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Abstract. We describe how closed geodesics lying in a prescribed homology class

on a negatively curved manifold split when lifted to a finite cover. This generalizes
a result of Zelditch in the case of compact hyperbolic surfaces.

0. Introduction

Given a compact manifold of negative curvature, there are geometric analogues
of the Chebotarev Theorem in algebraic number theory due to Sunada [13] (cf. also
Parry and Pollicott [8] for the generalization to Axiom A flows). More precisely,
given a finite Galois cover of the manifold, these theorems describe the proportion
of closed geodesics which lift in a prescribed way to the cover.

In this geometric setting, it is also natural to consider infinite covers and, in
particular, the number of closed geodesics lying in a prescribed homology class has
been studied by Katsuda and Sunada [4], Phillips and Sarnak [9], Katsuda [3],
Lalley [7] and Pollicott [10] (with generalizations to Anosov flows by Katsuda and
Sunada [5] and Sharp [12]). In this note we shall combine these points of view,
generalizing a result of Zelditch for hyperbolic Riemann surfaces [14].

Let M be a compact smooth Riemannian manifold with negative curvature. Let

M̃ be a finite Galois covering of M with covering group G. For a closed geodesic γ
on M , let l(γ) denote its length, 〈γ〉 its Frobenius class in G and [γ] its homology
class in H = H1(M, Z).

We shall examine how the closed geodesics lying in a fixed homology class α ∈ H,

split when lifted to M̃ . More precisely, for a conjugacy class C in G, we study the
asymptotics of

π(T, α, C) = Card{γ : l(γ) ≤ T, [γ] = α, 〈γ〉 = C}.

The problem is complicated by the fact that that, in general, [γ] and 〈γ〉 are
not independent quantities. This occurs if the abelian quotient group G/[G, G] is
non-trivial, since this group is also a quotient of H, the maximal abelian covering
group of M . Let πG : G → G/[G, G] and πH : H → G/[G, G] be the natural
projections. In particular, the image πG(C) of a conjugacy class C ⊂ G is a single
element in G/[G, G] and if πG(C) 6= πH(α) then π(T, α, C) = 0, for all values of T .

On the other hand, we have the following result, which extends work of Zelditch
for Riemann surfaces [14].
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Theorem 1. If πG(C) 6= πH(α) then π(T, α, C) is identically zero.
If πG(C) = πH(α) then

π(T, α, C)

π(T, α)
→

∣∣∣∣
G

[G, G]

∣∣∣∣
|C|
|G| as T → +∞,

where π(T, α) = Card{γ : l(γ) ≤ T, [γ] = α}.
Example. Let G be a finite nonabelian nilpotent group, then [G, G] 6= G. For
definiteness, we can let G = {±1,±i,±j,±k} be the Quarternion group of eight
elements, then [G, G] = ±1. Let Γ = 〈a1, a2, b1, b2 : a1b1a

−1
1 b−1

1 a2b2a
−1
2 b−1

2 = 1〉
be a cocompact Fuchsian group. Define a homomorphism φ : Γ → G by setting
φ(a1) = i, φ(a2) = j and φ(b1) = φ(b2) = 1 and extending this to Γ. We can then

define a normal subgroup by Γ0 = ker(φ). If we set M = H
2/Γ0 and M̃ = H

2/Γ0

then M̃ is a finite cover of M with covering group G.

Let us consider a closely related problem. Consider the frame flow ft : FM →
FM on the space of orthonormal frames above M . This is a SO(n − 1)-extension
for the geodesic flow. Changing notation slightly, let γ be a periodic orbit of the
geodesic flow, to which we associate a holonomy Θ(γ) ∈ SO(n − 1) which comes
from a reference frame being transported around γ. This is defined up to conjugacy.
In [8] it was shown that the holonomies were equidistributed on SO(n − 1). The
following shows that the corresponding result holds for geodesics in a fixed homology
class. (Recall that a class function is a function which is constant on conjugacy
classes.)

Theorem 2. Let F : SO(n − 1) → R be a class function. Then

1

π(T, α)

∑

l(γ)≤T
[γ]=α

F (Θ(γ)) →
∫

Fdλ, as T → +∞,

where λ denotes the Haar measure on SO(n − 1).

1. Preliminaries

Let M be a compact smooth manifold equipped with a Riemannian metric of
negative curvature and let X denote its universal cover. (In the special case where
M is a surface with constant curvature −1, X is the hyperbolic plane H.) Then
there is a discrete group of isometries Γ ∼= π1(M) of X such that M = X/Γ. Now

let Γ0 be a normal subgroup of Γ with finite index. Then M̃ = X/Γ0 is a finite
(Galois) covering of M , with covering group G = Γ/Γ0 (i.e., G acts transitively on
the fibres above each point in M).

