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1 Introduction

The variational principle is one of the central pillars of smooth ergodic theory and thermo-
dynamic formalism. It was originally formulated for hyperbolic systems by Ruelle [11] and
proved in full generality by Walters [16]. It relates the thermodynamic pressure function to
entropies and integrals with respect to invariant measures.

We will consider the particular case where T : I — I is a piecewise C? mixing expanding
map of the interval I = [0,1) and where ¢ : [ — R is a Hélder continuous function.

Definition 1.1. We can denote by my the unique equilibrium state associated to ¢, i.e., m
1s the unique probability measure realising the following supremum

P(¢) := sup {h(,u) + /gbdu o p = T-invariant probability} ,

where h(p) is the entropy (i.e., the variational principle).
For definiteness, we will consider the following well known examples.
Example 1.2. Let f > 1 and consider T : [0,1) — [0,1) defined by
T(z) = px (mod 1)

then T is called a B-transformation. This is piecewise affine on the intervals

) [3) (24220, [

where [-] denotes the integer part of a real number. example

We claim the following analogue of the Einseidler-Kaydev-Polo inequality (originally
established for Markov expanding maps, subshifts of finite type and Anosov diffeomorphisms
2], [12]) also holds in this context.

Theorem 1.3. There ezists a constant Cy = Co(¢) such that for any T-invariant probability

i we have
' [ g~ [ gamq) < Collfll\/ P(s) - (h(u) -/ ¢du> (1)

where || - || is the norm of bounded variation.
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Figure 1: Graph of a S-transformation
In the special case that 8 € N (or more generally the orbit of 1/ is finite) the map is
Markov. In this case Theorem 1.3 would be a consequence of Kaydev’s theorem [2]..

Example 1.4 (Parry measure). If we take ¢ = 0 then P(0) = h(T') is the topological entropy
and the equilibrium state is the unique measure mqy which maximizes the the entropy. In
particular, Parry showed that mg is absolutely continuous with density p : [0,1] — RT given

by
Zn:T”(1)>x ﬁ_n
f (Zn:T”(l)>x 67”) dx

with normalization constant K >0 [9].

p(z) =

Theorem 1.3 now has the following corollary (when ¢ = 0).

Corollary 1.5. There exists a constant Cy > 0 such that for any T-invariant measure p we
have
\ [ s~ [ game| < ol 1/ A (12)

A little history. A version of this result was apparently first proved in the thesis of Polo for
doubling maps [10], where it was attributed to Einseidler. The above theorem was proved
by Kadyrov for finite state shift spaces when ¢ = 0 (which was called effective intrinsic
ergodicity) [2]. This was extended to Holder potentials and infinite state shift spaces by
Ruhr [12]. Subsequently, Ruhr-Sarig gave an alternative proof and a local version where the
upper bound has the variance replacing the norm [13].
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2 Proof of Theorem 1.2

We begin by recalling the definition of the bounded variation semi-norm of a function v :
I — R which takes the form

:0:x0<x1---<xn<xn+1:1}

||| By = sup {

Z ¢($z) - ¢(9Ci+1)

and let ||¢]|1 = [} |¥(x)|dx denote the L'-norm. We let BV (I) denote the Banach space of
measurable functions ¢ : I — C with norm [|¢|| := [|¢| sy + ||¥]|z: < +oo.

Definition 2.1. Let T : I — I be a monotone piecewise continuous map. Given ¢ € BV (I)
we can define the transfer operator Ly : BV (1) — BV (1) by

Lyw(x) = Z e?@aw(y).

Under additional assumptions on the function ¢ the operator Ly : BV (I) — BV (I) has
a number of useful properties. For simplicity we first assume that ¢ is Lipschitz so that we
can use more of the specific methods form [16]. In §4 we will consider more general results
using the subsequent analysis in [3], [7].

Lemma 2.2. Let ¢ : [ — R be Lipschitz.

1. There exists a mazimal eigenfunction h € BV (I) with h > 0 such that Lsh = eP@h
and, 1 particular,

P(®) _ 1; n I
There exists a non-atomic probability measure vy such that Liv, = el (¢)1/¢.

There exists a > 0 such that h(z) > a > 0

h is continuous except at the points {T™(5) : n > 0}.

G o e

There exists C > 0 and 0 < p < 1 such that || L}(w) — " @ hu(w)|| < C(pe” @) ||w]|
for any w € BV (I) and n > 1.

