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Abstract. In this paper we continue the study already initiated in [23] of the arithmetic
function τN (n), which counts the number of representations of a positive integer n ≤ N2 as
product of two integers both smaller than N . In particular, we focus on producing an asymptotic
estimate for all its positive integers moments. So doing we incidentally prove some special cases
of the well-known Manin–Peyre’s conjecture on singular toric algebraic varieties.

1. Motivations

In this paper we are concerned with the study of the function
τN(n) = #{d|n : n/N ≤ d ≤ N},

through understanding all its positive integer moments1. The function τN(n) played a funda-
mental role in the author’s paper [23], where a study about the distribution of its values allowed
him to completely classify maximal size product sets of random sets. From this point of view,
this short article can be viewed as complementary to [23], where we exhibited some heuristics for
the behaviour of τN(n) on average and found what might be considered as its normal order. In
the following we highlight three basic motivations to undertake a further study of the function
τN , particularly focusing on its positive integer moments.

1.1. A variation on the localised divisor functions theme. The function τN(n) is an
arithmetic variation of localised divisor functions of the form

τ(n; y, z) = #{d|n : y < d ≤ z},
for values of 0 < y < z ≤ N . Such functions, and their applications related to counting integers
with a divisor in fixed intervals, have been extensively studied in literature, from works of
Besicovitch [4] and Erdős [11–13] to those of Tenenbaum [25–30] and Ford [14,15], to name just
a few.

In all these works the focus was on localised divisor functions for parameters y, z as functions
of N only. In the definition of τN(n) instead, the parameter y depends on n itself. This makes
τN(n) of a different nature compared to the function τ(n; y, z), more arithmetic the former,
more analytic the latter.

For instance, it is immediate to see that all the values of τN(n) are even (since d|n and
n/N ≤ d ≤ N implies (n/d)|n and again n/N ≤ n/d ≤ N) apart when n is a perfect square.
When n ≤ N , τN(n) simply coincides with τ(n). Moreover, if p indicates a prime factor of n
and we write n = pk, we then have

τN(n) = 2#{d|k : k/N ≤ d ≤ N/p}.
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It is also true though that for several other analytical aspects it really shares some properties
with the localised divisor function τ(n; y,N) for y ≈ N − N/(logN)log 4−1 (see e.g. Hall and
Tenenbaum [17] for a more detailed discussion about this).

1.2. Information on the uniform distribution of divisors on average. In a previous
work [23] the author exhibited a heuristic on the distribution of the values of τN(n). Roughly
speaking, by assuming that the set {log d/logN : d|n}, of flat quotients log d/logN over the
divisors d of n, is uniformly distributed, the author deduced that

(1.1) τN(n) ≈
τ(n)

logN
.

From the work of Ford [14, 15] we know that for localised divisor functions the uniform dis-
tribution hypothesis on the quotients log d/logN does not very well describe the behaviour of
the set of divisors of individual integers n. Indeed, it is expected that many integers n possess
various clusters of close divisors and large gaps between them. We refer to [14,15] for a concrete
measure of the degree of propinquity of the divisors of a given integer. It derives that for a
single n the heuristic (1.1) is doomed to fail. However, when considered on average over a large
portion of positive integers n ≤ N2 it indeed seems quite sharp. A way to understand whether
this uniformity assumption could really well-describe the behaviour of the set of divisors of
integers, at least on an average sense, could be to look at the moments of τN(n) and see if their
asymptotic behaviour agrees with that of the moments of the function τ(n)/logN , as it would
follow from the prediction (1.1). In particular, we note that for this last one we have:

(1.2)
∑
n≤N2

(
τ(n)

logN

)k

∼ ckN
2(logN)2

k−k−1 as N −→ +∞,

for a certain ck > 0 (see e.g. Luca and Tóth’s paper [22]).

1.3. A special case of the Manin–Peyre’s conjecture. Some arithmetic variations of the
function τN(n) have been introduced and studied in relation to the Manin–Peyre’s conjecture
or to counting the discriminants of number fields which are multiquadratic extensions of Q.
Particularly, it is worth mentioning works of Tolev [31] and de la Bretèche, Kurlberg and
Shparlinski [10] , where an asymptotic estimate for the partial sum of the function which counts
the number of pairs (or more generally m-tuples) of positive integers both smaller than N whose
product is a perfect power has been provided.

