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Averaging setup: continuous time

We consider a system of differential equations for X ε = X ε
x,y and Y ε = Y ε

x,y ,

dX ε(t)

dt
= εB(X ε(t),Y ε(t)),

dY ε(t)

dt
= b(X ε(t),Y ε(t))

with initial conditions X ε(0) = x , Y ε(0) = y on the product Rd ×M where M
is a compact nM-dimensional C 2 Riemannian manifold and B(x , y), b(x , y) are
smooth in x , y families of bounded vector fields on Rd and on M, respectively,
so that y serves as a parameter for B and x for b. The solutions of the above
equations determine the flow of diffeomorphisms Φt

ε on Rd ×M acting by
Φt
ε(x , y) = (X ε

x,y (t),Y ε
x,y (t)). Taking ε = 0 we arrive at the flow Φt = Φt

0

acting by Φt(x , y) = (x ,F t
x y) where F t

x is another family of flows given by
F t
x y = Yx,y (t) with Y = Yx,y = Y 0

x,y being the solution of

dY (t)

dt
= b(x ,Y (t)), Y (0) = y .

It is natural to view the flow Φt as describing an idealized physical system
where parameters x = (x1, ..., xd) are assumed to be constants (integrals) of
motion while the perturbed flow Φt

ε is regarded as describing a real system
where evolution of these parameters is also taken into consideration.
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Averaging setup: discrete time

In the discrete time case we deal with difference equations for sequences
X ε(n) = X ε

x,y (n) and Y ε(n) = Y ε
x,y (n), n = 0, 1, ... so that

X ε(n + 1)− X ε(n) = εB(X ε(n),Y ε(n)),

Y ε(n + 1) = FXε(n)Y
ε(n), X ε(0) = x ,Y ε(0) = y

where B : X ×M→ Rd is Lipschitz in both variables and the maps
Fx : M→M are smooth and depend smoothly on the parameter x ∈ Rd .
Introducing the map

Φε(x , y) = (X ε
x,y (1),Y ε

x,y (1)) = (x + εB(x , y),Fxy).

This setup is viewed as a perturbation of the map Φ(x , y) = (x ,Fxy) describing
an ideal system where parameters x ∈ Rd do not change. Assuming that
Fx , x ∈ Rd are C 2 depending on x families of either C 2 expanding
transformations or C 2 Axiom A diffeomorphisms in a neighborhood of an
attractor Λx we will derive large deviations estimates for the difference
X ε

x,y (n)− X̄ ε
x (n) where X̄ ε = X̄ ε

x solves the equation

dX̄ ε(t)

dt
= εB̄(X̄ ε(t)), X̄ ε(0) = x

where B̄(x) =
∫

B(x , y)dµSRB
x (y) and µSRB

x is the corresponding SRB invariant
measure of Fx on Λx . The discrete time results are obtained, essentially, by
simplifications of the corresponding arguments in the continuous time case.
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Averaging principle

Assume that the limit

B̄(x) = B̄y (x) = lim
T→∞

T−1

∫ T

0

B(x ,F t
x y)dt

exists and it is the same for ”many” y ′s. For instance, suppose that µx is an
ergodic invariant measure of the flow F t

x then this limit exists for µx−almost all
y and is equal to

B̄(x) = B̄µx (x) =

∫
B(x , y)dµx(y).

If b(x , y) does not, in fact, depend on x then F t
x = F t and µx = µ are also

independent of x and we arrive at the classical uncoupled setup. In this case
Lipschitz continuity of B implies already that B̄(x) is also Lipshitz continuous
in x , and so there exists a unique solution X̄ = X̄x of the averaged equation

dX̄ ε(t)

dt
= εB̄(X̄ ε(t)), X̄ ε(0) = x .

In this case the standard averaging principle says that for µ-almost all y ,

lim
ε→0

sup
0≤t≤T/ε

|X ε
x,y (t)− X̄ ε

x (t)| = 0.