Proof. The existence of the eigenfunction A in part 1 follows from ([7], Remark 6.8) (as
observed in [1] on p. 460, where the authors also observe that it follows from their own
Theorem 2). The existence of the measure in v, in Part 2 follows from Proposition 6.10 of
7] (as also observed in [1], p.460.) !

Part 3 appears as Part (iii) in Lemma 9 in [16] (which in turn is based on Lemma 1 (i)
in [16]) and we briefly recall the proof. Let P be the partition of I into intervals of the form

p={fo ) [12) [t by T YLy

1See ([16], Lemma 3 and Lemma 9) for a proof of the first 2 parts for a different Banach space and under
the additional assumption that ¢ is Lipschitz
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An interval J € \/?Z_OlT_iP is called a full interval of rank n if T™ . J — I is a bijection. Let
N > 0 then I is covered by full intervals of rank at least N (by Lemma 1 (i) in [16]). Thus for
any x there is a sequence k; — +oo of full intervals J; € vf;’ng ~“P with rank at least k; with
{r} = N3, J;. We claim that there exists some N > 0 and some interval J with ™ . J—1
a bijection (i.e., J is of full rank N) and for which b := inf,c; h(y) > 0. If this was not the
case then for all N we could choose z with h(z) = 0 and since L} h(x) = eN"(® h(z) we have
that h(y) = 0 for all preimages y € T-™z, which in turn would imply & is identically zero
giving the contradiction. Thus for .J as in this claim, since by assumption 7V.J = I we have
that for z € I:
h(xz) = e’P(d’)Nﬁgh(m‘) > e PONpe=Nldllee —. ¢

Part 4 follows the same lines as the proof of Lemma 9 (iv) in [16], and we briefly recall
the idea. We observe that e*”P(‘f’),Cgl(x) is continuous at points not in U, 7*({S}) (where
{B} = —|[p] denotes the fractional part of ) and continuous from the right at these points.
The result then follows from h(z) = lim, 40 e "9 L71(x).

For Part 5, we first observe that replacing ¢ by ¥ = ¢ —loghoT +logh € BV (I) (by
virtue of Part 3) we have that the associated operator satisfies £,1 = 1 and has spectral
radius 1. Moreover

n—1 n
6, = limsup ||exp (Z w(Tk:v)> < 1.
n—-+o0o k=0 ~

This corresponds to 8 < eP®. By Theorem 1 in [1] we have that £, is quasi-compact and
the essential spectral radius. is at most 4. Therefore, it suffices to observe that e’ @) is a
simple eigenvalue and that there are no other eigenvalues of absolute value e?’(®), O]

It is convenient to consider coboundaries u o T'— u where u € BV (I). The following
result follows easily from the definitions (and Part (iii) of Lemma 2.2).

Lemma 2.3. We can add constants and coboundaries in BV (I) to ¢ without changing the
equilibrium state mg. 2

In particular, we can consider h € BV (I) as in Lemma 2.2 (1) and observe that since
Lemma 2.2 (3) we have h > a > 0 we have that logh € BV (I). In particular, we can replace
¢ by = ¢p— P(¢)+logh—loghoT and then we can assume can assume that the associated
transfer operator L, : BV (I) — BV/(I) satisfies £,1 = 1. Thus, without loss of generality
we can assume P(¢) = 0.

We now consider a simple lemma, which is a special case of the well known Pinsker
inequality.

Lemma 2.4 (Pinsker Inequality). Given probability vectors q = (q1,- -+ ,qx) andp = (p1,--- , Pk
we then have the basic inequality
k k L&
— Z‘lO i+ Z’lO Z’S—— i — 1'2. 2.2
; gilog g Z:; gilogpi < — ; Ipi — gl (2.2)

2The new function ¢ may no longer be Lipschitz since h was not necessarily Lipschitz
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We can now follow the lines of the standard proof of the variational principle (cf. [16]).
Let P = {P}¥_, be the partition of I into intervals given in (2.1) where k = k(z) = [1/5]
or [1/6] + 1, as appropriate. Since this is clearly a generating partition we have that the
entropy satisfies h(u) = H,(P|T'P) [16]. We can also make the following choices:.

