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Abstract

We discuss a number of inter-related topics, usually ideas from hyperbolic dynam-
ics applied to geometry, fractal geometry, etc. These are based on lectures given at
IMPAN, Warsaw.
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1 Introduction

A “golden thread” running through these lectures will be dynamical zeta functions, intended
to help bind together a number of seemingly disperate topics. In fact, the zeta function can
best be viewed as a versatile tool with applications to a wide range of problems.

Having already mentioned dynamical zeta functions, this brings us to a basic question:.

Question. What are zeta functions (in dynamical systems)?

. These usually come in two flavours:

1. zeta functions for discrete maps T : X → X; and

2. zeta functions for continuous flows φt : X → X (t ∈ R)

As a rough rule of thumb, the zeta function for maps has attracted more attention and
has a far greater literature; and the latter is often the more challenging. Let us start from
the discrete case and return to the continuous case later.

1.1 Discrete maps and zeta functions

Let T : X → X be a hyperbolic diffeomorphism for a compact manifold. For definiteness, and
hopefully clarity, let us consider the specific case of X = Rd/Zd, the standard d-dimensional
torus. Let T : X → X be a (linear) hyperbolic toral automorphism, i.e.,

1. L let A ∈ SL(n,Z) with Tx = Ax+ Zd (for x ∈ Rd), and

2. the matrix A has no eigenvalues on the unit circle.

Let us recall a very simple and well-known example.

Example 1.1 (Arnol’d CAT map). We can let A =

(
2 1
1 1

)
and then define T : T2 → T2

by T (x, y) = (2x+ y, x+ y) (mod 1). [3]

Let us return to the definition of the zeta function for T . We denote by

Fix(T n) = {x ∈ T2 : T nx = x}

the set of points on the torus fixed by T n.
The definition of the zeta function in this case is illustrative of the definition in the

general case. Following Artin and Mazur we have the following definition of a zeta function
[4].
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1.1 Discrete maps and zeta functions 1 INTRODUCTION

Definition 1.2. The zeta function ζ(z) associated to a map T : X → X is a complex
function given by

ζ(z) := exp

(
∞∑
n=1

zn

n
#(Fix(T n))

)
for z ∈ C.

For the case of hyperbolic toral automorphisms the right hand side converges for |z|
sufficiently small. The definition for general maps is completely analogous.

All of this leads to the following natural questions.

Question: Can we extend ζ(z) to a larger domain in z? Where are the zeros and poles (or
singularities) for this extension?

For this particular case of hyperbolic total automorphisms, the answers to these two
questions are relatively easy [66].

Theorem 1.3. For a hyperbolic toral automorphism the zeta function ζ(z) extends to C (as
a rational function p(z)/q(z) with p, q ∈ R[z]).

Fortunately, in this case the proof of the result is very simple. In particular, this is a
special case of the famous Lefschetz fixed point theorem., i.e., when detA = 1 then

#(Fix(T n)) =
d∑

k=0

(−1)k+1tr(T n∗ : Hk → Hk)

where T∗ : Hk → Hk is the induced linear map on the kth real homology group, as observed
by Smale [66]. The key point here is that the toral automorphism is assumed to be orientation
preserving and thus the Lefschetz index for each fixed point is 1. Let us consider the specific
example of the Arnol’d CAT map again.

Example 1.4. We can let A =

(
2 1
1 1

)
and then tr(An) − 2 = #(Fix(T n)). A simple

computation gives

ζ(z) = exp

(
−
∞∑
n=1

zn

n
(tr(An)− 2)

)
=

(1− z)2

det(I − zA)
.

More generally, the zeta function has a rational extension to C for any Axiom A diffeo-
morphisms, as was orginally proved by A. Manning [37]. The smallest pole (in terms of its
absolute value) comes from the radius of convergence of the series:

1

R
= lim

n→+∞
#(Fix(T n))1/n =: λ

where λ is the maximal eigenvalue of the matrix A. In particular, log λ is the topological
entropy h(T ) of T : Td → Td. The other zeros and poles of ζ(z) reflect the speed of
convergence in this limit.
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1.2 Continuous flows and zeta functions

Let us next turn to the case of flows. But first let us recall a (more) famous zeta function
from number theory defined in terms of the prime numbers p = 2, 3, 5, 7, 11, · · · .

Definition 1.5. We define the Riemann zeta function by

ζ(s) =
∞∑
n=1

1

ns
=
∏
p

(1− p−s)−1, s ∈ C

where the product is over all prime numbers. [20]

The equivalence of the two definitions comes from the simple expansion

1

1− p−s
= 1 + p−s + p−2s + p−3s + · · ·

for Re(s) > 1. This converges for Re(s) > 1 to a non-zero analytic function. The following
results are classical in number theory:

1. ζ(s) has a meromorphic extension to C; and

2. the poles for ζ(s) are mysterious (e.g., Riemann Hypothesis remains open on the loca-
tion of the zeros in critical strip 0 < Re(s) < 1 lying on the line Re(s) = 1

2
.)

Returning to the definition of zeta functions for flows, we can consider a simple example
which illustrates how things work, before giving the definition in the general case.

Example 1.6 (Suspension flow). Consider the simple setting of a Cantor set X and a Smale
horseshoe map T : X → X. Then the Cantor set X is homeomorphic to the sequence space
Σ = {0, 1}Z = {x = (xn) : xn ∈ {0, 1}} and T is conjugate to the shift map σ : Σ→ Σ. We
may introduce a function r : X → R+ be a function that depends only on the first x0 and is
defined by

r(x) =

{
α if x0 = 0

β if x0 = 1

where 0 < α < β [48].
We can then define by

Λr = {(x, u) : 0 ≤ u ≤ r(x)}/(x, r(x)) ∼ (Tx, 0)

the area under the graph of r, where the points (x, r(x))) and (Tx, 0) are identified. We
then define φt : Λr → Λr by φt(x, u) = (x, u + t) subject to the identifications. There is
then a natural bijection between closed orbits for T : Λ → Λ and φt : Λr → Λr such that
{x, Tx, · · · , T n−1x} corresponds to a closed orbit τ of period

λ(τ) = r(x) + r(Tx) + · · ·+ r(T n−1x).

We can now define a zeta function for the flow (in the example above).
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Definition 1.7. We can define a zeta function for φ by

ζφ(s) =
∏
τ

(1− e−sλ(τ))−1

for Re(s) sufficiently large. [62]

More generally, we can similarly define the zeta function for Axiom A flows.
As we can see, the zeta function for flows is defined by analogy with the Euler product

form of the Riemann zeta function ζ(s), where the primes are replaced by the exponential
of the least periods of orbits.

Here τ is a prime periodic orbit for φ (i.e., not a multiple). In the present context, the
following is a simple exercise.

Lemma 1.8. For the example above we can write

ζφ(s) = exp

(
∞∑
n=1

1

n

∑
Tnx=x

e−sr
n(x)

)

where T nx = x is a fixed point for x.

Proof. Providing Re(s) is sufficiently large, we can write

∏
τ

(1− e−sλ(τ))−1 = exp

(
−
∑
τ

log(1− e−sλ(τ))

)

= exp

(∑
τ

∞∑
m=1

∑
τ

e−smλ(τ)

)

= exp

 ∞∑
n=1

∑
x,··· ,Tm−1x(prime)

∞∑
m=1

1

m
e−smr

n(x)


= exp

(
∞∑
n=1

∑
Tnx=x,prime

1

n

∞∑
m=1

e−smr
n(x))

m

)

= exp

(
∞∑
l=1

1

l

∑
T lx=x

e−sr
l(x)

)

which completes the proof.

In the particular case that the roof function is constant (i.e., α = β) the dynamical zeta
function for the flow in this example can be written in terms of the zeta function for the
discrete map.

Remark 1.9. If α = β then ζφ(s) = ζ(e−sα). (i.e., the continuous zeta function is related to
discrete zeta function with z = e−sα). To see this, we can write

λ(τ) = αCard{0 ≤ j ≤ n− 1 : xj = 0}+ βCard{0 ≤ j ≤ n− 1 : xj = 1}
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then we have that

ζφ(s) = exp

(
∞∑
n=1

1

n
(e−sα + e−sβ)n

)
=

1

1− e−sα − e−sβ
.

[63], [49]. Thus if h > 0 is a unique solution to e−hα + e−hβ = 1 then:

1. For Re(s) > h we have that ζφ(s) converges to a non-zero analytic function;

2. h is a simple pole for ζφ(s);

3. ζφ(s) has a meromorphic extension to C; and

4. If α/β is irrational then there are poles sn = σn + itn with σn ↗ h.

The value h can be shown to be the topological entropy for the associated flow.

In the next section we will begin to show that these dynamical zeta functions have
practical applications to apparently unrelated problems.

2 Dynamically defined Cantor sets

We begin with an application to Hausdorff dimension of limit sets for iterated function
schemes.[25]

Let X ⊂ [0, 1] be a dynamically defined Cantor set. More precisely, let T0, T1 : [0, 1] →
[0, 1] be Cω (or more generally C1) contractions with disjoint images (i.e., T0[0, 1]∩T1[0, 1] =
∅). The associated Cantor set X is the smallest non-empty closed set X ⊂ [0, 1] such that

T0X ∪ T1X = X.

We recall some classical examples.

Example 2.1 (Middle 1/3-Cantor set). Let T0(x) = x/3 and T1(x) = x/3 + 2/3. Then

X =

{
x =

∞∑
n=1

xn
3n+1

: xn ∈ {0, 2}

}

(i.e., a triadic expansion with coefficients either 0 or 1). We can associate T : X → X by
T (x) = 3x (mod 1).

The next example is similar, but defined using nonlinear contractions.

Example 2.2 (E2). Let T0(x) = 1
1+x

and T1(x) = 1
2+x

. Then

X = {x = [a1, a2, a3, · · · ] : an ∈ {1, 2}}

i.e., the points whose continued fraction expansion contains only the digits 1 and 2. We can
associate the expanding map T : X → X defined by Tx = 1/x− [1/x]
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2 DYNAMICALLY DEFINED CANTOR SETS

We would like to quantify the size of these Cantor sets. The natural notion is the
Hausdorff dimension (although for these examples the Hausdorff dimension coincides with
the more easily defined Box dimension).

Question. What is the Hausdorff dimension of the Cantor sets X in these examples?

In particular, we need to find some useful way to characterise the dimension. Let C(X)
be the space of continuous functions w : X → R.

Definition 2.3. We define a transfer operator L : C(X)→ C(X) by

Lw(x) = |T ′0(x)|w(T0x) + |T ′1(x)|w(T1x).

