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In this article we shall consider the classical problem on the relationship between equi-
librium states for different potentials. Moreover for any two Hölder continuous potentials,
we shall give a geometric construction for transforming the Gibbs measure for one poten-
tial into the Gibbs measure for the other potential. The construction presents a new way
to think about Gibbs measures complementing known constructions using, for example,
periodic points [1] or homoclinic points [4].

We will work in the general setting of Smale spaces. Recall that a uniformly hyperbolic
diffeomorphism has a local product structure by local stable and unstable manifolds (see
[2]). A Smale space is an extension of the uniformly hyperbolic diffeomorphisms in the sense
that we only have a compact metric space X and a homeomorphism f : X → X satisfying
a local product structure determined by an appropriate bracket map [·, ·] : X ×X → X.
Additionally, subshifts of finite type are a class of examples of Smale spaces and our
work provides a unified approach to equilibrium states covering both uniformly hyperbolic
diffeomorphisms and subshifts of finite type without any use of Markov partitions.

To describe our construction, let G1 be a Hölder continuous potential and consider a
measure µuG1

= µux,G1
supported on a piece of unstable manifold W u

δ (x) with the conditional
Gibbs property defined in §2. Intuitively the conditional Gibbs property gives a uniform
bound on the measure of unstable Bowen balls of the form

µuG1
(Bdu(y, n, ε))

eSnG1(y)−nP (G1)
,

where y ∈ W u
δ (x), ε > 0 small, SnG1(x) =

∑n−1
k=0 G1(f

ix), P (G1) is the pressure and
Bdu(y, n, ε) denotes the Bowen ball in W u(x) with respect to the unstable metric on W u(x).

We can now give a brief overview of our construction for Smale spaces. Starting from
a conditional Gibbs measure for a Hölder continuous function G1. We then define a se-
quence of reference measures which are absolutely continuous with respect to µuG1

and
have the appropriately chosen density eSnG2(y)−SnG1(y) for a continuous G2. Taking av-
eraged pushforwards of the sequence of reference measures, the weak* convergent limits
are equilibrium states for G2. The precise statement can be found in Theorem 2.5. One
way to view Theorem 2.5 is as a geometric method which transforms the Gibbs measure
for G1 into the Gibbs measure for G2. The illustrative Example 2.7 provides an explicit
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calculation demonstrating the transformation of the (1/2, 1/2)-Bernoulli measure into the
(p, 1− p)-Bernoulli measure using Theorem 2.5 for the full shift on two symbols.

Theorem 2.5 can also be viewed as a new way to construct the equilibrium state for any
continuous function G2 starting from the equilibrium state for a reference Hölder potential
G1. Moreover, Theorem 2.5 extends the construction in [9], where the authors study
uniformly hyperbolic attractors and therefore exhibit the important property that there is
an induced volume on unstable manifolds, to non-attracting uniformly hyperbolic systems.

The proof of Theorem 2.5 relies on a growth estimate on a piece of unstable manifold
which relates the pressure of two continuous potentials G1 and G2. This result is of
independent interest and its statement can be found in Lemma 3.1.

1 Definitions

We now state the definition of a Smale space which is based on §7 in Ruelle’s book [11].
The definition has multiple technical conditions so we provide a couple of enlightening
examples that illustrate these conditions.

Let X be a non-empty compact metric space with metric d. Assume there is an ε > 0
and a map, [·, ·] with the following properties:

[·, ·] : {(x, y) ∈ X ×X : d(x, y) < ε} → X

is a continuous map such that [x, x] = x and

[[x, y], z] = [x, z], (SS1)

[x, [y, z]] = [x, z], (SS2)

f([x, y]) = [f(x), f(y)], (SS3)

when the two sides of these relations are defined.
Additionally, we require the existence of a constant 0 < λ < 1 such that, for any x ∈ X

we have the following two conditions: For y, z ∈ X such that d(x, y), d(x, z) < ε and
[y, x] = x = [z, x], we have

d(f(y), f(z)) ≤ λd(y, z); (SS4)

and for y, z ∈ X such that d(x, y), d(x, z) < ε and [x, y] = x = [x, z], we have

d(f−1(y), f−1(z)) ≤ λd(y, z). (SS5)

Definition 1.1. Let X be a compact metric space with metric d. Let f : X → X be a
homeomorphism and [·, ·] have the properties SS1−SS5 above. Then we define the Smale
space to be the quadruple (X, d, f, [·, ·]). If f : X → X is also topological mixing then we
call (X, d, f, [·, ·]) a mixing Smale space.