The Manin’s conjecture states that for many affine varieties X over a number field K we
expect the number of integral points on a suitably nice open subset U ⊂ X(K) (with respect to
the Zariski topology) to satisfy

#{x ∈ U(K) : H(x) ≤ B} ∼ CBa(logB)b−1,

with respect to a suitable height function H : X(K) → R, where a, b and C are certain constants
depending on the geometry of X. Franke, Manin, and Tschinkel [16] originally proved this
conjecture for flag varieties. In [3], Batyrev and Tschinkel settled this conjecture for arbitrary
smooth affine toric varieties. On the other hand, De la Bretéche and Browning [8, 9] have also
shown that the asymptotic holds for many cases of del Pezzo surfaces.

In light of the above discussion, we can look at the partial sum of τN(n)k as counting the
number of positive integer points of height bounded by N on the following singular affine toric
variety:

V := {(X1, X2, . . . , X2k) ∈ A2k : X1X2 −XjXj+1 = 0, for any odd 1 ≤ j ≤ 2k − 1},
with respect to the height function H : A2k → R such that

H((x1, x2, . . . , x2k)) = max
1≤i≤2k

{|xi|}.
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2. Some basic estimates

Clearly we have ∑
1≤n≤N2

τN(n) = N2.

It is quite easy to prove an upper and lower bound for the average of the square of τN(n). This
is the content of the following lemma.
Lemma 2.1. There exist two positive constants C1 ≤ C2 such that

C1N
2 logN ≤

∑
1≤n≤N2

τN(n)
2 ≤ C2N

2 logN.

Proof. We start with the lower bound. For any fixed pair of coprime positive integers m,n we
are going to count the number of quadruples (a, b, c, d) ∈ [N ]4 such that

m

n
=
a

c
=
d

b
.

Since mc = an and bm = dn, we have that m|a and n|b. Once chosen such values of a, b also
c, d will be determined. Thus we get∑

1≤n≤N2

τN(n)
2 = E([N ]) ≥

∑
1≤m<n≤N/2

(m,n)=1

∑
1≤a≤N
m|a

∑
1≤b≤N

n|b

1

≫
∑

1≤m<n≤N/2
(m,n)=1

(
min{N/n− 1, N/m− 1}

)2

≫ N2
∑

1≤n≤N/2

∑
1≤m<n
(m,n)=1

1

n2
= N2

∑
1≤n≤N/2

φ(n)

n2
≫ N2 logN,

where φ(n) is the Euler totient function and we used Landau’s result [21, p. 184].
We now move on to the upper bound. If for positive integers k1, k2, j1, j2 we have k1j1 = k2j2

then there exist positive integers a, b, c and d such that k1 = ab, j1 = cd, k2 = ac and j2 = bd.
To see this, take:

a := (k1, k2), d := (j1, j2), b := k1/a, c := j1/d.

Consequently, the sum in the lemma is bounded above by
T := |{(a, b, c, d) : ab, cd, ac, db ≤ N}|.

Given b, c ≤ N , we have a, d ≤ min{N/b,N/c}. Thus we have

T ≤
∑

1≤b,c≤N

(min{N/b,N/c})2 ≤ 2
∑

1≤b<c≤N

N2

c2
+

∑
1≤b≤N

N2

b2

≪ N2
∑

1≤c≤N

1

c
+N2

∑
1≤b≤N

1

b2
≪ N2 logN,

by comparing the sums with their corresponding integrals. �
Proving an asymptotic for the second moment of τN is a much more complicated task. This

corresponds to producing an asymptotic for the multiplicative energy of the first N numbers.
This problem has been handled by Heath-Brown [19, Theorem 7], who among other things
showed the existence of a positive constant D for which∑

1≤n≤N2

τN(n)
2 = (D + o(1))N2 logN (as N −→ +∞).
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3. The moments of τN

By (1.1) and (1.2), we heuristically expect an asymptotic for higher moments of the shape:∑
n≤N2

τN(n)
k ∼ DkN

2(logN)2
k−k−1 (as N −→ +∞),

for a certain Dk > 0.
The aim of this section is to formally derive the above asymptotic, by employing some re-

sults of de la Bretèche [5] on sums of arithmetic functions of many variables. These types of
sums appear naturally when counting integer points of bounded height on some varieties. This
procedure has been used, for example, in [6,7] to prove Manin’s conjecture in some special cases.

