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Abstract. Let Γ be a convex co-compact group of isometries of a CAT(−1) space X and
let Γ0 be a normal subgroup of Γ. We show that, provided Γ is a free group, a sufficient

condition for Γ and Γ0 to have the same critical exponent is that Γ/Γ0 is amenable.

0. Introduction and Results

Let Γ be a group of isometries acting freely and properly discontinuously on a CAT(−1)
space X . Roughly speaking, a CAT(−1) space is a path metric space for which every
geodesic triangle is more pinched than a congruent triangle in the hyperbolic plane; see [5]
for a formal definition. Prototypical examples of CAT(−1) spaces are simply connected
Riemannian manifold with sectional curvatures bounded above by −1 and (simplicial or
non-simplicial) R-trees.

A fundamental quantity associated to Γ is its critical exponent δ(Γ). This is defined to
be the abscissa of convergence of the Poincaré series

℘Γ(s) =
∑

γ∈Γ

e−sdX(o,γo), (0.1)

where o ∈ X and dX(·, ·) denotes the distance in X . In other words, the series converges
for s > δ(Γ) and diverges for s < δ(Γ). An equivalent definition is that

δ(Γ) = lim sup
T→+∞

1

T
log #{γ ∈ Γ : dX(o, γo) ≤ T}. (0.2)

A simple calculation shows that δ(Γ) is independent of the choice of x ∈ X .
Let ∂X denote the ideal boundary of X . The set {γo : γ ∈ Γ} accumulates on a subset

ΛΓ ⊂ ∂X (independent of o) called the limit set of Γ. Let CΓ = c.h.(ΛΓ) ∩ X , where
c.h.(ΛΓ) is the geodesic convex hull of ΛΓ. We say that Γ is convex co-compact if CΓ/Γ
is compact. (If Γ is a Kleinian group, this agrees with the classical notion of convex co-
compactness.) In addition, we say that Γ is non-elementary if it is not a finite extension
of a cyclic group. These two conditions ensure that δ(Γ) > 0 and the limit in (0.2) exists.

Now suppose that Γ0 is a normal subgroup of a convex co-compact group Γ. Then Γ0

itself has a critical exponent δ(Γ0) and, clearly, δ(Γ0) ≤ δ(Γ). Our main result addresses
the question of when we have equality.
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Theorem 1. If Γ/Γ0 is amenable then δ(Γ0) = δ(Γ).

The definition of amenable group is given in the next section.

Remark. Equality of δ(Γ0) and δ(Γ) was previously known to hold when Γ/Γ0 is finite or
abelian [15]. (In fact, the results in [15] are stated in the case where X is real hyperbolic
space but the proofs given there apply more generally.)

Since obtaining the results in this paper, we have learned that Theorem 1 has been
proved by Roblin [16], without the restriction that Γ is a free group, using completely
different methods. However, we feel that our alternative approach, based on approximating
δ(Γ) and δ(Γ0) by quantities related to random walks on graphs, has independent interest.
It is worth remarking that the equality of the two critical exponents has been used recently
in [10].

We shall now outline the contents of the paper. In section 1, we give definition of
amenable groups and introduce Grigorchuk’s co-growth criterion, interpreting it in terms
of a graph. In section 2, we describe how to write the Poincaré series ℘Γ(s) and ℘Γ0

(s)
in terms of a subshift of finite type. We also introduce sequences of matrices which are
used to approximate δ(Γ) and δ(Γ0). In section 3, we use ideas from the theory of random
walks on graphs, in particular [12], to show that, if Γ/Γ0 is amenable then the respective
approximations to δ(Γ) and δ(Γ0) agree at each stage, from which Theorem 1 follows. In
the final section, we consider that special case of X = H

n+1.
I am very grateful to the referee for suggesting numerous improvements to the exposition.

1. Amenable Groups and Co-Growth

Amenable groups were defined by von Neumann. A group G is said to be amenable if
there is an invariant mean on L∞(G,R), i.e., a bounded linear functional µ : L∞(G,R) → R

such that, for any f ∈ L∞(G,R),

(i) infg∈G f(g) ≤ µ(f) ≤ supg∈G f(g); and

(ii) for all g ∈ G, µ(g · f) = µ(f), where g · f(x) = f(g−1x).