Unfortunately, the spectrum of L : C(X) → C(X) is rather lacking in fine structure, as
the next lemma reveals.

Lemma 2.4. The spectrum of L : C(X) → C(X) is a closed ball whose radius is the
norm ‖L‖ = sup{‖Lf‖∞ : ‖f‖∞ ≤ 1} of operator (or equivalently the spectral radius of the
operator).

Recall that the spectrum of L is defined to be the subset of the complex plane:

Spec(L) = {z ∈ C : (zI − L) : C(X)→ C(X) is not invertible}.

We can illustrate the proof of the above lemma with the first example (Example 2.1), the
general case being similar. We first observe that ‖L‖ ≤ 2

3
from which we deduce that the

spectral radius is at most 2
3
. Fix w0 ∈ C(X) such that Lw0(x) = 0 for all x ∈ X (e.g.,

w0(x) = 1− w0(1− x)). For any |λ| < 1 we can define

wλ(x) :=
∞∑
n=0

λnw0(T nx) ∈ C(X)

since C(X) is a Banach space. But typically 2
3
λ is an eigenvalue:

Lwλ(x) = Lw0(x)︸ ︷︷ ︸
=0

+
∞∑
n=1

λnL(w0 ◦ T n)(x)

=
∞∑
n=1

λn(w0 ◦ T n−1)(x) =
2

3
λwλ(x)

since L(w0 ◦ T n)(x) = 2
3
(w0 ◦ T n−1)(x)

The conclusion is that we need Banach spaces with “fewer” functions, which we will
address in the next section. Moreover, to add more utility to these operators we would like
to change the weights to include a parameter s ∈ R (or even s ∈ C).

Definition 2.5. Given s ∈ R (s ∈ C) we can define a family of operators Ls : C(X)→ C(X)
(s ∈ C) defined by

Lsw(x) =
∑
j

|T ′j(x)|sw(Tjx)
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We can illustrate the transfer operator using our two previous examples.

Example 2.6. 1. For the middle third Cantor set we have a transfer operator

Lsw(x) =

(
1

3

)s
w
(x

3

)
+

(
1

3

)s
w

(
x+ 3

3

)
;

2. For E2 we have a transfer operator

Lsw(x) =

(
1

x+ 1

)2s

w

(
1

x+ 1

)
+

(
1

x+ 2

)2s

w

(
1

x+ 2

)
.

The next step is to find a suitable Banach space B ⊂ Cω(X) for which the operator
L : B → B has better spectral properties and then use these to deduce interesting results
about X and T : X → X.

3 Banach spaces of analytic functions

There are many candidates for spaces of functions upon which we can act with the transfer
operator. Perhaps the simplest principle is to consider the smallest space preserved by the
transfer operator associated to the transformation T . For the present, we will consider
Banach spaces of analytic functions since these are preserved by the transfer operator in the
two examples above.

Let U be an open ball in C. Let B = B(U) be the Banach space of bounded analytic
functions w : U → C with the norm

‖w‖ = ‖w‖∞ := sup
z∈U
|w(z)|.

(The completeness comes from Montel’s Theorem in complex analysis).
The advantage of transfer operators that preserve Banach spaces of analytic functions is

that they take a special form, which we will now describe.

Definition 3.1. We say that a bounded linear operator T : B → B is nuclear (or trace
class) if we can write

T (·) =
∞∑
n=0

λnln(·)wn

where

1. wn ∈ B with ‖w‖ = 1;

2. ln ∈ B∗ with ‖w‖ = 1; and

3. |λn| = O(θn), for some 0 < θ < 1 1

1This is slightly stronger than the usual definition of a nuclear operator, but is sufficient for our purposes

8



3 BANACH SPACES OF ANALYTIC FUNCTIONS

Remark 3.2. Nuclear operators are automatically compact operators, as is easily seen form
the definition, and thus only have countably many isolated eigenvalues all of which, except
the one at zero, are isolated.

In the context of dynamically defined Cantor sets, let Ti : [0, 1] → [0, 1] (i = 1, 2) be
analytic and assume there are nested open sets

[0, 1] ⊂ U ⊂ U+ ⊂ C

in the complex plane such that the maps extend analytically to U+ and satisfy that

closure(TiU
+) ⊂ U.

By looking at the spectrum of the operators on the smaller space of analytic functions
we have that the spectra of the operator has much more structure, which ultimately gives
us more information about, for example, the zeta function. The most useful result in this
direction is the following [61].

Theorem 3.3 (Grothendeick-Ruelle). The operators Ls : B → B (s ∈ C) are nuclear.

Rather than discussing the implications of this theorem in complete generality, let us
consider specific cases. These are best illustrated by consider the previous two examples.

Example 3.4 (Middle third Cantor set). Let us choose

U = {z ∈ C : |z| < 5/2} and U+ = {z ∈ C : |z| < 3},

say, then a simple calculation shows

T0(U+) =

{
z ∈ C : |z| < 3

2

}
⊂ U and T1(U+) =

{
z ∈ C :

∣∣∣∣z − 1

2

∣∣∣∣ < 3

2

}
⊂ U.

In particular, we have that Ls(B(U)) ⊂ B(U+). Such operators are referred to as “analyticity
improving” since functions in the image are analytic on a larger domain than they initially
were. By Cauchy’s theorem (which can be applied by virtue of ∂U ⊂ U+) we can write

Lsw(z) =
1

2πi

∫
|ξ|=5/2

Lsw(ξ)

(z − ξ)
dξ =

∞∑
n=0

λnwn(z)ln(w)

for z ∈ U+ where:

(a) wn(z) = zn ∈ B; and

(b) ln(w) � 1
2πi

∫
|ξ|=5/2

Lsw(ξ)
ξn+1 dξ

where ‖ln‖ = 1 and

λn =

∥∥∥∥ 1

2πi

∫
|ξ|=5/2

Lsw(ξ)

ξn+1
dξ

∥∥∥∥
∞
.

It is easy to see that λn = O(θn) with θ = 5
6
.

The case of the non-linear Cantor set is slightly more interesting.
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Example 3.5 (E2). Let us choose

U =

{
z ∈ C : |z − 1| < 3

2

}
and U+ =

{
z ∈ C : |z − 1| < 19

12

}
,

say, then a simple (although not quite as simple as in the previous example) calculation gives
that

T0U
+ =

{
z ∈ C :

∣∣∣∣z − 288

215

∣∣∣∣ < 228

215

}
⊂ U and T1U

+ =

{
z ∈ C :

∣∣∣∣z − 432

935

∣∣∣∣ < 228

935

}
⊂ U.

By Cauchy’s theorem (since ∂U ⊂ U+) we can write

Lsw(z) =
1

2πi

∫
|ξ−1|=3/2

Lsw(ξ)

(z − ξ)
dξ =

∞∑
n=0

λnwn(z)ln(w)

where

(a) wn(z) = (z − 1)n ∈ B;

(b) ln(w) � 1
2πi

∫
|ξ−1|=3/2

Lsw(ξ)
ξn+1 dξ

where ‖ln‖ = 1 and

λn =

∥∥∥∥ 1

2πi

∫
|ξ−1|=3/2

Lsw(ξ)

ξn+1
dξ

∥∥∥∥
∞
.

It is easy to see that λn = O(θn) with θ = 18
19

.

Now that we have introduced a suitable Banach space of analytic functions for the transfer
operators to act upon, it still remains to relate these to the zeta functions we previously
defined. There are three useful facts (which we will elaborate upon later) that we list below
for our immediate convenience:

Properties of the operators Ls acting on analytic functions. The following properties
will be useful (see [29],[61], [33]).

1. The operators Ls : B → B are trace class and so we can define a function of two
variables (z, s ∈ C)

d(z, s) := exp

(
−
∞∑
n=1

zn

n
trace(Lns )

)
(which converges for |z| sufficiently small).

2. We can explicitly compute

trace(Lns ) =
∑
Tnx=x

|(T n)′(x)|s

1− (T n)′(x)
.
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4 APPLICATIONS OF ZETA FUNCTIONS

3. d(z, s) has an analytic extension to C. In fact, we can expand

d(z, s) = 1 +
∞∑
n=1

an(s)zn

where there exists C > 0 such that |an(s)| ≤ Cθn
2
, with explicit expressions for an(s)

in terms of (Tm)′(x), where Tmx = x, m ≤ n.

This has an immediate application to zeta functions.

Proposition 3.6. We can write ζφ(s) = d(1, s + 1)/d(s) with r = − log |T ′| to give the
connection with the zeta function ζφ(s).

The Cantor set E2 can be generalised to those points whose continued fraction expansions
are uniformly bounded. This links nicely to the following classical open problem:

Remark 3.7 (Zaramba Conjecture (1971)). There exists N ∈ N such that{
q ∈ N :

p

q
= [a1, a2, · · · , an] for ai ∈ {1, 2, 3, 4, 5}

}
= N.

Bourgain and Kontorovich proved the set on the left hand side has density 1 [11], [36].

There are also classical questions and results on the differences of linear Cantor sets. In
the context of a non-linear Cantor set (coming from bounded continued fraction expansions)
we mention the following nice result.

Remark 3.8 (C. Moreira [46]). The difference set E2−E2 has full dimension, i.e., dimH(E2−
E2) = 1

4 Applications of zeta functions

We will return to discussing the properties of the zeta functions after considering some
applications.

4.1 Application I: Computing Hausdorff dimension

For definiteness, let us again consider the nonlinear Cantor set X(= E2) with continued
fraction coefficients 1 or 2. Unlike in the case of linear Cantor sets, there is no simple
formula for the dimension of the limit set. However, there is an expression which doesn’t (at
first sight) seem particularly useful [33].

Lemma 4.1. The real number s = dimH(X) is a zero for

d(1, s) = exp

(
−
∞∑
n=1

1

n

∑
Tnx=x

|(T n)′(x)|s

1− (T n)′(x)

)
where the sum over periodic points corresponds to numbers with periodic continued fraction
expansions.
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Proof. This follows from Bowen’s formula [12], [64] characterising dimH(X) as the zero of
a function P (s) defined in terms of the maximal eigenvalue of the operator (and called the
pressure). In fact, the (first) zero appears at the value s ∈ R where

eP (s) := lim
n→+∞

( ∑
Tnx=x

|(T n)′(x)|s

1− (T n)′(x)

)1/n

= lim
n→+∞

( ∑
Tnx=x

|(T n)′(x)|s
)1/n

= 1

The first encouraging sign is that the fixed points are simply quadratic surds (i.e., alge-
braic numbers of degree two). However, more importantly there is a expansion of d(1, s) in
terms of a rapidly converging series. Writing

d(1, s) = 1 +
∞∑
n=1

an(s)

where |an(s)| = O(θn
2
) θ = (4/5)1/4) we can approximate d(1, s) by the polynomial

dN(1, s) = 1 +
N∑
n=1

an(s)

and then sN satisfies dN(1, sN) = 0 with sN = dimH(X) +O(θN
2
).