We report next [5, Théorème 1, Théorème 2] in a slightly simplified and more compact form.
In particular, we refer to [5] for a more thoroughly treatment of such results.

Before stating their content, we first need to introduce some notations. We say that a function
f : Nm −→ C is multiplicative if

f(d1, . . . , dm)f(e1, . . . , em) = f(d1e1, . . . , dmem),

whenever the greatest common divisor

gcd(d1 · · · dm, e1 · · · em) = 1.

In that case, formally we have

F (s) =
∏
p

( ∑
ν∈Nm

f(pν1 , . . . , pνm)

pν1s1+···+νmsm

)
,

with the obvious vector notation for s ∈ Nm. We denote by Lm(C) the space of linear forms

l(X1, . . . , Xm) ∈ C[X1, . . . , Xm].

We denote by {ej}mj=1 the canonical basis of Cm and by {e∗j}mj=1 the dual basis in Lm(C). We
denote by LRm(C) the set of linear forms of Lm(C) for which their restriction to Rm maps to
R. We define LR+

m(C) similarly with respect to the set R+ of positive real numbers.
As usual, we use ||·||1 to denote the L1-norm and use < · > to denote the inner product of

vectors from Rm. We can view Rm as a partially ordered set using the relation d > e if and
only if this inequality holds componentwise for d, e ∈ Rm.

We also apply the notations ℜ (real part) and ℑ (imaginary part) to vectors in the natural
componentwise fashion.

Proposition 3.1. Let f be a positive arithmetical function on Nm and F be the associated
Dirichlet series

F (s) =
∞∑

d1=1

· · ·
∞∑

dm=1

f(d1, . . . , dm)

ds11 · · · dsmm
.

We assume that there exists an a ∈ (R+)m such that F satisfies the following properties:
• F (s) is absolutely convergent on ℜ(s) > a;
• There exists a family of n non-zero linear forms L = {l(i)}ni=1 of LR+

m(C) such that the
function H : Cm −→ C, defined by

H(s) = F (s + a)
n∏

i=1

l(i)(s),

can be analytically continued in the domain:

D(δ1) := {s ∈ Cm : ℜ(l(i)(s)) > −δ1,∀i}.
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• There exists δ2 > 0 such that, for all ε1, ε2 > 0, the following upper bound

(3.1) H(s) ≪
n∏

i=1

(|ℑ(l(i)(s))|+1)1−δ2 min{0,ℜ(l(i)(s))}(1 + ||ℑ(s)||ε11 ),

holds uniformly in the domain D(δ1 − ε2).
Then for any vector b ∈ (R+)m, there exists a polynomial Qb(Y ) ∈ R[Y ] of degree

deg(Qb) ≤ n− rank({l(i)}ni=1)

and a real θ = θ(L, δ1, δ2,a, b) > 0, such that for all X ≥ 1, we have

S(Xb) :=
∑

1≤d1≤Xb1

· · ·
∑

1≤dm≤Xbm

f(d1, . . . , dm) = X<a,b>(Qb(logX) +O(X−θ)).

If moreover H(0, . . . , 0) ̸= 0, l(i)(a) = 1, for any i = 1, . . . , n, and
m∑
j=1

bje
∗
j ∈ Conv({l(i)}ni=1),

where
Conv(L) =

∑
l∈L

R+l,

we have

(3.2) Qb(logX) = H(0, . . . , 0)X−<a,b>
∫∫∫

V (Xb)
1 dy +O((logX)n−rank({l(i)}ni=1)−1),

where we define

V (Xb) := {y := (y1, . . . , yn) ∈ [1,+∞)n :
n∏

i=1

y
l(i)(ej)
i ≤ Xbj , for any 1 ≤ j ≤ m}.