In the fully coupled case the averaging principle in the form above usually does
not hold true both for nearly integrable Hamiltonian systems in the presence of
resonances and for hyperbolic systems (Anosov flows depending on parameters).
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Nonconvergence examples in the fully coupled case

1st example could be viewed as a perturbation of circle rotations but describes
also the motion of a pendulum with a small friction and it has the form

dX ε(t)

dt
= ε
(
4 + 8 sin Y ε(t)− X ε(t)

)
,

dY ε(t)

dt
= X ε(t)

with the corresponding averaged equation dX̄ε(t)
dt

= ε(4− X̄ ε(t)). Due to the
”capture into resonance” if X ε(0) = X̄ ε(0) = x ∈ (−2,−1) then

lim sup
ε→0

|X ε(1/ε)− X̄ ε(1/ε)| > 3/2.

2nd example is determined by the system of difference equations for sequences
X ε(n) = X ε

x,y (n) ∈ R and Y ε(n) = Y ε
x,y (n) ∈ R, n = 0, 1, ... such that

X ε(n + 1)− X ε(n) = ε sin(Y ε(n)), X ε(0) = x

Y ε(n + 1) = 2Y ε(n) + X ε(n) + cξn (mod 2π), Y ε(0) = y

where {ξn}∞n=0 is an arbitrary sequence with supn |ξn| ≤ 1 and c ≥ 0 is a small
number. Here Fxy = Fx,ny = 2y + x + cξn (mod 2π) and all Fx,n act on the
circle T1 (of the length 2π) preserving the Lebesgue measure there and since∫ 2π

0
sin ydy = 0 we obtain that the averaged motion stays forever at the initial

point. Then for any x ∈ R and ξ = {ξn}∞n=0 as above ∃ Γx,ξ with full Lebesgue
measure on the circle T1 such that for each y ∈ Γx,ξ,

lim sup
ε→0

max
0≤n≤1/ε

|X ε
x,y (n)− x | ≥ δ > 0.

where δ does not depend on x , y , ξ and ε.Yuri Kifer Large deviations in Averaging



Averaging principle in the fully coupled case

Set Xt = {x ∈ X : X ε
x,y (s) ∈ X , X̄ ε

x (s) ∈ X for all y ∈M and s ∈ [0, t/ε]} and

Eε(t, δ) = {(x , y) ∈ Xt ×M : |1
t

∫ t

0

B(x ,Y ε
x,y (u))du − B̄(x)| > δ}.

Theorem

Suppose that vector fields b and B are Lipschitz continuous and bounded and
that B̄(x) =

∫
B(x , y)dµx(y) is Lipschitz, as well. Then

lim
ε→0

∫
XT

∫
M

sup
0≤t≤T/ε

|X ε
x,y (t)− X̄ ε

x (t)|dµ(x , y) = 0, dµ(x , y) = dµx(y)dν(x)

if and only if there exists an integer valued function n = n(ε)→∞ as ε→ 0
such that for any δ > 0,

lim
ε→0

max
0≤j<n(ε)

µ{(XT ×M) ∩ Φ−jt(ε)
ε Eε(t(ε), δ)} = 0,

where t(ε) = T
εn(ε)

and, recall, Φt
ε(x , y) = (X ε

x,y (t),Y ε
x,y (t)).

Conditions hold true if µ ∼Lebesgue on a compact and either each µx is a
Fx -invariant and equivalent to the volume on M (Anosov theorem) or when
F t
x -is a C 2-dependent on x family of Anosov flows (or Axiom A) and µx = µSRB

x .
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Families of hyperbolic flows

Assumption

The family b(x , ·) consists of C 2 vector fields on a compact nM-dimensional
Riemannian manifold M with uniform C 2 dependence on the parameter x
belonging to a neighborhood of the closure X̄ of a relatively compact open
connected set X ⊂ Rd . Each flow F t

x , x ∈ X̄ on M given by

dF t
x y

dt
= b(x ,F t

x y), F 0
x y = y

possesses a basic hyperbolic attractor Λx (topologically transitive hyperbolic
attractor with periodic orbits dense there) with a splitting
TΛxM = Γs

x ⊕ Γ0
x ⊕ Γu

x satisfying hyperbolicity assumptions with the same
exponent and there exists an open set W ⊂M and t0 > 0 such that

Λx ⊂ W, F t
x W̄ ⊂ W ∀t ≥ t0, and ∩t>0 F t

xW = Λx ∀x ∈ X̄ .