It is immediate from the definition that any finite group is amenable by setting

µ(f) =
1

|G|

∑

g∈G

f(g).

The situation for infinite groups is more subtle and we shall restrict our discussion to
finitely generated groups.

A group with subexponential growth is amenable [2],[7]. In particular, any abelian
or nilpotent group is amenable. However, there are examples of amenable groups with
exponential growth (e.g. the lamplighter groups [8]). In contrast, non-abelian free groups
and, more generally, non-elementary Gromov hyperbolic groups are not amenable. It was
conjectured by von Neumann that a group fails to be amenable only if it contains the free
group on two generators; however, a counterexample to this was constructed by Ol’shanskii
[11].

Grigorchuk related amenability to the property of co-growth of subgroups of free groups.
Let Γ (considered as an abstract group) be the free group on k generators {a1, . . . , ak}
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and let |γ| denote the word length of γ, i.e., the length of the shortest representation of γ
as a word in a±1

1 , . . . , a±1
k . Clearly, we have that

lim
n→+∞

(#{γ ∈ Γ : |g| = n})
1/n

= 2k − 1.

Now suppose that Γ0 is a normal subgroup of Γ. Grigorchuk showed that the co-growth
c(Γ0), defined by

c(Γ0) := lim sup
n→+∞

(#{g ∈ Γ0 : |g| = n})
1/n

,

is equal to 2k − 1 if and only if G = Γ/Γ0 is amenable [6] (see also [4]).
Grigorchuk’s result may be reinterpreted in terms of graphs. Let G denote the graph

consisting of one vertex and k oriented edges, labelled by a1, . . . , ak. The same edges
with the reverse orientation will be labelled a−1

1 , . . . , a−1
k , respectively. Write T for the

universal cover of G; then T is a 2k-regular tree. It is an easy observation that Γ acts
freely on T with quotient G. Furthermore, we may identify elements of word length n in
Γ with non-backtracking paths of length n in G. (A path (e1, . . . , en) is said to be non-
backtracking if, for each i = 2, . . . , n, the edge ei is not equal to ei−1 with the reversed
orientation.)

Now consider the action of the subgroup Γ0 on T and write G̃ = T /Γ0 for the quotient

graph; this is a G-cover of G. (In fact, G̃ is the Cayley graph of G with respect to the
generators obtained from a1, . . . , ak.) Then we may identify elements of word length n in

Γ0 with non-backtracking paths of length n in G̃ starting from and ending at some fixed
vertex. Grigorchuk’s result may then be reformulated as saying that the growth rate of

the number of paths of length n in G̃, starting from and ending at a fixed vertex, is equal
to the corresponding growth rate for paths in G if and only if Γ/Γ0 is amenable.

The parallels between equality of these growth rates and equality of the critical expo-
nents is apparent. However, the “lengths” are different: word length |γ| in one setting and
the displacement d(o, γo) for the action on X in the other. Nevertheless, this will provide
the basis for our approach. In this context, we note that there exists A > 1 such that

A−1|γ| ≤ d(o, γo) ≤ A|γ|. (1.1)

We shall use several properties of the graph G̃. Firstly, provided it is not itself a tree

(which only occurs if Γ0 is trivial) G̃ has the property that “small cycles are dense” [12]:

there exists R > 0 such that, for each vertex u in G̃, the set B(u,R) = {v : deG(u, v) ≤ R}

contains a cycle. We also note that there is a number L(R) > 0 such that, for every vertex

u in G̃, #B(u,R) ≤ L(R).

Later we shall need to find paths joining vertices in G̃. Let cn(u, v) denote the number

of non-backtracking paths of length n in G̃ from u to v.

Lemma 1.1 [17]. Let u, v be vertices of G̃. Then either

lim
n→+∞

cn(u, v)1/n = c(Γ0)

or
lim

n→+∞
c2n+δ(u,v)(u, v)

1/2n = c(Γ0) and c2n+δ(u,v)−1(u, v) = 0,

where δ(u, v) = 0 if deG(u, v) is even and δ(u, v) = 1 if deG(u, v) is odd.
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Corollary 1.1.1. Suppose that G is amenable (or even that c(Γ0) > 0) and let u, v

be vertices of G̃. Then there exists l(u, v) > 0 such that either cl(u,v)(u, v) > 0 or
cl(u,v)−1(u, v) > 0.