We are now ready to prove the main result of this section.
Theorem 3.2. For any integer k ≥ 1, there exists a constant Dk > 0 such that

(3.3)
∑
n≤N2

τN(n)
k = (Dk + o(1))N2(logN)2

k−k−1,

as N tends to infinity.
Remark 3.3. The constant Dk in (3.3) can be evaluated explicitly, but we will not insert the
related details here.
Remark 3.4. Our proof of Theorem 3.2 takes inspiration from that of [24, Lemma 2.3] and
of [10, Theorem 2.2]. The degree of the polynomial Q(Y ) can be precisely computed under the
assumption rank({l(i)}ni=1) = m thanks to [5, Théorème 2 (iv)]. In absence of this assumption,
the volume (3.2) has to be analysed. In relation to this, a close reading of [24, Lemma 2.3]
reveals that the computation of the degree of Q(Y ) has been carried out under the aforementioned
assumption, which does not hold in that case. However, the degree of Q(Y ) in the proof of [24,
Lemma 2.3] can be found through evaluating an integral volume similar to that in (3.2) and
indeed leads to the same answer.
Proof. To begin with, we note that the sum in question can be rewritten as:

= #{m1l1 = m2l2 = · · · = mklk : 1 ≤ m1, . . . ,mk ≤ N and 1 ≤ l1, . . . , lk ≤ N}.
Hence, in light of Proposition 3.1, we define

f(d1, . . . , d2k) =

{
1 if d1d2 = d3d4 = · · · = d2k−1d2k;
0 otherwise,
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which is immediate to verify defines a multiplicative function.
We are interested in estimating the sum:

S(N (1,...,1)) :=
∑

1≤d1≤N

· · ·
∑

1≤d2k≤N

f(d1, . . . , d2k),

which corresponds to the sum in (3.3).
For a vector s = (s1, . . . , s2k) ∈ C2k of 2k complex numbers, we define the multiple Dirichlet

series:
F (s) =

∑
d1,...,d2k≥1

f(d1, . . . , d2k)

ds11 · · · ds2k2k

.

We define for the vector a in the statement of Proposition 3.1 the vector:

(3.4) a := (1/k, . . . , 1/k) ∈ R2k.

Since clearly
|ds11 · · · ds2k2k |≥ (d1 · · · d2k)σ(s),

where

(3.5) σ(s) := min{ℜ(sj) : 1 ≤ j ≤ 2k},

we have ∑
d1,...,d2k≥1

∣∣∣∣f(d1, . . . , d2k)ds11 · · · ds2k2k

∣∣∣∣ ≤ ∑
m≥1

τ(m)k

mkσ(s) =
∏
p

(∑
j≥0

(j + 1)k

pjkσ(s)

)
,

which proves the absolute convergence of F (s) in the range σ(s) > 1/k and verifies the first
assumption in Proposition 3.1 for a as given by (3.4).

The linear forms {e∗j}mj=1, where we clearly set m := 2k, are explicitly given by:

e∗j(X1, . . . , X2k) = Xj, for any 1 ≤ j ≤ 2k.

We now prove that the second and the third assumptions in Proposition 3.1 are satisfied with
the n := 2k linear forms:

l(c1,...,ck) := e∗c1 + · · ·+ e∗ck , where 1 ≤ c1 ≤ 2, 3 ≤ c2 ≤ 4, . . . , 2k − 1 ≤ ck ≤ 2k.

Since f is multiplicative, in this range, we have:

(3.6) F (s) =
∏
p

Fp(s),

where
Fp(s) :=

∑
r1,...,r2k≥0

f(pr1 , . . . , pr2k)

pr1s1+···+r2ks2k
=

∑
r1,...,r2k≥0

r1+r2=r3+r4=···=r2k−1+r2k

1

pr1s1+···+r2ks2k
.

By expanding the above Euler product we get

Fp(s) = 1 +
∑
i1=1,2

∑
i2=3,4

· · ·
∑

ik=2k−1,2k

1

psi1+si2+···+sik
+

∑
r1,...,r2k≥0

r1+r2=r3+r4=···=r2k−1+r2k≥2

1

pr1s1+···+r2ks2k

and, on σ(s) > 0, where σ(s) is given by (3.5), the absolute value of the third term of the
right-hand side of the above equality is bounded by∑

r1,...,r2k≥0
r1+r2=r3+r4=···=r2k−1+r2k≥2

1

p(r1+···+r2k)σ(s)
≤

∑
r≥2

(r + 1)k

prkσ(s)
≪k

1

p2kσ(s)
.
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Furthermore, for a given A > 0 and for σ(s) ≥ A, we have∏
i1=1,2

∏
i2=3,4

· · ·
∏

ik=2k−1,2k

(
1− 1

psi1+si2+···+sik

)
= 1−

∑
i1=1,2

∑
i2=3,4

· · ·
∑

ik=2k−1,2k

1

psi1+si2+···+sik

+OA

(
1

p2kσ(s)

)
.

