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Nonconventional ergodic theorems

Nonconventional ergodic theorems studied the limits of expressions

lim
N→∞

1/N
N∑

n=1

T q1(n)f1 · · ·T q`(n)f`

where T is an ergodic (or weakly mixing) measure µ preserving transformation,
fi ’s are bounded measurable functions and qi ’s are polynomials taking on
integer values on the integers (Bergelson, Furstenberg, Weiss: L2-convergence,
Assani: almost sure convergence under additional conditions). Recently such
results were extended to the continuous time i.e. to expressions

1

T

∫ T
0

T q1(t)f1 · · ·T q`(t)f`dt

where T s is now an ergodic measure preserving flow (Potts,
Bergelson-Leibman-Moreira). Application to multiple recurrence: take fj to be
the indicator IΓj of some sets Γj .
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Nonconventional limit theorems

The next natural step was to study central limit theorem type results for such
expressions which we did together with Varadhan. Namely, we obtained the
functional central limit theorem for

1√
N

∑[Nt]
n=1

(
B(ξ(q1(n)), ..., ξ(q`(n)))− B̄

)
and

1√
N

∫ [Nt]

0

(
B(ξ(q1(s)), ..., ξ(q`(s)))− B̄

)
ds

where {ξ(n), n ≥ 0}, ( or {ξ(t)}, t ≥ 0) is a sufficiently fast mixing vector
valued stochastic process with mild stationarity properties satisfying certain
moment conditions, B is Hölder continuous, B̄ =

∫
Bd(µ× · · · × µ), ξ(t) has

distribution µ, qj = jt for j ≤ k and qj(t), j > k satisfy some fast growth
conditions. In the discrete time case results are readily applicable to fast mixing
dynamical systems (subshifts of finite type, hyperbolic and expanding
transformations etc.) with ξ(m) = ξ(m, x) = Tmx . For appropriate flows such
as hyperbolic ones these results were not yet proven.
Warning: Summands in nonconventional sums are usually strongly dependent.
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Nonconventional large deviations

Large deviations (1st level) in our situation are supposed to give estimates as
N →∞ for probabilities

ln P{ 1

N

N∑
j=1

B(ξ(q1(n)), ..., ξ(q`(n))) ∈ I}

where I is an interval (closed: upper bound, open: lower bound). The
asymptotic here is supposed to be of the form −N infx∈I J(x) where J(x) ≥ 0
is to be found. A similar problem arises in the continuous time case with the
integral in place of the sum. Together with Varadhan we derived such
estimates in some cases. In the dynamical systems case we consider expressions
of the form

lnµ{x :
1

N

N∑
j=1

B(T q1(n)x , ...,T q`(n)x) ∈ I}

for an appropriate measure µ (say, the normalized Riemannian volume in the
hyperbolic and expanding transformations cases), and, again, the sum is
replaced by the integral in the case of flows.
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Nonconventional large deviations: 1st level, discrete time

General fact: if the limit

Q(B, λ) = lim
N→∞

1

N
ln

∫
exp

(
λ

N∑
j=1

B(ξ(q1(n)), ..., ξ(q`(n)))
)
dP

exists for any λ and it is differentiable in λ then J(x) = supλ(xλ−Q(λ)) is the
rate function of large deviations estimates, i.e.

lim sup
N→∞

1

N
ln P{ 1

N

N∑
j=1

B(ξ(q1(n)), ..., ξ(q`(n))) ∈ K} ≤ − inf
x∈K

J(x)

for any closed set K ⊂ R, while for any open set U ⊂ R,

lim inf
N→∞

1

N
ln P{ 1

N

N∑
j=1

B(ξ(q1(n)), ..., ξ(q`(n))) ∈ U} ≥ − inf
x∈U

J(x).