Let Ju
x (t, y) be the absolute value of the Jacobian of the linear map

DF t
x (y) : Γu

x (y)→ Γu
x (F t

x y) with respect to the Riemannian inner products and
set

ϕu
x (y) = −dJu

x (t, y)

dt

∣∣
t=0

which is a Hölder continuous function.
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LD functionals

Denote by Mx the space of F t
x−invariant probability measures on Λx then we

have the variational principle for the topological pressure
Πx(ψ) = supµ∈Mx

(
∫
ψdµ+ hµ(F 1

x )). If

Πx(ϕu
x + q) =

∫
(ϕu

x + q)dµq
x + hµq

x
(F 1

x ) then a F t
x−invariant measure µq

x on Λx

is called the equilibrium state for ϕu
x + q while µ0

x = µSRB
x is called the

Sinai–Ruelle–Bowen (SRB) measure. Since Λx are attractors Px(ϕu
x ) = 0.

For any probability measure ν on W̄ set Ix(ν) = −
∫
ϕu

xdν − hν(F 1
x ) if ν ∈Mx

and =∞, otherwise. Then Πx(ϕu
x + q) = supν(

∫
qdν − Ix(ν)). The functional

Ix(ν) is lower semi-continuous in ν and it is also convex (and affine on Mx),
and so by the duality theorem Ix(ν) = supq∈C(M)(

∫
qdν − Πx(ϕu

x + q)). Set

L(x , x ′, α) = inf{Ix(ν) :

∫
B(x ′, y)dν(y) = α}

if ∃ ν ∈Mx satisfying the condition in brackets and L(x , x ′, α) =∞,
otherwise. Let C0T be the space of continuous curves γ = γt , t ∈ [0,T ] in X .
For each absolutely continuous γ ∈ C0T denote by γ̇t its velocity. Now set

S0T (γ) =

∫ T

0

L(γt , γ̇t)dt =

∫ T

0

inf{Iγt (ν) : γ̇t = B̄ν(γt), ν ∈Mγt}dt,

where B̄ν(x) =
∫

B(x , y)dν(y), provided for Lebesgue almost all t ∈ [0,T ]
there exists νt ∈Mγt for which γ̇t = B̄νt (γt), and S0T (γ) =∞ otherwise.
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Basic LD theorem in averaging

Let γu
t be the unique solution of the equation γ̇u

t = B̄(γu
t ), γu

0 = x where
B̄(z) = B̄µSRB

z
(z). Define the uniform metric on C0T by

r0T (γ, η) = sup0≤t≤T |γt − ηt | for any γ, η ∈ C0T . Set
Ψa

0T (x) = {γ ∈ C0T : γ0 = x , S0T (γ) ≤ a}. Then S0T is a lower
semi-continuous functional on C0T with respect to the metric r0T , and so
Ψa

0T (x) is a closed set.
Set Xt = {x ∈ X : X ε

x,y (s) ∈ X and X̄ ε
x (s) ∈ X for all

y ∈ W̄, s ∈ [0, t/ε], ε > 0}. Clearly, Xt ⊃ {x ∈ X : infz∈∂X |x − z | ≥ 2Kt}.