In essence Smale spaces are systems that exhibit a local product structure given by [·, ·]
and this product structure can be used to define local stable and unstable manifolds.
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Definition 1.2. For sufficiently small δ > 0 one can define the stable and unstable mani-
folds through x ∈ X by

W s
δ (x) = {y ∈ X : y = [x, y] and d(x, y) < δ},

W u
δ (x) = {y ∈ X : y = [y, x] and d(x, y) < δ}.

From SS4 and SS5 we have that the stable and unstable manifolds are equivalently
characterised in terms of the behaviour of forward and backward orbits,

W s
δ (x) = {y ∈ X : d(fnx, fny) ≤ δ,∀n ≥ 0},

and
W u
δ (x) = {y ∈ X : d(f−nx, f−ny) ≤ δ,∀n ≥ 0}.

1.1 Examples

The conditions SS1−SS5 are perhaps best understood with illustrating examples, namely
hyperbolic diffeomorphisms and subshifts of finite type.

1.1.1 Locally maximal hyperbolic diffeomorphisms

Let f : M → M be a C1+α diffeomorphism on a compact Riemannian manifold and let
X ⊂M be a closed f -invariant set.

Definition 1.3. The map f : X → X is called a (locally maximal) hyperbolic diffeomor-
phism if:

1. there exists a continuous splitting TXM = Es ⊕ Eu and C > 0 and 0 < λ < 1 such
that

‖Dfn|Es‖ ≤ Cλn and ‖Df−n|Eu‖ ≤ Cλn

for n ≥ 0;

2. there exists an open neighbourhood U of X such that X = ∩n∈Zfn(U);

The unstable manifold theory due to Hirsch and Pugh in [5] shows that uniformly
hyperbolic systems are in fact Smale spaces.

1.1.2 Subshifts of finite type

Let A be a k × k matrix with entries consisting of zeros and ones and let A(i, j) denote
the (i, j)th entry of A.

Definition 1.4. We define the one and two sided shift space Σ+
A and ΣA, respectively, by

Σ+
A = {x = (xn)∞0 ∈ {1, . . . , k}Z

+

: A(xn, xn+1) = 1, n ∈ Z+},
ΣA = {x = (xn)∞−∞ ∈ {1, . . . , k}Z : A(xn, xn+1) = 1, n ∈ Z}.

Define the two (one) sided shift map, σ : ΣA → ΣA (σ : Σ+
A → Σ+

A) by σ(xn) = xn+1.
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When A(i, j) = 1 for all i, j ∈ {1, . . . , k}, these are called full shifts.
For λ ∈ (0, 1) there is a metric on ΣA defined by d(x, y) = λk where k = inf{|n| : xn 6=

yn} (and on Σ+
A there is a metric d(x, y) = λk where k = inf{n : xn 6= yn}).

Definition 1.5. For each m,n ∈ N, we denote by

[i−m, . . . , in] = {x = (xn)∞−∞ ∈ ΣA : x−m = i−m, . . . , xn = in}

a cylinder in ΣA where i−m, · · · , in ∈ {1, · · · , k} and A(ij, ij+1) = 1 for −m ≤ j ≤ n− 1.
Similarly, for each n ∈ N, we denote by

[i0, . . . , in] = {x = (xn)∞0 ∈ Σ+
A : x0 = i0, . . . , xn = in}

a cylinder in Σ+
A of length n where i0, · · · , in ∈ {1, · · · , k} and A(ij, ij+1) = 1 for 0 ≤ j ≤

n− 1.

For two sequences, x, y ∈ ΣA such that x0 = y0, the product map [·, ·] is given by
[x, y] = (. . . , y−2, y−1, x0, x1, x2, . . . ).

For the subshift of finite type an unstable manifold through x ∈ ΣA is simply the
elements of ΣA which have the same past as x. We will denote x− by the sequences that
have the past, (xn)0−∞ i.e., the terms agree for indices n ≤ 0. Stable manifolds are similarly
defined with a fixed future i.e., the terms agree for indices n ≥ 0.

2 Constructing equilibrium states

We begin by recalling the following standard definition.