We will explain how to deal with such limits in our nonconventional setup.
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Markov chain case: statement

Theorem

Let ξ(1), ξ(2), ... be a Markov chain on a space M having a transition density
p(j , x , y) with respect to some probability measure ν which for some j0 satisfies
0 < δ ≤ p(j0, x , y) ≤ δ−1 <∞ for ∀x , y ∈ M. Let Wλ(x1, ..., x`) be a bounded
(in x variables) with a bounded derivative in λ measurable function on
(−∞,∞)×M` and qj , j = 1, ..., ` be positive integer valued increasing
functions such that q1(n) = n, qj(n + 1)− qj(n)→∞ as n→∞ for all j ≥ 2
and qj(n − 1) ≥ qj−1(n) for all n ≥ n0 and j ≥ 2. Then the limit

Q(Wλ) = lim
N→∞

1

N
ln

∫
exp

( N∑
n=1

Wλ(ξ(q1(n)), ..., ξ(q`(n)))
)
dP

exists and it is differentiable in λ. In fact, Q(λ) = ln(specradRλ) where
Rλg(x) = Ex

(
g(ξ(1))Ŵλ(ξ(1))

)
,

Ŵλ(x) =

∫
· · ·
∫

exp
(
Wλ(x , x2, ..., x`)

)
dµ(x2) · · · dµ(x`)

and µ is the unique invariant measure of the Markov chain.
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Dynamical systems case: statement

Theorem

Let Wλ and qj ’s be as before and let T be a C 2 expanding endomorphism or
an Axiom A (in particular, Anosov) diffeomorphism in a small neighborhood O
of an attractor on a compact Riemannian manifold M. Let Γ = M in the case
of an expanding endomorphism or an Anosov diffeomorphism and Γ = O in the
Axiom A case. If ν is the normalized Riemannian volume then the limit

Q(Wλ) = lim
N→∞

1

N
ln

∫
Γ

exp
( N∑

n=1

Wλ(T q1(n)x , ...,T q`(n)x)
)
dν(x)

exists and it is differentiable in λ. Moreover,

Q(Wλ) = Π
(

ln Ŵλ + ϕ
)

where Π is the topological pressure for T , ϕ is the minus logarithm of the
differential expanding coefficient on unstable leaves and Ŵλ as in the previous
theorem with µ = µSRB being the Sinai-Ruelle-Bowen measure. A similar result
holds true when T is a topologically mixing subshift of finite type with ν = µ
being a Gibbs measure with a potential ϕ.
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Reduction to linear qi ’s (k = `)

Let qi (n) = in for i = 1, ..., k ≤ ` and qj(n + 1)− qj(n)→∞ as n→∞ and
qj(n − 1) ≥ qj−1(n) ∀j > k and n ≥ n0.

Proposition

Let V (x1, ..., x`) be a bounded continuous function and a dynamical system
{T n} be as before (though here only ψ-mixing suffices). Then,

limN→∞
1
N

(
ln
∫

exp
(∑N

n=1 V (T q1(n)x , ...,T q`(n)x)
)
dν(x)

− ln
∫

exp
(∑N

n=1 V (k)(T nx ,T 2nx , ...,T knx)
)
dν(x)

)
= 0

where for each m < `,

V (m)(x1, ..., xm) = ln
∫
M
...
∫
M

exp(V (x1, ..., xm, xm+1, ..., x`))

dµ(xm+1)...dµ(x`) and V (`) = V .

The same result holds true if we replace T nx by ξ(n)—a Markov chain
satisfying conditions as before. If k = 1 this reduces the problem to the well
known situation. For k > 1 the problem becomes complicated and we consider
next the case of i.i.d. ξ(n)’s.
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i.i.d. case

We obtain LD for SN(F ) =
∑N

n=1 V (ξ(n), ξ(2n), ..., ξ(kn)) where ξ(n), n ≥ 1
are i.i.d. random variables (vectors) with a compact support M. Let
r1, ..., rm ≥ 2 be all primes not exceeding k. Set
An = {a ≤ n : a is relatively prime with r1, ..., rm} and
Bη(a) = {b ≤ η : b = ard1

1 rd2
2 · · · r

dm
m for some nonnegative integers d1, ..., dm}.

Now for any bounded measurable function V on Mk write

SN(V ) =
∑
a∈AN

SN,a(V ) with SN,a(V ) =
∑

b∈BN (a)

V (ξ(b), ξ(2b), ..., ξ(kb)).