2. Shifts of Finite Type and Approximation

Recall that the free group Γ is given in terms of generators A = {a±1
1 , . . . , a±1

k }. We
shall form a subshift of finite type σ : Σ → Σ, where

Σ = {x = (xi)
∞
i=0 ∈ AZ

+

: xi+1 6= x−1
i , ∀i ∈ Z

+}

and σ is the shift map: (σx)i = xi+1. We call (x0, . . . , xn−1) ∈ An an allowed string of
length n if xi+1 6= x−1

i , i = 0, . . . , n − 2. We write Σn for the set of all allowed strings
of length n, Σ≤n =

⋃n
m=0 Σm and Σ∗ =

⋃∞
n=0 Σn, where Σ0 is defined to be a singleton

consisting of an “empty string” ω. There is an obvious bijection between Σn and elements
of Γ with word length n (and hence between Γ and Σ∗.

We make Σ ∪ Σ∗ into a metric space by setting d(x, y) = 2−n(x,y), where

n(x, y) =

{
0 if x0 6= y0,

sup{n ≥ 0 : xm = ym, 0 ≤ m ≤ n} otherwise.

If f : Σ ∪ Σ∗ → R is Hölder continuous with Hölder exponent α > 0 then we write

|f |α = sup

{
f(x) − f(y)

d(x, y)α
: x 6= y

}
.

If we define σ(ω) = ω, the shift map extends to σ : Σ∪Σ∗ → Σ∪Σ∗ and σ(Σn) = Σn−1,
n ≥ 1. For a function f : Σ ∪ Σ∗ → R, we write fn(x) = f(x) + f(σx) + · · ·+ f(σn−1x).

Proposition 2.1 [9],[13],[14]. There is a strictly positive Hölder continuous function r :
Σ ∪ Σ∗ → R such that, if γ = x0 · · ·xn−1 then

rn(x0, . . . , xn−1) = dX(o, γo).

Remark. An examination of the proof in [14] shows that what is essential for the proof is
that X satisfies the Aleksandrov-Toponogov Comparison property. Thus the result holds
if X is a CAT(−1) space.

An easy calculation then shows that

℘Γ(s) = 1 +
∞∑

n=1

∑

x∈σ−n(ω)\{ω}

e−sr
n(x).

Let ψ : Γ → G = Γ/Γ0 be the natural homomorphism and, for x = (x0, . . . , xn−1) ∈ Σn,
write ψn(x) = ψ(x0) · · ·ψ(xn−1). We have

℘Γ0
(s) = 1 +

∞∑

n=1

∑

x∈σ−n(ω)\{ω}
ψn(x)=e

e−sr
n(x).
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We shall study the abscissas of convergence of the above two series via a sequence of
approximations to r. We define

rN (x) =

{
r(x) if x ∈ Σn, n ≤ N ;

r(x0, . . . , xN−1) otherwise.

Then ‖r − rN‖∞ ≤ |r|α2−α(N+1), where α > 0 is the Hölder exponent of r. Hence,
given ǫ > 0, we can choose N sufficiently large so that, for each x ∈ Σ ∪ Σ∗ and n ≥ 1,
|rn(x) − rnN (x)| < nǫ.

We define δN and δ0N to be the abscissas of convergence of ℘N (s) and ℘0
N (s), respectively,

where

℘N (s) = 1 +

∞∑

n=1

∑

x∈σ−n(ω)\{ω}

e−sr
n

N
(x), ℘0

N (s) = 1 +

∞∑

n=1

∑

x∈σ−n(ω)\{ω}
ψn(x)=e

e−sr
n

N
(x).

Lemma 2.1. We have limN→+∞ δN = δ(Γ) and limN→+∞ δ0N = δ(Γ0).

