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1 Introduction

The variational principle is one of the central pillars of smooth ergodic theory and thermo-
dynamic formalism. It was originally formulated for hyperbolic systems by Ruelle [11] and
proved in full generality by Walters [16]. It relates the thermodynamic pressure function to
entropies and integrals with respect to invariant measures.

We will consider the particular case where T : I → I is a piecewise C2 mixing expanding
map of the interval I = [0, 1) and where φ : I → R is a Hölder continuous function.

Definition 1.1. We can denote by mφ the unique equilibrium state associated to φ, i.e., m
is the unique probability measure realising the following supremum

P (φ) := sup

{
h(µ) +

∫
φdµ : µ = T -invariant probability

}
,

where h(µ) is the entropy (i.e., the variational principle).

For definiteness, we will consider the following well known examples.

Example 1.2. Let β > 1 and consider T : [0, 1)→ [0, 1) defined by

T (x) = βx (mod 1)

then T is called a β-transformation. This is piecewise affine on the intervals[
0,

1

β

)
,

[
1

β
,

2

β

)
, · · ·

[
[1/β]− 1

β
,
[1/β]

β

)
,

[
[1/β]

β
, 1

)
where [·] denotes the integer part of a real number. example

We claim the following analogue of the Einseidler-Kaydev-Polo inequality (originally
established for Markov expanding maps, subshifts of finite type and Anosov diffeomorphisms
[2], [12]) also holds in this context.

Theorem 1.3. There exists a constant C0 = C0(φ) such that for any T -invariant probability
µ we have ∣∣∣∣∫ fdµ−

∫
fdmφ

∣∣∣∣ ≤ C0‖f‖

√
P (φ)−

(
h(µ) +

∫
φdµ

)
(1.1)

where ‖ · ‖ is the norm of bounded variation.
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Figure 1: Graph of a β-transformation

In the special case that β ∈ N (or more generally the orbit of 1/β is finite) the map is
Markov. In this case Theorem 1.3 would be a consequence of Kaydev’s theorem [2]..

Example 1.4 (Parry measure). If we take φ = 0 then P (0) = h(T ) is the topological entropy
and the equilibrium state is the unique measure m0 which maximizes the the entropy. In
particular, Parry showed that m0 is absolutely continuous with density ρ : [0, 1]→ R+ given
by

ρ(x) =

∑
n:Tn(1)>x β

−n∫ (∑
n:Tn(1)>x β

−n
)
dx

with normalization constant K > 0 [9].

Theorem 1.3 now has the following corollary (when φ = 0).

Corollary 1.5. There exists a constant C0 > 0 such that for any T -invariant measure µ we
have ∣∣∣∣∫ fdµ−

∫
fdm0

∣∣∣∣ ≤ C0‖f‖
√
h(T )− h(µ). (1.2)

A little history. A version of this result was apparently first proved in the thesis of Polo for
doubling maps [10], where it was attributed to Einseidler. The above theorem was proved
by Kadyrov for finite state shift spaces when φ = 0 (which was called effective intrinsic
ergodicity) [2]. This was extended to Hölder potentials and infinite state shift spaces by
Ruhr [12]. Subsequently, Ruhr-Sarig gave an alternative proof and a local version where the
upper bound has the variance replacing the norm [13].
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2 Proof of Theorem 1.2

We begin by recalling the definition of the bounded variation semi-norm of a function ψ :
I → R which takes the form

‖ψ‖BV = sup

{∣∣∣∣∣
n∑
i=0

ψ(xi)− ψ(xi+1)

∣∣∣∣∣ : 0 = x0 < x1 · · · < xn < xn+1 = 1

}

and let ‖ψ‖L1 =
∫
I
|ψ(x)|dx denote the L1-norm. We let BV (I) denote the Banach space of

measurable functions ψ : I → C with norm ‖ψ‖ := ‖ψ‖BV + ‖ψ‖L1 < +∞.

Definition 2.1. Let T : I → I be a monotone piecewise continuous map. Given φ ∈ BV (I)
we can define the transfer operator Lφ : BV (I)→ BV (I) by

Lφw(x) =
∑
Ty=x

eφ(y)w(y).

Under additional assumptions on the function φ the operator Lφ : BV (I)→ BV (I) has
a number of useful properties. For simplicity we first assume that φ is Lipschitz so that we
can use more of the specific methods form [16]. In §4 we will consider more general results
using the subsequent analysis in [3], [7].

Lemma 2.2. Let φ : I → R be Lipschitz.

