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Abstract. We study the detailed structure of the distribution of Eichler-Shimura periods

of an automorphic form on a compact hyperbolic surface. We show that these periods do not
cluster around the asymptotic period over a homology class discovered by Zelditch.

0. Introduction and Results

Let M = H2/Γ be a compact hyperbolic surface, where Γ is a discrete subgroup of
PSL(2,R) = SL(2,R)/{±I}. Such a surface has a countable infinity of closed geodesics,
one corresponding to each non-zero conjugacy class in Γ ∼= π1M . We shall denote a typical
prime closed geodesic by γ, its length by l(γ), and its homology class by [γ] ∈ H1(M,Z).
We shall say that Γ is symmetric if it is normalized by ε =

(
−1 0

0 1

)
, i.e., if εΓε = Γ.

An interesting and much studied problem is to understand the distribution of the closed
geodesics on M . For example, one may study the asymptotic behaviour of the prime
geodesic counting function π(T ) := #{γ : l(γ) ≤ T}. In the 1940’s Delsarte [4] showed
that π(T ) ∼ eT /T , i.e., the ratio of the two sides converge to 1, as T → ∞; since then
more precise results have been obtained. A more refined problem is to fix a homology
class α ∈ H1(M,Z) and to study π(T, α) := #{γ : l(γ) ≤ T, [γ] = α}. It is known that
π(T, α) ∼ C0e

T /T g+1, where g ≥ 2 denotes the genus of M , with an explicit formula for
C0 [11], [16]. A related problem is to count closed geodesics subject to a constraint on the
periods

∫
γ
ω, where ω is a harmonic 1-form. This is an example of the type of problem

considered in [2], [13], [20]. Here there are additional features depending on whether or
not the periods lie in a discrete subgroup of R.

A natural generalization is to consider (holomorphic) m-forms. These correspond ex-
actly to automorphic forms f : H2 → C of weight 2m with respect to Γ. In [22], Shimura
introduced a period of a weight 2m automorphic form f over a closed geodesic γ, which
we shall denote by rm(f, γ). Zelditch showed that f has an “asymptotic period” ε(f) over
a fixed homology class α. More precisely, writing C(T, α) = {γ : l(γ) ≤ T, [γ] = α},

lim
T→∞

1
π(T, α)

∑
γ∈C(T,α)

rm(f, γ) = ε(f) (1.1)
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and ε(f) is independent of the choice of α [23]. (In particular, if m is odd then ε(f) = 0.)
In this note we show that one cannot do better than averaging in this result, in the sense
that the closed geodesics for which rm(f, γ) is close to ε(f) have density zero in the set
{γ : [γ] = α}. More precisely, we shall prove Theorem 1 below.

For a weight 2m automorphic form f , let T (f) denote the closed subgroup of C generated
by the periods rm(f, γ). As we shall see, T (f) spans C.

Theorem 1. Let f be a non-zero automorphic form of weight 2m, m > 1. Then, for any
η ∈ T (f) and δ > 0, we have

#{γ : l(γ) ≤ T, [γ] = α, |rm(f, γ)− η| ≤ δ} ∼ C
eT

T g+2
,

where C > 0 is a constant independent of α and η.

The most important special cases of this result are when T (f) is a lattice or when
T (f) = C. In these cases we can make the slightly more precise statements below. In each
case βf : R2g+2 → R is a certain “thermodynamic” function (depending only on f) which
we shall define later.

Special cases.
(1) If T (f) is a lattice in C then, for any η ∈ T (f), we have

#{γ : l(γ) ≤ T, [γ] = α, rm(f, γ) = η} ∼ |C/T (f)|
(2π)g+1

√
det∇2βf (0)

eT

T g+2
,

where |C/T (f)| denotes the area of a fundamental domain for T (f).
(2) If T (f) = C then, for any η ∈ C and δ > 0, we have

#{γ : l(γ) ≤ T, [γ] = α, |rm(f, γ)− η| ≤ δ} ∼ πδ2

(2π)g+1
√

det∇2βf (0)
eT

T g+2
.

