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ABSTRACT. We describe how closed geodesics lying in a prescribed homology class
on a negatively curved manifold split when lifted to a finite cover. This generalizes
a result of Zelditch in the case of compact hyperbolic surfaces.

0. INTRODUCTION

Given a compact manifold of negative curvature, there are geometric analogues
of the Chebotarev Theorem in algebraic number theory due to Sunada [13] (cf. also
Parry and Pollicott [8] for the generalization to Axiom A flows). More precisely,
given a finite Galois cover of the manifold, these theorems describe the proportion
of closed geodesics which lift in a prescribed way to the cover.

In this geometric setting, it is also natural to consider infinite covers and, in

particular, the number of closed geodesics lying in a prescribed homology class has
been studied by Katsuda and Sunada [4], Phillips and Sarnak [9], Katsuda [3],
Lalley [7] and Pollicott [10] (with generalizations to Anosov flows by Katsuda and
Sunada [5] and Sharp [12]). In this note we shall combine these points of view,
generalizing a result of Zelditch for hyperbolic Riemann surfaces [14].
__Let M be a compact smooth Riemannian manifold with negative curvature. Let
M be a finite Galois covering of M with covering group G. For a closed geodesic
on M, let I(y) denote its length, () its Frobenius class in G and [v] its homology
class in H = H1(M, Z).

We shall examine how the closed geodesics lying in a fixed homology class o € H,
split when lifted to M. More precisely, for a conjugacy class C' in GG, we study the
asymptotics of

ﬂ-(Tv «, C) = Cafd{”Y : l(7> <T, [7] =aQ, <7> = C}

The problem is complicated by the fact that that, in general, [y] and (y) are
not independent quantities. This occurs if the abelian quotient group G/[G, G| is
non-trivial, since this group is also a quotient of H, the maximal abelian covering
group of M. Let ng : G — G/|G,G] and 7y : H — G/|G,G] be the natural
projections. In particular, the image 7o (C) of a conjugacy class C' C G is a single
element in G/[G, G| and if 7¢(C) # 7y (a) then 7(T, a, C') = 0, for all values of T'.

On the other hand, we have the following result, which extends work of Zelditch
for Riemann surfaces [14].
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Theorem 1. If 7¢(C) # g («) then n(T, o, C) is identically zero.
If r¢(C) = my(a) then

(T, C) 1] as T — +oo

w(T.a) ‘[G?G]) Gl

where w(T, ) = Card{~y : l(y) <T,[y] = a}.

Ezample. Let G be a finite nonabelian nilpotent group, then [G,G| # G. For
definiteness, we can let G = {£1, +i, +j, £k} be the Quarternion group of eight
elements, then [G,G] = £1. Let I' = (ay, aq,by, by : alblaflbflagbgaglbgl =1)
be a cocompact Fuchsian group. Define a homomorphism ¢ : I' — G by setting
d(ar) =1, p(az) = j and ¢(b1) = ¢(b2) = 1 and extending this to I'. We can then
define a normal subgroup by I'y = ker(¢). If we set M = H2/Ty and M = H2/T,
then M is a finite cover of M with covering group G.

Let us consider a closely related problem. Consider the frame flow f; : FM —
FM on the space of orthonormal frames above M. This is a SO(n — 1)-extension
for the geodesic flow. Changing notation slightly, let v be a periodic orbit of the
geodesic flow, to which we associate a holonomy O(v) € SO(n — 1) which comes
from a reference frame being transported around . This is defined up to conjugacy.
In [8] it was shown that the holonomies were equidistributed on SO(n — 1). The
following shows that the corresponding result holds for geodesics in a fixed homology
class. (Recall that a class function is a function which is constant on conjugacy
classes.)

Theorem 2. Let F': SO(n—1) — R be a class function. Then

1
_ F — | F T —
o g (©(7)) / d\, as 400,
(v<T
[]=a

where X denotes the Haar measure on SO(n —1).