Using a more elaborate variant of this approach we have the following result [34]:

Theorem 4.2 (Jenkinson-Pollicott). We can write

dimH(E2) =0.53128050627720514162446864736847178549305910901839

87798883978039275295356438313459181095701811852398 · · ·

accurate to 100 decimal places.

The proof involves choosing N = 25. This value of N is sufficiently small to allow a
computer assisted numerical computation of dN(1, s) and yet large enough that the difference
between dN(1, s) and d(1, s) is sufficiently small that their zeros are close. In particular
the zero of dN(1, s) can be easily estimated to a high degree of accuracy, using a delicate
combination of numerical and theoretical bounds. This leads to an approximation of the
zero of d(1, s), i.e., the Hausdorff dimension dimH(E2).

4.2 Application II: Selberg zeta function

The original application of transfer operators to the theory of zeta functions associated to
geodesics on (Riemann) surfaces dates back to Ruelle’s original paper [61] (see also [54]).
To illustrate the basic ideas, we will consider the partially simple example of a pair of pants
V , which is a Riemann surface of constant curvature κ = −1 with infinite area arising from
three infinite funnels. We can write V = H2/Γ where H2 = {z = x + iy : y > 0} denotes
the upper half plane with the Poincaré metric ds2 = (dx2 + dy2)/y2 and Γ = 〈R1, R2, R3〉 is
the free group generated by certain isometries R1, R2, R3 : H2 → H2. We first describe this
construction in a little more detail.
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4.2 Application II: Selberg zeta function 4 APPLICATIONS OF ZETA FUNCTIONS

Example 4.3 (A pair of pants). Let [a0, b0], [a1, b1], [a2, b2] ⊂ R be disjoint intervals in the
real line, with centres cj = (aj+bj)/2 and rj = (bj−aj)/2 for j = 1, 2, 3. Let Rj : R∪{∞} →
R ∪ {∞} be the linear fractional transformation defined by

Rj(x) =
r2
j

x− cj
+ cj,

for j = 1, 2, 3. This extends to the upper half plane H2 by

Rj(z) = r2
j

z − cj
|z − cj|2

+ cj,

for j = 1, 2, 3. To construct the appropriate Banach space of analytic functions, we choose
disjoint (larger) disks

Dj = {z ∈ C : |z − cj| < tj} ⊃ [aj, bj]

for suitable radii tj > rj, for j = 1, 2, 3. For j 6= l we arrange the radii such that
closure(Rl(Dj)) ⊂ Dl.

By analogy with the Banach spaces of analytic functions introduced to deal with the
Hausdorff dimension of dynamically defined Cantor sets, we can consider analytic functions
on the discs D1, D2 and D3. More precisely, let B = B

(
∪3
j=1Dj

)
denote bounded analytic

functions on the union ∪3
j=1Dj of disjoint disks and then Ls : B → B is defined by

Lsw(z) =
∑
j 6=l

(
1

|R′j(z)|

)s
w(Rlz) for z ∈ Dl.

We can now write the associated zeta function as

d(s) = Z(s) :=
∏
γ

∞∏
n=0

(1− e−(s+n)l(γ)) (5.1)

where γ is a closed geodesic on the pair of pants V of length l(γ). The quotient surface V
is an infinite volume surface of curvature κ = −1.

Remark 4.4. The limit set of Γ = 〈R1, R2, R3〉 is the Cantor set of accumulation points of
Γ0. It is a nonlinear Cantor set of Hausdorff dimension δ = dimH(X).

Remark 4.5. The recurrent part of the geodesic flow is coded by sequences and the transition
matrix

A =

1 1 0
1 0 1
0 1 1


This is a very simplified form of the Bowen-Series coding used to code geodesics on convex
co-compact surfaces[15], [65]. The coding can be naturally realised in terms of the limit set,
and the roof function on the limit set takes the form r(x) = log |R′j(x)|.

We conclude from the properties of the determinant d(z, s) the following result:

13



4.3 Application III: Circle packings 4 APPLICATIONS OF ZETA FUNCTIONS

Theorem 4.6. The zeta function Z(s) extends analytically to the entire complex plane C.

The classical approach to studying zeta functions on surfaces of curvature κ = −1 of finite
area uses the Selberg trace formula, which doesn’t apply in this case. Thus the dynamical
approach to the zeta function Z(s) is essentially the only approach available to extending
the zeta function.

Remark 4.7. The largest zero appears at δ = λ(1−λ) where λ > 0 is the smallest eigenvalue of
the Laplacian. The other zeros for Z(s) in some special cases cases were plotted by Borthwick
[9], where the zeros appear to be described in terms of specific curves. An explanation of
this appears in [55].

4.3 Application III: Circle packings

In the precious section we considered a Fuchsian group Γ whose limit set is a Cantor set in
the real line R. In this section we consider a higher dimensional analogue where the Fuchsian
group is replaced by a Kleinian group and the limit set is now in C, which is the Apollonian
Circle Packing C. This is the closure of a countable union of closed circles. Moreover, the
radii rn of the circles satisfy rn → 0 as n→ +∞.

Let δ = dimH(C) denote the Hausdorff dimension of the set C. We have the following
simple counting result for the radii of the circles [39].

Theorem 4.8 (Kontorovich-Oh, 2009). There exists C > 0,

Card{rn ≥ ε} ∼ Cε−δ

as ε→ 0 (i.e., limε→0 ε
δCard{rn ≥ ε} = C).

We want to describe an alternative viewpoint of this theorem, contained in [56].

Step 1. Let C1, C2, C3, C4 be four initial mutually tangent circles in C.
Step 2. Following a result of Beecroft from 1842, let K1, K2, K3, K4 be the four dual circles
(i.e., the circles passing through tuples of points from the four tangent points).

Step 3. To introduce the dynamical perspective, let T1, T2, T3, T4 be reflections in the four
circles K1, K2, K3, K4.

Step 4. All the circles in C are generated by reflecting C1, C2, C3, C4 repeatedly under
T1, T2, T3, T4. Consider one of the four curved triangles X coming from the original four
tangent circles.

Step 5. Following an approach of Mauldin-Urbanski [44] we can generate the circles using
the uniformly contractive maps φi = fi ◦ fnj : X → X, where fi = T4 ◦ Ti for i, j = 1, 2, 3, 4
and n ≥ 1. In particular, by taking the images of the central circle K4 under iterates of the
maps φi.

Finally, to get the asymptotic formula in the theorem, we want to consider the complex
function

η(s) :=
∞∑
n=1

rsn =

∫ ∞
1

t−sdπ(t)

14



4.3 Application III: Circle packings 4 APPLICATIONS OF ZETA FUNCTIONS

where π(t) = Card{rn ≥ 1/t}. For fixed z0 we can “replace” (or approximate) {rn} by the
derivatives {(φi1 ◦ · · · ◦ φim)′(z0)} and replace η(s) by

η0(s) =
∞∑
n=1

Lnsρ(z0)

where Lsw(z) =
∑

φ |φ′(z)|sw(φz) and

ρ(z) =
∞∑
l=0

|(f li )′(z)|s.

The connection between the domain of η(s) and the asymptotic formulae comes from
classical Tauberian theorems. Before describing these let us consider a simplified situation.

Remark 4.9 (Motivation for Tauberian Theorems). Recall that for Anosov diffeomorphisms:

ζ(z) = exp

(
∞∑
n=1

zn

n
Card Fix(T n)

)
=
P (z)

Q(z)

a rational function. For example for the hyperbolic total automorphism we can write

ζ(z) =
(1− z)2

det(I − zA)

Therefore, denoting by λ = eh(T ) the maximum eigenvalue of the matrix A:

∂

∂z
log ζ(z) =

∞∑
n=1

zn−1Card Fix(T n) =
λ

1− zλ
+ Φ(z)

where Φ(z) is a rational function with poles and zeros in |z| > R . We can also write

λ

1− zλ
=
∞∑
n=0

znλn+1.

Thus
∞∑
n=1

zn−1
(
λn+1 − Card Fix(T n)

)
is analytic in a neighbourhood of |z| ≤ R. In particular, we deduce that

Card Fix(T n) = λn +O(1/Rn)

as n→ +∞.

For flows the situation is a little more complicated, but in the same spirit. For flows we
would write a Stieltjes integral:

η(s) =

∫ ∞
0

t−sdπ(t).

The next result provides the appropriate tauberian machinery required to translate an-
alyticity results on η(s) into an asymptotic result [24].
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Lemma 4.10 (Tauberian Theorem). If η(s) has an analytic extension to a neighbourhood of

Re(s) ≥ h, except for a simple pole of the form 1
s−h . Then limt→+∞

π(t)
eht

= 1 (i.e, π(t) ∼ eht)

Theorem 6.1 now follows from the Ikehara Wiener Tauberian Theoren. In particular, we
can show that

1. η(s) is analytic for Re(s) > δ;

2. η(s) has a simple pole at s = δ, with residue C > 0;

3. η(s) has no poles s = δ + it where t 6= 0.

and then deduce from the Ikehara Tauberian Theorem (Theorem 6.1) that

π(t) ∼ Ctδ as t→ +∞.

5 Properties of the transfer operator

Returning to properties of the operators Ls, we first want to explain how the functions d(z, s)
can be expressed in terms of periodic points. Key to this is the following.

Lemma 5.1. Let T : X → X be the expanding Cω map. We can write

tr(Lns ) =
∑
Tnx=x

|(T n)′(x)|s

1− ((T n)′(x))−1
.

Proof. We will follow the method used in [45]. We will consider the case n = 1, the other
cases being similar. Let Tjxj = xj be fixed points of contractions Tj : X → X (and thus
fixed points of T : X → X). We can write

tr(Ls) = tr(Ls,j)

where
Ls,jw(x) = w(Tjx)|T ′j(x)|s.

For each j consider eigenvalue equation

Ls,jw(x) = λw(x)

with eigenvalue λ and evaluate at x = xj. If w(xj) 6= 0 then λ = |T ′j(xj)|s. If w(xj) = 0 then
differentiate again:

w′(Tjx).T ′j(x).|T ′j(x)|s + w′(Tjx).T ′j(x).
∂

∂x
|T ′j(x)|s = λw′(x).