Corollary. For any δ > 0, we have

lim
T→∞

1
π(T, α)

#{γ : l(γ) ≤ T, [γ] = α, |rm(f, γ)− ε(f)| ≤ δ} = 0,

i.e., the closed geodesics with period close to ε(f) have zero density in {γ : [γ] = α}.
Remarks.

(i) The restriction to a fixed homology class α in (1.1) is crucial, even though the
result is independent of α. Without this restriction, the averages vanish.

(ii) The asymptotic period ε(f) may be interpreted as the trace of an associated pseu-
dodifferential operator acting on harmonic 1-forms [23].

(iii) The period rm(f, γ) can be interpreted as the pairing between certain cohomology
and homology theories [10].

With the additional assumption that Γ is symmetric, we may prove the following rather
more precise result on the distribution of the real parts of the periods. (Exactly analogous
results also hold for the corresponding imaginary parts.)
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Theorem 2. Suppose that Γ is symmetric. Let f be a non-zero automorphic form of
weight 2m, m > 1, and let R(f) denote the subgroup of R generated by the real part of the
periods <rm(f, γ).

(i) If R(f) is a discrete group then for α ∈ H1(M,Z) and η ∈ R(f), we have

#{γ : l(γ) ≤ T, [γ] = α,<rm(f, γ) = η} ∼ C(f)
eT

T g+3/2
,

where C(f) > 0 is independent of α and η.
(ii) If R(f) = R then for α ∈ H1(M,Z), η ∈ R and δ > 0, we have

#{γ : l(γ) ≤ T, [γ] = α, |<rm(f, γ)− η| ≤ δ} ∼ 2δC(f)
eT

T g+3/2
,

where C(f) > 0 is independent of α, η, and δ.

There are two principal approaches to the problem of obtaining asymptotic formulae
associated to closed geodesics. The first is based on the Selberg trace formula and non-
commutative harmonic analysis. The second, adopted in this paper, is based on a study of
the geodesic flow on the unit tangent bundle SM , which is of Anosov type. In this context
one may then employ the powerful machinery of hyperbolic dynamics and Thermodynamic
Formalism. In particular, there is a well-developed theory, initiated by Lalley, of counting
periodic orbits subject to constraints.

In section 1, we shall give the necessary background concerning automorphic forms
and periods. In section 2, we discuss the application of dynamical ideas to the study
of automorphic forms and orbit counting. In section 3, we apply Lalley’s Theorem to
study the detailed structure of the distribution of periods of automorphic forms in a fixed
homology class.

1. Homology, Forms and Periods

Considered as an abstract group, Γ has a presentation

〈a1, . . . , ag, b1, . . . , bg|
g∏

j=1

ajbja
−1
j b−1

j = 1〉.

The first homology group H1(M,Z) of M is isomorphic to Z2g. A convenient basis is given
by B = {[a1], . . . , [ag], [b1], . . . , [bg]}, where [·] : Γ → H1(M,Z) is the Hurewicz map.

The cohomology group H1(M,R) may be identified with the space of harmonic 1-forms
on M . Let {ω1, . . . , ω2g} be the basis dual to B. If ω is a harmonic 1-form and γ is a closed
curve then it is a classical result that

∫
γ
ω = 〈[ω], [γ]〉, where [ω] denotes the cohomology

class defined by ω and where 〈·, ·〉 denotes the Kronecker pairing between H1(M,R) and
H1(M,R).

The group Γ acts on H2 by Möbius transformations, i.e., if g =
(

a b

c d

)
then

gz =
az + b

cz + d
.
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A holomorphic function f : H2 → C is an automorphic form (with respect to Γ) of weight
2m if for every g =

(
a b

c d

)
∈ Γ we have

f(gz) = (cz + d)2mf(z).

Since g′(z) = (cz+d)−2, we then have that the m-differential f(z)(dz)m is invariant under
Γ and hence defines a holomorphic m-form on M .

Eichler [5] and Shimura [22] showed how to define a period for f over a closed geodesic γ
on M . For the moment, let γ =

(
a b

c d

)
be an element of Γ and set Qγ(z) = cz2+(d−a)z−b.

