DISTORTION AND ENTROPY FOR AUTOMORPHISMS OF FREE GROUPS

Richard Sharp
University of Manchester

Abstract

Recently, several numerical invariants have been introduced to characterize the distortion induced by automorphisms of a free group. We unify these by interpreting them in terms of an entropy function of a kind familiar in thermodynamic ergodic theory. We draw an analogy between this approach and the Manhattan curve associated to a pair of hyperbolic surfaces.

0 . Introduction

Let F be a free group on $k \geq 2$ generators and let $\mathcal{A}=\left\{a_{1}, \ldots, a_{k}\right\}$ be a free basis. We define the word length $|\cdot|=|\cdot|_{\mathcal{A}}$ (with respect to \mathcal{A}) by $|1|=0$ and, for $x \neq 1$,

$$
|x|=\min \left\{n: x=x_{0} x_{1} \cdots x_{n-1}, x_{i} \in \mathcal{A} \cup \mathcal{A}^{-1}\right\}
$$

where $\mathcal{A}^{-1}=\left\{a_{1}^{-1}, \ldots, a_{k}^{-1}\right\}$. Recall that any $x \neq 1$ may be written uniquely as

$$
x=x_{0} x_{1} \cdots x_{n-1},
$$

where $n=|x|, x_{i} \in \mathcal{A} \cup \mathcal{A}^{-1}, i=0, \ldots, n-1$, and $x_{i+1} \neq x_{i}^{-1}, i=0, \ldots, n-2$. We call such an expression a reduced word.

Let $\operatorname{Aut}(F)$ denote the group of automorphisms of F. An automorphism ϕ is said to be inner if it is a conjugation, i.e., $\phi(x)=y^{-1} x y$, for some $y \in F$. If an automorphism ϕ acts by permuting $\mathcal{A} \cup \mathcal{A}^{-1}$ then we call ϕ a permutation automorphism. Following the notation of [7], [12], we say that ϕ is simple if it is the product of an inner automorphism and a permutation automorphism.

Let ∂F denote the boundary of F in the sense of the theory of hyperbolic groups [5], [6]. This is a Cantor set and may be naturally identified with the one-sided shift space

$$
\Sigma^{+}=\left\{\left(x_{n}\right)_{n=0}^{\infty} \in\left(\mathcal{A} \cup \mathcal{A}^{-1}\right)^{\mathbb{Z}^{+}}: x_{n+1} \neq x_{n}^{-1}, n \geq 0\right\}
$$

There is a dynamical systems associated to this space, namely the shift map $\sigma: \Sigma^{+} \rightarrow \Sigma^{+}$, and its ergodic theory will play a key role in this paper.

Define a σ-invariant Borel probability measure μ_{0} on Σ^{+}by

$$
\mu_{0}\left(\left[x_{0}, x_{1}, \ldots, x_{n-1}\right]\right)=\frac{1}{2 k(2 k-1)^{n-1}}
$$

where $\left[x_{0}, x_{1}, \ldots, x_{n-1}\right]=\left\{\left(y_{n}\right)_{n=0}^{\infty} \in \Sigma^{+}: y_{i}=x_{i}, i=0, \ldots, n-1\right\}$. This measure allows us to describe generic behaviour of sequences in F, with respect to the basis \mathcal{A}.

In this paper, we shall be interested in various measures of the distortion of F under an automorphism $\phi: F \rightarrow F$. The first of these quantifies the generic distortion or stretching. Following Kaimanovich, Kapovich and Schupp [7], define the generic stretching factor $\lambda(\phi)$ (with respect to \mathcal{A}) by

$$
\begin{aligned}
\lambda(\phi) & =\lim _{n \rightarrow+\infty} \int \frac{\left|\phi\left(x_{0} x_{1} \cdots x_{n-1}\right)\right|}{n} d \mu_{0}\left(\left(x_{n}\right)_{n=0}^{\infty}\right) \\
& =\lim _{n \rightarrow+\infty} \frac{\left|\phi\left(x_{0} x_{1} \cdots x_{n-1}\right)\right|}{n} \quad \text { for } \mu_{0} \text {-a.e. }\left(x_{n}\right)_{n=0}^{\infty} .
\end{aligned}
$$

Proposition 1 [7]. For any $\phi \in \operatorname{Aut}(F), \lambda(\phi) \geq 1$. Furthermore, $\lambda(\phi)=1$ if and only if ϕ is simple.