1. PRELIMINARIES

Let M be a compact smooth manifold equipped with a Riemannian metric of
negative curvature and let X denote its universal cover. (In the special case where
M is a surface with constant curvature —1, X is the hyperbolic plane H.) Then
there is a discrete group of isometries I' & 71 (M) of X such that M = X/T". Now
let 'y be a normal subgroup of I" with finite index. Then M=X /T is a finite
(Galois) covering of M, with covering group G = I'/Ty (i.e., G acts transitively on
the fibres above each point in M).

There is a natural dynamical system, the geodesic flow, associated to M. Let
SM denote the unit-tangent bundle of M and, for (z,v) € SM, let v : R — M
be the unique unit-speed geodesic with v(0) = x and 4(0) = v. Then the geodesic
flow ¢ : SM — SM is defined by ¢ (x,v) = (7(t),%(t)) and we shall write h
for its topological entropy. There is a one-to-one correspondence between periodic
¢-orbits and directed closed geodesics on M. The fact that M is negatively curved
ensures that the geodesic flow is an Anosov flow and that h > 0. This will enable
us to use results proved in the context of Anosov flows in this setting.
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We shall make use of L-functions defined with respect to certain representations
of ' = my(M). Let p: ' — U(d) be a unitary representation of I'. We define an
L-function L(s, p) by the product formula

L(s,p) = [ [ det(I — p({{3)))e™" )7, (1.1)

where the product is taken over all (prime) closed geodesics v on M and ({7))
denotes the homotopy class of «v. Provided Re(s) is sufficiently large, this will con-
verge to an analytic function. We shall prove Theorem 1 by studying the behaviour
of L(s, p) for a restricted class of representations.

We shall be interested in how closed geodesics on M lift to M. There are a
countable infinity of closed geodesics on M; we shall denote a typical one by v and
its length by [(v). Each such v has n = |G| lifts v1,...,7, to M. These lifts are
not necessarily closed but, for each ¢ = 1, ..., n, there is a covering transformation
gi € G relating the endpoints of v; and, for 4,5 =1,... ,n, g; and g; are conjugate.
Hence we may associate to v a well-defined conjugacy class () C G, called the
Frobenius class of 7. These classes satisfy an analogue to Chebotarev’s Theorem
in number theory: for a conjugacy class C C G

o #y ) ST, () =C} _|C]
Ny S T = s e (12)

The identity (1.2) is proved by considering L-functions

L(s, Ry) = [ [ det(1 = Ry ((7))e™*') 71,

where R, is an irreducible representation of G with character x. Since R, lifts to
a representation of I, L(s, R, ) is a special case of the L-functions defined by (1.1).

The geodesic flow on SM is also covered by the geodesic flow on § M , with covering
group G, and hence the analytic properties of L(s, R,) may be deduced from the
results in [8].

Lemma 1.1.

(i) Let 1 denote the trivial one-dimensional representation of G. Then L(s,1)
is analytic and non-zero on a neighbourhood of {s : Re(s) > h}, apart from
a simple pole at s = h.

(ii) If Ry # 1 is an irreducible representation of G then L(s, 1) is analytic and
non-zero on a neighbourhood of {s : Re(s) > h}.

In this paper, we shall refine (1.1) by requiring that -+ lies in a prescribed homol-
ogy class in H = Hy(M,Z). More precisely, for « € H, we shall write (T, a) =
#{y: ) ST, hl=a}and 7(T,a,C) = #{y: l(y) <T, ] = o, (7) = C} and
study the ratio

(T, o, C)

T (1.3)

where [y] € H1(M, Z) denotes the homology class of v. Theorem 1 states that either
(T, a, C) is identically zero or (1.3) has a limit as 7' — +oo. We shall prove this
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in the next section; however, to do so, we need to first recall how 7 (T, &) behaves
as T' — +o0.

The asymptotics of (7T, «) are also obtained by considering a family of L-
functions, in this case indexed by the characters of H. We suppose that H is
infinite and, for simplicity, we consider H modulo torsion. Then these characters
may be identified with the torus T¢ = R%/Z? d > 1. For 6 € T?, we write

L(S, 0) _ H <1 . e—sl('y)+27ri0.[,y])—1 .