Theorem

Set Z ε
x,y (t) = X ε

x,y (t/ε) then for any x ∈ XT , a, δ, λ > 0 and every
γ ∈ C0T , γ0 = x there exists ε0 = ε0(x , γ, a, δ, λ) > 0 such that for ε < ε0,

m
{

y ∈ W : r0T (Z ε
x,y , γ) < δ

}
≥ exp

{
−1

ε
(S0T (γ) + λ)

}
and

m
{

y ∈ W : r0T (Z ε
x,y ,Ψ

a
0T (x)) ≥ δ

}
≤ exp

{
−1

ε
(a− λ)

}
where, recall, m is the normalized Riemannian volume on M. The functional
S0T (γ) for γ ∈ C0T is finite if and only if γ̇t = B̄νt (γt), νt ∈Mγt for Lebesgue
almost all t ∈ [0,T ]. Finally, S0T (γ) achieves its minimum 0 only on γu.
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Exits from a domain for bounded times

Let V ⊂ X be a connected open set and put
τεx,y (V ) = inf{t ≥ 0 : Z ε

x,y (t) /∈ V } where we take τεx,y (V ) =∞ if X ε
x,y (t) ∈ V

for all t ≥ 0.

Corollary

Under the conditions of the above theorem for any T > 0 and x ∈ V ,

limε→0 ε log m
{

y ∈ W : τεx,y (V ) < T
}

= − inf {S0t(γ) : γ ∈ C0T , t ∈ [0,T ], γ0 = x , γt 6∈ V } .

Next, we will study ”very long”, i.e. exponential in 1/ε, time ”adiabatic”
behaviour of the slow motion which cannot be described usually in the
traditional theory of averaging where only perturbations of integrable
Hamiltonian systems are considered which are not chaotic enough. Namely, we
will describe such long time behavior of Z ε in terms of the function

R(x , z) = inf
t≥0,γ∈C0t

{S0t(γ) : γ0 = x , γt = z}

under various assumptions on the averaged motion Z̄ . Observe that R satisfies
the triangle inequality R(x1, x2) + R(x2, x3) ≥ R(x1, x3) for any x1, x2, x3 ∈ X
and it determines a semi metric on X which measures ”the difficulty’” for the
slow motion to move from point to point in terms of the functional S .
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S-compacts

Introduce the averaged flow Ψt on Xt by

dΨtx

dt
= B̄(Ψtx), x ∈ Xt

where, recall, B̄(z) = B̄µSRB
z

(z) and B̄ν(z) =
∫

B(z , y)dν(y) for any probability

measure ν on M. Call a Ψt-invariant compact set O ⊂ X an S-compact if
∀ η > 0, ∃Tη ≥ 0 and ∃ open Uη ⊃ O such that whenever x ∈ O and z ∈ Uη
there are t ∈ [0,Tη] and γ ∈ C0t with γ0 = x , γt = z and S0t(γ) ≤ η. Then
R(x , z) = 0 for any x , z in an S-compact O and R(x , z) ≡const when z ∈ X is
fixed and x runs over O. A vector field B on X ×M is called complete at
x ∈ X if the convex set of vectors {βB̄ν(x) : β ∈ [0, 1], ν ∈Mx} contains an
open neighborhood of the origin in Rd . It turns out that if O ⊂ X is a compact
Ψt-invariant set such that B is complete at each x ∈ O and either O contains
a dense orbit of the flow Ψt (i.e. Ψt is topologically transitive on O) or
R(x , z) = 0 for any x , z ∈ O then O is an S-compact. Moreover, O is an
S-compact if B is complete only at some point of O and the flow Ψt on O is
minimal, i.e. the Ψt-orbits of all points are dense in O.
A compact Ψt-invariant set O ⊂ X is called an attractor for Ψt if
∃ open U ⊃ O and tU > 0 such that ΨtU Ū ⊂ U and limt→∞ dist(Ψtz ,O) = 0
for all z ∈ U. The set V = {z ∈ X : limt→∞ dist(Ψtz ,O) = 0}, which is
clearly open, is called the basin of O. An attractor which is an S-compact is
called S-attractor.
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Exits from a domain for very long times