Choosing an arbitrary z0 ∈ H2, define

rm(f, γ) = cγ

∫ γz0

z0

f(z)Qm−1
γ (z)dz,

where the integral is taken over any smooth path joining z0 and γz0 and cγ is a normaliza-
tion constant. In fact, we take c−1

γ = (−sgn(trace(γ)))m−1((trace(γ))2 − 4)(m−1)/2. (This
choice makes rm(f, γ) well-defined for γ ∈ PSL(2,R) rather than SL(2,R).) This will
become important when we introduce functions on SM and is the correct scaling to study
the distribution of the periods. Then rm(f, γ) is independent of z0 and, more importantly,
depends only on the conjugacy class of γ and hence only on the corresponding closed geo-
desic (also denoted by γ). An easy calculation shows that rm(f,−γ) = −rm(f, γ) if m is
odd and that rm(f,−γ) = rm(f, γ) if m is even. The following result is due to S. Katok
and shows that f is uniquely determined by the periods rm(f, γ).

Proposition 1 [9]. If rm(f, γ) = 0 for all closed geodesics γ then f = 0.

Remark. Ifm = 1 then r1(f, γ) is just the usual pairing between the (complex) cohomology
class determined by f and the homology class determined by γ.

Let S2m(Γ) denote the set of automorphic forms of weight 2m. This is a finite dimen-
sional complex Hilbert space with respect to the Petersson inner product

〈f, g〉 =
∫
F
f(z)g(z)(=z)2m−2dz,

where F is a fundamental domain for the action of Γ on H2. For each γ ∈ Γ, we may
construct a function Θm,γ ∈ S2m(Γ), called the relative Poincaré series, by the following
averaging procedure:

Θm,γ(z) = c′γ
∑

g∈Γγ\Γ

Q−m
γ (gz),

where Γγ is the cyclic group generated by γ and c′γ is a normalizing constant. As before,
these forms only depend on the closed geodesic determined by γ. Provided c′γ is chosen
appropriately, they are related to the periods rm(·, γ) by the formula

〈f,Θm,γ〉 = rm(f, γ) (1.1)

for any f ∈ S2m(Γ) [7]. By Proposition 1, the forms Θm,γ span S2m(Γ) [9]. In particular,
this implies that if f 6= 0 then the periods rm(f, γ) span C. If Γ is symmetric then the
forms Θm,γ span S2m(Γ) as a real vector space [10].
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Lemma 1. Suppose that Γ is symmetric. If <rm(f, γ) = 0 for all closed geodesics γ then
f = 0.

Proof. By (1.1), the hypothesis is equivalent to the statement that <〈f,Θm,γ〉 = 0 for
all closed geodesics γ. Since the Θm,γ span S2m(Γ) as a real space, we may write f =∑

γ aγΘm,γ , with aγ ∈ R. Hence <〈f, f〉 =
∑

γ aγ<〈f,Θm,γ〉 = 0. However, 〈f, f〉 is real,
so we have shown that 〈f, f〉 = 0, i.e., f = 0.

2. Closed Geodesics and Orbit Counting

Problems concerning the geometry of M can often be studied via the dynamics of the
geodesic flow φt : SM → SM , where SM = PSL(2,R)/Γ is the unit tangent bundle of M .
This is defined by φt(xΓ) =

(
et 0
0 e−t

)
xΓ and is a topologically weak-mixing flow of Anosov

type with topological entropy equal to 1. There is a natural one-to-one correspondence
between closed geodesics on M and periodic orbits of φ. with the length of the closed
geodesic equal to the period of the orbit. We shall write γ̃ for the periodic orbit lying over
the closed geodesic γ. The weak-mixing condition can be rephrased as the statement that
the set of lengths l(γ), with γ a closed geodesic, does not lie in a discrete subgroup of R.