Definition 2.1. Given a continuous function G : X → R

P (G) := sup

{
h(µ, f) +

∫
Gdµ : µ = f -invariant probability

}
is the pressure of G, where h(µ, f) denotes the entropy of µ. Any measure realizing this
supremum is called an equilibrium state for G.

For Smale spaces every continuous potential G has at least one equilibrium state [13].
If G is Hölder continuous then the equilibrium state is unique [11].

We require the following notion of a conditional Gibbs property.

Definition 2.2. For y ∈ W u
δ (x), 0 < ε < δ and n ∈ N we define the unstable Bowen ball

of radius ε by

Bdu(y, n, ε) = {z ∈ W u(x) : du(f
iz, f iy) < ε for 0 ≤ i ≤ n− 1}

be the Bowen ball around y ∈ W u
δ (x) in the induced unstable metric du on W u

δ (x).
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Let µu be a measure supported on a piece of unstable manifold centred at x. We say
that it has the conditional Gibbs property for G if for every small ε > 0 there is a constant
K = K(ε) > 0 such that, for every y ∈ W u

δ (x) and n ∈ N we have,

K−1 ≤ µu(Bdu(y, n, ε))

eSnG(y)−nP (G)
≤ K.

We write µu = µuG if this conditional property holds. We may also write µux,G when we need
to emphasis the measure is supported on a piece of unstable manifold centred at x.

Example 2.3. Let f : X → X be a uniformly hyperbolic diffeomorphism. It is shown by
Leplaideur [6] that equilibrium states for Hölder continuous potentials have a local product
structure (see Definition 2.13 [3]). Therefore, equilibrium states for Hölder potentials have
conditional measures on unstable manifolds that satisfy the conditional Gibbs property.

Example 2.4. Consider the two sided subshift of finite type σA : ΣA → ΣA. Bowen [2]
shows we can replace G1 acting on ΣA by a homologous G

′
1 which only depends on (xi)

∞
i=0

without any change to the Gibbs measure µG1. We can then define a continuous function
G+

1 on Σ+
A to be equal to G

′
1. The Gibbs measure for G+

1 on the one sided subshift of
finite type restricted to the sequences, y ∈ Σ+

A such that x0 = y0 and A(x0, y1) = 1 has the
conditional Gibbs property for G1.

2.1 The main construction

We are now ready to state the main construction of this section.

Theorem 2.5. Let (X, d, f, [·, ·]) be a topologically mixing Smale space. Let G1 : X → R
be a Hölder continuous potential and let G2 : X → R be a continuous potential. For µG1

a.e. x ∈ X and δ > 0 small, we can define a family of measures supported on W u
δ (x) by

λn,G2−G1(A) =

∫
Wu
δ (x)∩A

eSnG2(y)−SnG1(y)dµuG1
(y)∫

Wu
δ (x)

eSnG2(y)−SnG1(y)dµuG1
(y)

, n ≥ 1, (2.1)

where A ⊂ X a measurable set. Then the measures

µn,G2−G1 =
1

n

n−1∑
i=0

f i∗λn,G2−G1 , n ≥ 1, (2.2)

supported on fnW u
δ (x) have weak star accumulation points which are equilibrium measures

for G2. Moreover, when G2 is a Hölder function then µn,G2−G1 converges to the unique
equilibrium state µG2.

Example 2.6. In the case where f : X → X is a mixing hyperbolic attractor and G1 = ϕgeo

is the geometric potential then µG1 is the SRB measure, µuG1
is the induced volume on W u

δ (x)
and Theorem 2.5 recovers Theorem 1.2 in [9].
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Next we will see an illuminating example illustrating Theorem 2.5. We consider the
full shift on two symbols and begin with a constant potential corresponding to the (1

2
, 1
2
)-

Bernoulli measure. Fixing p ∈ (0, 1) ( 6= 1/2) we show with an explicit calculation of
µn,G2−G1 that using Theorem 2.5 we can transform the (1

2
, 1
2
)-Bernoulli measure into the

(p, 1− p)-Bernoulli measure.
The (1

2
, 1
2
)-Bernoulli measure is a very well understood equilibrium state for the two

sided subshift of finite type. Theorem 2.5 can be used to explicitly calculate the measure
of cylinders for the equilibrium state of any other Hölder potentials.