We can evaluate this at x = xj:

w′(xj).T
′
j(xj).|T ′j(xj)|s = λw′(xj).
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If w′(xj) 6= 0 then λ = T ′j(x).|T ′j(x)|s, etc. Proceeding in the same way: For each k ≥ 0,

λ = (T ′j(x))k.|T ′j(x)|s

is an eigenvalue for Ls,j. Then by summing over k ≥ 0 we have the trace:

tr(Ls,j) =

(
∞∑
n=1

(T ′j(xj))
k

)
|T ′j(xj)|s =

|T ′j(xj)|s

1− T ′j(xj)
.

Thus

tr(Ls) =
∑
j

|T ′j(x)|s

1− T ′j(xj)
=
∑
j

|T ′(xj)|−s

1− T ′(xj)
.

5.1 Strategy for super-exponential bounds

We can associate to the operators a sequence of real numbers defined as follows.

Definition 5.2. We define the approximation numbers by

sn(Ls) = inf{‖Ls −K‖ : K = operator with rank n}.

for n ≥ 1.

This definition makes sense for any bounded linear operator. However, the approximation
numbers are crucial to getting bounds on the zeta functions [8].

5.1.1 Bounds on the approximation numbers

We can now explain the ideas behind the first ingredient. Let us replace A = A(U) by
analytic functions which are square integrable, so as to have a Hilbert space. We then write

〈f, g〉 =

∫
U

fgd(vol).

Lemma 5.3. We can bound sn(Ls) ≤ C(s)θn+1 where

C(s) =
‖Ls‖A(U)→A(U+)

1− θ

where:

1. U+ is a disk centred at 0 of radius r; and

2. U is a disk centred at 0 of radius θr.
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Proof. For w ∈ A(U) we write

Lsw(z) =
∞∑
k=0

lk(w)zk ∈ A(U+).

Since {zk}∞k=0 are orthogonal on A(U+):

〈Lsw, zk〉A(U+) = lk(w)‖zk‖A(U+).

Thus by Cauchy-Schwartz:

|lk(w)| ≤
‖Lsw‖A(U+)

‖zk‖A(U+)

(7.1)

We can define a finite rank approximation by

L(n)
s w(z) =

n∑
k=0

lk(w)zk ∈ A(U+), n ≥ 1.

Then

‖Ls − L(n)
s ‖A(U) ≤

n∑
k=n+1

|lk(w)|.‖zk‖A(U) ≤
∞∑

k=n+1

‖Ls‖A(U+)

‖zk‖A(U)

‖zk‖A(U+)

using (7.1). But we can compute

‖zk‖A(U+) =

√
π

k + 1
rk and ‖zk‖A(U) =

√
π

k + 1
θkrk

and |Ls‖A(U+) ≤ ‖Ls‖A(U)→A(U+).‖w‖A(U). Thus

sn(Ls) ≤
‖Ls‖A(U)→A(U+)

1− θ
θn+1.

This completes the proof.

5.1.2 Euler bounds

We next give some simple, but useful, inequalities (see [26]). The first gives a simple but
effective estimate on the terms in the tail of the series.

Lemma 5.4 (Euler bound). For sn ≤ Cθn and cm defined by

∞∏
n=0

(1 + zsn) = 1 +
∞∑
m=1

cmz
m, z ∈ C

we can bound |cm| ≤ B.Cmθm(m+1)/2 and where B =
∏∞

n=1(1− θn) < +∞.
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Proof. Since cm =
∑

i1<···<im si1 · · · sim , for m ≥ 1, we can bound

|cm| ≤ Cm
∑

i1<···<im

θi1+···+im

We can prove by direct evaluation that

∑
i1<···<im

θi1+···+im =
θm(m+1)/2

(1− θ)(1− θ2) · · · (1− θm)

by induction.

We can also consider a bound on the coefficients in the power series for det(I − zLs). By
Cauchy’s theorem, if

det(I − zLs) = 1 +
∞∑
n=1

bnz
n

then for |z| = r we have

|bn| =
∣∣∣∣ 1

2πi

∫
|ξ|=r

det(I − ξLs)
ξn+1

dξ

∣∣∣∣ ≤ 1

rn
sup
|ξ|=r
| det(I − ξLs)|.

5.1.3 Bounds on the coefficients

We observe the next bound relating the approximation numbers {sn} to the eigenvalues
{λn}.

Lemma 5.5. If |λ1| ≥ |λ2| ≥ |λ3| ≥ · · · then∣∣∣∣∣
n∏
j=1

λj

∣∣∣∣∣ ≤
n∏
j=1

sj.

We also need the following standard inequality.

Lemma 5.6 (Hardy-Littlewood-Polya). Let {an}, {bn} be non-increasing sequences of real
numbers, such that:

1.
∑n

j=1 aj ≤
∑n

j=1 bj, for n ≥ 1; and

2. Φ : R→ R is convex,

Then
∑n

j=1 Φ(aj) ≤
∑n

j=1 Φ(bj).

We can make use of the Hardy-Littlewood-Polya lemma as follows. Let

aj = log |λj|, bj = log |sj|, and Φ(x) = log(1 + rx).
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If |z| = r then

| det(I − zLs)| ≤
∞∏
j=1

(1 + |z|λj)

≤
∞∏
j=1

(1 + |z|sj) (by Lemma 3 and Lemma 4)

≤ 1 +B
∞∑
m=1

(|z|C)mθm(m+1)/2 (by Lemma 2)

Let r = r(n) = θ−n/2/C then

(Cr)mθm
2/2 ≤

{
θn

2/2 for 1 ≤ m ≤ [n/2]

(θn/2)m for m > [n/2].

Thus we can bound

|bn| ≤ [n/2]θn
2/2 +

θn
2/4

1− θn/2
= O(Θn2/2)

for any 0 < Θ < 1.

6 Anosov flows and geodesic flows

We can apply the previous ideas on zeta functions to the particular case of properties of
Anosov flows. This includes the important classical case of geodesic flows on negatively
curved surfaces. The main distinction is that we prefer to work in the setting of C∞ systems
rather than Cω. This requires modifying the space of functions upon which the transfer
operates (and ultimately changing the operator itself).

In particular, we can consider for Anosov flows two types of problems: rates of mixing
and error terms in counting closed orbits. We begin with the definition [2].

Let φt : M →M be C∞ flow on compact manifold.

Definition 6.1. We call φt : M → M Anosov if there exists a Dφ-invariant splitting
TM = E0 ⊕ Es ⊕ Eu such that:

1. E0 is a one dimensional bundle tangent to the flow; and

2. There exist C, λ > 0 such that

‖Dφt|Es‖ ≤ Ce−λt and ‖Dφ−t|Eu‖ ≤ Ce−λt

for t ≥ 0.

We recall the classical example of an Anosov flow on a three dimensional manifold pro-
vided by geodesic flows on surfaces.
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Example 6.2 (Classic example). Let M = SV be the three dimensional unit tangent bundle
for a compact surface V of curvature κ < 0. Given v ∈ M we can consider the unique unit
speed geodesic γv : R → V with γ̇v(0) = v. We the define the geodesic flow φv : M → M by
φt(v) = γ̇v(t).

Let us henceforth concentrate on the particular case of geodesic flows, for which we can
prove stronger results. We shall consider the rate of mixing, and in a later section described
the closely related asymptotic estimates on the number of closed orbits (or equivalently
closed geodesics).

Let m be the Liouville (or SRB) measure for φ. This is the unique invariant measure
equivalent to the volume on SV = M . As is well known the geodesic flow is ergodic with
respect to m. However, it is also known that the flow is (strong) mixing with respect to m.
We recall a useful definition.

Definition 6.3. Let F,G : M → R be C∞ and define the correlation function by

ρ(t) :=

∫
F ◦ φtGdm−

∫
Fdm−

∫
Gdm

for t ≥ 0.

The flow is strong mixing because ρ(t) → 0 as t → +∞ for any C∞ functions F,G (or
equivalently, for F,G ∈ L2(m)).

However, a much stronger result is known on the speed of convergence to zero of ρ(t).
This is presented as the following theorem, which deals with the first of two intimately related
properties [21].

Theorem 6.4 (Dolgopyat : Exponential mixing). Let φt : M → M be the geodesic flow
on a compact surface of (variable) negative curvature. There exists ε > 0 such that for all
F,G ∈ C∞(M) there exists C > 0:

|ρ(t)| ≤ Ce−εt, for t ≥ 0

This famous result is due to D. Dolgopyat and is now 20 years old, but because of
the technical nature of the proof it still remains a little mysterious to many people. A
more geometric formulation, which works better for geodesic flows on higher dimensional
manifolds, was given by C. Liverani [41].

We shall briefly describe the original proof, which uses Markov sections and transfer op-
erators in a C1 setting. Although this particular approach is perhaps a little old fashioned it
fits in well with our preceding analysis of iterated function schemes. We will also concentrate
on the three dimensional case for simplicity. The choice of Markov sections for the flow is
then done by analogy with the well known approach of Adler-Weiss to constructing Markov
partitions for linear hyperbolic total automorphism [1], [57]. There one uses the stable and
unstable manifolds for a fixed point to give the boundaries of the Markov partition and for
geodesic flows one uses the weak stable and unstable manifolds associated to a closed orbit
for the flow.
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6 ANOSOV FLOWS AND GEODESIC FLOWS

Step 1: Let dimM = 3 and let τ be a closed orbit for φ. We can associate the weak stable
(unstable) manifolds for τ , which are two dimensional immersed sub manifolds

W s(τ) = {x ∈M : d(φtx, τ)→ 0 as t→ +∞}

W u(τ) = {x ∈M : d(φ−tx, τ)→ 0 as t→ +∞}.
(These are weak stable and unstable manifolds for the closed orbit τ .) In practice we will
only want to consider parts of W s(τ) and W u(τ) which are a bounded distance to τ (along
the submanifolds) to the original orbit τ . We also introduce sections Si transverse to the
flow (with boundaries contained in W s(τ) and W u(τ)) which help divide M into flow boxes
Pi, say, for i = 1, · · · ,m. We can view these as parallelepipeds of the form

Pi = {φtw : 0 ≤ t ≤ ri(w)}, i = 1, · · · , n,

where ri : Si → R+.