We now make a further definition, which measures the proportion of elements which are not stretched by a factor greater than one. Following Myasnikov and Shpilrain [12], define the curl of $\phi, \operatorname{Curl}(\phi)$, by

$$
\operatorname{Curl}(\phi)=\limsup _{n \rightarrow+\infty}\left(\frac{\#\{x \in F:|x| \leq n,|\phi(x)| \leq n\}}{\#\{x \in F:|x| \leq n\}}\right)^{1 / n}
$$

i.e., the growth rate of the proportion of points in the balls $\{x \in F:|x| \leq n\}$ which remain there under ϕ.

Proposition 2 [12]. For any $\phi \in \operatorname{Aut}(F), 0<\operatorname{Curl}(\phi) \leq 1$. Furthermore, $\operatorname{Curl}(\phi)=1$ if and only if ϕ is simple.

Finally, we define a set introduced by Kapovich, which captures all possible distortions induced by ϕ. Let $\mathcal{C}(F)$ denote the set of all non-trivial conjugacy classes in F and note that, for $w \in \mathcal{C}(F), \phi(w) \in \mathcal{C}(F)$ is well-defined. Following Kapovich [8], we define the conjugacy distortion spectrum of ϕ to be the set

$$
\mathcal{D}_{\phi}=\left\{\frac{|\phi(w)|}{|w|}: w \in \mathcal{C}(F)\right\}
$$

where $|w|=\min \{|x|: x \in w\}$, and let $\overline{\mathcal{D}_{\phi}}$ denote the closure of \mathcal{D}_{ϕ}. The structure of \mathcal{D}_{ϕ} was studied by Kapovich, who showed the following.
Proposition 3 [8]. $\overline{\mathcal{D}_{\phi}}$ is a closed interval with rational endpoints and $\mathcal{D}_{\phi}=\overline{\mathcal{D}_{\phi}} \cap \mathbb{Q}$. If ϕ is simple then $\mathcal{D}_{\phi}=\{1\}$. If ϕ is not simple then $\overline{\mathcal{D}_{\phi}}$ has non-empty interior which contains 1 and $\lambda(\phi)$.

These quantities may be related by the following theorem.

Theorem. Suppose that ϕ is not simple. Then there exists a strictly concave analytic function $\mathfrak{h}: \operatorname{int}\left(\overline{\mathcal{D}_{\phi}}\right) \rightarrow \mathbb{R}^{+}$such that, for each $\rho \in \operatorname{int}\left(\overline{\mathcal{D}_{\phi}}\right), 0<\mathfrak{h}(\rho) \leq \log (2 k-1)$ and, if ρ is rational, then

$$
\begin{equation*}
\limsup _{n \rightarrow+\infty} \frac{1}{n} \log \#\left\{w \in \mathcal{C}(F):|w|=n, \frac{|\phi(w)|}{|w|}=\rho\right\}=\mathfrak{h}(\rho) \tag{0.1}
\end{equation*}
$$

Furthermore, $\mathfrak{h}(\rho)=\log (2 k-1)$ if and only if $\rho=\lambda(\phi)$ and $\operatorname{Curl}(\phi)=e^{\mathfrak{h}(1)} /(2 k-1)$.
This will be proved as Theorems 1, 2 and 3 below.
We shall now outline the contents of the paper. In section 1, we discuss the thermodynamic formalism associated to a class of dynamical systems called subshifts of finite. In section 2, we discuss the subshift associated to a free group, the relationship between periodic orbits and conjugacy classes and how to encode the quantity $|\phi(\cdot)|$ in terms of a function on this subshift. We also introduce the function \mathfrak{h} and relate it to the generic stretch. In section 3, we study the conjugacy distortion spectrum via the periodic points of the shift map, proving equation (0.1). In sections 4 and 5 , we show how to obtain the relationship between $\operatorname{Curl}(\phi)$ and $\mathfrak{h}(1)$. In the final section, we recast our results in terms of a "Manhattan curve", analogous to that associated by Burger to a pair of hyperbolic surfaces.

I am grateful to Ilya Kapovich for some helpful comments.

1. Thermodynamic Formalism

In this section, we shall describe the ergodic theory associated to the shift map σ : $\Sigma^{+} \rightarrow \Sigma^{+}$. The theory we describe goes under the name of thermodynamic formalism; standard references are [13], [14, Appendix II], [23].