Example 2.7. Let X = {0, 1}Z and let σ : X → X be the full shift on two symbols given
by σ(xn)n∈Z = (xn+1)n∈Z. Let G1 : X → R be the constant function G1 = − log 2, then

the associated unique equilibrium measure is the Bernoulli measure µG1 =
(
1
2
, 1
2

)Z
. For

p ∈ (0, 1) not equal to 1/2, we shall consider the locally constant potential, G2 : X → R
defined at x = (xn)+∞n=−∞ by

G2(x) =

{
log p x0 = 0

log(1− p) x0 = 1.

Then the unique equilibrium measure associated to G2 is the Bernoulli measure µG2 =
(p, 1− p)Z. Given any point x = (xn)∞n=−∞ ∈ X,

W u
δ (x) = {y = (yn)∞n=−∞ : yi = xi for i ≤ −1}

and we can identify W u
δ (x) = {x−} ×X+ where X+ = {0, 1}Z+ and x− = (xn)−1n=−∞. The

conditional measure µuG1
on X corresponds to the Bernoulli measure

(
1
2
, 1
2

)Z+ on X+. We
can explicitly write

eSnG2(y)−SnG1(y) =
1

2n
p#{0≤i≤n−1 : yi=0}(1− p)#{0≤i≤n−1 : yi=1}

=
µG2 [y0, . . . , yn−1]

µuG1
[y0, . . . , yn−1]

. (2.3)

where we recall, [y0, · · · , yn−1] = {(zk)∞k=−∞ : zi = yi for 0 ≤ i ≤ n− 1}. By the definition
of λn we have that

σi∗λn(A) =

∫
σ−iA∩Wu

δ (x)
eSnG2(y)−SnG1(y)dµuG1

(y)∫
Wu
δ (x)

eSnG2(y)−SnG1(y)dµuG1
(y)

(2.4)

where we have the simplifications, P (G1) = P (G2) = 0 and∫
Wu
δ (x)

eSnG2(y)−SnG1(y)dµuG1
(y) =

∑
[y0,...,yn−1]

µuG1
([y0, . . . , yn−1])

µG2 [y0, . . . , yn−1])

µuG1
[y0, . . . , yn−1])

= 1.
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Consider the set A = [z−M , . . . z−1, z0, z1, . . . , zN ], for M,N ∈ N. We will calculate
σi∗λn(A) for n ∈ N and n� N +M . Notice that for i ≥M ,

σ−i(A) =
⋃

[y0,...,yi−M−1]

[y0, . . . , yi−M−1, z−M , . . . , zN ].

We have that SnG1 and SnG2 are constant on [y0, . . . , yn−1] so we can rewrite the
integral in equation (2.4) as a sum over the cylinders of the same length. For ease of
reading, when the intersection is non-empty, let

σ−i(A) ∩ [y0, . . . , yn−1] = [y0, . . . , yi−M−1, z−M , . . . zN , yi+N+1, . . . , yn−1],

=: σ−iy0,...,yn−1
(A).

for M ≤ i < n−N , We can now simplify equation (2.4) using equation (2.3) as follows.

σi∗λn(A) =
∑

σ−iy0,...,yn−1
(A)

µuG1
(σ−iy0,...,yn−1

(A))
µG2(σ

−i
y0,...,yn−1

(A))

µuG1
(σ−iy0,...,yn−1

(A))

=
∑

σ−iy0,...,yn−1
(A)

µG2(σ
−i
y0,...,yn−1

(A))

=
∑

[y0,...,yn−1]

µG2(σ
−i(A) ∩ [y0, . . . , yn−1])

= µG2(A).

Therefore,

µn(A) =
1

n

n−1∑
i=0

σi∗λn(A)

=
1

n

M−1∑
i=0

σi∗λn(A) +
1

n

n−N−1∑
i=M

σi∗λn(A) +
1

n

n−1∑
i=n−N

σi∗λn(A)

=
1

n

M−1∑
i=0

σi∗λn(A) +
n− (N +M)

n
µG2(A) +

1

n

n−1∑
i=n−N

σi∗λn(A)

n→∞−−−→ µG2(A).

This is consistent with Theorem 2.5, we have practised alchemy, transforming µG1 into
µG2.

This example also hints at an interesting feature. In the construction of the SRB
measure for hyperbolic attractors [10] there is no need to average the pushforwards of the
induced volume on W u

δ (x). Example 2.7 shows that even for the full shift on two symbols,
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there is a continuous potential such that σn∗λn does not converge to the required equilibrium
state. This can be seen with the following calculation.