1. There exists a maximal eigenfunction h ∈ BV (I) with h > 0 such that Lφh = eP (φ)h
and, in particular,

eP (φ) = lim
n→+∞

∥∥Lnφ1(x)
∥∥ 1

n

∞ .

2. There exists a non-atomic probability measure νφ such that L∗φνφ = eP (φ)νφ.

3. There exists a > 0 such that h(x) ≥ a > 0

4. h is continuous except at the points {T n(β) : n ≥ 0}.

5. There exists C > 0 and 0 < ρ < 1 such that ‖Lnφ(w)− enP (φ)hν(w)‖ ≤ C(ρeP (φ))n‖w‖
for any w ∈ BV (I) and n ≥ 1.

Proof. The existence of the eigenfunction h in part 1 follows from ([7], Remark 6.8) (as
observed in [1] on p. 460, where the authors also observe that it follows from their own
Theorem 2). The existence of the measure in νφ in Part 2 follows from Proposition 6.10 of
[7] (as also observed in [1], p.460.) 1

Part 3 appears as Part (iii) in Lemma 9 in [16] (which in turn is based on Lemma 1 (i)
in [16]) and we briefly recall the proof. Let P be the partition of I into intervals of the form

P =

{[
0,

1

β

)
,

[
1

β
,

2

β

)
, · · ·

[
[1/β]− 1

β
,
[1/β]

β

)
,

[
[1/β]

β
, 1

)}
. (2.1)

1See ([16], Lemma 3 and Lemma 9) for a proof of the first 2 parts for a different Banach space and under
the additional assumption that φ is Lipschitz
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An interval J ∈ ∨n−1i=0 T
−iP is called a full interval of rank n if T n : J → I is a bijection. Let

N > 0 then I is covered by full intervals of rank at least N (by Lemma 1 (i) in [16]). Thus for

any x there is a sequence kj → +∞ of full intervals Jj ∈ ∨
kj−1
i=0 T

−iP with rank at least kj with
{x} = ∩∞j=1Jj. We claim that there exists some N > 0 and some interval J with TN : J → I
a bijection (i.e., J is of full rank N) and for which b := infy∈J h(y) > 0. If this was not the
case then for all N we could choose x with h(x) = 0 and since LNφ h(x) = eNP (φ)h(x) we have
that h(y) = 0 for all preimages y ∈ T−Nx, which in turn would imply h is identically zero
giving the contradiction. Thus for J as in this claim, since by assumption TNJ = I we have
that for x ∈ I:

h(x) = e−P (φ)NLNφ h(x) ≥ e−P (φ)Nbe−N‖φ‖∞ =: a.

Part 4 follows the same lines as the proof of Lemma 9 (iv) in [16], and we briefly recall
the idea. We observe that e−nP (φ)Lnφ1(x) is continuous at points not in ∪ni=1T

i({β}) (where
{β} = β− [β] denotes the fractional part of β) and continuous from the right at these points.
The result then follows from h(x) = limn→+∞ e

−nP (φ)Lnφ1(x).
For Part 5, we first observe that replacing φ by ψ = φ − log h ◦ T + log h ∈ BV (I) (by

virtue of Part 3) we have that the associated operator satisfies Lψ1 = 1 and has spectral
radius 1. Moreover

θψ := lim sup
n→+∞

∥∥∥∥∥exp

(
n−1∑
k=0

ψ(T kx)

)∥∥∥∥∥
1
n

∞

< 1.

This corresponds to θφ < eP (φ). By Theorem 1 in [1] we have that Lφ is quasi-compact and
the essential spectral radius. is at most θφ. Therefore, it suffices to observe that eP (φ) is a
simple eigenvalue and that there are no other eigenvalues of absolute value eP (φ).

It is convenient to consider coboundaries u ◦ T − u where u ∈ BV (I). The following
result follows easily from the definitions (and Part (iii) of Lemma 2.2).

Lemma 2.3. We can add constants and coboundaries in BV (I) to φ without changing the
equilibrium state mφ. 2

In particular, we can consider h ∈ BV (I) as in Lemma 2.2 (1) and observe that since
Lemma 2.2 (3) we have h ≥ a > 0 we have that log h ∈ BV (I). In particular, we can replace
φ by ψ = φ−P (φ)+log h− log h◦T and then we can assume can assume that the associated
transfer operator Lψ : BV (I) → BV (I) satisfies Lψ1 = 1. Thus, without loss of generality
we can assume P (φ) = 0.

We now consider a simple lemma, which is a special case of the well known Pinsker
inequality.