Step 2: We can now associate a discrete map. This is first achieved by identifying the flow
boxes along the the leaves of a suitable foliation. More precisely, we can associate the one
dimensional stable manifolds:

W ss(x) = {y ∈M : d(φtx, φty)→ 0 as t→ +∞}

for each x ∈ M . The following classical result helps explain why we can work in the C1

setting.

Lemma 6.5 (Hopf, Hirsch-Pugh). For geodesic flows on surfaces the family {W ss(x)}x∈M
gives a C1 foliation of M [32].

Step 3: We can now introduce an associated C1 one dimensional expanding map. “Identify-
ing” sections Si along stable manifolds gives a one dimensional C1 manifold or “interval”.

We begin with the natural projection Pi → Si from each three dimensional parallelepiped
to the corresponding two dimensional section along the orbits of the flow. We also have the
following useful trick to relate the C1 nature of the foliations to the sections [61].

Lemma 6.6 (after Ruelle). We choose the sections Si so that they (and thus the paral-
lelepipeds Pi) are foliated by strong stable manifolds.

The Poincaré map between sections gives a C1 map T : ∪iIi → ∪iIi. The return (or
transition) time between sections gives C1 function r : ∪iIi → ∪iIi → R+

Step 4: We can construct invariant measures (following Bowen-Ruelle). Let ψ : I → R be a
Hölder continuous function (used as a potential to associate a Gibbs measure).

Definition 6.7. We can associate the Gibbs measure (or Equilibrium state) µψ:

h(µψ) +

∫
ψdµψ = sup{h(µ) +

∫
ψdµ : µ = T -invariant } =: P (ψ)

where P (ψ) is the pressure function for ψ.
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6 ANOSOV FLOWS AND GEODESIC FLOWS

The measures µφ correspond to flow invariant measures on M by a simple construction [14]:

1. We can extend µψ on I to µ̄ψ on ∪iSi (the natural extension);

2. We can extend µ̄ψ to a φ-invariant measure m on M by

dm =
dµ̄ψ × dt∫
rdµ̄ψ

where m(∂Pi) = 0.

Of course, we can consider particular choices of Hölder continuous potentials. These give
rise to different invariant measures for the geodesic flow.

Example 6.8. Let ψ : I → R.

1. If ψ(x) = − log |T ′(x)| ∈ Cβ(I) then m is the Liouville measure; and

2. If ψ(x) = −hr ∈ C1(I) them m is the measure of maximal entropy (or Margulis
measure).

Step 5: We can now introduce transfer operators. Let C1(I) be the Banach space of C1

functions w : I → R with norm ‖w‖ = ‖w‖∞ + ‖w′‖∞.
If ψ : I → R is Cα then we can understand the properties of the measures µφ (and thus of

the corresponding measure µφ and flow invariant measure m) through the spectral properties
of an associated transfer operator.

Definition 6.9. Given a C1 function ψ : I → R we can associate the transfer operator:
Lψ : C1(I)→ C1(I) by

Lψw(x) =
∑

y : Ty=x

eψ(y)w(y).

We can now describe the properties of this operator [62], [13], [48].

Theorem 6.10 (Ruelle). Let ψ : I → R be C1.

1. Lψ has a (maximal) positive eigenvalue eP (ψ) (and a positive eigenvector hψ).

2. The dual operator L∗ψ : C1(I)∗ → C1(I)∗ (defined by L∗ψν(w) = ν(Lψw) for ν ∈ C1(I)∗

and w ∈ C1(I)) has an eigenmeasure νψ, i.e., L∗ψνψ = eP (ψ)νψ.

3. If supx∈I 1/|T ′(x)| < θ < 1, say, then Lψ : C1(I)→ C1(I) has only isolated eigenvalues
outside the disk of radius θeP (ψ).

Recall that in the previous context of Cω functions the operator Lψ was nuclear, and
thus had countably many eigenvalues. But since we now have to work in the C1 category
part 3 of the above result shows there are more eigenvalues. However, Part 1 of the theorem
allows us to make a particularly useful simplification [48].
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Corollary 6.11 (Normalization). Given ψ ∈ C1(I) we define ψ = ψ+ log hψ − log hψ ◦ T −
P (ψ) then

1. Lψ1 = 1, the constant function with value 1;

2. L∗
ψ
νψ = νψ, and then νψ = µψ, the Gibbs measure for ψ.

Step 6: Finally, we have a strategy for proving “statistical properties”, such as exponential
mixing, for the original flow. Let µ be a φ-invariant Gibbs measures and let F,G ∈ C∞(M)
then we associate the Laplace transform:

ρ̂(s) =

∫ ∞
0

e−stρ(t)dt, s ∈ C

which converges for Re(s) > 0. We want to apply the following result to convert properties
of ρ̂(s) into bounds on ρ(t) [60].

Theorem 6.12 (Paley-Wiener). Assume we can show ρ̂(s) has an analytic extension to
Re(s) ≥ −ε0, say and

sup
−ε0≤δ≤0

∣∣∣∣∫ ∞
0

ρ̂(δ + it)dt

∣∣∣∣ < +∞,

for some ε0 > 0. Then for any 0 < ε < ε0 there exists C > 0 such that |ρ(t)| ≤ Ce−εt, for
t ≥ 0.

What remains is to modify the transfer operator to include the complex variable s ∈ C
and to write ρ̂(s) in terms of this operator. We will discuss this in the next section.

7 The complex transfer operator

Given C1 functions ψ, r : I 7→ R and s ∈ C we can define a complex transfer operator
Lψ−sr : C1(I,C)→ C1(I,C) by

Lψ−srw(x) =
∑
Ty=x

e(ψ−sr)(y)w(y).

Remark 7.1. When s = 0 this reduces to the usual “real” operator.

Usually it is convenient to assume Lψ−δr1 = 1 where 1 denotes the constant function
1 (and then L∗ψ−σrµψ−σr = µψ−σr is a Gibbs measure for ψ − σr). In fact, we can usually
assume this without loss of generality, since by Theorem 6.10 we can choose an eigenfunction
hψ (i.e., hψ = e−P (ψ)Lψhψ with hψ > 0) and then replacing ψ by ψ− hψ + log hψ ◦ σ− P (ψ)
gives the required identity.

The following is a partial analogue of Theorem 6.10 for the operator Lψ−sr [50], [48].

Theorem 7.2 (Complex Ruelle Operator Theorem). Let s = σ + it. Then

1. The spectral radius satisfies ρ(Lψ−sr) ≤ eP (ψ−σr).
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7 THE COMPLEX TRANSFER OPERATOR

2. Lψ−sr : C1(I,C)→ C1(I,C) has only isolated eigenvalues outside θeP (ψ−σr).

We can now try to relate the transfer operator Lψ−σr to the Laplace transform ρ̂(s). The
spectra properties of the operator then lead to properties of the complex function.

Claim 7.3. We have the following properties.

1. There exists ε > 0 such that ρ̂(s) has a meromorphic extension to Re(s) > −ε;

2. If s = s0 is a pole for ρ̂(s) then 1 is an eigenvalue for Lψ−σ0r.

We briefly recall the idea of the proof of the claim. We want to write

ρ̂(s) =

∫
I

fs

(
∞∑
n=0

Lnψ−σrg−s

)
dµ(x)

where
∑∞

n=0 Lnψ−σr = (1 − Lψ−σr)−1 for suitable functions fs, g−s. If we can replace the
functions F and G by functions which are constant on stable leaves in the parallelepiped
then we could associate

F 7→ fs(x) =

∫ r(x)

0

e−stF (x, t)dt ∈ Cα(I,C)

and

G 7→ g−s(x) =

∫ r(x)

0

estF (x, t)dt ∈ Cα(I,C).

The justification for this comes from a result of Ruelle.
All of the above framework was in place in the 1980s. However, it took another decade

for this to be used to deduce exponential decay of correlations.
To apply Paley-Wiener theorem we need control on the eigenvalues of Lψ−σr (i.e., poles

of ρ̂(s)). This is achieved by the following famous result of Dolgopyat [21].

Theorem 7.4 (Dolgopyat). There exists ε > 0 and 0 < ρ < 1 so that for s = σ + it:

1. Lψ−sr : C1(I,C) → C1(I,C) (or Lψ−sr : Cα(I,C) → Cα(I,C) ) has spectral radius
ρ(Lψ−sr) ≤ ρ whenever σ > −ε and t > ε; and

2. there exists C > 0 and A > 0 so that whenever σ > −ε, |t| > ε and

n = k[A log |t|] + l, for k ≥ 0, 0 ≤ l ≤ [A log |t|]− 1

then ‖Lnψ−sr‖ ≤ Cρk[A log |t|].

Having outlined the way in which properties of the transfer operator leads to the dynam-
ical properties of the geodesic flow, the following question remains.

Question: What properties does the geodesic flow have which are needed for the result? How
do they filter through to the transfer operator?

The geometric features of geodesic flow can be encoded into the markov sections and
their collapsed versions.
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8 UNIFORM BOUNDS ON TRANSFER OPERATORS

8 Uniform bounds on transfer operators

In this section we outline the key ideas in the proof of Dolgopyat’s estimate.

8.1 A sketch of the proof

We want to define a C1 function ∆ : I → R of the form ∆(x) = r(y) − r(z) where y, z are
two of the preimages of x under the expanding map, i.e., Ty = Tz = x.2

We then have a function defined locally (in a neighbourhood of x0 with distinct preimages
y0, z0, i.e., T (y0) = T (z0) = x0) by

∆(x) = (r(y)− r(z))− (r(y0)− r(z0)).

We can assume that I 3 x 7→ ∆(x) is C1 and there exists C > 0 such that locally we can
write

1

C
≤ ∆(x)

(x− x0)
≤ C.

This essentially all that is required from the flow.

Sketch proof of Dolgopyat’s theorem. We want to show that Lψ−sr is a C1 -contraction
Actually, this is achieved by series of steps:

(i) showing that Lψ−sr is a L1-contraction;

(ii) showing that Lψ−sr is a L1-contraction implies it is a C0-contraction; and

(iii) showing that Lψ−sr is a C0-contraction implies it is a C1-contraction (or Cα-contraction).

This is a form of “bootstrapping argument” whereby we improve the regularity step by step.
We will consider each of these steps (in reverse order) where w ∈ C1(I):

Sketch of part (iii). Assume we already have a C0 estimate : There exists 0 < θ0 < 1,

‖Lnw‖∞ = O(θn0 ). (10.1)

Then we use the following simple bound.

Lemma 8.1 (after Doeblin-Fortet, Lasota-Yorke). There exists C > 0 and ‖1/T ′‖∞ < θ < 1
such that

‖Lnψ−srw‖C1 ≤ C|t|‖w‖∞ + θn‖w‖C1 (10.2)

for all n ≥ 1, where s = σ + it.