We shall now introduce some concepts associated the the thermodynamic analysis of
φ; a good reference is [15]. For a Hölder continuous function ψ : SM → R, we define the
pressure

P (ψ) = sup
ν∈Mφ

{
hν(φ) +

∫
ψdν

}
,

where Mφ denotes the set of φ-invariant probability measures on SM . The supremum is
attained by a unique probability measure, called the equilibrium state of ψ. If ψ1, . . . , ψn :
SM → R are Hölder continuous then the map Rn → R : (x1, . . . , xn) 7→ P (

∑n
i=1 xiψi) is

real-analytic unless the group generated by the vectors
(∫

γ̃
ψ1, . . . ,

∫
γ̃
ψn

)
as γ̃ ranges all

periodic φ-orbits fails to have full rank in Rn.
The equilibrium state of 0 is called the measure of maximal entropy; we shall denote

it by µ. In the present setting, µ is equal to the Liouville measure on SM : locally it is
the product of the normalized area on M and 1/2π × arc-length on the fibres. For any
continuous ψ : SM → R, we have∫

ψ dµ = lim
T→∞

1
π(T )

∑
l(γ)≤T

1
l(γ)

∫
γ̃

ψ. (2.1)

Dynamical methods have been applied in the context of automorphic forms by S. Katok
[9]. An automorphic form f : H2 → C may be lifted to a Γ-invariant smooth function
f̃ : PSL(2,R) → C, which in turn defines a smooth function F : SM → C [3],[9]. A
convenient way to do this is as follows. Equipping PSL(2,R) with local co-ordinates (z, ζ)
with z ∈ H2 and ζ ∈ C such that |ζ| = =z, we may define f̃(z, ζ) = f(z)ζm [9]. A
useful property of this construction is that

∫
γ̃
F = rm(f, γ), where γ̃ is the periodic φ-orbit

lying over the closed geodesic γ. (Here we have made use of our choice of normalization.)
Furthermore,

∫
Fdµ = 0.
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We shall now discuss the result of Zelditch concerning the existence of asymptotic peri-
ods. We begin be stating a result concerning the counting functions π(T ) and π(T, α). In

the statement, li(eT ) denotes the logarithmic integral li(eT ) =
∫ eT

2
1/ log u du ∼ eT /T.

Proposition 2.

(i) There exists δ > 0 such that

π(T ) = li(eT )
(
1 +O

(
e−δT

))
, as T →∞.

(ii) For any α ∈ H1(M,Z) there exists C1 = C1(α) such that

π(T, α) =
eT

T g+1

(
(g− 1)g

vol(J (M))
+
C1

T
+O

(
1
T 2

))
, as T →∞,

where J (M) denotes the Jacobian torus of M .

Remark. Part (i) is due to Huber [8] and part (ii) to Phillips and Sarnak [16]. (In fact,
the expansions obtained were more precise than those given above.) The first order term
for π(T, α) was also obtained by Katsuda and Sunada and the formula for C0 is due to
them [11]. More recently, analogous results have also been obtained in the case of variable
negative curvature [1], [12], [17], [18].

In [23], Zelditch considered the summatory functions
∑

γ∈C(T,α) rm(f, γ), where f is an
automorphic form of weight 2m, and showed the following.

Proposition 3 [23]. Let f be a non-zero automorphic form of weight 2m. There exists
ε1(f) ∈ C, such that for any α ∈ H1(M,Z)

∑
γ∈C(T,α)

rm(f, γ) =
eT

T g+2

(
ε1(f) +O

(
1
T

))
.

In particular,

lim
T→∞

1
π(T, α)

∑
γ∈C(T,α)

rm(f, γ) = ε(f),

where ε(f) = ε1(f)vol(J (M))/(g− 1)g.

Remark. Part (i) of Proposition 2 generalizes to the statement that, for smooth functions
G on SM , ∑

l(γ̃)

∫
γ̃

G =
(∫

Gdµ

)
eT +O

(
e(1−ε)T

)
,

for some ε > 0. Since
∫
Fdµ = 0, we immediately obtain that, removing the homological

restriction, the average (1/π(T ))
∑

l(γ)≤T rm(f, γ) converges to zero at an exponential rate.
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3. Lalley’s Theorem and the Distribution of Periods

We shall prove Theorem 1 by applying a result originally due to Lalley [13]. Alternative
proofs have also been given by Sharp [20] and Babillot and Ledrappier [2]. It is to the
latter paper that we shall refer.