Lemma 2.4 (Pinsker Inequality). Given probability vectors q = (q1, · · · , qk) and p = (p1, · · · , pk)
we then have the basic inequality

−
k∑
i=1

qi log qi +
k∑
i=1

qi log pi ≤ −
1

2

k∑
i=1

|pi − qi|2. (2.2)

2The new function φ may no longer be Lipschitz since h was not necessarily Lipschitz
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We can now follow the lines of the standard proof of the variational principle (cf. [16]).
Let P = {Pi}ki=1 be the partition of I into intervals given in (2.1) where k = k(x) = [1/β]
or [1/β] + 1, as appropriate. Since this is clearly a generating partition we have that the
entropy satisfies h(µ) = Hµ(P|T−1P) [16]. We can also make the following choices:.

1. Given x ∈ I we can let p1(x), · · · pk(x)(x) take the values {eψ(y) : Ty = x}; and

2. For any T -invariant probability measure µ we let q1(x), · · · , qk(x) (1 ≤ i ≤ k(x)) take
the values µ(P|T−1B)(y) where T (y) = x for a.e. (µ) x ∈ X where B is the Borel
sigma algebra.

We can substitute these choices into (2.2) and integrate with respect to µ to get:

h(T, µ) +

∫
ψ(x)dµ(x)

= −
∫  ∑

y∈T−1

µ(P|T−1B)(y) log µ(P|T−1B)(y) +
∑

y∈T−1x

µ(P|T−1B)(y)ψ(y)

 dµ(x)

= −
∫ ( k∑

i=1

qi(x) log qi(x) +
k∑
i=1

qi(x)ψ(x)

)
dµ(x)

≤ −1

2

∫ k∑
i=1

|pi(x)− qi(x)|2dµ(x).

(2.3)
We can get a slightly weaker, but more useful, lower bound by using the Cauchy-Schwartz
inequality to write(∫ k∑

i=1

|pi(x)− qi(x)|dµ(x)

)2

≤
∫ k∑

i=1

|pi(x)− qi(x)|2dµ(x). (2.4)

Moreover, we can define the usual norm on the dual space BV (I)∗ of BV (I) by

‖ν‖ = sup

{∣∣∣∣∫ gdν

∣∣∣∣ : g ∈ BV (I) with ‖g‖ ≤ 1

}
for ν ∈ BV (I)∗. This leads to the following.

Lemma 2.5. ‖L∗ψµ− µ‖ ≤
∫ ∑k

i=1 |pi(x)− qi(x)|dµ(x).

Proof. Given g ∈ BBV with ‖g‖∞ ≤ 1 we have∣∣∣∣∫ (Lψg − g)dµ

∣∣∣∣ ≤ ∫ k∑
i=1

g(y) |pi(x)− qi(x)| dµ(x)

≤
∫ ∑

i

|pi(x)− qi(x)| dµ(x)

as required.
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Finally, we have the following lemma.

Lemma 2.6. There exists C1 > 0 such that ‖µ−mφ‖ ≤ C1‖L∗ψµ− µ‖.

Proof. It is at this point that we use the result from part 5 of Lemma 2.2 that there exists
0 < ρ < 1 such that L∗nµ = m + U∗nµ where ‖U∗n‖ = O(ρn). From this we conclude that
the series Q =

∑∞
n=0 U

n converges. We can then write

mφ = lim
n→+∞

L∗nψ µ = µ+
∞∑
n=0

L∗nψ (L∗ψ − I)µ.

Finally, we can write ‖µ−mφ‖ ≤ ‖Q‖.|L∗ψ − I)µ‖.

Combining (2.3), (2.4) and the inequalities in Lemma 2.6 and 2.7 completes the proof of
Theorem 1.2.

3 A generalization of Theorem 1.3

Theorem 1.3 for β-transformations is a special case of a more general result for piecewise
monotonic transformation where there exist b0 = 0 < b1 < · · · < bN = 1 such that the
restriction T |(bi,bi+1) : (bi, bi+1)→ I is continuous and strictly monotone.

We recall the following property for T

Definition 3.1. We will say that T is topologically exact if the any ε > 0 there exists n such
that for any x ∈ I we have T n(B(x, ε) = I.

Definition 3.2. We say that a function φ : I → R has summable variation if∑
n

varn(φ) < +∞

where varn(φ) = sup{|φ(x)− φ(y)| : x, y are in same monotonicity interval of T n}, for n ≥
1.

The generalization of Theorem 1.3 takes the following form:

Theorem 3.3. Let T be a piecewise monotonic transformation which is topologically exact.
Letφ : I → R be a (continuous) function of bounded variation such that either

a) ψ has summable variation; or

b) ψ is Hölder continuous.