We begin with the definition of a subshift of finite type. Let A be finite matrix, indexed by a set \mathcal{I}, with entries zero and one. We define the shift space

$$
\Sigma_{A}^{+}=\left\{\left(x_{n}\right)_{n=0}^{\infty} \in \mathcal{I}^{\mathbb{Z}^{+}}: A\left(x_{n}, x_{n+1}\right)=1 \forall n \in \mathbb{Z}^{+}\right\}
$$

and the (one-sided) subshift of finite type $\sigma: \Sigma_{A}^{+} \rightarrow \Sigma_{A}^{+}$by $(\sigma x)_{n}=x_{n+1}$. We give \mathcal{I} the discrete topology, $\mathcal{I}^{\mathbb{Z}^{+}}$the product topology and Σ_{A}^{+}the subspace topology. A compatible metric is given by

$$
d\left(\left(x_{n}\right)_{n=0}^{\infty},\left(y_{n}\right)_{n=0}^{\infty}\right)=\sum_{n=0}^{\infty} \frac{1-\delta_{x_{n} y_{n}}}{2^{n}}
$$

where $\delta_{i j}$ is the Kronecker symbol.
We say that A is irreducible if, for each $(i, j) \in \mathcal{I}^{2}$, there exists $n(i, j) \geq 1$ such that $A^{n(i, j)}(i, j)>0$ and aperiodic if there exists $n \geq 1$ such that, for each $(i, j) \in \mathcal{I}^{2}$, $A^{n}(i, j)>0$. The latter statement is equivalent to $\sigma: \Sigma_{A}^{+} \rightarrow \Sigma_{A}^{+}$being topologically mixing (i.e. that there exists $n \geq 1$ such that for any two non-empty open sets $U, V \subset \Sigma_{A}^{+}$, $\sigma^{-m}(U) \cap V \neq \varnothing$, for all $\left.m \geq n\right)$.

If A is aperiodic then it has a positive simple eigenvalue β which is strictly maximal in modulus (i.e. every other eigenvalue has modulus strictly less that β) and the topological entropy $h(\sigma)$ of σ is equal to $\log \beta$.

If an ordered n-tuple $\left(x_{0}, x_{1}, \ldots, x_{n-1}\right) \in \mathcal{I}^{n}$ is such that $A\left(x_{m}, x_{m+1}\right)=1, m=$ $0,1, \ldots, n-2$ then we say that $\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)$ is an allowed word of length n in Σ_{A}^{+}; the set of these is denoted $W_{A}^{(n)}$. If $\sigma^{n} x=x$ then we say that $\left\{x, \sigma x, \ldots, \sigma^{n-1} x\right\}$ is a periodic orbit for σ. Clearly any such an x is obtained by repeating a word $\left(x_{0}, x_{1}, \ldots, x_{n-1}\right) \in$ $W_{A}^{(n)}$ with the additional property that $A\left(x_{n-1}, x_{0}\right)=1$. Note that we regard the periodic orbits $\left\{x, \sigma x, \ldots, \sigma^{n-1} x\right\},\left\{x, \sigma x, \ldots, \sigma^{n-1} x\right\}, x, \ldots, \sigma^{n-1} x$, etc., as distinct objects (even though they are identical as point sets). If $\sigma^{n} x=x$ but $\sigma^{m} x \neq x$ for $0<m<n$ then we say that $\left\{x, \sigma x, \ldots, \sigma^{n-1} x\right\}$ is a prime periodic orbit.

It is sometimes convenient to replace $\sigma: \Sigma_{A}^{+} \rightarrow \Sigma_{A}^{+}$by a shift of finite type on a new space $\Sigma_{A_{N}}^{+}$, whose symbols are $W_{A}^{(N)}$ and for which $\mathbf{x}=\left(x_{0}, x_{1}, \ldots, x_{N-1}\right)$ may be followed by $\mathbf{y}=\left(y_{0}, y_{1}, \ldots, y_{N-1}\right)$ if and only if $y_{n}=x_{n+1}, n=0,1, \ldots, N-2$. (Since $\mathbf{x} \in W_{A}^{(N)}$, the latter condition automatically implies that $A\left(x_{N-1}, y_{N-1}\right)=1$.) We continue to denote the shift map by $\sigma: \Sigma_{A_{N}}^{+} \rightarrow \Sigma_{A_{N}}^{+}$. More formally, define a $W_{A}^{(N)} \times W_{A}^{(N)}$ zero-one matrix A_{N} by

$$
A_{N}(\mathbf{x}, \mathbf{y})=\left\{\begin{array}{l}
1 \text { if } y_{n}=x_{n+1}, n=0, \ldots, N-2 \\
0 \text { otherwise }
\end{array}\right.
$$

Then

$$
\Sigma_{A_{N}}^{+}=\left\{\left(\mathbf{x}_{n}\right)_{n=0}^{\infty} \in\left(W_{A}^{(n)}\right)^{\mathbb{Z}^{+}}: A_{N}\left(\mathbf{x}_{n}, \mathbf{x}_{n+1}\right) \forall n \in \mathbb{Z}^{+}\right\} .
$$

Note that there is a natural period preserving bijection between periodic points for σ : $\Sigma_{A}^{+} \rightarrow \Sigma_{A}^{+}$and $\sigma: \Sigma_{A_{N}}^{+} \rightarrow \Sigma_{A_{N}}^{+}$.