Observe that SN,a(V ), a ∈ AV are independent.

Theorem

For any continuous function V on Mk the limit

Q(V ) = limN→∞
1
N

ln E exp
(∑N

n=1 V (ξ(n), ξ(2n), ..., ξ(kn))
)

= limN→∞
1
N

∑
a∈AN

ln E exp SN,a(V )

exists and the functional Q(V ) is convex and lower semi-continuous. If
V = Vλ depends on a parameter λ and has a bounded derivative in λ then
Q(Vλ) is also differentiable in λ. Thus taking Vλ = λF we obtain that here
also for k ≥ 2 both LD bounds hold true with the rate functional J being the
Fenchel-Legendre transform J(u) = supλ(λu − Q(λF )) of Q.

Yuri Kifer Nonconventional Large deviations and Related Problems



Discussion

As a model application of the above theorem we can consider digits
ξ(n) = ξ(n, ω), n ≥ 1 of base M expansions ω =

∑∞
n=1

ξ(n,ω)
Mn ,

ξ(n, ω) ∈ {0, 1, ...,M − 1} of numbers ω ∈ [0, 1) which are i.i.d. random
variables on the probability space ([0, 1),B,P) where B is the Borel σ-algebra
and P is the Lebesgue measure. Take, for instance,
V (x1, ..., xk) = δα1x1δα2x2 · · · δαk xk for some α1, ..., αk ∈ {0, 1, ...,M − 1} with
δij = 1 if i = j and = 0, otherwise. Then the above theorem provides large
deviations estimates for the number

nα1,...,αk (N, ω) = #{n ≤ N : ξ(n, ω) = α1, ξ(2n, ω) = α2,

..., ξ(kn, ω) = αk} =
∑N

n=1 V (ξ(n, ω), ..., ξ(kn, ω)).

The same setup can be reformulated in the following way. Consider infinite
sequences of letters (colors, spins, etc.) taken out of an alphabet of size M.
Let nα1,...,αk (N) be the number of arithmetic progressions of length k with
both the first term and the difference equal n ≤ N and having the letter (color,
spin, etc.) αi on the place i = 1, 2, ..., k. Then the above theorem yields large
deviations bounds for nα1,...,αk (N) as N →∞ considered as a random variable
on the space of sequences of letters with any product probability measure, in
particular, with uniform probability measure which assigns the same weight to
each combination of n consecutive letters (i.e. to each cylinder set of length n)
for all n = 1, 2, ....
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A glimpse at the proof

Write BN(a) = {b ∈ B(a) : b ≤ N} where

B(a) = {b ≥ 1 : b = ard1
1 rd2

2 · · · r
dm
m for some nonnegative integers d1, ..., dm}.

Then ZN(V ) =
∏

a∈AN
ZN,a(V ) where, recall, An = {a ≤ n : a relatively prime

with r1, ..., rm} and

Zη,a(V ) = E exp
( ∑
b∈Bη(a)

V (ξ(b), ξ(2b), ..., ξ(kb))
)
.

A crucial point here is that ZN,a(V ) is determined only by |BN(a)| and not by
N and a themselves. Set B̂η(a) = Bη(a) ∪ {n : n = ln′ for some n′ ∈ Bη(a)
and l = 2, 3, ..., k}. Then we can write

Zη,a(V ) =

∫
...

∫
exp

( ∑
b∈Bη(a)

V (xb, x2b, ..., xkb)
) ∏
b′∈B̂η(a)

dµ(xb′).