Proof. For γ = x0 · · ·x|γ|−1 ∈ Γ, let xγ = (x0, . . . , x|γ|−1) ∈ Σ∗. Then, r|γ|(xγ) = d(o, γo),
so, using this notation,

δ(Γ) = lim sup
T→+∞

1

T
log #{γ : r|γ|(xγ) ≤ T}, δN = lim sup

T→+∞

1

T
log #{γ : r

|γ|
N (xγ) ≤ T}.

Fix ǫ > 0 sufficiently small that Aǫ < 1, where A is given by (1.1). Then, provided N is

sufficiently large, r|γ|(xγ) ≤ r
|γ|
N (xγ) + |γ|ǫ ≤ r

|γ|
N (xγ) +Ar|γ|(xγ)ǫ and so

r|γ|(xγ) ≤
r
|γ|
N (xγ)

1 − Aǫ
.

Hence
#{γ : r

|γ|
N (xγ) ≤ T} ≤ #{γ : r|γ|(xγ) ≤ (1 − Aǫ)−1T}

and so δN ≤ (1 − Aǫ)−1δ(Γ). Since we may take ǫ arbitrarily small, we conclude that
lim supN→+∞ δN ≤ δ(Γ). A similar argument gives the corresponding lower bound, so we
have limN→+∞ δN = δ(Γ). The same proof gives the result for δ0N .

Hence, to prove Theorem 1, it suffices to show that if G is amenable then δN = δ0N , for
each N ≥ 1. We shall do this in the next section. First we need to rewrite ℘N (s) and
℘0
N (s) in matrix form.
For N ≥ 1, define matrices PN , indexed by ΣN × ΣN , by

PN (x, y) =

{
e−δN rN (x0,x1,... ,xN−1,yN−1) if xn = yn−1, n = 1, . . . , N − 1;

0 otherwise,

where x = (x0, x1, . . . , xN−1), y = (y0, y1, . . . , yN−1). (For N = 1, we set P1(x0, y0) = 0
whenever y0 = x−1

0 . For N ≥ 2 this is automatically avoided.) Each PN is irreducible (and
aperiodic). Also define another sequence of matrices QN , indexed by Σ≤N × Σ≤N , by

QN (x, y) =

{
e−δN rN (x0,x1,... ,xN−1,yN−1) if xn = yn−1, n = 1, . . . , N − 1;

0 otherwise,
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where, for x ∈ Σm, we write x = (x0, . . . , xm−1, ω, . . . , ω︸ ︷︷ ︸
N−m

). The matrices QN are not

irreducible. Note that PN is the restriction of QN to ΣN × ΣN .
From the definition of QN , we have that, for n > N ,

∑

x∈σ−n(ω)\{ω}

e−δN r
n

N
(x) =

∑

x∈ΣN

∑

a∈Σ1

QnN (x, (a, ω, . . . , ω)).

Now, since PN is irreducible, the value of lim supn→+∞(PnN (x, y))1/n is independent of
x, y ∈ ΣN (in fact it is the spectral radius of PN ).

Lemma 2.2. For any x, y ∈ ΣN and a ∈ Σ1,

lim sup
n→+∞

(PnN (x, y))1/n = lim sup
n→+∞

(QnN (x, (z, ω, . . . , ω)))1/n.

Proof. We have

QnN (x, (a, ω, . . . , ω)) =
∑

y∈ΣN

Qn−NN (x, y) QNN (y, (a, ω, . . . , ω))

=
∑

y∈ΣN

Pn−NN (x, y) QNN (y, (a, ω, . . . , ω)).

Since δN is the abscissa of convergence of ℘N (s), we deduce that, for each x, y ∈ ΣN ,
lim supn→+∞(PnN (x, y))1/n = 1.

By the Perron-Frobenius Theorem, PN has 1 as an eigenvalue and an associated strictly
positive (row) eigenvector vN : vNPN = vN . In addition, we may suppose that PN is
normalized so that ∑

y∈ΣN

PN (x, y) = 1.

In other words, PN may be regarded as a matrix of transition probabilities between ele-
ments of ΣN .

Now we define another sequence of (infinite) matrices P̃N , N ≥ 1, indexed by (ΣN ×
G) × (ΣN ×G), by

P̃N ((x, g), (y, h)) =

{
PN (x, y) if ψ(x0) = g−1h;

0 otherwise.