Then exists a constant C0 = C0(φ) such that for any T -invariant probability µ we have∣∣∣∣∫ fdµ−
∫
fdmφ

∣∣∣∣ ≤ C0‖f‖

√
P (φ)−

(
h(µ) +

∫
φdµ

)
(3.1)

where ‖ · ‖ is the norm of bounded variation.
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The definitiion of bounded variation can be generalized as follows

Definition 3.4. For p ≥ 1 we can define the bounded p-variation semi-norm of a function
ψ : I → R which takes the form

‖ψ‖BV =

(
sup

{
n∑
i=0

|ψ(xi)− ψ(xi+1)|p : 0 = x0 < x1 · · · < xn < xn+1 = 1

})1/p

and let ‖ψ‖L1 =
∫
I
|ψ(x)|dx denote the L1-norm. We let BVp(I) denote the Banach space of

measurable functions ψ : I → C with norm ‖ψ‖ := ‖ψ‖BV + ‖ψ‖L1 < +∞.
An even larger space of functions in [6] are the following:

Definition 3.5. Given ε > 0 we denote

osc1(x, φ, ε) = esssup(φ|B(x, ε))− essinf(φ|B(x, ε))

and then we denote osc1(φ, ε) :=
∫
I

osc1(x, φ, ε)dx. Fix α > 0 and then for ε0 > 0 we can
then write

‖φ‖α,1 := sup
0<ε≤ε0

osc1(φ, ε)

εα
.

We can then define a norm ‖φ‖ = ‖φ‖α,1 + ‖φ‖L1 and let Hα,1 be the associated Banach
space (see [6], Theorem 1.13,b).

The following relationships between these spaces come from [6] and [8]

Lemma 3.6. . Let p = 1
α

.

1. If φ : I → R is α-Hölder continuous then ψ ∈ BVp(I).

2. BVp ⊂ Hα,1.

The proof of Theorem 3.3 requires a suitable generalization of Lemma 2.2.

Lemma 3.7. Let T be a piecewise monotonic transformation which is topologically exact.
Let φ : I → R be a (continuous) function of bounded variation such that either

a) ψ has p-summable variation; or

b) ψ is α-Hölder continuous.

Let Lφ be the associated transfer operator on BVp and Hα,1, respectively.

1. There exists a maximal eigenfunction h ∈ BV (I) with h > 0 such that Lφh = eP (φ)h
and, in particular,

eP (φ) = lim
n→+∞

∥∥Lnφ1(x)
∥∥ 1

n

∞ .

2. There exists a non-atomic probability measure νφ such that L∗φνφ = eP (φ)νφ.

3. There exists a > 0 such that h(x) ≥ a > 0

7



4 A RUHR-SARIG TYPE LOCAL RESULT

4. There exists C > 0 and 0 < ρ < 1 such that ‖Lnφ(w)− enP (φ)hν(w)‖ ≤ C(ρeP (φ))n‖w‖
for any w ∈ BV (I) and n ≥ 1.

Proof. Under hypothesis a) the results follow from the results in [3]. Under hypothesis b)
the results follow from the results in [6]. We briefly recall the main ideas.

The measure νφ in Part 2 occurs as a fixed point for the map ν 7→ Lφν/ν(1) on the space
of probability measures, i.e., Lφνφ = λνφ, where λ = νφ(1) (see p.135 of [3]). Later one can
identify λ = eP (φ).

Let g(x) := eφ(x)/ log λ and then in each of the two cases one show that for large enough
n we have

‖
n−1∏
i=0

g(T ix)‖∞ < 1

(see [3], pp. 135-136). This implies that the operator P = Llog g satisfies a Lasota-Yorke
inequality (see [3], Lemma 7), i.e., there exists 0 < ρ < 1 and β > 0 such that

a) under hypothesis a)

‖P nf‖BV ≤ β‖f‖L1 + ρ‖f‖BV , n ≥ 0;

b) under hypothesis b)

‖P nf‖1,α ≤ β‖f‖L1 + ρ‖f‖1,α, n ≥ 0.

Moreover, the unit balls in BV (I) and H1,α are compact in the L1-norm (by [3], Lemma 5
and [6] respectively). This leads to the quasi-compactness of the transfer operator Lφ on
the respective spaces, i.e., Lφ has spectral radius eP (φ) and essential spectral radius at most
0 < ρ < 1. The hypothesis of topological exactness implies that eP (φ) is a simple eigenvalue
and there are no other eigenvalues of modulus eP (φ). This is nicely explained in the proof
of Corollary 4.4 in [8]. If πφ is the one dimensional eigenprojection associated to eP (φ) then
we can let h = πφ(1), the image of the constant function 1, in Part 1. Part 4 is a standard
application of the Ionescu-Tulcea and Marinescu theorem [4].