Theorem

Let O ⊂ X be an S-attractor whose basin contains the closure V̄ of a
connected open set V with a piecewise smooth boundary ∂V such that V̄ ⊂ X
and assume that for each z ∈ ∂V there exists $ = $(z) > 0 and an
F t
z−invariant probability measure ν = νz on Λz such that z + sB̄(z) ∈ V but

z + sB̄ν(z) ∈ Rd \ V̄ ∀ s ∈ (0, $], i.e. B̄(z) 6= 0, B̄ν(z) 6= 0 and the former
vector points out into the interior while the latter into the exterior of V . Set
R∂(z) = inf{R(z , z̃) : z̃ ∈ ∂V } and ∂min(z) = {z̃ ∈ ∂V : R(z , z̃) = R∂(z)}.
Then R∂(z) ≡ R∂ and ∂min(z) ≡ ∂min ∀ z ∈ O, R∂(x) ≤ R∂ ∀ x ∈ V and

lim
ε→0

ε log

∫
W
τεx,y (V )dm(y) = R∂ > 0 ∀ x ∈ V .

Next, ∀α > 0 ∃λ(α) = λ(x , α) > 0 such that ∀ ε > 0 small,

m
{

y ∈ W : e(R∂−α)/ε > τεx,y (V ) or τεx,y (V ) > e(R∂+α)/ε} ≤ e−λ(α)/ε and

lim
ε→0

m
{

y ∈ W : dist
(
Z ε
x,y (τεx,y (V )), ∂min

)
≥ δ
}

= 0 ∀ x ∈ V , δ > 0

provided R∂ <∞ and the latter holds true if and only if for some T > 0 there
exists γ ∈ C0T , γ0 ∈ O, γT ∈ ∂V such that γ̇t = B̄νt (γt) for Lebesgue almost
all t ∈ [0,T ] with νt ∈Mγt then R∂ <∞.
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Exit from a domain: picture
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Several S-attractors

Next, we want to describe transitions of the slow motion Z ε between basins of
attractors of the averaged flow Ψt .

Assumption

The family {F t
x , t ≤ 1, x ∈ Rd} is a compact set of diffeomorphisms in the C 2

topology, ‖B(x , y)‖C2(Rd×M) ≤ K for some K > 0 independent of x , y and
there exists r0 > 0 such that(

x ,B(x , y)
)
≤ −K−1 for any y ∈ W and |x | ≥ r0.

Suppose that the ω-limit set of Ψt is compact and it consists of a finite
number of S-attractors O1, ...,O` whose basins V1, ...,V` have piecewise
smooth boundaries ∂V1, ..., ∂V` and of the remaining part which is contained in
∪1≤j≤`∂Vj . Assume also that for any z ∈ ∩1≤i≤k∂Vji , k ≤ ` there exist
$ = $(z) > 0 and an F t

z -invariant measures ν1, ..., νk such that
z + sB̄νi (z) ∈ Vji ∀ s ∈ (0, $] and i = 1, ..., k, i.e. B̄νi (z) 6= 0 and it points out
into the interior of Vji which means that from any boundary point it is possible
to go to any adjacent basin along a curve with an arbitrarily small S-functional.
Let δ > 0 be so small that each Uδ(Oi ) = {z ∈ X : dist(z ,Oi ) < δ} is
contained with its closure in the basin Vi . For any x ∈ Vi set

τεx,y (i) = inf
{

t ≥ 0 : Z ε
x,y (t) ∈ ∪j 6=iUδ(Oj)

}
.
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Several S-attractors: picture
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Rare (adiabatic) transitions between S-attractors

Theorem

The function Rij(x) = infz∈Vj R(x , z) takes on the same value Rij for all
x ∈ Oi , i 6= j . Let Ri = minj 6=i,j≤` Rij . Then

lim
ε→0

ε log

∫
W
τεx,y (i)dm(y) = Ri > 0 ∀ x ∈ Vi

and ∀α > 0 ∃λ(α) = λ(x , α) > 0 such that ∀ ε > 0 small,

m
{

y ∈ W : e(Ri−α)/ε > τεx,y (i) or τεx,y (i) > e(Ri+α)/ε} ≤ e−λ(α)/ε.