There is a natural dynamical system, the geodesic flow, associated to M . Let
SM denote the unit-tangent bundle of M and, for (x, v) ∈ SM , let γ : R → M
be the unique unit-speed geodesic with γ(0) = x and γ̇(0) = v. Then the geodesic
flow φt : SM → SM is defined by φt(x, v) = (γ(t), γ̇(t)) and we shall write h
for its topological entropy. There is a one-to-one correspondence between periodic
φ-orbits and directed closed geodesics on M . The fact that M is negatively curved
ensures that the geodesic flow is an Anosov flow and that h > 0. This will enable
us to use results proved in the context of Anosov flows in this setting.
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We shall make use of L-functions defined with respect to certain representations
of Γ = π1(M). Let ρ : Γ → U(d) be a unitary representation of Γ. We define an
L-function L(s, ρ) by the product formula

L(s, ρ) =
∏

γ

det(I − ρ(〈〈γ〉〉)e−sl(γ))−1, (1.1)

where the product is taken over all (prime) closed geodesics γ on M and 〈〈γ〉〉
denotes the homotopy class of γ. Provided Re(s) is sufficiently large, this will con-
verge to an analytic function. We shall prove Theorem 1 by studying the behaviour
of L(s, ρ) for a restricted class of representations.

We shall be interested in how closed geodesics on M lift to M̃ . There are a
countable infinity of closed geodesics on M ; we shall denote a typical one by γ and

its length by l(γ). Each such γ has n = |G| lifts γ1, . . . , γn to M̃ . These lifts are
not necessarily closed but, for each i = 1, . . . , n, there is a covering transformation
gi ∈ G relating the endpoints of γi and, for i, j = 1, . . . , n, gi and gj are conjugate.
Hence we may associate to γ a well-defined conjugacy class 〈γ〉 ⊂ G, called the
Frobenius class of γ. These classes satisfy an analogue to Chebotarev’s Theorem
in number theory: for a conjugacy class C ⊂ G

lim
T→+∞

#{γ : l(γ) ≤ T, 〈γ〉 = C}
#{γ : l(γ) ≤ T} =

|C|
|G| . (1.2)

The identity (1.2) is proved by considering L-functions

L(s, Rχ) =
∏

γ

det(I − Rχ(〈γ〉)e−sl(γ))−1,

where Rχ is an irreducible representation of G with character χ. Since Rχ lifts to
a representation of Γ, L(s, Rχ) is a special case of the L-functions defined by (1.1).

The geodesic flow on SM is also covered by the geodesic flow on SM̃ , with covering
group G, and hence the analytic properties of L(s, Rχ) may be deduced from the
results in [8].

Lemma 1.1.

(i) Let 1 denote the trivial one-dimensional representation of G. Then L(s, 1)
is analytic and non-zero on a neighbourhood of {s : Re(s) ≥ h}, apart from
a simple pole at s = h.

(ii) If Rχ 6= 1 is an irreducible representation of G then L(s, 1) is analytic and
non-zero on a neighbourhood of {s : Re(s) ≥ h}.

In this paper, we shall refine (1.1) by requiring that γ lies in a prescribed homol-
ogy class in H = H1(M, Z). More precisely, for α ∈ H, we shall write π(T, α) =
#{γ : l(γ) ≤ T, [γ] = α} and π(T, α, C) = #{γ : l(γ) ≤ T, [γ] = α, 〈γ〉 = C} and
study the ratio

π(T, α, C)

π(T, α)
, (1.3)

where [γ] ∈ H1(M, Z) denotes the homology class of γ. Theorem 1 states that either
π(T, α, C) is identically zero or (1.3) has a limit as T → +∞. We shall prove this
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in the next section; however, to do so, we need to first recall how π(T, α) behaves
as T → +∞.

The asymptotics of π(T, α) are also obtained by considering a family of L-
functions, in this case indexed by the characters of H. We suppose that H is
infinite and, for simplicity, we consider H modulo torsion. Then these characters
may be identified with the torus T

d = R
d/Z

d, d ≥ 1. For θ ∈ T
d, we write

L(s, θ) =
∏

γ

(
1 − e−sl(γ)+2πiθ·[γ]

)−1

.

Since characters of H lift to Γ, this is again an L-function of the form defined in
(1.1).

We also write

ηα(s) =

∫

Td

e−2πiθ·α dν+1

dsν+1
(log L(s, θ))dθ,

where ν = [d/2]. The following lemma is taken from [5] and [12].