Applying (10.2) twice we can write

‖L2n
ψ−srw‖C1 = ‖Lnψ−sr(Lnψ−srw)‖C1 ≤ C|t|‖Lnψ−srw‖∞ + θn(C|t|‖w‖∞ + θn‖w‖C1)

where ‖Lnψ−srw‖∞ = O(θn0 ) by (10.1) and (C|t|‖w‖∞+θn‖w‖C1) is uniformly bounded. Thus

‖L2n
ψ−srw‖C1 = O(|t|θn1 )

2In practice, we may need to take higher iterates of T
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8.1 A sketch of the proof 8 UNIFORM BOUNDS ON TRANSFER OPERATORS

where θ1 = max(θ, θ0).

Sketch of part (ii). Assume we had L1- estimates

‖Lnψ−srw‖L1 =

∫
|Lnψ−srw|µσ = O(θn2 ) (10.3)

where Lψ−σrµσ = µσ is the Gibbs measure for ψ − σr.
By Theorem 6.10 (i.e., the existence of a spectral gap for Lψ−σr) there exists 0 < θ3 < 1

such that

‖Lψ−σrw −
∫
wdµσ‖∞ = O(θn3 ).

Thus for n ≥ 1:

‖L2n
ψ−σrw‖∞ = ‖Lnψ−σr(Lnψ−σrw)‖∞ ≤

∫
|Lnψ−σrw|dµσ +O(θn3 )

and using (10.3) we get that ‖L2n
ψ−σrw‖∞ = O(θn4 ) where θ4 := max{θ2, θ3}.

Finally, “all” that remains is an argument to set L1-convergence (somehow using the
properties of ∆(x)).

Sketch of part (iii). The basic idea is that the operator contracts in the L1 norm because of
cancellations that occur because of differences in the arguments that can occur in the various
terms arising from Lψ−sφ. The important thing is that this should be uniform in t = |Im(s)|
to ensure that the Laplace transform has an analytic extension to a uniform strip.

More precisely, we can summarise the idea as follows.

(a) Lψ−σrw(x) contains contributions from two terms

eψ(y)−σr(y)e−itr(y) + eψ(z)−σr(z)e−itr(z)

with Ty = Tz = x and where the difference in the arguments of the two terms is obviously
t(r(y)− r(z)) = t∆(x) (mod 2π).

(b) In particular, when π
2
≤ t∆(x) ≤ 3π

2
(mod 2π) a little trigonometry shows that

|Lψ−srw(x)| ≤ β|Lψ−σrw(x)|

for some 0 < β < 1 (which is independent of t).

(c) For each sufficiently large t we can divide up I into a union of (small) subintervals {Ii}
of length |Ii| � 1

|t| consisting of the following.

(i) Good intervals. These are intervals Ii for which x ∈ Ii implies that t∆(x) ∈ [π/2, 3π/2].
Thus by (b) above, if Ii is a good interval and x ∈ Ii then we have that

|Lψ−srw(x)| ≤ β|Lψ−σrw(x)|,

and

(ii) Bad intervals. These are simply the compliment of the good intervals and here we just
use the trvial inequality,

|Lψ−srw(x)| ≤ |Lψ−σrw(x)|
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8.2 More details on the proof 8 UNIFORM BOUNDS ON TRANSFER OPERATORS

A natural question to ask at this stage is: What do we use about µ and what properties does
it have which leads to a uniform contraction? We will now address this.

(d) Although as t increases one expects more good (and bad) intervals the total measure of
their union is (uniformly) bounded away from zero. In particular, the uniform contractions
on the good intervals then lead to a uniform contraction in the L1-norm.

To see this crucial feature, we can compare the measures of each good interval Ii and one
of its neighbouring bad intervals Ii+1, say. The important property about the measure is that
it has the “doubling property”, they have comparable measures, i.e, there exist A,B > 0
such that providing |t| is sufficiently large we can bound A ≤ µ(Ii)/µ(Ii+1) ≤ B for all such
intervals Ii and Ii+1.

We can therefore conclude that providing t is sufficiently large we can bound

|Lψ−srw(x)| ≤ β|Lψ−σrw(x)|

on a set of uniformly bounded (from below) measure. This implies contraction in L1-norm.
This completes our sketch of the basic argument of Dolgopyat. However, at the risk of

obscuring the basic idea with too much detail, let us flesh out part (d) a little more.

8.2 More details on the proof

A more elaborate account of part (d). For notational convenience we denote

‖h‖ = max{‖h‖∞,
‖h′‖
|t|
}

and consider two cases - one very easy, and the other less so.

(I) Easy case. Assume 2C|t|.|h|∞ ≤ |h′|∞ where C is the constant from Lemma 8.1. We can
fix 1

2
< η < 1 and then choose k such that 1

2
+ θk < η. Then by Lemma 8.1 we have that

1

|t|
|(Lkh)′|∞ ≤ C|h|∞ +

θk

|t|
≤ (1/2 + θk) ≤ η‖h‖

by hypothesis and definition of ‖ · ‖, i.e.. ‖ · ‖ contracts (in this case).

This still leaves the other case.

(II) Difficult case. Assume 2C|t||h|∞ ≥ |h′|∞. We want to choose a sequence of C1 functions
un : I → R, n ≥ 0, such that the following properties hold

1. 0 ≤ |vn| ≤ un for vn := Lnψ−srh, n ≥ 1;

2. There exists 0 < β < 1 with ‖un‖2 ≤ βn, n ≥ 1;

3. ‖u
′
n

un
‖∞ ≤ 2C|t|, n ≥ 1; and

4. ‖ v
′
n

un
‖∞ ≤ 2C|t|, n ≥ 1.
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8.2 More details on the proof 8 UNIFORM BOUNDS ON TRANSFER OPERATORS

The functions un have the advantage over vn of being real valued. The existence of such
functions un comes from an iterative construction. Let u0 = 1, say. Assume un has been
constructed. We need a “calculus lemma” relating un to vn.

Lemma 8.2 (Calculus Lemma). There exists 0 < η < 1, ε > 0, δ > 0 such that for all
x0 ∈ I there exists a nearby interval [x1− δ/|t|, x1 + δ/|t|] with |x1− x0| ≤ ε/|t| such that we
for all x in this interval we have either

|e−sr(y)vn(y) + e−sr(z)vn(z)| ≤ ηe−σr(y)un(y) + e−σr(z)un(z)

or
|e−sr(y)vn(y) + e−sr(z)vn(z)| ≤ ηe−σr(z)un(z) + e−σr(y)un(y)

We can choose (reasonably good) intervals

[x0, x1], [x2, x3], · · · [x2n−2, x2n−1].

upon which one of the two inequalities in Lemma 8.2 hold. We then define the sequence of
functions iteratively by

un+1(x) = Lψ−δr(unχ)(x)

where

χ(x) =


η if x2n − x2n+1−x2n

4
< x < x2n + x2n+1−x2n

4

1 if x2n+1 ≤ x ≤ xsn+2

a smooth interpolation inbetween

with |χ|∞ ≤ 1 and |χ′|∞ ≤ E|t|χ(x). By construction we then have that

‖u′n+1‖∞ = ‖(Lψ−σr(unχ))
′‖∞ ≤ C|t|‖(unχ)‖∞ + θ‖(unχ)′)‖∞

and by the chain rule

|(unχ)′)(x)| ≤ |u′n(x)|χ(x) + un(x).|χ′(x)| ≤ (2C|t|un(x))χ(x) + un(x)(E|t|χ(x))

Combining these bounds we have |u′n+1(x)| ≤ 2C.|t|.|un+1(x)| ( providing 0 < θ < 1 is
sufficiently small) i.e., 3. holds for un+1. Moreover,

|v′n+1(x)| = |(Lψ−σrvn)′(x)|
≤ C|t|Lψ−σr|vn(x)|+ θLψ−σr|v′n(x)|
≤ C|t|Lψ−σrun(x) + θLψ−σru′n(x)

≤ 2C|t|un+1(x)

i.e., 4. holds for un+1.
To establish 2. it suffices to show that there exists 0 < β < 1 such that for all n ≥ 0:

‖un+1‖2 ≤ β‖un‖2. Moreover, this is (essentially) what we need to do to complete the proof
of the theorem since then

‖Lnψ−σrh‖2 ≤ ‖un‖2 ≤ βn
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8.2 More details on the proof 8 UNIFORM BOUNDS ON TRANSFER OPERATORS

for n ≥ 1. To this end, observe that if x ∈ [x2i+1, x2i+2] then

u2
n+1(x) = (Lψ−σr(χun)(x))2 ≤ (Lψ−σr(χ2)(x))(Lψ−σr(u2

n)(x))

where
Lψ−σr(χ2)(x) ≤ β0 < 1.

Thus (on these good intervals)∫ x2i+2

x2i+1

u2
n+1(x)dν(x) ≤ β0

∫ x2i+2

x2i+1

Lψ−δru2
n(x)dν(x)

and we can trivially bound (on the bad intervals)∫ x2i+1

x2i

u2
n+1(x)dν(x) ≤

∫ x2i+1

x2i

Lψ−δru2
n(x)dν(x)

But for x′ ∈ [x2i, x2i+1] and x′′ ∈ [x2i+1, x2i+2] we have that

un+1(x′)2

un+1(x′′)2
≤ exp

(
2

∫ x′′

x′
|(log un+1)′(x)|dx

)
≤ exp (2|x2i+2 − x2i|.2C|t|) ≤ B

say.
Moreover, ∫ x2i+1

x2i
u2
ndν∫ x2i+2

x2i+1
u2
ndν
≤ B

(
sup
i

{
ν([x2i, x2i+1])

ν([x2i+1, x2i+2])

})
≤ A

say. Thus ∫
u2
n+1dµ =

∑
i

β0

∫ x2i+1

x2i

u2
ndν +

∫ x2i+2

x2i+1

u2
ndν ≤ β2

∫
u2
ndν

for some 0 < β < 1.
Of course this method seems a little complicated and, perhaps, rather restricted in its

application. Thus begs the question:

Question: More generally, how useful are these ideas?

In fact, this basic method has been used in several different settings. For example:

(i) Baladi-Vallée used similar results on transfer operators to study statistical properties of
(Euclidean) algorithms [6].

(ii) Avila-Gouëzel-Yoccoz showed exponential mixing for Teichmüller geodesic flows [5].