σn∗λn(A) =
∑

[y0,...,yn−M−1]

µuG1
([y0, . . . , yn−M−1, z−M , · · · , zN ])

µG2([y0, . . . , yn−M−1z−M , · · · , zN ])

µuG1
([y0, . . . , yn−M−1z−M , · · · , zN ])

= µuG1
([z0, . . . , zN ])µG2([z−M , . . . , z−1])

6= µG2(A).

It is an interesting question to ask whether the averaging in (2.2) is required in the
setting of uniformly hyperbolic attractors. Answering this would have important conse-
quences for the rate of convergence to the equilibrium state for G2.

3 Growth of unstable manifolds for Smale spaces

The proof of Theorem 2.5 relies on the following growth rate result of unstable manifolds.

Lemma 3.1. Let (X, d, f, [·, ·]) be a mixing Smale space. Let G1 : X → R Hölder and
G2 : X → R continuous. For a.e.(µG1) x ∈ X and δ > 0 sufficiently small,

P (G2)− P (G1) = lim
n→∞

1

n
log

∫
Wu
δ (x)

eSn(G2−G1)(y)dµuG1
(y).

Before we prove Lemma 3.1, we recall the following simple property.

Lemma 3.2. Let G : X → R be a continuous potential. For any τ > 0, there is an ε > 0
small enough such that, for any x ∈ X and n ∈ N, if dn(x, y) < ε then

|SnG(x)− SnG(y)| ≤ nτ. (3.1)

In the proof of Lemma 3.1 we will use Bowen’s definition of the pressure (see for
example [13]) using spanning and separated sets which is equivalent to the definition given
in Definition 2.1 by the variational principle [12].

Proof of Lemma 3.1. To get an upper bound on the growth rate in Lemma 3.1 we proceed
as follows. Given ε > 0 and n ≥ 1, we want to create an (n, κε)-separated set for some
κ ∈ (0, 1) independent of n and ε. To this end we can choose a maximal number of points
yi ∈ fnW u

δ (x) (i = 1, · · · , N = N(n, ε)) so that du(yi, yj) > ε/2 whenever i 6= j (where
du is the induced distance on fnW u

δ (x)). By the definition of the Smale space, the map
fn : W u

δ (x) → fnW u
δ (x) is locally distance expanding and thus, in particular, the points

xi = f−nyi (i = 1, · · · , N = N(n, ε)) form an (n, κε)-separated set.
Now we have constructed {xi}, we can relate these points to an integral. Let Bdu(y, n, ε)

denote the Bowen ball contained within the unstable manifold with respect to the induced
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metric du, then

N∑
i=1

eSnG2(xi) =
N∑
i=1

∫
Bdu (xi,n,ε)

eSnG2(xi)µuG1
(Bdu(xi, n, ε))

−1dµuG1
(y),

≥ e−nτ
N∑
i=1

∫
Bdu (xi,n,ε)

eSnG2(y)µuG1
(Bdu(xi, n, ε))

−1dµuG1
(y),

≥ e−nτ+nP (G1)K−1
N∑
i=1

∫
Bdu (xi,n,ε)

eSnG2(y)−SnG1(xi)dµuG1
(y),

≥ e−2nτ+nP (G1)K−1
N∑
i=1

∫
Bdu (xi,n,ε)

eSnG2(y)−SnG1(y)dµuG1
(y),

≥ e−2nτ+nP (G1)K−1
∫
Wu
δ (x)

eSnG2(y)−SnG1(y)dµuG1
(y).

In particular: Line 2 uses Lemma 3.2 for G2; Line 3 uses the upper bound of the condi-
tional Gibbs property of µuG1

; Line 4 uses Lemma 3.2 for G1; and Line 5 follows from the
maximality of {yi}, in particular W u

δ (x) ⊂ ∪iBdu(xi, n, ε). Then letting K(n) = e−2nτK−1

gives

1

n
logZ1,G2(n, κε) ≥

1

n
log

(
K(n)

∫
Wu
δ (x)

eSnG2(y)−SnG1(y)+nP (G1)dµuG1
(y)

)
.

Taking a limit as n→∞ and ε→ 0,

P (G2) ≥ −2τ + lim
n→∞

1

n
log

∫
Wu
δ (x)

eSnG2(y)−SnG1(y)+nP (G1)dµuG1
(y).