Suppose that for all i , B is complete on ∂Vi and the restriction of the ω-limit
set of Ψt to ∂Vi consists of a finite number of S-compacts. Assume also ∀ i
∃! ι(i) ≤ `, ι(i) 6= i such that Ri = Riι(i). Define ι0(i) = i , τεv (i , 1) = τεv (i) and
recursively,
ιk(i) = ι(ιk−1(i)) and τεv (i , k) = τεv (i , k − 1) + τεvε(k−1)

(
j(vε(k − 1))

)
, where

vε(k) = Φ
ε−1τεv (i,k)
ε v, j((x , y)) = j if x ∈ Vj . Then ∀ x ∈ Vi and ∀α > 0

∃λ = λ(x) > 0 such that ∀ n ∈ N,

m
{

y ∈ W : Z ε
x,y (τεx,y (i , k)) 6∈ Vιk (i) for some k ≤ n

}
≤ ne−λ/ε.
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Discrete time case, Markov fast motions

Similar results hold true for difference equations where fast motions satisfy

Assumption

The family Fx = Φ(x , ·) consists of C 2-diffeomorphisms or endomorphisms of a
compact nM-dimensional Riemannian manifold M with uniform C 2 dependence
on the parameter x belonging to a relatively compact open connected set
X ⊂ Rd . All Fx , x ∈ X̄ are either expanding maps of M or diffeomorphisms
possessesing basic hyperbolic attractors Λx with (uniform in x) hyperbolic
splittings and one open set W ⊂M which contains all Λx but is contained in
their basins.

Similar results hold also true when fast motions are Markov processes satisfying
Doeblin conditions with the rate functional I given by the Donsker-Varadhan
formula. In the continuous time take X ε(t),Y ε(t) determined by an ordinary
differential equation for the slow motion X ε together with a non degenerated
stochastic differential equation with coefficients dependent on the slow
x-variable. In the discrete time we can start with a parametric family of
Markov chains Yx,y (n), n ≥ 0, Yx,y (0) = y on a compact C 2 Riemannian
manifold M with transition probabilities Px(y , Γ) = Px

y {Yx,y (1) ∈ Γ} having
positive C 1 densities px(y , z) = Px(y , dz)/m(dz), m-volume. Now, define
X ε(n) and Y ε(n) adding to the difference equation for the slow motion X ε

another equation P
{

Y ε(n + 1) ∈ Γ
∣∣X ε(n) = x , Y ε(n) = y

}
= Px(y , Γ).
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Computer simulations: two examples

In both examples Fxy = 3y + x (mod 1) where x ∈ R1 and y ∈ [0, 1], Fx are
expanding maps of the circle T1. Next,

B(x , y) = x(x2 − 4)(1− x)(a + x) + 50 sin 2πy

where a = 1 in the 1st example and a = 1.5 in the 2nd example. Thus,
X ε(n + 1) = X ε(n) + εB(X ε(n),Y ε(n)), Y ε(n + 1) = 3Y ε(n) + X ε(n) (mod
1) and we have maps Φε : R1 × T1 → R1 × T1 defined by

Φε(x , y) =
(
x + ε(x(x2 − 4)(1− x)(a + x) + 50 sin 2πy), 3y + x (mod 1)

)
.

All maps Fx preserve the normalized Lebesgue measure Leb on T1 which is the
SRB measure µSRB

x for each Fx in this case. The averaged equation for
Z̄(t) = X̄ ε(t/ε) has here the form

dZ̄(t)

dt
= B̄(Z̄(t)),

where B̄(x) = x(x2 − 4)(1− x)(a + x). When a = 1 the one dimensional
vector field B̄(x) has 3 attracting fixed points O1 = 2,O2 = 0,O3 = −2 and
two repelling fixed points 1 and −1. When a = 1.5 it has the same attracting
fixed points but one of two repelling fixed points moves from −1 to −3/2
making the basin of −2 smaller while the left interval of the basin of 0 becomes
larger, so it is more difficult to exit from there to the left than to the right.
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Symmetrical basins case
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Asymmetrical basins case
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Discussion