1. Given x € I we can let p;(z), - - pr()(z) take the values {e?®) : Ty = z}; and

2. For any T-invariant probability measure p we let ¢;(z), -, qe(z) (1 < i < k(x)) take
the values p(P|T~1B)(y) where T(y) = z for a.e. (u) * € X where B is the Borel
sigma algebra.

We can substitute these choices into (2.2) and integrate with respect to p to get:

BT, ) + / () du(z)

- / S WPIT B ) ogn(PIT B)y) + 3 n(PIT'B)(y)6(y) | du(x)

yeT—1 yeT—1z

/(Zqz ) log gi(x +Z(h ) p(z)
<1 / Zm 2)du(a).
(2.3)

We can get a slightly weaker, but more useful, lower bound by using the Cauchy-Schwartz
inequality to write

</Z’pl — ai(@)ldp(x ) /Z\pz — qi(2)Pdp(x). (2.4)

Moreover, we can define the usual norm on the dual space BV (I)* of BV (I) by

vl = p{] [ o

for v € BV(I)*. This leads to the following.

;geru)wmuwng1}

Lemma 2.5. ||£3p — pf| < IZZ L pi(x) — gi(z)|dp(x).

Proof. Given g € Bgy with [|g]l < 1 we have
k
[ o] < [ 3o in) - ato) i
< [ i)~ @ duto

as required. N
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Finally, we have the following lemma.
Lemma 2.6. There exists C1 > 0 such that ||p —my|| < C1[[Lp — pl].

Proof. 1t is at this point that we use the result from part 5 of Lemma 2.2 that there exists
0 < p < 1 such that £ = m + U*u where |[U™] = O(p™). From this we conclude that
the series Q = Y .~ U™ converges. We can then write

n—-+o00

mg= lm Lyp=p+> LML, -
n=0
Finally, we can write ||u —mg| < [|Q||.[Ly, — T)pl- O

Combining (2.3), (2.4) and the inequalities in Lemma 2.6 and 2.7 completes the proof of
Theorem 1.2.

3 A generalization of Theorem 1.3

Theorem 1.3 for S-transformations is a special case of a more general result for piecewise
monotonic transformation where there exist by = 0 < by < --- < by = 1 such that the
restriction 1’|, ,,,) : (bi, big1) — I is continuous and strictly monotone.

We recall the following property for T'

Definition 3.1. We will say that T is topologically exact if the any € > 0 there exists n such
that for any x € I we have T"(B(z,¢) = I.

Definition 3.2. We say that a function ¢ : I — R has summable variation if

Z var,(¢) < +oo
where var,(¢) = sup{|o(x) — é(y)| : x,y are in same monotonicity interval of T"}, for n >
1.
The generalization of Theorem 1.3 takes the following form:

Theorem 3.3. Let T be a piecewise monotonic transformation which is topologically exact.
Letop : I — R be a (continuous) function of bounded variation such that either

a) ¥ has summable variation; or

b) ¥ is Holder continuous.

Then exists a constant Co = Cy(¢) such that for any T-invariant probability p we have

‘ [ tin= [ gam| < Co||f|!\/ P(¢) - (hm) +f ¢du> (3.1)

where || - || is the norm of bounded variation.
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The definitiion of bounded variation can be generalized as follows

Definition 3.4. For p > 1 we can define the bounded p-variation semi-norm of a function
1 I — R which takes the form

n 1/17
|Vl By = (sup {Z () —V(zi))” : 0=20 <1+ < Tp < Tpy1 = 1})
=0

and let ||| = [, [(x)|dx denote the L'-norm. We let BV,(I) denote the Banach space of
measurable functions ¥ : I — C with norm ||| == ||¥||sv + |[¢||z: < +o0.
An even larger space of functions in [6] are the following:

Definition 3.5. Given ¢ > 0 we denote
oscy(z, ¢, €) = esssup(o|B(x, €)) — essinf(¢|B(z, €))

and then we denote osci(¢,€) == [, osci(x, ¢, €)dx. Fiz o > 0 and then for g > 0 we can
then write

0scy (¢, €
Jollas i= smp P,
0<e<eg €
We can then define a norm ||¢]] = ||@lla1 + ||@llzr and let H®' be the associated Banach

space (see [6], Theorem 1.13,b).

The following relationships between these spaces come from [6] and [8]
Lemma 3.6. . Let p = i

1. If ¢ : I — R is a-Hélder continuous then 1 € BV,(I).

2. BV, C HoL

The proof of Theorem 3.3 requires a suitable generalization of Lemma 2.2.