For a family of Hölder continuous functions ψ1, . . . , ψn : SM → R, let A(ψ1, . . . , ψn)
denote the subgroup of Rn generated by the set{(∫

γ̃

ψ1, . . . ,

∫
γ̃

ψn

)
: γ̃ is a periodic φ-orbit

}

and let Ã(ψ1, . . . , ψn) denote the subgroup of Rn+1 generated by the set{(
l(γ),

∫
γ̃

ψ1, . . . ,

∫
γ̃

ψn

)
: γ̃ is a periodic φ-orbit

}
.

For x = (x1, . . . , xn) ∈ Rn, write B(x) = P (
∑n

i=1 xiψi) and mx for the equilibrium state of∑n
i=1 xiψi. In particular, m0 = µ. The following result is readily obtained from Theorem

1.2 of [2].

Proposition 4 (Lalley’s Theorem). Let ψ1, . . . , ψn : SM → R be a Hölder continu-
ous family such that A(ψ1, . . . , ψn) has full rank in Rn and such that Ã(ψ1, . . . , ψn) =
R × A(ψ1, . . . , ψn). Let 0 ≤ p ≤ n denote the maximal rank of a lattice subgroup of
A(ψ1, . . . , ψn). Then there exists a unique ξ ∈ Rn such that

(∫
ψ1dmξ, . . . ,

∫
ψndmξ

)
= 0.

Furthermore, for any compactly supported function ∆ : A→ R, we have

∑
l(γ)≤T

∆
(∫

γ̃

ψ1, . . . ,

∫
γ̃

ψn

)
∼ |E|

(2π)n/2
√

det∇2B(ξ)

∫
A

∆ dHaar
ehmξ

(φ)T

T 1+n/2
,

where |E| is the p-dimensional volume of a p-dimensional fundamental domain for
A(ψ1, . . . , ψn).

We shall show that the hypotheses of Proposition 4 are satisfied in the present setting.
Recall that {ω1, . . . , ω2g} is a basis for H1(M,R) consisting of harmonic 1-forms. For each
j = 1, . . . , 2g, define a smooth function Gj : SM → R by Gj(x, v) = ωj(v). Then, in
particular,

[γ] =
(∫

γ̃

G1, . . . ,

∫
γ̃

G2g

)
.

(Here we are using the basis B to identify H1(M,Z) with Z2g.)
For the subsequent analysis, it is appropriate to regard C as a 2-dimensional real space.

Hence we shall slightly modify our notation and let T (f) denote the subgroup of R2

generated by the pairs (<rm(f, γ),=rm(f, γ)). Set A = A(G1, . . . , G2g,<F,=F ) and set
Ã = Ã(G1, . . . , G2g,<F,=F ).
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Lemma 2. A has full rank in R2g+2, i.e., A = Z2g × T (f).

Proof. If A does not have full rank then we can find a ∈ R2g and b ∈ R2, not both zero,
such that

〈a, [γ]〉+ 〈b, rm(f, γ)〉 = 0

for all closed geodesics γ. However, by Proposition 3, we have that

lim
T→∞

1
π(T, α)

∑
γ∈C(T,α)

(〈a, [γ]〉+ 〈b, rm(f, γ)〉) = 〈a, α〉+ 〈b, ε(f)〉,

so that 〈a, α〉 + 〈b, ε(f)〉 = 0 for any α ∈ H1(M,Z). Since ε(f) is independent of α, we
conclude that a = 0. However, the periods rm(f, γ) span C and so we also have that b = 0.
This proves the result.

Lemma 3. We have Ã = R×A.