(Note that the exponent in the entries of P̃N is δN not δ0N .) Each P̃N is locally finite in the

sense that, for each (x, g), there are only finitely many (y, h) such that P̃N ((x, g), (y, h))>
0.

We also define a corresponding sequence of infinite matrices Q̃N , N ≥ 1, indexed by
(Σ≤N ×G) × (Σ≤N ×G), by

Q̃N ((x, g), (y, h)) =

{
QN (x, y) if ψ(x0) = g−1h;

0 otherwise.
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We have
∑

x∈σ−n(ω)\{ω}
ψ(x)=e

e−sr
n

N
(x) =

∑

x∈ΣN

∑

y∈Σ1

Q̃nN ((x, e), ((y, ω, . . . , ω), e)).

In section 4, we shall prove the following lemma.

Lemma 2.3. G is amenable if and only if lim supn→+∞(P̃nN ((x, e), (y, e)))1/n = 1.

This lemma implies that, provided G is amenable, δN = δ0N , N ≥ 1. Combining this
with Lemma 2.1 gives Theorem 1.

3. An Auxiliary Estimate

In this section we establish an estimate needed to complete the proof of Lemma 2.3 in
section 4.

Write Fixn = {x ∈ Σ : σnx = x}. If x = (x0, x1, . . . , xn−1, x0, . . . ) ∈ Fixn, write
x−1 = (x−1

n−1, . . . , x
−1
1 , x−1

0 , x−1
n−1, . . . ) ∈ Fixn.

Lemma 3.1. For each N ≥ 1, rnN (x) = rnN (x−1) whenever x ∈ Fixn, n ≥ 1.

Proof. For n ≥ N ,

rnN (x) = r(x0, x1, . . . , xN−1) + r(x1, x2, . . . , xN ) + · · ·+ r(xn−1, x0, . . . , xN−2)

= d(o, x0x1 · · ·xN−1o) − d(o, x1 · · ·xN−1o)

+ d(o, x1x2 · · ·xNo) − d(o, x2 · · ·xNo)

+ · · · + d(o, xn−1x0 · · ·xN−2o) − d(o, x0 · · ·xN−2o).

On the other hand,

rnN (x−1) = r(x−1
n−1, x

−1
n−2, . . . , x

−1
n−N ) + r(x−1

n−2, x
−1
n−3, . . . , x

−1
n−N−1)

+ · · · + r(x−1
0 , x−1

n−1, . . . , x
−1
n−N+1)

= d(o, x−1
n−1x

−1
n−2 · · ·x

−1
n−No) − d(o, x−1

n−2 · · ·x
−1
n−No)

+ d(o, x−1
n−2x

−1
n−3 · · ·x

−1
n−N−1o) − d(o, x−1

n−3 · · ·x
−1
n−N−1o)

+ · · · + d(o, x−1
0 x−1

n−1 · · ·x
−1
n−N+1o) − d(o, x−1

n−1 · · ·x
−1
n−N+1o)

= d(o, xn−N · · ·xn−2xn−1o) − d(o, xn−N · · ·xn−2o)

+ d(o, xn−N−1 · · ·xn−3xn−2o) − d(o, xn−N−1 · · ·xn−3o)

+ · · · + d(o, xn−N+1 · · ·xn−1x0o) − d(o, xn−N+1 · · ·xn−1o)

= rnN (x).

If n < N , the calculations become easier.

Consider the restriction rN : ΣN → R. We can define another function řN : ΣN → R

by řN (x0, . . . , xN−1) = rN (x−1
N−1, . . . , x

−1
0 ). Applying Livsic’s theorem for finite directed

graphs to the above result, we may deduce:
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Corollary 3.1.1. There exists u : ΣN−1 → R such that

rN (x0, x1, . . . , xN−1) = rN (x−1
N−1, . . . , x

−1
1 , x−1

0 ) + u(x1, . . . , xN−1) − u(x0, . . . , xN−2).