Lemma 3.7. Let T be a piecewise monotonic transformation which s topologically exact.
Let ¢ : I — R be a (continuous) function of bounded variation such that either

a) 1 has p-summable variation; or
b) ¥ is a-Hélder continuous.
Let L, be the associated transfer operator on BV, and H*", respectively.

1. There exists a mazimal eigenfunction h € BV (I) with h > 0 such that Lsh = eP@h
and, in particular,
P(¢) _ n %
O~ i @)}

2. There exists a non-atomic probability measure vy such that Ly, = eP@y,.

3. There ezists a > 0 such that h(z) > a >0

7
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4. There exists C >0 and 0 < p < 1 such that || L(w) — e"” P hv(w)]| < C(peP @) ||w]|
for any w € BV (I) andn > 1.

Proof. Under hypothesis a) the results follow from the results in [3]. Under hypothesis b)
the results follow from the results in [6]. We briefly recall the main ideas.

The measure v, in Part 2 occurs as a fixed point for the map v — L4v/v(1) on the space
of probability measures, i.e., L,vs = Avy, where A = v,(1) (see p.135 of [3]). Later one can
identify \ = ef(®),

Let g(z) := e?® /log A and then in each of the two cases one show that for large enough
n we have

n—1
9T <1
=0

(see [3], pp. 135-136). This implies that the operator P = L., satisfies a Lasota-Yorke
inequality (see [3], Lemma 7), i.e., there exists 0 < p < 1 and 8 > 0 such that

a) under hypothesis a)

1P"fllsv < Bl flles + ol fllBv, n=0;
b) under hypothesis b)

IP" fll1a < Bl + pllfll1a: n 2 0.

Moreover, the unit balls in BV (I) and H"* are compact in the L'-norm (by [3], Lemma 5
and [6] respectively). This leads to the quasi-compactness of the transfer operator £, on
the respective spaces, i.e., L4 has spectral radius e” (®) and essential spectral radius at most
0 < p < 1. The hypothesis of topological exactness implies that e”(®) is a simple eigenvalue
and there are no other eigenvalues of modulus e”(®). This is nicely explained in the proof
of Corollary 4.4 in [8]. If 7, is the one dimensional eigenprojection associated to e”(®) then
we can let h = my(1), the image of the constant function 1, in Part 1. Part 4 is a standard
application of the Tonescu-Tulcea and Marinescu theorem [4].

]

Remark 3.8. Similar results will hold for transformations 7" : I — I with a finite number
of monotone branches providing there are additional hypotheses which ensures part 3 of the
lemma.

Remark 3.9. More generally, it would be sufficient to assume that g : I — R has bounded
p-variation, which would include the case of the g being Holder continuous.
4 A Ruhr-Sarig type local result

In the case that in (1.1) that P(¢)— (h(u)+ [ ¢dp) is sufficiently small then a sightly different
bound can be given by modifying the proof in [13].
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We can consider the pressure

P(¢) = sup{h(m /qﬁdm m = T-invariant }
= log p(Ly)
(where p(-) is the spectral radius) and for t € (—e¢,€)
1. The function ¢ — p(t) = P(¢ + ty) is analytic.

2. HEHA, o = [wdus =: ag

3. If ¢ is not cohomologous to a coboundary plus a constant %\t 0o <0and P(p+
t1)) is convex in a neighbourhood of 0.

Provided that a; is sufficiently close to ag we can use the above properties to choose t (close
to 0) such that CEH| o — [Wdpu, =: a;.
We can now 1ntr0duce the following restricted pressure function.

Definition 4.1. For a € R we define

Qla) = sup {h(u) + [odu s [ v }

which is well defined provided inf,,{ [ pdm} < a < sup,,{ [ Ydm}

In particular, we observe g(a) < P(¢). Since the function a — Q(a) is analytic we can
=0
We can use the Taylor expansion at a = ay to write

Q(ao) — Q(ar) = Q'(ao) + Q" (ag)(ar — ag)*(1 + o(1)).
The function @ is actually the Legendre transform of P. More precisely,

P(0) = h(m) + [ (6+ tw)dm,
= h(my) +/¢dmt +t/¢dmt

(. s

=Q(1)
Where my is the equilibrium state of ¢ + ti. This allows us to deduce that d%‘” lamay =
dP2(t
dt2 |t to-
Since