Remark 8.3 (Teichmüller flows). Let V be a closed surface V . Let M be the space of
Riemann metrics g (Moduli space). Let ρ be the Teichmüller metric onM with normalised
volume (vol)ρ.

Let F,G : SM→ R be smooth (compactly supported) functions then

ρ(t) =

∫
FφtGd(vol)ρ −

∫
Fd(vol)ρ

∫
Gd(vol)ρ
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9 COUNTING CLOSED GEODESICS

tends to zero exponentially fast as t→ +∞.
The method is based on modelling by a symbolic flow. A simpler example would be when

V = T2 then the modular surfaceM equal to H2/PSL(2,Z) and the dynamics corresponds
to (the natural extension of) the Gauss map T : (0, 1) → (0, 1) defined by T (x) = 1/x
(mod 1) and a roof function r : (0, 1) → R defined by r(x) = −2 log x and the volume
d(vol)ρ = Cdxdt/(1 + x).

Remark 8.4 (Weil-Petersson flows). Another metric onM is the Weil-Petersson metric which
has a nice dynamical interpretation (after McMullen [47]). For a family gλ ∈ M of metrics
λ ∈ (−ε, ε) we can associate the geodesic flows φgλt : SM→ SM. Each can be modelled by
a suspension of a sub shift of finite type σ : Σ → Σ and a family of Hölder roof functions
rλ : Σ → R. If we write rλ = rλ0 + (λ − λ0)ṙλ0 + o(λ − λ0) corresponding to the change in
metric gλ = gλ0 + (λ − λ0)ġλ0 + o(λ − λ0) then we can write the Weil-Petersson metric (or
pressure metric) as

‖ġλ0‖WP =
∂2

∂t2
P (−r0 + tṙλ0)|t=0 > 0

The ergodicity and mixing properties of the geodesic flow with this metric studied by Burns-
Masur-(Matheus)- Wilkinson [17], [18].

(iii) Another viewpoint on moduli spaces is to consider the space of (faithful) representa-
tions R : π1(V ) → PSL(2,R). Bridgeman-Canary-Labourie-Sambriano generalised this by
considering representations R : π1(V ) → PSL(d,R) (d ≥ 2), sometimes called higher Te-
ichmüller theory. One of their interesting conributions was a generalisation of the pressure
metric to these more general representations [16].

Remark 8.5. More generally, one can make weaker assumptions on hyperbolic flows φt : X →
X which lead to small analytic extensions and weaker mixing results [51], [22].

9 Counting closed geodesics

The same basic method leads to error terms in counting functions for the number of closed
orbits (or equivalently closed geodesics) for the geodesic flow.

One can improve the famous Margulis estimate for lengths of closed geodesics γ:

Card{γ : l(γ) ≤ T} ∼ ehT

hT
as T → +∞

where h is the topological entropy of the time one flow φt=1 [42], [43].
The improvement is the exponential error term, once we get the correct principal term:

Theorem 9.1 (Counting closed geodesics). Let φt : M → M be the geodesic flow on a
compact surface of (variable) negative curvature. There exists ε > 0,

Card{γ : l(γ) ≤ T} =

∫ ehT

2

1

log u
du+O(e(h−ε)T ) as T → +∞

where ∫ ehT

2

1

log u
du ∼ ehT

hT
as T → +∞.
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A companion result to the exponential mixing for the geodesic flows is establishing es-
timates exponential error terms on a suitable counting function. In place of the Laplace
transform of the correlation function consider another complex function: the Selberg zeta
function

Z(s) =
∞∏
n=1

∏
γ

(1− e−(s+n)l(γ))−1, s ∈ C.

This converges for Re(s) > h, where h is the topological entropy of the geodesic flow. We
can consider the logarithmic derivative

∂

∂s
log ζ(s) =

ζ ′(s)

ζ(s)
=
−1

s− h
+ A(s)

where A(s) is an analytic function for Re(s) > h− ε, say.
Using simple complex analysis we can relate∫

Re(s)=ε/2

Z ′(s)

Z(s)
ds

to π(T ) = Card{γ : l(γ) ≤ T} and deduce Theorem 9.1 using a straight forward analysis
borrowed from prime number theory [53].

We have formulated this in the context of compact surfaces V . However, the dynamical
approach is much more flexible.

Question: How can we generalise the Selberg zeta function?

Let us try to answer this question in the next two items.

(iv) Thin groups. Examples of “thin groups” are non-lattice subgroups of PSL(2,R). Let
us mention a recent result in this direction. Let Γ < PSL(2,Z) be a subgroup. Let γ0 ∈
PSL(2,Z/qZ) and let δ(Γ) = δ be the Hausdorff dimension of the Limit set. Bourgain-
Gamburd-Sarnak [10] estimated

Card{γ ∈ Γ : ‖γ‖ ≤ T, γ = γ0((mod q))} =
CT 2δ

CardPSL(2,Z/qZ)
+ “error term”

with an explicit error term. For 1
2
< δ ≤ 1 the proof uses the classical Laplacian. However,

for 0 < δ ≤ 1
2

the proof uses transfer operator techniques.

(v) Higher Teichmüller theory. Given a compact Riemann surface V with κ = −1 we recall
that the surface V can be written as H2/Γ where Γ are isometries of H2. A closed orbit
(or closed geodesic) then corresponds to a conjugacy class [g] in Γ− {e}. The length of the
closed orbit γ is then given by l(γ) = cosh−1(tr(g)/2). The Selberg zeta function for the
Riemann surface V can be written as

Z2(s) =
∞∏
n=0

∏
γ

(1− e−(s+n)l(γ)),

where s ∈ C. This has an analytic extension to C. One natural generalisation to Higher
Teichmüller Theory and representations in PSL(d,R) would involve R([g]) ∈ PSL(d,R).
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In the case of appropriate representation (in the so called Hitchen component) there exists
a largest eigenvalue el(g) of R([g]) [40] and we could again define the corresponding zeta
function by

Zd(s) =
∞∏
n=0

∏
γ

(1− e−(s+n)l(γ))

where s ∈ C. This too has a meromorphic extension to C.

10 The newer approach to transfer operators

The traditional approach to transfer operators we have described in the previous sections
has proved quite successful, but has several disadvantages:

i) We are often need to work with operators on Banach spaces of C1 or Hölder functions,
despite the smoothness of the diffeomorphism or flow (given by the regularity of the stable
foliations);

ii) This makes it particularly difficult to get a meromorphic extension to C (because of the
existence of the essential spectrum of the operator);

iii) It is very cumbersome to convert invertible systems to non-invertible systems just to
introduce some transfer operator (or averaging operator)

Therefore it is desirable to develop a new approach to overcome these. In the classical
approach, the invertible system T : X → X gives rise to a non-invertible system (with local
inverses Ti) which gives a transfer operator averaging over the pre images under Ti. However,
in the new approach the invertible system is again studied. But now one introduces a Banach
space of anisotropic distributions (generalised functions). The transfer operator is essentially
simple composition.

10.1 Banach spaces of anisotropic analytic distributions

Historically, the first step was for real analytic Anosov diffeomorphisms, and was initiated
by H. Rugh [58], [59]. Recall that we can divide T2 into elements of a Markov partition {Ti}
These have natural real analytic coordinates (xi, yi) ∈ Ti and let (xj, yj) = f(xi, yi) ∈ Tj.
Let us write

f(xi, yi) = (f1(xi, yi), f2(xi, yi))

Let Du
i , D

s
i be disks in the complexification of the coordinates.

(a) We can solve
f2(xi, φs(xi, yj)) = yj

to get a family of contractions
φs(xi, ·) : Du

j → Du
i

indexed by xi.

(b) We can then define a family of contractions φu(·, yj) : Ds
i → Ds

j indexed by yj by

φu(xi, yj) = f1(φs(xi, yj), yj).
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10.2 Banach spaces of anisotropic smooth distributions 10 NEWER APPROACH

(Note that if f was linear then the foliation would be straight lines then φs would also be
linear.)

(c) We can define an operator on distributions on ∪iTi by

Lψ(xi, yi) =
∑

j:A(i,j)=1

(
−1

2πi

)2 ∫
∂Dsj

∫
∂Duj

∫
∂Dsj

dxjdyjψ(xj, yj)× ∂2φs(xi, yj)

(xi − φu(xi, yj))(jj − φs(xi, yj), )

defined on the Banach space of analytic functions on
∑

j(C−Ds
j)×Du

j .
Remarkably, the operator is nuclear (and thus trace class) and has trace

trace(Ln) =
∑
fnx=x

1

| det(Dxfn − I)|
.

If we choose the coordinates

{z ∈ C : |z| > 1} × {w ∈ C : |w| < 1}

the elements of the Banach space can be expanded in terms of z−(n+1)wm where n,m ≥ 0.
This construction hints at the use of dual spaces, but still has lots of anachronisms (e.g.

Markov Partitions).

10.2 Banach spaces of anisotropic smooth distributions

More generally, we can consider the Gouëzel-Liverani approach for Anosov diffeomorphisms
[28]. The aim is to construct Banach spaces with built in duality (where the duality helps
to convert the expansion into a form of contraction).

Let Σ denote the C∞ embedded leaves of bounded length (of dimension dimEs) which
lie in a C0 cone field close to the stable bundles

C(X) = {vs ⊕ vu ∈ Es
x ⊕ Eu

x : ‖vs‖ ≤ K‖vu‖}

for some K > 0. One can fix p, q ≥ 1 Let h : M → R be C∞ and let Dph be the pth order
derivative (p ≥ 1). Let Cq

0(W ) = {φ : W → R be Cq functions which vanish on ∂W} for
W ∈ Σ then we define a semi-norm by:

‖h‖−p,q = sup
W∈Σ

sup
D

sup
φ∈Cq0 (W )

∫
W

Dphφd(V ol)

(a Sobolev-like inner product) and a norm by

‖h‖p,q = sup
0≤k≤p

‖h‖−p,q+k

We letBpq be the completion of C∞(M) with respect to ‖·‖pq (There was an earlier attempt at
constructing such Banach spaces due to Kitaev [35], but it is a little difficult to understand).
The transfer operator acting on this Banach space takes a simple form.
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Definition 10.1. The transfer operator takes the form L : Bpq → Bpq where

Lw =
1

det(Df) ◦ f−1
w ◦ f−1

i.e.,
∫
M
wu ◦ fd(vol) =

∫
M

(Lw)ud(vol) which corresponds to a change of variables.

We can consider a particularly simple case:

Example 10.2. When det(Df) = 1 then Lw = w ◦ f−1.