Lemma 3.2. There exists a constant C0 > 0 such that, for all (x, g), (y, h) ∈ ΣN ×G and
n ≥ 1,

PnN ((x, g), (y, h)) ≤ C0P
n
N ((y̌, h−1), (x̌, g−1)),

where, if x = (x0, x1, . . . , xN−1) and y = (y0, y1, . . . , yN−1), we use the notation x̌ =
(x−1
N−1, . . . , x

−1
1 , x−1

0 ) and y̌ = (y−1
N−1, . . . , y

−1
1 , y−1

0 ).

We may take
C0 = exp (2δN sup{|u(x)| : x ∈ ΣN−1}) .

4. Random Walks on Graphs

In order to prove Lemma 2.3, we shall adapt work of Ortner and Woess on non-
backtracking random walks on graphs contained in [12].

For each N ≥ 1, we define an (undirected) graph SN with vertex set ΣN × G. Two

vertices (x, g) and (y, h) will be joined by an edge if and only if either P̃N ((x, g), (y, h))> 0

or P̃N ((y, h), (x, g)) > 0. We note that SN is connected and that each vertex has degree
2k.

We may think of P̃N as defining a Markov process on SN . As part of the proof of

Lemma 2.3, we will show that P̃N has the following three properties [12]:

(1) P̃N has bounded range, i.e., there exists R > 0 such that if P̃N ((x, g), (y, h)) > 0
then (x, g) and (y, h) are at distance ≤ R in SN .

(2) P̃N has a bounded invariant measure; i.e., there exists a function ν : ΣN×G → R
+,

bounded above and below away from zero, such that, for all (y, h) ∈ ΣN ×G,

∑

(x,g)∈ΣN×G

P̃N ((x, g), (y, h)) ν((x, g)) = ν((y, h)).

(3) P̃N is uniformly irreducible, i.e., there exist constants K > 0, ǫ > 0 such that, for
any pair of neighbouring vertices (x, g), (y, h) in SN , one can find k ≤ K such that

P̃ kN ((x, g), (y, h)) ≥ ǫ.

We note that (1) holds immediately with R = 1.
To show (2), let recall that there is a strictly positive row vector vN = (vN (x))x∈ΣN

such that vNPN = vN . Define ν by ν((x, g)) = vN (x). Clearly this is bounded above and

below away from zero. A simple calculation shows it has the desired P̃N -invariance.

Finally, we show that P̃N is uniformly irreducible.

Lemma 4.1. P̃N is uniformly irreducible.

Proof. Fix a number K (to be determined later). Let ǫ0 < 1 denote the smallest positive

entry of P̃N and let ǫ = ǫK0 ; then, for every k ≤ K, each positive entry of P̃ kN is greater
than or equal to ǫ. Let (x, g) and (y, h) be neighbouring vertices in SN . Without lose of
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generality, P̃N ((x, g), (y, h))> ǫ and P̃N ((y, h), (x, g)) = 0. To complete the proof we need
to find a positive probability path of length at most K from (y, h) to (x, g).

Observe that we can identify ΣN×G with the set of non-backtracking paths of length N

in G̃ and a positive probability path of length k in SN corresponds to a non-backtracking

path of length N + k in G̃. We therefore need to show that, for any two non-backtracking

paths (given by sequences of vertices) (u0, u1, . . . , uN ) and (v0, v1, . . . , vN ) in G̃, there
exists k ≤ K such that there is a non-backtracking path of length k joining them to give a
non-backtracking path from u0 to vN . It follows from Corollary 1.1.1 that there is a non-
backtracking path (uN , w1, . . . , wκ−1, v0), with κ ≤ l(uN , v0), joining uN to v0. However,
it is possible then when this is inserted between the other two paths, backtracking occurs.

To avoid this we shall use the “small cycles are dense” property of G̃. (The following part
of the proof is adapted from the proof of Lemma 3.7 in [12].)

First we consider the beginning of the inserted path. If w1 6= uN−1 there is nothing to
do, so suppose that w1 = uN−1. Choose a neighbour z1 of uN which is not equal to uN−1.
By Lemma 3.3 of [12], (uN , z1) may be extended into non-backtracking paths which reach
infinitely many vertices. Since B(uN−1, R) is finite, we may choose one of these paths,
(uN , z1, . . . , zr), so that zr /∈ B(uN−1, R) but zi ∈ B(uN−1, R), i = 1, . . . , r − 1 (with
r ≤ L(R)+1. By the “small cycles are dense” property, there is a cycle (c0, c1, . . . , cp−1, c0)
in B(zr, R) (with p ≤ L(R)). Either

(a) zr = ci for some i = 0, 1, . . . , p− 1, or,
(b) by the definition of B(zr, R), there is a non-backtracking path (zr, a1, . . . , aq−1, c0)

(a1 6= zr−1) joining zr to c0 (with q ≤ R).