Y

Since characters of H lift to I', this is again an L-function of the form defined in

(1.1).

We also write

_ —2mi6-« du+1 1 )’ 0))do
nOé(S) - ey € dSV+1 ( Og (87 )) )

where v = [d/2]. The following lemma is taken from [5] and [12].
Lemma 1.2. For each o € H, 1n,(s) is analytic for Re(s) > h.

(i) If d is even then, for some constant co > 0,

(_1)1/-1-160)

li

o—h
exists for almost every T € R and is locally integrable. Moreover, there
exists a locally integrable function f(7) such that, for o > h,

(_1)1/—1—100

o+it—h < f(7).

No (0 +1iT) —

(ii) If d is odd then, for some constant ¢y > 0,

: , (-U”“%ﬁ)
lim (7(0 +ir) — ~——2—VT
Jimy (’7 S Y oy

exists for almost every T € R and is locally integrable with locally integrable

first derivative. Moreover, there exists a locally integrable function f(T)
such that, for o > h,

N0+ i) — D" eoy/m

Toxion| =/

The constant cq in (i) and (ii) is independent of c.

When combined with appropriate Tauberian theorems, this Lemma is enough to
ensure that, for some constant ¢ > 0, independent of o € H,

Tlirf T1+A2e=hT (T o) = . (1.4)

(See [5] or [12] for more details.)
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2. PROOF OF THEOREM 1

It is clear that, in general, (1.3) will depend on the relationship between G and H
and, particularly, C' and a. Write A = G/|G, G|, the abelianization of G. Clearly,
A is a quotient of 71 (M) and, since H is the maximal abelian quotient of m (M),
A is also a quotient of H. The extreme cases are:

(a) G is abelian. Then G = A and G itself is a quotient of H;

(b) G is perfect. Then G = [G,G] and A is trivial.
We shall write 7g : G — A and 7y : H — A to denote the respective projections.
In particular, it is clear that if 7¢(C) # 7y («) then 7(T, a, C') = 0 for all T' > 0.

The proof of Theorem 1 depends on considering L-functions defined with respect
to unitary representations of I' of the form 6 ® R,, where 0 € T¢ and R, is an
irreducible representation of G (or, more precisely, the lifts of these quantities to
I'). However, as we shall describe below, some of these §# ® R, are trivial. The
corresponding L-functions take the form

(5,0 ® Ry) Hdet (I — Ry ({))e=snm+2mindlrl)

= exp Z Z EX(<,y>n)e—snl(7)+27rin0[7],

v n=1

which converge to analytic functions for Re(s) > h. Taking the logarithm and
differentiating v 4+ 1 times gives

v+1
(3) (om0 R = 503w () (e )

v n=1

Applying the standard orthogonality relations for both for irreducible representa-
tions of G and for T¢ term-by-term in the above formula we obtain the relation

Z / —2mif-an; () (dii) a (logL) (s,0 ® R,)db

Ryirred

|G| Z nul(,)/)y—l—le—snl(v)
|C| v,n
nlyl=a,{(y")=C

where the Right Hand Side vanishes if 7¢(C) # 7y ().
The asymptotic behaviour of (T, a, C') may be deduced from properties of the
Right Hand Side of (2.1) so, to prove Theorem 1, it is enough to study

Z/ —emtex )(%)Vﬂ(logL)(s,e@RX)de (2.2)

Rirred

(2.1)

and understand its meromorphic extension, via that of L(s,0 ® R, ), and, in par-
ticular, the nature of the singularites on Re(s) = h.

First we determine which 6§ ® R, are trivial. Let m = |G/[G,G]| be the car-
dinality of G/[G,G] and let 1 = xq, -, xm—1 be the characters of G/[G, G| (i.e.,
the 1-dimensional representations of G/[G,G]). These lift to G via mg but 1-
dimensional characters on G also descend to G/[G,G], since any such character
annihilates commutators. Thus we may identify 1-dimensional representations of
G with characters of G/|G, G]. Each y; also lifts to a character of H, which we can
denote by ;.
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Lemma 2.1. The representation 0 @ R, is trivial precisely when it is of the form
0;'®9R,,,i=0,...,m—1.