The main result that ultimately leads to a host of applications is the quasi-compactness
of this operator (with bounds on the essential spectral radius). The next lemma summarizes
the useful spectral properties of L on this space.

Theorem 10.3. Let 0 < θ < 1 be determined by the expansion and contraction rates. Then

1. L has a maximal positive eigenvalue (and eigenprojection µ corresponding to the SRB
measure), and

2. L : Bpq → Bpq has only isolated eigenvalues in |z| > θmin{p,q}.

Thus the larger one chooses p, q the more fine structure of the spectrum is revealed.
The proof of Theorem 10.3 parallels the way in which the quasi-compactness of the earlier
transfer operators was established. In particular, it is based on two ingredients, which we
formulate in the next two lemmas.

Lemma 10.4. The unit ball in Bp,q ⊂ Bp−1,q+1 is relatively compact.

Lemma 10.5 (Doeblin-Fortet/Lasota-Yorke). There exists A,B > 0 such that for all n ≥ 0

‖Lnw‖pq ≤ Aθmin{p,q}n‖w‖pq +B‖w‖p−1,q+1

Here ‖ · ‖p−1,q+1 is the“ weak norm” and ‖ · ‖p,q is the “ strong norm” .

We briefly describe the proof of the Fortet-Doeblin/Lasota-Yorke inequality in Lemma
10.5. To establish this, one needs to estimate terms like∫

W

Dk(Lw)φd(V ol)W

where 0 ≤ k ≤ p, φ ∈ C∞(W ). Let us try and explain the basic idea in the construction. Let
n >> 1 then since T−nW is “long” we can break it into standard size pieces: T−nW = ∪jWj.
Thus ∫

W

Dk(Lnw)φd(V ol) =
∑
j

∫
TnWj

Dk(Lnw)φd(V ol).

Writing D = Du+Ds, with derivatives Ds along W and Du “close” to the unstable direction
gives terms of the form∫

TnWj

Dl
sD

k−l
u (w ◦ T−n)φd(V ol) +O(‖w‖p−1,q+1)
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where the error term is the price of reordering the derivatives to start with Du. Integrating
by parts moves Dl

s to give ∫
TnWj

Dk−l
u (w ◦ T−n)Dl

sφd(V ol).

By a change of variables (using T n):∫
Wj

Dk−l
u (w)Dl

sφ ◦ T nd(V ol).

One contribution comes from k = p and l = 0 (the others dominated by ‖h‖p−1,q+1). Then∫
Wj

Dp
u(w)φ ◦ T nd(vol) = O(θpn‖w‖) = O(θpn‖w‖pq)

where Dp
u(w) contributes the scaling by θpn and φ ◦ T n and then we can sum over the

different combinations of derivatives. Note that the contribution from the term l = k = p is
O(θqn‖w‖).
Remark 10.6. Other Gibbs measures require modifying the norms fundamentally. A more
comprehensive discussion of related anisotropic Banach spaces can be found in [7].

10.3 Anosov flows

We want to move from the setting of Anosov diffeomorphisms to that of Anosov flows. To
study dynamical properties of Anosov flows we would like to use a similar approach to that
for the particular case of geodesic flows. Using the Butterly-Liverani approach for the Anosov
flows φt : M →M we can associate suitable Banach spaces Bpq [19]. The definition of these
Banach spaces for Anosov flows is analogous to that for Anosov diffeomorphisms. (We can
use Σ to denote a space of C∞ curves close to the strong stable leaves, i.e., lie in a C∞ cone
family).

We next define a suitable operator for the Anosov flow.

Definition 10.7. We can define operators Lt : Bpq → Bpq (t > 0) by

Ltw =
w ◦ φt

det(Dφ) ◦ φ−t

and the resolvent operator(s) R(z) : Bpq → Bpq defined

R(z)w =

∫ ∞
0

e−ztLtdt

for Re(z) > 0.

The next result describes the meromorphic extension of the resolvent [19]. Let λ > 0 be
the contraction rate for the Anosov flow.
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10.3 Anosov flows 10 NEWER APPROACH

Theorem 10.8. The operator R(z) is meromorphic for Re(z) > −λmin{p, q}.

In particular, recall that given an Anosov flow we can consider the correlation function

ρ(t) =

∫
F ◦ φrGdµ−

∫
Fdµ

∫
Gdµ

where F,G ∈ C∞(M) and µ is the invariant volume (or more generally the SRB measure);
and

We can deduce the following result on the meromorphic extension of the Lapalace trans-
form of the correlation function.

Theorem 10.9. The Laplace transform

ρ̂(s) =

∫ ∞
0

e−stρ(t)dt

is meromorphic for Re(s) > −λmin{p, q} (for all s ∈ C if we can choose p, q arbitrarily
large).

To study the periodic orbits for the Anosov flow φt : M → M we can associate a zeta
function (generalizing the previous definition for the special case of geodesic flows).

Definition 10.10. Given an Anosov flow we can formally define the zeta function

ζ(s) =
∏
τ

(1− e−sλ(τ))−1, s ∈ C

where τ denotes a closed orbit of least period λ(τ).

The meromorphic extension of this complex function is again based on the analysis of
the transfer operator. By choosing p, q sufficiently large:

Theorem 10.11. The zeta function ζ(s) for a C∞ Anosov flow is meromorphic for all
s ∈ C. The topological entropy h for the flow is a simple pole for ζ(s) [30].

We briefly describe the main steps in the proof.

Step 1 (The role of s): For t ≥ 0 consider Lt : C∞(M)→ C∞(M) defined by

Ltf(x) = f(φ−tx)

for f ∈ C∞(M). For s ∈ C consider Rs : C∞(M)→ C∞(M) defined by

Rsf(x) =

∫ ∞
0

e−stLtf(x)dt

(which converges for Re(s) > 0).

Step 2 (“Better” Banach spaces): We replace C∞(M) by a Banach space of distributions

B
(0)
pq and, more generally, construct Banach spaces B

(l)
p,q(M) for l = 0, · · · , dimM replacing

functions by l-forms. This gives families of operators: R
(l)
s : B

(l)
p,q → B

(l)
p,q defined by analogy

to R
(0)
s .

For simplicity, consider dimM = 3 and denote σ1 = h, where h is the topological entropy
of the flow and σ0 = σ2 = h−λ, where λ > 0 is again a bound on the exponential contraction.
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Proposition 10.12 (Spectrum of R
(l)
s : B

(l)
p,q → B

(l)
p,q). . Assume that Re(s) > σl (l = 0, 1, 2),

then
(a) the spectral radius ρ(R

(l)
s ) ≤ 1

Re(s)−σl
, and

(b) the essential spectral radius ρe(R
(l)
s ) satisfies

ρe(R
(l)
s ) ≤ 1

Re(s)− σl + λ[(k − 2)/2]

where k = min{p, q}.

Step 3: (The extension) We can associate to the resolvent a complex function (“the deter-
minant”) defined as follows;

Dl(s) = exp

(
−
∞∑
n=1

1

n
“trace”

(
(R(l)

s )n
))

where the “trace” is built out of the non-essential part of the spectrum. In particular, Dl(s)is
analytic for Re(s) > σl − λ[(k − 2)/2]. We can then write

ζ(s) =
D0(s)D2(s)

D1(s)

where the numerator gives zeros for Re(s) < h−λ. The denominator gives poles for Re(s) <
h.

In particular, the conclusion is that for Ck Anosov flows, the zeta function ζ(s) is mero-
morphic for Re(s) > h−λ[(k− 2)/2]. If the flow is actually C∞, then letting k → +∞ gives
a meromorphic extension of ζ(s) to C.

Remark 10.13. Previous results in the direction include:

a) Ruelle showed Corollary 10.11 under the additional assumption that the stable manifolds
are Cω [61].

b) Fried (adapting Rugh’s approach) showed the result assuming the flow is Cω [27].

Remark 10.14. There is another construction of Banach spaces by Dyatlov-Zworski using
microlocal analysis analysis [23].

For some geodesic flows there is also an analytic extension to a strip [30]. Let φt : M →M
be the geodesic flow for a compact manifold V with negative sectional curvatures. We recall
that V has ρ-pinched sectional curvatures (0 < ρ < 1) if for any point and any pair of vectors
in the unit tangent bundle the associated sectional curvature lies in the interval [−1,−ρ].

Theorem 10.15. For 1/9-pinched negative sectional curvatures, for all ε > 0, ζ(s) has a
non-zero analytic extension to h− ε < Re(s) < h. [30]

This leads to the following estimate on the number of closed orbits of period at most T .

Corollary 10.16. For 1/9-pinched negative sectional curvatures:

Card{τ : λ(τ ≤ T )} = li(ehT )(1 +O(e−εT ))
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Remark 10.17. Previous results in the direction include the following.

a) Theorem 10.15 is true for surfaces without extra conditions [53].

b) The principal term in the asymptotic in Theorem 10.15 is true for manifolds without the
pinching condition [42], i.e.,

Card{τ : λ(τ) ≤ T} ∼ ehT

hT

as T → +∞.

c) This generalises to contact Anosov forms with 1/3-pinching.

Remark 10.18. We can also use this formalism to consider decay of correlations for the
maximal entropy measure (or Bowen-Margulis measure) rather than the SRB-measure [30].
Let µ denote the measure of maximal entropy for φt : M →M and let F,G ∈ C∞(M). Let

ρ(t) =

∫
F ◦ φtGdµ−

∫
Fdµ

∫
Gdµ

for t > 0, be the correlation functions. The asymptotic behaviour of ρ(t) is given by the
analytic properties of the Laplace transform:

ρ̂(s) =

∫ ∞
0

e−stρ(t)dt, s ∈ C.

We observe that :

(a) ρ̂(s) converges for Re(s) > 0;

(b) ρ̂(s) has a meromorphic extension to C;

(c) Typically s is a pole for ρ̂(s) if s+ h is a pole for ζ(s) (actually zero for ζ(s)), since both
can be related to properties of R(s).

(d) There exists C > 0, λ > 0: |ρ(t)| ≤ Ce−λt, t > 0 providing the curvature is 1
9
-pinched

curvature.

11 Other notes

The more discerning reader may prefer other notes which have a more specific focus on
particular topics.

1. For the reader wanting a more pure and undiluted theory of dynamical zeta functions
the author has some unpublished notes from lectures Grenoble. [52] (about 35 pages)

2. For the reader wanting more details on the connections with fractals the author has
some notes from lectures in Porto [38] (about 106 pages).

3. The reader wanting a more geometrical or number theoretical viewpoint, I would rec-
ommend reading elsewhere on the Selberg zeta function, e.g., [31].
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