Therefore, we conclude that

(3.7) Fp(s)
∏

i1=1,2

∏
i2=3,4

· · ·
∏

ik=2k−1,2k

(
1− 1

psi1+si2+···+sik

)
= 1 +OA

(
1

p2kσ(s)

)
.

Taking the product over all primes and using the Euler product formula for the Riemann zeta
function, defined as:

ζ(s) =
∏
p

(
1− 1

ps

)−1

,

which holds for any complex s with ℜ(s) > 1, we obtain from (3.6) and (3.7) that, for σ(s) > 1,
we have
(3.8) F (s) = ψ(s)

∏
i1=1,2

∏
i2=3,4

· · ·
∏

ik=2k−1,2k

ζ(si1 + si2 + · · ·+ sik),

where ψ(s) is a holomorphic function on σ(s) ≥ A for any fixed A > 1/2k.
We can rewrite (3.8) as

F (s)
∏

i1=1,2

∏
i2=3,4

· · ·
∏

ik=2k−1,2k

(si1 + si2 + · · ·+ sik − 1)(3.9)

= ψ(s)
∏

i1=1,2

∏
i2=3,4

· · ·
∏

ik=2k−1,2k

ζ(si1 + si2 + · · ·+ sik)(si1 + si2 + · · ·+ sik − 1).

One can check that the left-hand side of (3.9) verifies (3.1) in the range σ(s) ≥ A, for any
A > 1/2k, by employing the Vinogradov-Korobov’s bound for the Riemann zeta function (see
e.g. [20, Theorem 8.27, Corollary 8.28]).

Translating each coordinate by 1/k, we see that

H(s) = F (s + a)
∏

i1=1,2

∏
i2=3,4

· · ·
∏

ik=2k−1,2k

(si1 + si2 + · · ·+ sik)

verifies (3.1) in the range σ(s) ≥ B for any B = A− 1/k > −1/2k. Hence, the second and the
third assumptions in Proposition 3.1 are satisfied for H(s). In particular, the first assertion in
Proposition 3.1 holds with the choice b = (1, . . . , 1), m = 2k, n = 2k and it derives that
(3.10) S(N (1,...,1)) = N2(Q(logN) +O(N−θ)),

for a certain polynomial Q(Y ) ∈ R[Y ] and a positive real number θ as in the statement of
Proposition 3.1.

In the remaining part of the proof we check that also the conditions in the second part of
Proposition 3.1 are satisfied in order to apply the second assertion there and then explicitly
compute the degree of the polynomial Q(Y ).

We start with observing that by previous considerations and since the Riemann zeta function
has a simple pole at 1 with residue 1, we have the identity

H(0, . . . , 0) =
∏
p

(
1− 1

p

)2k(
1 +

2k

p
+
∑
r≥2

(r + 1)k

pr

)
> 0.

Furthermore, it is clear that l(c1,...,ck)(a) = 1, for any choice of c1, . . . , ck.
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Finally, we clearly have that the linear form e∗1 + · · ·+ e∗m lies in the positive convex cone of
the linear forms l(c1,...,ck). Indeed, for any linear form l(c1,...,ck) we have the “complementary” one
given by l(c′1,...,c′k), where {c1, c′1} = {1, 2}, . . . , {ck, c′k} = {2k − 1, 2k}. Moreover, they generate
2k−1 distinct identities:

l(c1,...,ck) + l(c
′
1,...,c

′
k) = e∗1 + · · ·+ e∗2k.

In conclusion, we get

e∗1 + · · ·+ e∗2k =
∑

c1,...,ck

l(c1,...,ck)

2k−1
.

We have then proved that the remaining conditions in Proposition 3.1 are satisfied and we can
infer that

(3.11) Q(logN) =
H(0, . . . , 0)

N2

∫∫∫
V (N(1,...,1))

1 dy +O((logN)2
k−rank({l(c1,...,ck)}c1,...,ck )−1),

where we now have

V (N (1,...,1)) := {y := (yc1,...,ck) ∈ [1,+∞)2
k

:
∏

c1,...,ck

yl
(c1,...,ck)(ej)
c1,...,ck

≤ N, for any 1 ≤ j ≤ 2k}.