It is easy to see from here that Zη,a(V ) = Zη/a,1(V ) for any η > 0 and an
integer a ≥ 2 relatively prime with r1, ..., rm.
Set

D(ρ) = {n = (n1, ..., nm) ∈ Zm : ni ≥ 0, i = 1, ...,m and
m∑
i=1

ni ln ri ≤ ρ}

then D(ln(N/a)) is in one-to-one correspondence (n1, ..., nm)↔ arn1
1 · · · r

nm
m

with BN(a).
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A glimpse at the proof continues

Let l = |BN(a)| and set Rl(V ) = ZN,a(V ) since the latter depends only on l
(and, of course, on V ). Denote

ρmin(l) = inf{ρ ≥ 0 : |D(ρ)| = l} and ρmax(l) = sup{ρ ≥ 0 : |D(ρ)| = l}

which is well defined for each integer l ≥ 1 and
ρmax(l) > ρmin(l) ≥ (l1/m − 1) ln 2. Set A

(l)
N = {a ∈ AN : |BN(a)| = l}. Then a

computation shows (by a kind of inclusion-exclusion argument) that

lim
N→∞

1

N
|A(l)

N | = (e−ρmin(l) − e−ρmax(l))r

where

r = 1− 1

2
− 1

3
+

1

2 · 3 −
1

5
+

1

2 · 5 +
1

3 · 5 −
1

2 · 3 · 5 + · · ·+ (−1)m
1

r1 · r2 · · · rm
.

It follows that

1
N

ln ZN(V ) = 1
N

∑
a∈AN

ln ZN,a(V ) = 1
N

∑
1≤l≤(1+ 1

ln 2
ln N

a
)m |A

(l)
N | ln Rl(V )

−→ r
∑∞

l=1(e−ρmin(l) − e−ρmax(l)) ln Rl(V ) as N →∞

and the last series converges absolutely. If V = Vλ depends on λ and its
derivative in λ exists and is bounded by C̃ then each ln Rl(Vλ) is differentiable
in λ with a derivative bounded by C̃ l . Hence, the whole above series is
differentiable in λ and the assertion of Theorem follows.
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Nonconventional large deviations: 2nd level, discrete time

We consider here occupational measures on M`,

1

N

N∑
n=1

δ(ξ(n),ξ(q2(n)),...,ξ(q`(n))

where δa is the Dirac measure and ξ(n), n ≥ 0 is a Markov chain on a compact
space M satisfying the Doeblin condition and having an invariant measure µ.
For a continuous W on M` let Ŵ be as before. Let, again,

Q(W ) = lim
N→∞

1

N
ln

∫
exp

( N∑
n=1

W (ξ(q1(n)), ..., ξ(q`(n)))
)
dP

then by the Donsker-Varadhan formula

Q(W ) = sup
ν∈P(M)

( ∫
M

ln Ŵ (x)dν(x)− Î (ν)
)

where Î (ν) = − infu∈C+(M)

∫
ln Pu

u
dν and P is the transition operator of ξ(n).
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2nd level nonconventional large deviations: continued

Next, let Y
(i)
n , i = 2, ..., `; n = 0, 1, 2, ... be i.i.d. M-valued random variables

with the distribution µ all of them independent of the Markov chain
ξ(n), n ≥ 0. Then it is easy to see that

lim
N→∞

1

N
ln E exp

( N∑
n=1

W (ξ(n),Y (2)
n , ...,Y (`)

n )
)

= Q(W ).

Indeed, let Fξ be the σ-algebra generated by the Markov chain ξn, n ≥ 0. Then

E exp
(∑N

n=1 W (ξ(n),Y
(2)
n , ...,Y

(`)
n )
)

= E
(
E(exp(

∑N
n=1 W (ξ(n),Y

(2)
n , ...,Y

(`)
n ))|Fξ)

)
= E exp(

∑N
n=1 ln Ŵ (ξ(n)))

implying the above formula.

Yuri Kifer Nonconventional Large deviations and Related Problems



2nd level nonconventional large deviations: conclusion

But now we have the standard situation for the Markov chain
(ξ(n),Y

(2)
n , ...,Y

(`)
n ), n ≥ 0, and so

Q(W ) = sup
ν∈P(M×···×M)

( ∫
W (x1, x2, ..., x`)dν(x1, ..., x`)− I (ν)

)
where

I (ν) = − infu∈C+(M×···×M)

∫
M×···×M

ln
Ex1

∫
u(ξ(1),x1,...,x`)dµ(x2)...dµ(x`)

u(x1,...,x`)
dν(x1, ..., x`).