Since τ > 0 is arbitrarily small then,

P (G2) ≥ lim
n→∞

1

n
log

∫
Wu
δ (x)

eSnG2(y)−SnG1(y)+nP (G1)dµuG1
(y).

Before starting on the proof of the lower bound we present a simple result.

Lemma 3.3. For any ε > 0 there exists an m > 0 such that fmW u
δ (x) is ε-dense in X.

In particular, we can assume that X = ∪y∈fmWu
δ (x)

W s
ε (y).

Proof. This is an immediate consequence of the topological mixing assumption and the
local product structure for Smale spaces.

To get a lower bound on the growth rate in Proposition 3.1, given ε > 0 and n ≥ 1
we want to construct a well chosen (n, 2ε)-spanning set. We begin by choosing a suitable
covering of fn+mW u

δ (x) by ε-balls

Bdu(yi, ε) : i = 1, · · · , N := N(n+m, ε)
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contained within the unstable manifold with respect to the induced metric du and let Aε :=
{y ∈ fn+mW u

δ (x) : @z ∈ W u(fn+mx)\fn+mW u
δ (x) with du(y, z) < ε/2}. We can choose a

maximal set S = {y1, · · · , yN(n+m,ε)} with the additional property that du(yi, yj) > ε/2 for
i 6= j and yi ∈ Aε. By our choice of S we have that

Aε ⊂
N(n+m,ε)⋃

i=1

Bdu(yi, ε/2).

By the triangle inequality we have that

fn+mW u
δ (x) ⊂

N(n+m,ε)⋃
i=1

Bdu(yi, ε).

Since Bdu(f−(n+m)(yi), n + m + 1, ε
4
) ∩ Bdu(f−(n+m)(yj), n + m + 1, ε

4
) = ∅ for i 6= j, then

the disjoint union satisfies,

N(n+m,ε)⋃
i=1

Bdu(f−(n+m)(yi), n+m+ 1, ε/4) ⊂ W u
δ (x). (3.2)

We again use the property that fn : fmW u
δ (x)→ fn+mW u

δ (x) locally expands distance
along the unstable manifold. In particular, this means that the preimages xi := f−nyi ∈
fm(W u

δ (x)) (i = 1, · · · , N) form an (n, 2ε)-spanning set. [To see this we use Lemma 3.3,
for any point z ∈ X we can choose a point y ∈ fm(W u

δ (x)) with z ∈ W s
ε (y) and observe

that d(f jz, f jy) < ε for 0 ≤ j ≤ n.] We can then choose an xi such that dn(y, xi) < ε since
fn is locally expanding along unstable manifolds. In particular, by the triangle inequality

d(f jz, f jxi) ≤ d(f jz, f jy) + d(f jy, f jxi) < 2ε

for 0 ≤ j ≤ n− 1.
We will now use the construction of the points {xi} to get the required lower bound.

We first require the following simple inequality

eSnG2(xi) = eSn+mG2(f−m(xi))−SmG2(f−m(xi))

≤ eSn+mG2(f−m(xi))+m||G2||∞ .
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For ease of notation, set B(xi) = Bdu(f−m(xi), n+m+ 1, ε
4
). Therefore,

N∑
i=1

eSnG2(xi) =
N∑
i=1

∫
B(xi)

eSnG2(xi)µuG1
(B(xi))

−1dµuG1
(y)

≤ em||G2||∞
N∑
i=1

∫
B(xi)

eSn+mG2(f−m(xi))µuG1
(B(xi))

−1dµuG1
(y)

≤ em||G2||∞+(n+m)τ

N∑
i=1

∫
B(xi)

eSn+mG2(y)µuG1
(B(xi))

−1dµuG1
(y),

≤ em||G2||∞+(n+m)τ+(n+m+1)P (G1)K
N∑
i=1

∫
B(xi)

eSn+mG2(y)−Sn+m+1G1(f−m(xi))dµuG1
(y)

≤ em||G2||∞+2(n+m+1)τ+(n+m+1)P (G1)K
N∑
i=1

∫
B(xi)

eSn+mG2(y)−Sn+m+1G1(y)dµuG1
(y).

Moreover, by (3.2) we can bound

N∑
i=1

∫
B(xi)

eSn+mG2(y)−Sn+mG1(y)dµuG1
(y) ≤

∫
Wu
δ (x)

eSn+mG2(y)−Sn+mG1(y)dµuG1
(y).