Proof. The statement is equivalent to the assertion that that if χ̃ is a character of R× A
and

χ̃

(
l(γ̃),

∫
γ̃

G1, . . . ,

∫
γ̃

G2g,

∫
γ̃

<F,
∫

γ̃

=F
)

= 1 (3.1)

for all periodic orbits γ̃ then χ̃ is the trivial character.
Since R̂×A = R× Ẑ2g × T̂ (f), we may write (3.1) in the form

eitl(γ̃)χ([γ])ρ
(∫

γ̃

<F,
∫

γ̃

=F
)

= 1,

where t ∈ R, χ ∈ Ẑ2g, and ρ ∈ T̂ (f). Furthermore, χ takes the form χ([γ]) = e2πi〈[ω],[γ]〉,
for some harmonic 1-form ω = ξ1ω1 + · · ·+ ξ2gω2g and ρ takes the form ei〈u,(

∫
γ̃
<F,

∫
γ̃
=F )〉,

for some u ∈ R2.
If (3.1) holds for all γ̃ then, by a result of Livsic [14] (see also [6]), there exists a function

ψ : SM → S1, continuously differentiable along flow lines, such that

1
2πi

ψ′

ψ
=

t

2π
+

2g∑
j=1

ξjGj +
1
2π
〈u, (<F,=F )〉, (3.2)

where

ψ′(x) = lim
t→0

ψ(φtx)− ψ(x)
t

(cf. the discussion in [21]). Now, the homotopy class of ψ determines a (Bruschlinsky)
cohomology class and

1
2πi

∫
ψ′

ψ
dµ

is the asymptotic cycle associated to µ evaluated on that cohomology class [19]. Hence,
integrating (3.2) with respect to µ yields that t = 0. Thus (3.1) reduces to

χ([γ])ρ
(∫

γ̃

<F,
∫

γ̃

=F
)

= 1
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for all periodic orbits γ̃, i.e., χ ·ρ is trivial on a set which generates A = Z2g×T (f). Hence
χ · ρ is trivial on A, so we have shown that χ̃ is trivial on Ã.

Remark. In the case where m is odd, we may use the identity rm(f,−γ) = −rm(f, γ) to
give a simpler argument, avoiding the use of Livsic’s Theorem.

Thus the hypotheses of Proposition 4 are satisfied: we shall apply it with the choice
∆ = χ{α} · χ{z : |z−η|≤δ}

∣∣
A
. To complete the proof of Theorem 1, we note that

∫
Gj dµ =

0, j = 1, . . . , 2g, and
∫
<Fdµ = 0,

∫
=Fdµ = 0, so that ξ = 0. Thus the required

exponential growth rate is given by hµ(φ) = 1. The explicit values for the constants given
in the special cases where T (f) is a lattice or T (f) = C also follow from Proposition 4 if
we define βf : R2g+2 → R by

βf (x1, . . . , x2g+2) = P

(
2g∑

i=1

xiGi + x2g+1<F + x2g+2=F

)
.

Finally, we shall outline the modifications required to prove Theorem 2. In this case we
shall apply Lalley’s Theorem to the 2g + 1 functions G1, . . . , G2g,<F : SM → R.

Let R(f) denote the subgroup of R generated by the real parts of the periods <rm(f, γ).
Clearly either R(f) = R or R(f) is a discrete subgroup of R. Set B = A(G1, . . . , G2g,<F )
and B̃ = A(G1, . . . , G2g,<F ).

Lemma 4. B has full rank in R2g+1, i.e., B = Z2g ×R(f).

Proof. If B does not have full rank then we can find a ∈ R2g and b ∈ R, not both zero,
such that

〈a, [γ]〉+ b<rm(f, γ) = 0

for all closed geodesics γ. As in the proof of Lemma 2, we can use Proposition 3 to deduce
that 〈a, α〉+b<ε(f) = 0 for any α ∈ H1(M,Z). Since ε(f) is independent of α, we conclude
that a = 0. By Lemma 1, the terms <rm(f, γ) are not all zero and so we also have that
b = 0. This shows that B has full rank.

The next result is proved in the same way as Lemma 3.

Lemma 5. B̃ = R× Z2g ×R(f).

Theorem 2 now follows from Proposition 4, as before.
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