Lemma 1.2. For each α ∈ H, ηα(s) is analytic for Re(s) > h.

(i) If d is even then, for some constant c0 > 0,

lim
σ→h

(
ηα(σ + iτ) − (−1)ν+1c0

σ + iτ − h

)

exists for almost every τ ∈ R and is locally integrable. Moreover, there
exists a locally integrable function f(τ) such that, for σ > h,

∣∣∣∣ηα(σ + iτ) − (−1)ν+1c0

σ + iτ − h

∣∣∣∣ ≤ f(τ).

(ii) If d is odd then, for some constant c0 > 0,

lim
σ→h

(
ηα(σ + iτ) − (−1)ν+1c0

√
π√

σ + iτ − h

)

exists for almost every τ ∈ R and is locally integrable with locally integrable
first derivative. Moreover, there exists a locally integrable function f(τ)
such that, for σ > h,

∣∣∣∣ηα(σ + iτ) − (−1)ν+1c0
√

π√
σ + iτ − h

∣∣∣∣ ≤ f(τ).

The constant c0 in (i) and (ii) is independent of α.

When combined with appropriate Tauberian theorems, this Lemma is enough to
ensure that, for some constant c > 0, independent of α ∈ H,

lim
T→+∞

T 1+d/2e−hT π(T, α) = c. (1.4)

(See [5] or [12] for more details.)
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2. Proof of Theorem 1

It is clear that, in general, (1.3) will depend on the relationship between G and H
and, particularly, C and α. Write A = G/[G, G], the abelianization of G. Clearly,
A is a quotient of π1(M) and, since H is the maximal abelian quotient of π1(M),
A is also a quotient of H. The extreme cases are:

(a) G is abelian. Then G = A and G itself is a quotient of H;
(b) G is perfect. Then G = [G, G] and A is trivial.

We shall write πG : G → A and πH : H → A to denote the respective projections.
In particular, it is clear that if πG(C) 6= πH(α) then π(T, α, C) = 0 for all T > 0.

The proof of Theorem 1 depends on considering L-functions defined with respect
to unitary representations of Γ of the form θ ⊗ Rχ, where θ ∈ T

d and Rχ is an
irreducible representation of G (or, more precisely, the lifts of these quantities to
Γ). However, as we shall describe below, some of these θ ⊗ Rχ are trivial. The
corresponding L-functions take the form

L(s, θ ⊗ Rχ) =
∏

γ

det(I − Rχ(〈γ〉)e−snl(γ)+2πinθ[γ])

= exp
∑

γ

∞∑

n=1

1

n
χ(〈γ〉n)e−snl(γ)+2πinθ[γ],

which converge to analytic functions for Re(s) > h. Taking the logarithm and
differentiating ν + 1 times gives

(
d

ds

)ν+1

(log L) (s, θ ⊗ Rχ) =
∑

γ

∞∑

n=1

nν(−l(γ))ν+1χ(〈γ〉n)e−snl(γ)+2πinθ·[γ].

Applying the standard orthogonality relations for both for irreducible representa-
tions of G and for T

d term-by-term in the above formula we obtain the relation

∑

Rχirred

∫

Td

e−2πiθ·αχ(C)

(
d

ds

)ν+1

(log L) (s, θ ⊗ Rχ)dθ

= −|G|
|C|

∑

γ,n
n[γ]=α,〈γn〉=C

nν l(γ)ν+1e−snl(γ)
(2.1)

where the Right Hand Side vanishes if πG(C) 6= πH(α).
The asymptotic behaviour of π(T, α, C) may be deduced from properties of the

Right Hand Side of (2.1) so, to prove Theorem 1, it is enough to study

∑

Rχirred

∫

Td

e−2πiθ·αχ(C)

(
d

ds

)ν+1

(log L) (s, θ ⊗ Rχ)dθ (2.2)

and understand its meromorphic extension, via that of L(s, θ ⊗ Rχ), and, in par-
ticular, the nature of the singularites on Re(s) = h.

First we determine which θ ⊗ Rχ are trivial. Let m = |G/[G, G]| be the car-
dinality of G/[G, G] and let 1 = χ0, · · · , χm−1 be the characters of G/[G, G] (i.e.,
the 1-dimensional representations of G/[G, G]). These lift to G via πG but 1-
dimensional characters on G also descend to G/[G, G], since any such character
annihilates commutators. Thus we may identify 1-dimensional representations of
G with characters of G/[G, G]. Each χi also lifts to a character of H, which we can
denote by θi.
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Lemma 2.1. The representation θ ⊗ Rχ is trivial precisely when it is of the form

θ−1
i ⊗ Rχi

, i = 0, . . . , m − 1.