We plot histograms of a single orbit of the slow motion
X ε

x,y (n), n = 0, 1, 2, ..., 109 with ε = 10−3 and the initial values in the 1st
case x = 0, y = 0.001 and in the 2nd case x = −2, y = 0.001.
In order to verify that B is complete at the fixed points −2,−1, 0, 1, 2 of
the averaged system in the 1st example we observe that these points Fx

coincides with the map y → 3y(mod 1), and so we can take the periodic
orbits 1/8, 3/8 and 5/8, 7/8 of the latter and notice that the average of
sin 2πy along the former is 1/

√
2 and along the latter −1/

√
2 which yields

completeness of B at zeros of B̄. For the 2nd example it remains to verify
completness only for x = −3/2 which follows since sin 2πy equals 1 and
−1 at two fixed points 1/4 and 3/4 of F−3/2, respectively.
By the theorem the transitions between O1,O2, and O3 are determined by
Rij , i , j = 1, 2, 3 obtained via the functionals S0t(γ). Even here they are
not easy to compute since this leads to complicated non traditional
variational problems though the functionals Ix(ν) are given now by the
simple formula Ix(ν) = ln 3− hν(F 1

x ) if ν is Fx -invariant and =∞,
otherwise, while the set of Fx -invariant measures can be reasonably
described since all Fx ’s are conjugate to the simple map y → 3y (mod 1).
It turns out that ”exactly” the same histograms we obtain when we
replace Y ε(n + 1) = 3Y ε(n) + X ε(n) (mod 1) by
Y ε(n + 1) = Y ε(n) + X ε(n) + ξn+1 (mod 1) where ξ1, ξ2, ... are i.i.d.
random variables on [0, 1] with a Lebesgue equivalent distribution.
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Remarks on the proof

In the non coupled situation

dX ε(t)

dt
= εB(X ε(t),F ty)

the basic large deviations theorem in averaging is not difficult. Then it suffices
to show that for any continuous function qt(y) = q(t, y),

lim
ε→0

ε log

∫
exp

(
ε−1

∫ T

0

qt(F t/εy)dt
)
dm(y) =

∫ T

0

Π(ϕu + qt)dt

which can be done splitting the interval [0,T ] into small subintervals. In the
fully coupled case one needs more complicated technical tools, in particular, a
version of the general large deviations bounds when usual assumptions hold
true with errors. This allows approximate decoupling on small time intervals
since the flows F t

x change slowly in time as x is the slow variable but one has to
be careful since for hyperbolic flows errors accumulate exponentially in time.
The above results concerning exponential in 1/ε time behavior are not easy
already in the non coupled situation. Actually, in the non coupled probabilistic
situation when the fast motion is a non degenerated Markov chain with
continuous time and finitely many states this is easier and it was done by
Freidlin. In the dynamical systems setup this can be done by a kind of rough
Markov property argument for unstable disks.
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Rough Markov property

Yuri Kifer Large deviations in Averaging



References

D.B. Anosov, Averaging in systems of ordinary differential equations with
fast oscillating solutions, Izv. Acad. Nauk SSSR Ser. Mat. 24 (1960),
731–742 (in Russian).

V.I. Bakhtin and Yu. Kifer, Nonconvergence examples in averaging,
Contemporary Math. 469 (2008), 1–17.

M.I. Freidlin, The averaging principle and theorems on large deviations,
Russ. Math. Surv., 33, No.5 (1978), 107–160.

Yu. Kifer, Averaging in dynamical systems and large deviations, Invent.
Math., 110 (1992), 337–370.

Yu. Kifer, Averaging principle for fully coupled dynamical systems and
large deviations, Ergod. Th.& Dynam. Syst. 24 (2004), 847–871.

Yu. Kifer, Another proof of the averaging principle for fully coupled
dynamical systems with hyperbolic fast motions, Discrete Contin. Dyn.
Syst. 13 (2005), 1187–1201.

Yu. Kifer, Large Deviations and Adiabatic Transitions for Dynamical
Systems and Markov Processes in Fully Coupled Averaging, Memoirs of
the AMS 201, Providence R.I., 2009.

Yuri Kifer Large deviations in Averaging


	Lecture 2