Letting L(n) = em||G2||∞+2(n+m)τ+P (G1)+||G1||∞K, we have

Z0,G2(n, 2ε) ≤ L(n)

∫
Wu
δ (x)

eSn+mG2(y)−Sn+mG1(y)+(n+m)P (G1)dµuG1
(y)

and thus

P (G2) ≤ 2τ + lim
n→∞

1

n+m
log

∫
Wu
δ (x)

eSn+mG2(y)−Sn+mG1(y)+(n+m)P (G1)dµuG1
(y).

Again τ > 0 can be chosen arbitrarily small and so

P (G2) ≤ lim
n→∞

1

n
log

∫
Wu
δ (x)

eSnG2(y)−SnG1(y)+nP (G1)dµuG1
(y).

This concludes the proof.

4 Proof of Theorem 2.5

In this section we will complete the proof of Theorem 2.5. The proof follows the general
lines of the proof of Theorem 1.2 in [9].
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Proof. We begin by observing that If we were to replace the potential G2 by G2 + P (G1)
then the measures λn,G2−G1 = λn,G2−G1+P (G1). Thus when we write λn,G2−G1 we are really
considering λn,G2−G1+P (G1).

By Alaoglu’s theorem on the weak star compactness of the space of probability mea-
sures, the measures µn,G2−G1 have a weak star convergent subsequence to some measure µ.
Moreover, for any continuous F : X → R we can bound∣∣∣∣ ∫ Fdµn,G2−G1 −

∫
F ◦ fdµn,G2−G1

∣∣∣∣
=

∣∣∣∣ 1n
n−1∑
k=0

∫
F ◦ fkdλn,G2−G1 −

1

n

n−1∑
k=0

∫
F ◦ fk+1dλn,G2−G1

∣∣∣∣
≤ 2‖F‖∞

n
→ 0 as n→ +∞

and, in particular, one easily sees that µ is f -invariant.
For convenience, we denote

ZG2,G1
n =

∫
Wu
δ (x)

eSnG2(y)−SnG1(y)+nP (G1)dµuG1
(y)

and for A ⊂ X let,

KG2,G1

n,A =

∫
Wu
δ (x)∩A

eSnG2(y)−SnG1(y)+nP (G1)dµuG1
(y).

Definition 4.1. Given a finite partition P = {Pi}Ni=1 we say that it has size ε > 0 if
supi {diam(Pi)} < ε.

By Lemma 3.2, for any τ > 0 there is an ε > 0 small enough, such that if we choose a
partition P of size ε > 0, then for all x, y ∈ A ∈

∨n−1
i=0 f

−iP , we have,

|SnGk(x)− SnGk(y)| ≤ nτ (4.1)

for k = 1, 2.
Choosing a partition of size ε > 0, for each element of the refined partition we can choose

an xA ∈ A ∈
∨n−1
i=0 f

−iP . We now find a convenient form for the integral
∫
X
G2dµn,G2−G1 .

First we can write∫
Wu
δ (x)

G2(y)dλn,G2−G1(y) =
enP (G1)

ZG2,G1
n

∫
Wu
δ (x)

eSn(G2−G1)(y)G2(y)dµuG1
(y)

and then∫
f i(Wu

δ (x))

G2(y)df i∗λn,G2−G1(y) =
enP (G1)

ZG2,G1
n

∫
Wu
δ (x)

eSn(G2−G1)(y)G2(f
i(y))dµuG1

(y).
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Recalling the definition of µn,G2−G1 we can write∫
X

G2(y)dµn,G2−G1(y) =
enP (G1)

nZG2,G1
n

∫
Wu
δ (x)

eSn(G2−G1)(y)SnG2(y)dµuG1
(y)

=
enP (G1)

nZG2,G1
n

∑
A∈

∨n−1
i=0 f

−iP

∫
Wu
δ (x)∩A

eSn(G2−G1)(y)SnG2(y)dµuG1
(y)

≥ enP (G1)

nZG2,G1
n

∑
A∈

∨n−1
i=0 f

−iP

(
SnG2(xA)− nτ

)∫
Wu
δ (x)∩A

eSn(G2−G1)(y)dµuG1
(y)

= −τ +
1

n

∑
A∈

∨n−1
i=0 f

−iP

KG2,G1

n,A

ZG2,G1
n

SnG2(xA). (4.2)

We next consider the entropy of µn,G2−G1 . For A ∈
∨n−1
i=0 T

−iP , consider

log

∫
Wu
δ (x)∩A

eSn(G2−G1)(y)dµuG1
(y) ≤ log

(
e2nτ

∫
Wu
δ (x)∩A

eSn(G2−G1)(xA)dµG1(y)

)
= 2nτ + Sn(G2 −G1)(xA) + log µuG1

(W u
δ (x) ∩ A).