Proof. 1t is clear from their construction that these representations are trivial. On
the other hand, if 8 ® R, is trivial then R, is one dimensional and hence that it
corresponds to one of the characters xo,...,xm-1 of G/|G,G]. It is easy to see
that, for i =0,... ,m —1, § ® x; is trivial only if § = 92-_1

An immediate consequence is the following.

Lemma 2.2. Fori = 0,---,m — 1, the function ((s) := L(s,0; ' ® R,,) has a
simple pole at s = h and no other poles on Re(s) = h.

Next we can consider L(s, ® R,) for § ® R, non-trivial.

Lemma 2.3. If L(s,0 ® R,) has a pole on Re(s) = h then R, is 1-dimensional
and x 1is a character of G/[|G,G], namely, one of the X1, , Xm—1-

Proof. This follows from the discussion on page 146 of [8].
If R, is 1-dimensional then, as above, we can lift # ® R, to 6 + 6; € T?? and

rewrite the L-function as

L(S, 0 ® RX) — L(S, 0 + 02) — H(]- - e—sl('y)+27ri(9+9¢).[7])—1.
5
However, this is again an L-function for homology.
Lemma 2.4. If 0 ® R, is non-trivial then L(s,0 ® R,) is analytic on Re(s) = h.

Proof. By the above, we only need to consider the case when L(s,0® R, ) = L(s, 0+
6;). However, if § ® R, is non-trivial then 6 # —6;, so the lemma follows from
standard results in [3],[5],[10],[12].

To proceed , we return to the expression (2.1). We can rewrite this as

CIkS omiva 4\
? ; /T (E) (log L) (5,0 @ Ry,)d0 + ¢(s)

where ¢(s) is a function analytic in a neighbourhood of Re(s) = h and, from
(2.2), L(s,0 ® R,,) = L(s,0 + 6;). We also note that, since we are assuming that
7¢(C) = mu (), we have that

Xi(C)e_Qm(_ei)'o‘ =1, fori=0,---,m—1

Hence one sees that the function in (2.1) satisfies an analogue of Lemma 1.2 in
which ¢y is replaced by com|G|/|C].
From this one deduces, as in [5] or [12], that

lim T2 " n(T, 0, C) = cmg
T—+o00 |G|

with ¢ as in (1.4).
Finally, recalling that m = |G/[G, G]|, this is enough to prove Theorem 1.
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Remarks.

(i) If M is either a surface or has curvature which is 1/4-pinched then, working
along the lines of [1],[6],[11], one can get a O(T~!) error term, as Zelditch obtained
for a hyperbolic surface. It is also possible to prove analogous results where a fixed
homology class is replaces by one which changes linearly in T' (cf. [2], [7]).

(ii) There is a natural extension of Theorem 1 to Anosov flows which are homologi-
cally full in the sense of [12], i.e., one for which every homology class is represented
by a periodic orbit.

3. PROOF OF THEOREM 2

We can easily adapt the proof of Theorem 1 to prove Theorem 2. Since we are
replacing a finite group G by a compact group SO(n — 1) we need to consider a
countable family of representations R,, rather than a finite family. However, by
approximation it suffices to consider each representation separately. As in the proof
in the last section, one can consider representations 0 ® R,. However, a significant
advantage here is that the groups H and SO(n — 1) can be treated independently.

In the case of the trivial representation, we have that F' = y = 1 and we see
that

<d%) - (logL)(s,0 ®1)

has a singularity of the form

Const. x

-
(s —s(0))

The analysis reduces to that in [5],[12], from which we get an asymptotic formula

1
lim ——— F(©O(y)) =1.
T—+oo w(T, ) l('%;T
[]=a

However, in the case of non-trivial representations we have that the L-function
L(s,0 ® 1) is always analytic on Re(s) = h, from which one sees that

> FOM) =0 (T,a).
E
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