Proof. It is clear from their construction that these representations are trivial. On
the other hand, if θ ⊗ Rχ is trivial then Rχ is one dimensional and hence that it
corresponds to one of the characters χ0, . . . , χm−1 of G/[G, G]. It is easy to see
that, for i = 0, . . . , m − 1, θ ⊗ χi is trivial only if θ = θ−1

i .

An immediate consequence is the following.

Lemma 2.2. For i = 0, · · · , m − 1, the function ζ(s) := L(s, θ−1
i ⊗ Rχi

) has a
simple pole at s = h and no other poles on Re(s) = h.

Next we can consider L(s, θ ⊗ Rχ) for θ ⊗ Rχ non-trivial.

Lemma 2.3. If L(s, θ ⊗ Rχ) has a pole on Re(s) = h then Rχ is 1-dimensional
and χ is a character of G/[G, G], namely, one of the χ1, · · · , χm−1.

Proof. This follows from the discussion on page 146 of [8].

If Rχ is 1-dimensional then, as above, we can lift θ ⊗ Rχ to θ + θi ∈ T
2g and

rewrite the L-function as

L(s, θ ⊗ Rχ) = L(s, θ + θi) =
∏

γ

(1 − e−sl(γ)+2πi(θ+θi)·[γ])−1.

However, this is again an L-function for homology.

Lemma 2.4. If θ ⊗ Rχ is non-trivial then L(s, θ ⊗ Rχ) is analytic on Re(s) = h.

Proof. By the above, we only need to consider the case when L(s, θ⊗Rχ) = L(s, θ+
θi). However, if θ ⊗ Rχ is non-trivial then θ 6= −θi, so the lemma follows from
standard results in [3],[5],[10],[12].

To proceed , we return to the expression (2.1). We can rewrite this as

|C|
|G|

m−1∑

i=0

χi(C)

∫

T2g

e−2πiθ·α

(
d

ds

)g+1

(log L) (s, θ ⊗ Rχi
)dθ + φ(s)

where φ(s) is a function analytic in a neighbourhood of Re(s) = h and, from
(2.2), L(s, θ ⊗ Rχi

) = L(s, θ + θi). We also note that, since we are assuming that
πG(C) = πH(α), we have that

χi(C)e−2πi(−θi)·α = 1, for i = 0, · · · , m − 1

Hence one sees that the function in (2.1) satisfies an analogue of Lemma 1.2 in
which c0 is replaced by c0m|G|/|C|.

From this one deduces, as in [5] or [12], that

lim
T→+∞

T 1+d/2e−hT π(T, α, C) = cm
|C|
|G| ,

with c as in (1.4).
Finally, recalling that m = |G/[G, G]|, this is enough to prove Theorem 1.
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Remarks.
(i) If M is either a surface or has curvature which is 1/4-pinched then, working
along the lines of [1],[6],[11], one can get a O(T−1) error term, as Zelditch obtained
for a hyperbolic surface. It is also possible to prove analogous results where a fixed
homology class is replaces by one which changes linearly in T (cf. [2], [7]).
(ii) There is a natural extension of Theorem 1 to Anosov flows which are homologi-
cally full in the sense of [12], i.e., one for which every homology class is represented
by a periodic orbit.

3. Proof of Theorem 2

We can easily adapt the proof of Theorem 1 to prove Theorem 2. Since we are
replacing a finite group G by a compact group SO(n − 1) we need to consider a
countable family of representations Rχ, rather than a finite family. However, by
approximation it suffices to consider each representation separately. As in the proof
in the last section, one can consider representations θ ⊗Rχ. However, a significant
advantage here is that the groups H and SO(n− 1) can be treated independently.

In the case of the trivial representation, we have that F = χ = 1 and we see
that (

d

ds

)ν+1

(log L) (s, θ ⊗ 1)

has a singularity of the form

Const. × 1

(s − s(θ))
.

The analysis reduces to that in [5],[12], from which we get an asymptotic formula

lim
T→+∞

1

π(T, α)

∑

l(γ)≤T
[γ]=α

F (Θ(γ)) = 1.

However, in the case of non-trivial representations we have that the L-function
L(s, θ ⊗ 1) is always analytic on Re(s) = h, from which one sees that

∑

l(γ)≤T
[γ]=α

F (Θ(γ)) = o (π(T, α)) .

References

1. N. Anantharaman, Precise counting results for closed orbits of Anosov flows, Ann. Sci. École
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