γ5.15 and Γ5.16 must intersection at some unique point ca,n ∈

(−∞, ς−1
l (−

e2

n− 1
)). Obviously

limn→∞ ca,n = −∞

since limn→∞ ς
−1
l (−

e2

n− 1
) = −∞. Now we analyse the order of ca,n with respect to n

as n→∞. Let

za,n = − log n− log log n+ log 1− 1.

One can check that

limn→∞,zb→2((n− 1)eza,n + ezb) = e2

while

limn→∞,zb→2((n− 1)za,ne
za,n + zbe

zb) = e2.

These imply that

ca,n = − log n− log log n+ o(log log n).

Note that (ca,n, ca,n, · · · , ca,n, η(ca,n)) ∈ Γn5.4,5.5 for t∗ = 1, a0 = 2, a1 = 1. Now

R2(ca,n, ca,n, · · · , ca,n, η(ca,n))

= (n− 1)c2
a,ne

ca,n + (η(ca,n))2eη(ca,n)

= (n− 1)(− log n− log log n+ o(log log n))2e− logn−log logn+o(log logn) + 4e2 + o(1)

= log n+ o(log n),

from which it is easy to see that

limn→∞R2(ca,n, ca,n, · · · , ca,n, η(ca,n)) =∞.

This forces

limn→∞M1,2,1,n =∞,

considering (5.8).
�
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We provide the readers with the curves Γ5.15 and Γ5.16 in Figure 4. Obviously some
more general conclusions are available if one considers variations of the parameters
t∗, a0, a1 in Proposition 5.11. At last we provide the readers with some solutions {ca,n}n∈N
and {η(ca,n)}n∈N in Table 3, from which one can see the order of decay and increase of
the sequences with respect to n clearly.

Table 3. {ca,n}n∈N and {η(ca,n)}n∈N

n ca,n η(ca,n)
10 -1.8599539391797653780996686364493 1.7634042477581860636342812520981
102 -4.6278529940301947157458180305676 1.8580906928560505140960875180438
103 -7.2278923365046354303919671475052 1.8965708210067454817129699066334
104 -9.7529279223041958189401940128674 1.9180710389285259082138396366755
105 -12.23426184122178540565187685582 1.9319494203818796717151866525306
106 -14.686689485112383196253350885528 1.941701042038176132682488585943
107 -17.118475509130338419321449219176 1.9489507180131363431129601417792
108 -19.534737736752111249670741176574 1.9545628133690736391913141129777
109 -21.938877884281897893422087428599 1.9590417833080193886068703580662
1010 -24.333277592346602338263750350022 1.9627027620469153955488959845337
1011 -26.719672172461371813735932628894 1.9657531814729595378854181456218
1012 -29.099366670257435261982274861811 1.9683353707111573738492465130807
1013 -31.473368167571030624456199153849 1.970550350496947761285545176838
1014 -33.842470627269595326611535858951 1.9724718685216929582206115029034
1015 -36.20731141238751139407393422892 1.9741550583546827046855344007126
1016 -38.568410155198951836337896822881 1.97564198636943790477268372057
1017 -40.926196222869058989174011616314 1.9769653208730088904749619599928
1018 -43.28102858421294787781225809291 1.9781508271703613365389080750692
1019 -45.633210475623427729647938869856 1.9792191056459012534062976747755
1020 -47.983000423353389741328990557576 1.9801868284846851379610473178804
1021 -50.330620660008332271820694306839 1.9810676363715292020369862557429
1022 -52.676263643082855194671803053742 1.9818727996772032079642260800619
1023 -55.020097168291592849066888176454 1.9826117134133018944596936081392
1024 -57.362268427077060922578379063246 1.9832922728467949817312209115653
1025 -59.702907260160132201351723856461 1.9839211621102961084222105523408
1026 -62.042128791447074538616865826092 1.9845040784885601043186175801529
1027 -64.380035579030470553978577616248 1.9850459085371711281404342988732
1028 -66.716719386002755126963619613768 1.9855508677057357884921072471682
1029 -69.052262649137714881922574449762 1.9860226120088820356292880321385
1030 -71.386739705385277326962820249044 1.9864643280735340181774784668139
1031 -73.7202178226698188293210417966 1.9868788063025456510398996161088
1032 -76.052758071376257724956806229201 1.9872685007417625212636588061233
1033 -78.384416065240707497606345034329 1.9876355783911370649894789906831
1034 -80.715242594490126828808238297291 1.9879819600725889180558042388717
1035 -83.045284169538297201269228695051 1.9883093544968926933418986392956
1036 -85.374583490011093204926910773042 1.9886192868162322855194994642595
1037 -87.703179851099500408441885242821 1.9889131226778662869710690898493
1038 -90.031109497045012553979249690171 1.9891920885858755212588911444123
1039 -92.358405929815521230622254914238 1.9894572892164831961499157326311
1040 -94.685100179630439886817678169988 1.9897097222064583485549741614556
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