In order to find the degree of Q(Y ) we first compute the rank of the 2k × 2k matrix given by
the vectors {l(c1,...,ck)}c1,...,ck .

Claim 3.5. We have
rank({l(c1,...,ck)}c1,...,ck) = k + 1.

We first exhibit a maximal independent subset among the vectors {l(c1,...,ck)}c1,...,ck .

Claim 3.6. The following linear forms:

l(1) := e∗1 + e∗3 + e∗5 + · · ·+ e∗2k−1

l(2) := e∗2 + e∗3 + e∗5 + · · ·+ e∗2k−1

l(3) := e∗1 + e∗4 + e∗5 + · · ·+ e∗2k−1

l(4) := e∗1 + e∗3 + e∗6 + · · ·+ e∗2k−1

...
l(k+1) := e∗1 + e∗3 + e∗5 + · · ·+ e∗2k

are independent and linearly generate all the other linear forms l(c1,...,ck).

Remark 3.7. The above linear forms are defined in the following way: the j-th linear form l(j)

is the sum of all the e∗i for odd indices i except that when j > 1 the linear form e∗2j−3 is replaced
by e∗2j−2.

Claim 3.6 would imply Claim 3.5. First of all, we show that they are linearly independent.
Suppose indeed that we have a linear combination

a1l
(1) + · · ·+ ak+1l

(k+1) = 0, with a1, . . . , ak+1 ∈ R.
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It is immediate to verify that the following relations hold:
1) 0 = a1 + a3 + a4 + a5 + · · ·+ ak+1

2) 0 = a2

3) 0 = a1 + a2 + a4 + a5 + · · ·+ ak+1

4) 0 = a3

5) 0 = a1 + a2 + a3 + a5 + · · ·+ ak+1

6) 0 = a4
...
2k − 1) 0 = a1 + a2 + a3 + a4 + a5 + · · ·+ ak

2k) 0 = ak+1.

Remark 3.8. The above equations with a label given by an odd integer j are defined as the sum
of all the coefficients a1, a2, . . . , ak+1, with the omission of the coefficient a(j+3)/2.

In particular, we deduce that
0 = a2 = a3 = · · · = ak+1

which, by substituting back into the first equation above, also leads to a1 = 0.
We now move on to showing that they generate any other linear form l(c1,...,ck). Indeed, we

can identify each l(c1,...,ck) with a vector (i1, 1− i1, i2, 1− i2, . . . , ik, 1− ik) with each ij ∈ {0, 1}
for any j = 1, . . . , k. We are now then seeking for coefficients a1, . . . , ak+1 ∈ R for which

l(c1,...,ck) = a1l
(1) + · · ·+ ak+1l

(k+1),

or equivalently to solutions to the following system of equations:
1) i1 = a1 + a3 + a4 + a5 + · · ·+ ak+1

2) 1− i1 = a2

3) i2 = a1 + a2 + a4 + a5 + · · ·+ ak+1

4) 1− i2 = a3

5) i3 = a1 + a2 + a3 + a5 + · · ·+ ak+1

6) 1− i3 = a4
...
2k − 1) ik = a1 + a2 + a3 + a4 + a5 + · · ·+ ak

2k) 1− ik = ak+1.

The above system is made of 2k-equations numbered from the top to the bottom with the
numbers between 1 to 2k. We notice that the equations with an even label uniquely determine
altogether the coefficients a2, a3, . . . , ak+1. Substituting them back into the first equation we
also find the value of a1. We are only left with making sure that all the equations with a label
which is an odd number different from 1 are not in conflict with the values of the coefficients
aj we have just found. However, each of such equation states that for each number ij, for
j = 2, . . . , k, we have

ij = a1 + a2 + · · ·+ aj + aj+2 + · · ·+ ak+1

= (a1 + a3 + a4 + a5 + · · ·+ ak+1) + (a2 − aj+1) = i1 + (a2 − aj+1),
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which is certainly satisfied by the equations with labels 2 and 2j, because a2 = 1 − i1 and
aj+1 = 1 − ij. In conclusion, the above system admits a unique and well defined solution
a1, a2, a3, . . . , ak+1, thus showing the possibility of generating all the l(c1,...,ck)’s starting from our
family of (k + 1)−linear forms and concluding the proof of Claim 3.6.