Qlar) > h(v) + / oy

P(o) - (1) + [ 0 ) 2 Qlan) - Qe

_dQ*(a)
o dt?

since [ ¢dv = a; this implies

’a:ao (al - aO)Z (1 + O<1))

9
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Finally, we conclude that for [+dv is sufficiently close to [ tdus then we can bound

[ san= [ fame| < 1+ o) \%;w!ho!\/lj(d))—(h(uH Jou)

5 Miscellaneous Comments

(a) The original applications of these pressure results was to subshifts of finite type and
Axiom A diffeomorphisms [12].[2] However, by using a simple model by suspension flows
[?7] the corresponding result also extends to Axiom A flows. More precisely, assume that
¢ : A — Ais a Ct Axiom A flow restricted to a basic set, my is a ¢-invariant equilibrium
state for a Holder continuous potential ¢ : A — R and F' : A — R is Holder continuous then

'/qu—/de‘ < CIIFII\/P(¢)— <h(u)+/¢du)

(b) The proof used the strong estimate in Part 5 of Lemma 2.2 to define ) in the proof
of Lemma 2.6. However, under any weaker bounds on [|[U"|| — 0 such that the series
Q = >, U" converges the same argument will hold.

(c) It may be possible to extend the result to higher dimensional transformations with
singularities. In light of [13] one might ask if || f|| can be replaced by the variance o?(f).

(d) Ruhr and Sarig have a corresponding result for subshifts where || f]| is replaced by an
expression involving the variance o?(f) which gives a more refined estimate. It is a natural
question to ask if this is also true for (1.1).

References

[1] V. Baladi and G. Keller, Zeta functions and transfer operators for piecewise monotone
transformations, Commun. Math. Phys. 127 (1990) 459-477.

[2] S. Kadyrov. Effective uniqueness of Parry measure and exceptional sets in ergodic
theory. Monatshefte fiir Mathematik, 178(2):237-249, 2015

[3] F. Hofbauer and G. Keller, Ergodic properties of invariant measures for piecewise
monotonic transformations

[4] C. T. Ionescu Tulcea and G. Marinescu, Theorie Ergodique Pour Des Classes
D’Operations Non Completement Continues, Annals of Mathematics, 52 (1950) 140-
147

[5] G. Keller, Generalized Bounded Variation and Applications to Piecewise Monotonic
Transformations, Z. Wahrscheinlichkeitstheorie verw. Gebiete 69 (1985) 461-478

10



REFERENCES REFERENCES

[6] G. Keller. Generalized bounded variation and applications to piecewise monotonic
transformations. Z. Wahrsch. Verw. Gebiete, 69(3):461-478, 1985.

[7] G. Keller, Markov extensions, zeta functions, and Fredholm theory for piecewise in-
vertible dynamical systems, Trans. Amer. Math. Soc. 314 (1989), 433-497

[8] H. Li and J. Rivera-Letelier, Equilibrium states of interval maps for hyperbolic poten-
tials, Nonlinearity 27 (2014) 1779-1804

[9] W. Parry, On the [-expansion of real numbers, Acta math. Acad. Sci. Hungar. 11
(1960) 401-416

[10] F. Polo. Equidistribution in chaotic dynamical systems. ProQuest LLC, Ann Arbor,
MI, 2011. Thesis (Ph.D.), The Ohio State University

[11] D. Ruelle, Statistical mechanics on a compact set with Z action satisfying expansive-
ness and specification, Trans. Amer. Math. Soc., 185 (1973), 237-252

[12] R. Riihr, Pressure Inequalities for Gibbs Measures of Countable Markov Shifts
(arXiv:2012.13226)

[13] R. Riihr and O. Sarig, Effective intrinsic ergodicity for countable state Markov shifts,
to appear in Israel J. Math. (arXiv:2112.01186)

[14] M. Rychlik, Bounded variation and invariant measures. Studia math. 76 (1983) 69-80

[15] P. Walters, A Variational Principle for the Pressure of Continuous Transformations,
Trans. Amer. Math. Soc., 97 (1975) 937-971

[16] P. Walters, Equilibrium states for S-transformations and related transforms, Math. Z.
159 (1978), no. 1, 65-88.

11