In case (a), we insert

(uN , z1, . . . , zr, ci+1, . . . , cp−1, c0, . . . , ci−1, zr, zr−1, . . . , z1, uN )

and in case (b), we insert

(uN , z1, . . . , zr, a1, . . . , aq−1, c0, c1, . . . , cp−1, c0, aq−1, . . . , a1, zr, zr−1, . . . , z1, uN )

between (u0, u1, . . . , uN ) and (uN , w1, . . . , wκ−1, v0).
Now consider the end of the path (uN , w1, . . . , wκ−1, v0). If wk−1 6= v1 there is nothing

to do. On the other hand, if wk−1 = v1 then we carry out a similar construction to that
in the paragraph above.

In this way, we have obtained a non-backtracking path starting with (u0, u1, . . . , uN )
and ending with (v0, v1, . . . , vN ) with uN and v0 being joined in at most l(uN , v0) +
4(L(R) + 1) + 4R + 4L(R) steps.

To complete the proof, we need to show that this number may be bounded independently
of our initial choice of (x, g) and (y, h) (which determine uN and v0). First, we note that
there are only finitely many x and y in ΣN . Second, we observe that, for any a ∈ G,

P̃N ((x, ag), (y, ah)) = P̃N ((x, g), (y, h)), so, without loss of generality, we may suppose
that g = e. Since (y, h) is a neighbour of (x, g) in SN , this forces h to be one of the finitely
many elements ψ(a±1

1 ), . . . , ψ(a±1
k ). Therefore, we may choose K to be the maximum of

l(uN , v0) + 8L(R) + 4R+ 4, taken over this finite number of choices.
9



Since P̃N has an invariant measure ν, it acts on the Hilbert space l2(SN , ν). Let ρ2(P̃N )

denote the spectral radius. Also, since P̃N is irreducible,

ρ(P̃N ) = lim sup
n→+∞

(P̃nN ((x, g), (y, h)))1/n

is independent of (x, g) and (y, h) and ρ(P̃N ) ≤ ρ2(P̃N ).
To complete the proof of Lemma 2.3 (and hence of Theorem 1) we use the following

results from [12]. (See page 112 of [18] for the definition of an amenable graph.)

Proposition 4.1 [12, Theorem 3.6]. If SN is connected with bounded vertex degrees and

P̃N satisfies (1),(2) and (3) then ρ2(P̃N ) = 1 if and only if SN is amenable.

We have already seen that the hypotheses used in Proposition 4.1 are satisfied. The

next result relates ρ2(P̃N ) and ρ(P̃N ).

Proposition 4.2. ρ(P̃N ) = ρ2(P̃N ).

Proof. The proof is a simple modification of the proof of Proposition 1.6 in [12]. The
hypothesis there is that one has a graph for which “small cycles are dense”; since this

holds for G̃, it also holds for SN . There are two differences from the proof in [12]:

(1) we consider a matrix PN = 1
2(I+ P̃N ), where I is the identity matrix, and observe

that PN preserves ν (rather than the counting measure as in [12]);
(2) we use Lemma 3.2: there exists a constant C0 > 0 such that, for all (x, g), (y, h) ∈

ΣN ×G and n ≥ 1,

PnN ((x, g), (y, h)) ≤ C0P
n
N ((y̌, h−1), (x̌, g−1)),

where, if x = (x0, x1, . . . , xN−1) and y = (y0, y1, . . . , yN−1), we use the notation
x̌ = (x−1

N−1, . . . , x
−1
1 , x−1

0 ) and y̌ = (y−1
N−1, . . . , y

−1
1 , y−1

0 ). (In [12], the inequality is
an equality with C0 = 1.)

Neither of these affect the proof.