We are only left with finding the degree of Q(Y ). In order to do that, we are going to produce
a sharp lower bound for the integral in (3.11).

Claim 3.9. We have ∫∫∫
V (N(1,...,1))

1 dy ≫ N2(logN)2
k−k−1.

To this aim we first relabel the linear forms l(c1,...,ck) as (lv)v=0,...,2k−1 by identifying each k-
tuple (c1, . . . , ck) with a new k-tuple (a0, . . . , ak−1) via cj = aj−1 + 2j − 1, with aj ∈ {0, 1}, for
any j = 1, . . . , k, and then the k-tuple (a0, . . . , ak−1) with a number v ∈ {0, . . . , 2k − 1} via its
binary expansion v =

∑k−1
j=0 aj2

j.

By changing variables yi = eti−1 , for any i = 1, . . . , 2k, we can rewrite the integral in (3.11) as∫∫∫
W (N)

e<t,1> dt,

where we let

W (N) : = {t := (t0, t1, . . . , t2k−1) ∈ [0,+∞)2
k

:
2k−1∑
v=0

lv(ej)tv ≤ logN, for any j = 1, . . . , 2k}

= {t ∈ [0,+∞)2
k

: M · t ≤ (logN) · 1},

with M := (lv(ej))j,v a 2k × 2k 0-1 matrix and 1 the vector with each component equal to 1.
Thus W (N) is a closed convex polytope with respect to the matrix M of rank(M) = k + 1.

The above type of integral has been already analysed in works such as [1,2], where a decom-
position in terms of a linear combination of the same exponential integrals over the facets of
the polytope has been given. However, such results are not very helpful to our context since
unfortunately we do not have any control on the coefficients of such linear combination.

On the other hand, a similar argument to that employed in the work of Harper, Nikeghbali
and Radziwiłł [18] leads to the estimate stated in Claim 3.9 (we omit the details here).

Combining the lower bound in Claim 3.9 with the asymptotic (3.11), it derives that deg(Q) =
2k − k − 1, which together with equation 3.10 concludes the proof of Theorem 3.2. �

Acknowledgements

I would like to thank Sam Chow for some conversations about the multiplicative energy of
the set of the first N numbers and for referring me to the Heath-Brown’s paper [19], where the
second moment of the function τN is asymptotically computed and expressed in terms of certain
geometric quantities. Finally, I am grateful to Marc Munsch for referring me to de la Bretèche’s
paper [5], which was key to estimate all the higher moments of τN , and to Régis de la Bretèche
for some helpful discussions about his publications [5, 6, 10].

References
[1] A. I. Barvinok. Computing the volume, counting integral points, and exponential sums. Discrete Comput.

Geom. 10 (1993), no. 2, 123–141.
[2] A. I. Barvinok. Computation of exponential integrals. Computational complexity theory. Part 5, Zap. Nauchn.

Sem. LOMI, 192, Nauka, Leningrad, 1991, 149–162; J. Math. Sci., 70:4 (1994), 1934–1943.
[3] V.V. Batyrev, Y. Tschinkel. Manin’s conjecture for toric varieties. J. Algebraic Geom. 7 (1998) 15–53.
[4] A. S. Besicovitch. On the density of certain sequences of integers. Math. Ann. 110 (1934), 336–341.



REPRESENTATIONS INTEGERS AS PRODUCT OF TWO RESTRICTED NUMBERS 11

[5] R. de la Bretèche. Estimation de sommes multiples de fonctions arithmétiques. Compositio Math. 128 (2001),
no. 3, 261–298.

[6] R. de la Bretèche. Compter des points d’une variété torique. J. Number Theory 87 (2001), 315–331.
[7] R. de la Bretèche. Répartition des points rationnels sur la cubique de Segre. Proc. London Math. Soc. 95

(2007), 69–155.
[8] R. de la Bretèche, T.D. Browning. On Manin’s conjecture for singular del Pezzo surfaces of degree four. I,

Michigan Math. J. 55 (2007) 51–80.
[9] R. de la Bretèche, T.D. Browning. On Manin’s conjecture for singular del Pezzo surfaces of degree four. II,

Math. Proc. Cambridge Philos. Soc. 143 (2007) 579–605.
[10] R. de la Bretèche, P. Kurlberg, I. E. Shparlinski. On the number of products which form perfect powers and

discriminants of multiquadratic extensions. International Mathematics Research Notices, rnz316, (2019).
[11] P. Erdős. Note on the sequences of integers no one of which is divisible by any other. J. London Math. Soc.