Since P has size ε then W u
δ (x) ∩ A ⊂ Bdu(xA, n, ε). Using the conditional Gibbs property

of µuG1
we have,

µuG1
(W u

δ (x) ∩ A) ≤ KeSnG1(xA)−nP (G1).

In particular, this shows

logKG2,G1

n,A ≤ nP (G1) + 2nτ + Sn(G2 −G1)(xA) + logK + SnG1(xA)− nP (G1)

= SnG2(xA) + logK + 2nτ, (4.3)

where K > 0 is independent of n and A. Working from the definition of the entropy we
can write

Hλn,G2−G1

( n−1∨
r=0

f−hP
)

= −
∑

A∈
∨n−1
r=0 f

−hP

λn,G2−G1(A) log λn,G2−G1(A)

= −
∑

A∈
∨n−1
r=0 f

−hP

KG2,G1

n,A

ZG2,G1
n

log
KG2,G1

n,A

ZG2,G1
n

= logZG2,G1
n −

∑
A∈

∨n−1
r=0 f

−hP

KG2,G1

n,A

ZG2,G1
n

logKG2,G1

n,A ,

where the last equality uses that, by definition
∑

A∈
∨n−1
r=0 f

−hP K
G2,G1

n,A = ZG2,G1
n .
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Using equation (4.3) we have the lower bound

Hλn,G2−G1

( n−1∨
r=0

f−hP
)
≥ ZG2,G1

n −
∑

A∈
∨n−1
r=0 f

−hP

KG2,G1

n,A

ZG2,G1
n

(
SnG2(xA) + logK + 2nτ

)

= ZG2,G1
n − logK − 2nτ −

∑
A∈

∨n−1
r=0 f

−hP

KG2,G1

n,A

ZG2,G1
n

SnG2(xA). (4.4)

Putting together (4.2) and (4.4),

Hλn,G2−G1

( n−1∨
r=0

f−hP
)

+ n

∫
X

G2(y)dµn,G2−G1(y)

≥ ZG2,G1
n − logK − 2nτ −

∑
A∈

∨n−1
r=0 f

−hP

KG2,G1

n,A

ZG2,G1
n

SnG2(xA)

− nτ +
∑

A∈
∨n−1
i=0 f

−iP

KG2,G1

n,A

ZG2,G1
n

SnG2(xA)

= ZG2,G1
n − logK − 3nτ.

We can now use this and an entropy estimate due to Misiurewicz [7] (stated in Lemma 4.5
[8]) to write

q logZG2,G1
n − qn

∫
X

Gdµn,G2−G1 − q(logK + 3nτ)≤qHλn,G2−G1

( n−1∨
r=0

f−hP
)

≤ nHµn,G2−G1

( q−1∨
i=0

f−iP
)

+ 2q2 log Card(P),

which we can rearrange to get,

logZG2,G1
n

n
− logK + 3nτ

n
− 2q log Card(P)

n
≤
Hµn,G2−G1

(∨q−1
i=0 f

−iP
)

q
+

∫
X

G2dµn,G2−G1 .

Letting nk → +∞,

P (G2) = lim
k→∞

logZG2,G1
nk

nk

≤ lim
k→∞

(Hµnk,G2−G1

(∨q−1
i=0 f

−iP
)

q
+

∫
X

G2dµnk,G2−G1

)
+ 3τ

=

Hµ

(∨q−1
i=0 f

−iP
)

q
+

∫
X

G2dµ+ 3τ,
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where we assume without loss of generality that the boundaries of the partition have zero
measure. Letting q →∞,

P (G2) ≤ hµ(P) +

∫
X

G2dµ+ 3τ. (4.5)

Therefore, since τ can be chosen arbitrarily and µ is an f -invariant probability measure, we
see from the variational principle that the inequalities in equation (4.5) are actually equal-
ities (since hµ(P) ≤ h(µ)) and therefore we conclude that the measure µ is an equilibrium
state for G2.
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