It is known here that there exists a unique ν = νW on which the supremum
above is attained and it follows from the standard theory that I (ν) is the rate
functional for the 2nd level of large deviations for both occupational measures

1

N

N∑
n=1

δ(
ξ(n),Y

(2)
n ,...,Y

(`)
n

) and
1

N

N∑
n=1

δ(
ξ(n),ξ(q2(n)),...,ξ(q`(n))

).
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Nonconventional LD in the averaging setup

Nonconventional LD theorems above and their continuous time counterparts
can be extended to the corresponding averaging setups in the discrete and
continuous time cases

X ε(n + 1) = X ε(n) + εB(X ε(n), ξ(q1(n)), ..., ξ(q`(n))) and
dXε(t)

dt
= εB(X ε(t), ξ(q1(t)), ..., ξ(q`(t))).

First, we define the averaged vector field

B̄ν(x) =

∫
B(x , ξ1, ξ2, ..., ξ`)dν(ξ1)dµ(ξ2) · · · dµ(ξ`)

where µ is the unique invariant measure in the Markov chain or diffusion cases
and µ is the SRB measure in the hyperbolic dynamical systems case. Next, for
each a.c. curve γt , t ∈ [0, T ] we define the functional

S0T (γ) =

∫ T
0

inf{I (ν) : γ̇ = B̄ν(γt), ν is T − invariant}dt

where T is a transformation (dynamical systems case) and I (ν) is the 2nd level
LD functional on measures appeared many times in these lectures.
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LD in the averaging setup: statement

Theorem

Set Z ε(t) = X ε([t/ε]) or Z ε(t) = X ε(t/ε) in the discrete or continuous time
case, respectively. Then for any a, δ, λ > 0 and every continuous γt , t ∈ [0, T ],
γ0 = x there exist ε0 > 0 s.t. for ε < ε0,

P{· : ρ0,T (Zx,·, γ) < δ} ≥ exp{−1

ε
(S0,T (γ) + λ)} and

P{· : ρ0,T (Zx,·,Φ
a
0,T (x))) ≥ δ} ≤ exp{−1

ε
(a− λ)}

where P is the probability (· = ω) in the Markov processes case, P is the
normalized Riemannian volume (· = y , ξ(t) = T ty) in the hyperbolic
dynamical systems case, ρ0,T is the uniform distance and
Φa

0,T (x) = {γ : γ0 = x , S0,T (γ) ≤ a}.
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Large deviations: a glimpse at the proof

The main part of the proof is to show that for any continuous on [0,T ]×M`

function Wt(ξ1, ..., ξ`),

limε→0 ε ln
∫

exp
(
ε−1

∫ T
0

Wt(ξ(q1(t/ε)), ..., ξ(q`(t/ε)))dt
)
dP

=
∫ T

0
R(Ŵt)dt

where, recall, Ŵλ(x) =
∫
· · ·
∫

exp
(
Wλ(x , x2, ..., x`)

)
dµ(x2) · · · dµ(x`) Here,

again, P is the probability in the Markov processes case and P is the
normalized Riemannian volume in the hyperbolic dynamical systems case where
ξ(s) = T sy and integration then in y . In the discrete time case we replace t/ε
by [t/ε]. When the limit above is established we obtain the theorem above via
some general arguments in large deviations. It is easy to see that the limit
above would follow if we could show that for any continuous functions
Wi (ξ1, ..., ξ`), i = 1, ..., k and for any numbers
0 = t0 < t1 < · · · < tk−1 < tk = T ,

limε→0 ε ln
∫

exp
(
ε−1∑k

i=1

∫ ti
ti−1

Wi (ξ(q1(t/ε)), ...,

ξ(q`(t/ε)))dt
)
dP =

∑k
i=1(ti − ti−1)R(Ŵi ).