10 (1935), 126–128.
[12] P. Erdős. A generalization of a theorem of Besicovitch. J. London Math. Soc. 11 (1936), 92–98.
[13] P. Erdős. An asymptotic inequality in the theory of numbers. Vestnik Leningrad Univ. 15 (1960), 41–49.
[14] K. Ford. Integers with a divisor in (y, 2y]. Anatomy of integers, 65-80, CRM Proc. Lecture Notes, 46, Amer.

Math. Soc., Providence, RI, 2008.
[15] K. Ford. The distribution of integers with a divisor in a given interval. Annals of Mathematics, 168 (2008),

367–433.
[16] J. Franke, Y. Manin, Y. Tschinkel. Rational points of bounded height on Fano varieties. Invent. Math. 95

(1989) 421–435.
[17] R. Hall, G. Tenenbaum. Divisors. Cambridge Tracts in Mathematics, Cambridge: Cambridge University

Press. (1988).
[18] A.J. Harper, A. Nikeghbali, M. Radziwiłł. A Note on Helson’s Conjecture on Moments of Random Multi-

plicative Functions. Analytic Number Theory. Springer, Cham, (2005).
[19] D.R. Heath-Brown. A New Form of the Circle Method, and its Application to Quadratic Forms. J. Reine

Angew. Math. 481 (1996), 149–206.
[20] H. Iwaniec, E. Kowalski. Analytic Number Theory. Colloquium Publications, vol. 53, American Mathemat-

ical Society, Providence, RI, 2004.
[21] E. Landau. Über die zahlentheoretische Funktion ϕ(n) und ihre beziehung zum Goldbachschen Satz, Nachr.

koninglichen Gesellschaft wiss. Gottingen Math. Phys. klasse, 1900, 177–186.
[22] F. Luca, L. Tóth. The rth moment of the divisor function: an elementary approach. J. Integer Seq. 20

(2017), no. 7.
[23] D. Mastrostefano. On maximal product sets of random sets. https://arxiv.org/abs/2005.04663.
[24] M. Munsch, I. E. Shparlinski. Upper and lower bounds for higher moments of theta functions. Quart. J.

Math. 67 (2016), 53–73.
[25] G. Tenenbaum. Sur deux fonctions de diviseurs. J. London Math. Soc. 14 (1976), 521– 526; Corrigendum:

J. London Math. Soc. 17 (1978), 212.
[26] G. Tenenbaum. Sur la répartition des diviseurs. Séminaire Delange-Pisot-Poitou, 17e année (1975/76),

Théorie des nombres: Fasc. 2, Exp. No. G14, Paris, 1977, p. 5 pp. Secrétariat Math.
[27] G. Tenenbaum. Lois de répartition des diviseurs. II. Acta Arith. 38 (1980/81), 1–36.
[28] G. Tenenbaum. Lois de répartition des diviseurs. III. Acta Arith. 39 (1981), 19–31.
[29] G. Tenenbaum. Sur la probabilité qu’un entier posséde un diviseur dans un intervalle donné. Seminar on

number theory (Paris, 1981/1982), Progr. Math. 38, Boston, MA, 1983, pp. 303–312.
[30] G. Tenenbaum. Sur la probabilité qu’un entier posséde un diviseur dans un intervalle donné. Compositio

Math. 51 (1984), 243–263.
[31] D. I. Tolev. On the number of pairs of positive integers x1, x2 ≤ H such that x1x2 is a k-th power. Pacific

J. Math. 249 (2011), no. 2, 495–507.

University of Warwick, Mathematics Institute, Zeeman Building, Coventry, CV4 7AL, UK
Email address: Daniele.Mastrostefano@warwick.ac.uk

https://arxiv.org/abs/2005.04663

	1. Motivations
	1.1. A variation on the localised divisor functions theme
	1.2. Information on the uniform distribution of divisors on average
	1.3. A special case of the Manin–Peyre's conjecture

	2. Some basic estimates
	3. The moments of _N
	Acknowledgements
	References