Remark 3.8. Similar results will hold for transformations T : I → I with a finite number
of monotone branches providing there are additional hypotheses which ensures part 3 of the
lemma.

Remark 3.9. More generally, it would be sufficient to assume that g : I → R has bounded
p-variation, which would include the case of the g being Hölder continuous.

4 A Ruhr-Sarig type local result

In the case that in (1.1) that P (φ)−(h(µ)+
∫
φdµ) is sufficiently small then a sightly different

bound can be given by modifying the proof in [13].
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We can consider the pressure

P (φ) = sup{h(m) +

∫
φdm : m = T -invariant }

= log ρ(Lφ)

(where ρ(·) is the spectral radius) and for t ∈ (−ε, ε)

1. The function t 7→ p(t) = P (φ+ tψ) is analytic.

2. dP (φ+tψ)
dt
|t=0 =

∫
ψdµφ =: a0

3. If ψ is not cohomologous to a coboundary plus a constant dP 2(φ+tψ)
dt2

|t=0 < 0 and P (φ+
tψ) is convex in a neighbourhood of 0.

Provided that a1 is sufficiently close to a0 we can use the above properties to choose t (close

to 0) such that dP (φ+tψ)
dt
|t=0 =

∫
ψdµφ =: a1.

We can now introduce the following restricted pressure function.

Definition 4.1. For a ∈ R we define

Q(a) = sup

{
h(µ) +

∫
φdµ :

∫
ψdµ = a

}
which is well defined provided infm{

∫
ψdm} ≤ a ≤ supm{

∫
ψdm}

In particular, we observe q(a) ≤ P (φ). Since the function a 7→ Q(a) is analytic we can

deduce dQ(a)
da
|a0 = 0

We can use the Taylor expansion at a = a0 to write

Q(a0)−Q(a1) = Q′(a0) +Q′′(a0)(a1 − a0)2(1 + o(1)).

The function Q is actually the Legendre transform of P . More precisely,

P (t) = h(mt) +

∫
(φ+ tψ)dmt

= h(mt) +

∫
φdmt︸ ︷︷ ︸

=:Q(t)

+t

∫
ψdmt

where mt is the equilibrium state of φ + tψ. This allows us to deduce that dQ2(a)
dt2
|a=a0 =

dP 2(t)
dt2
|t=t0 .

Since

Q(a1) ≥ h(ν) +

∫
φdν

since
∫
ψdν = a1 this implies

P (φ)−
(
h(ν) +

∫
φdν

)
≥ Q(a0)−Q(a1)

=
dQ2(a)

dt2
|a=a0(a1 − a0)2 (1 + o(1))
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Finally, we conclude that for
∫
ψdν is sufficiently close to

∫
ψdµφ then we can bound

∣∣∣∣∫ fdµ−
∫
fdmφ

∣∣∣∣ ≤ (1 + o(1))

√
|dP

2(t)

dt2
|t=0|

√
P (φ)−

(
h(µ) +

∫
φdµ

)
(1.1)

5 Miscellaneous Comments

(a) The original applications of these pressure results was to subshifts of finite type and
Axiom A diffeomorphisms [12].[2] However, by using a simple model by suspension flows
[?] the corresponding result also extends to Axiom A flows. More precisely, assume that
φt : Λ → Λ is a C1 Axiom A flow restricted to a basic set, mφ is a φ-invariant equilibrium
state for a Hölder continuous potential φ : Λ→ R and F : Λ→ R is Hölder continuous then∣∣∣∣∫ Fdµ−

∫
Fdmφ

∣∣∣∣ ≤ C‖F‖

√
P (φ)−

(
h(µ) +

∫
φdµ

)

(b) The proof used the strong estimate in Part 5 of Lemma 2.2 to define Q in the proof
of Lemma 2.6. However, under any weaker bounds on ‖Un‖ → 0 such that the series
Q =

∑∞
n=0 U

n converges the same argument will hold.

(c) It may be possible to extend the result to higher dimensional transformations with
singularities. In light of [13] one might ask if ‖f‖ can be replaced by the variance σ2(f).

(d) Ruhr and Sarig have a corresponding result for subshifts where ‖f‖ is replaced by an
expression involving the variance σ2(f) which gives a more refined estimate. It is a natural
question to ask if this is also true for (1.1).
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