Together, these two results show that ρ(P̃N ) = 1 if and only if SN is amenable. To
finish things off, we show that the latter condition is equivalent to the amenability of G.

Recall that a map f : X → Y between two metric spaces (X, dX) and (Y, dY ) is called
a quasi-isometry if there exist A ≥ 1, B,C ≥ 0 such that,

(i) for all x, x′ ∈ X , A−1dX(x, x′) −B ≤ dY (f(x), f(x′)) ≤ AdX(x, x′) +B; and
(ii) for every y ∈ Y , there exists x ∈ X such that dY (y, f(x)) ≤ C.

Proposition 4.3. SN is amenable if and only if G is amenable.

Proof. We identify G with its Cayley graph C(G); G is an amenable group if and only if
C(G) is an amenable graph. Define a map fN : SN → C(G) on the vertices by fN (x, g) = g
and extend it to the edges by fN ((x, g), (y, h)) = (g, h). This map is clearly a quasi-
isometry. Since, for graphs with bounded vertex degree, amenability is an invariant of
quasi-isometry [18, Theorem 4.7], the result is proved.
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5. Kleinian Groups

In this section we shall discuss the relevance of our results for Kleinian groups acting
on the hyperbolic space H

n+1 and, in particular, for finitely generated Fuchsian results.
(These results are subsumed by those in [16].)

We begin be describing the results of Brooks on amenability and the spectrum of the
Laplacian. Let N be a complete Riemannian manifold and let ∆N denote the Laplace-
Beltrami operator acting on L2(N). Then −∆N is a positive self-adjoint operator on
L2(N). If σ(−∆N ) denotes the spectrum of −∆N then σ(−∆N ) ⊂ [0,+∞). Let λ0(N)
denote the bottom of the spectrum, i.e.,

λ0(N) = inf σ(−∆N ).

If Ñ is a Riemannian cover of N then λ0(Ñ) ≥ λ0(N).

Theorem (Brooks [3]). Suppose that Ñ is a Riemannian cover of N . If π1(N)/π1(Ñ)

is amenable then λ0(Ñ) = λ0(N).

Remark. Subject to certain conditions, in particular, if N is compact, Brooks also showed
the converse.

Let Γ be a Kleinian group, i.e., a discrete group of isometries of the real (n + 1)-
dimensional hyperbolic space H

n+1. We say that Γ is geometrically finite if it is possible
to choose a fundamental domain which is a finite sided polyhedron. We shall suppose that
Γ acts freely so that H

n+1/Γ is a smooth manifold and that Γ is non-elementary. Then
0 < δ(Γ) ≤ n, with equality if and only if H

n+1/Γ has finite volume. As before, Γ0 will be
a normal subgroup of Γ.

In this setting, δ(Γ) is related to λ0(H
n+1/Γ) by the formula

λ0(H
n+1/Γ) =

{
δ(Γ)(n− δ(Γ)) if δ(Γ) > n/2

n2/4 if δ(Γ) ≤ n/2,

with an identical formula holding for Γ0. Thus, in the range δ(Γ) > n/2, the critical
exponent may be read off from the λ0 and vice versa, while for δ(Γ) ≤ n/2 the critical
exponent is a more subtle quantity.

Using the above relation, Brooks was able to deduce that, if Γ is geometrically finite
and δ(Γ) > n/2 then amenability of Γ/Γ0 implies that δ(Γ0) = δ(Γ) [3]. In the case where
Γ is a free group, we can remove the restriction that δ(Γ) > n/2. In particular, this gives
a complete result for finitely generated Fuchsian groups.

Theorem 2. Let Γ be a finitely generated Fuchsian group and let Γ0 be a normal subgroup.
If Γ/Γ0 is amenable then δ(Γ0) = δ(Γ).

Proof. First we note that, for Fuchsian groups, if Γ is finitely generated then it is geomet-
rically finite. If H

2/Γ is compact then δ(Γ) = 1, so Brooks’s result applies. If H
2/Γ is not

compact then Γ is a free group. If H
2/Γ has a cusp then δ(Γ) > 1/2 [1], so again Brooks’s

result applies. In the remaining case, the result follows from Theorem 1.
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