Yuri Kifer Nonconventional Large deviations and Related Problems



Nonconventional multifractal formalism

It is known that the multifractional formalism is related to large deviations and
though I’ll not use this connection here I’ll discuss the corresponding problems.
Recall that the multifractal formalism deals with computations of Hausdorff
dimensions of sets having the form

{x : lim
n→∞

1

N

N∑
n=1

f (T nx) = ρ}.

In our setup it is natural to study Hausdorff dimensions of more general sets

Gρ = {x : lim
N→∞

1

N

N∑
n=1

F (f1(T q1(n)x), ..., f`(T q`(n)x)) = ρ}.

By the nonconventional ergodic theorem if µ is T -inv. mixing and

ρ =

∫
...

∫
F (f1(x1), ..., f`(x`))dµ(x1) · · · dµ(x`)

then µ(Gρ) = 1 while otherwise µ(Gρ) = 0 and it is natural (if µ ∼ Leb) to
inquire about the Hausdorff dimension of Gρ.
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Frequencies of words with gaps: preliminaries

Insead of this general problem we consider a more specific question about
Hausdorff dimensions of sets of numbers with prescribed frequencies of specific
combinations of digits in m-expansions. Namely, for any x ∈ [0, 1] and an
integer m > 1 write

x =
∞∑
i=1

ai−1(x)

mi
where aj(x) ∈ {0, 1, ...,m − 1}, j = 0, 1, ...

allowing zero tails of expansions but not tails consisting of all (m − 1)’s. This
convention affects only a countable number of points, and so it does not
influence computation of the Hausdorff dimensions. Denote by
A` = {0, 1, ...,m− 1}` the set of all `-words. For each x ∈ [0, 1] and an `-word
α = (α1, α2, ..., α`) ∈ A` define

Nα(x , n) = #{k > 0, k ≤ n : (aq1(k)(x), ..., aq`(k)(x)) = α}

where #Γ denotes the number of elements in the set Γ. For each probability

vector p = (pα, α ∈ A`) ∈ Rm` ,
∑
α∈A`

pα = 1 define

Up = {x ∈ (0, 1) : lim
n→∞

1

n
Nα(x , n) = pα for all α ∈ A`}.
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Frequencies of words with gaps: statement

We want to deal with the question of computation of the Hausdorff dimension
HD(Up) of Up. When ` = 1 and q1(k) = k we arrive at the classical question
studied by Eggleston via combinatorial means and by Billingsley via the ergodic
theory. In order to relate the limit of n−1Nα(x , n) to the nonconventional
ergodic theorem define the transformation Tx = {mx} where {·} denotes the
fractional part. Identifying 0 and 1 we can view T as an expanding map of the
circle. Now ai (x) = a0(T ix) and if α = (α1, α2, ..., α`) ∈ A` and
Γj = {x : a0(x) = j} then

Nα(x , n) =
n∑

k=1

IΓα1
(T q1(k)x)IΓα2

(T q2(k)x) · · · IΓα`
(T q`(k)x).

Theorem

Suppose that q1(k) = k for all k and there exists a probability vector
r = (r0, r1, ..., rm−1) such that pα =

∏`
i=1 rαi for any α = (α1, ..., α`) ∈ A`.

Then for p = (pα, α ∈ A`),

HD(Up) =
−
∑m−1

j=0 rj ln rj

ln m

with the convention 0 ln 0 = 0.
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Frequencies of words with gaps: remarks

For any T -invariant probability measure µ on [0, 1] with sufficient mixing
properties it follows that µ-almost everywhere

lim
n→∞

1

n
Nα(x , n) =

∏̀
i=1

µ(Γαi ).

Hence, if p = (pα, α ∈ A`) and there exists no probability vector
r = (r0, r1, ..., rm−1) such that pα =

∏`
i=1 rαi then µ(Up) = 0 for any µ as

above, and so such µ cannot be used for computation of the Hausdorff
dimension of Up (by one of the methods where measures are involved)
which complicates the study in this case.

This type of results can be extended to digits of continued fraction
expansions though in this case only estimates of the Hausdorff dimension
rather than precise formulas can only be obtained.

Some other cases related to the above theorem were considered by Peres
and Solomyak and by Fan, Schmeling and Wu.
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