Let \mathcal{M} denote the space of all Borel probability measures on Σ_{A}^{+}, equipped with the weak* topology, and let \mathcal{M}_{σ} denote the subspace consisting of σ-invariant probability measures. For $\mu \in \mathcal{M}_{\sigma}$, write $h(\mu)$ for the measure theoretic entropy of μ. There is a unique measure $\mu_{0} \in \mathcal{M}_{\sigma}$, called the measure of maximal entropy, for which

$$
h\left(\mu_{0}\right)=\sup _{\mu \in \mathcal{M}_{\sigma}} h(\mu)
$$

and this value coincides with the topological entropy $h(\sigma)$.
For a continuous function $f: \Sigma_{A}^{+} \rightarrow \mathbb{R}$, we define the pressure $P(f)$ of f by the formula

$$
\begin{equation*}
P(f)=\sup _{\mu \in \mathcal{M}_{\sigma}}\left(h(\mu)+\int f d \mu\right) \tag{1.1}
\end{equation*}
$$

and call any measure for which the supremum is attained an equilibrium state for f. If f is Hölder continuous (i.e. there exists $\alpha>0$ and $C(f, \alpha) \geq 0$ such that $|f(x)-f(y)| \leq$ $C(f, \alpha) d(x, y)^{\alpha}$, for all $\left.x, y \in \Sigma_{A}^{+}\right)$, then f has a unique equilibrium state which we denote by μ_{f}. The latter is fully supported and $h\left(\mu_{f}\right)>0$. The equilibrium state of the zero function is the measure of maximal entropy, so this is consistent with our earlier notation. The pressure of f also has the following characterization in terms of periodic points:

$$
P(f)=\lim _{n \rightarrow+\infty} \frac{1}{n} \log \sum_{\sigma^{n} x=x} e^{f^{n}(x)}
$$

We say that two functions $f, g: \Sigma_{A}^{+} \rightarrow \mathbb{R}$ are (continuously) cohomologous if there is a continuous function $u: \Sigma_{A}^{+} \rightarrow \mathbb{R}$ such that $f=g+u \circ \sigma-u$. The cohomology class of a Hölder continuous function is determined by its values around periodic orbits. More precisely, writing $f^{n}=f+f \circ \sigma+\cdots+f \circ \sigma^{n-1}$, two Hölder continuous functions $f, g: \Sigma_{A}^{+} \rightarrow \mathbb{R}$ are cohomologous if and only if $f^{n}(x)=g^{n}(x)$ whenever $\sigma^{n} x=x$.

If f and g are cohomologous then $P(f)=P(g)$ and if c is a real number then $P(f+c)=$ $P(f)+c$. Now suppose that f is Hölder continuous and, for $t \in \mathbb{R}$, consider the function $t \mapsto P(t f)$ This function is convex and real analytic and

$$
P^{\prime}(t f)=\int f d \mu_{t f}
$$

Furthermore, if f is not cohomologous to a constant then $P(t f)$ is strictly convex and $P^{\prime \prime}(t f)>0$ everywhere. (If f is cohomologous to a constant c then $P(t f)=h(\sigma)+t c$.)

Suppose that a Hölder continuous function $r: \Sigma_{A}^{+} \rightarrow \mathbb{R}$ is cohomologous to a strictly positive function. If $\delta>0$ satisfies $P(-\delta r)=0$ then, since $\mu_{-\delta r}$ attains the supremum in (1.1), we have the relation

$$
\begin{equation*}
\delta=\frac{h\left(\mu_{-\delta r}\right)}{\int r d \mu_{-\delta r}} \tag{1.2}
\end{equation*}
$$

For any continuous function $f: \Sigma_{A}^{+} \rightarrow \mathbb{R}$, we have

$$
I_{f}:=\left\{\int f d \mu: \mu \in \mathcal{M}_{\sigma}\right\}=\overline{\left\{\frac{f^{n}(x)}{n}: \sigma^{n} x=x\right\}}
$$

and I_{f} is a closed interval. If f is Hölder continuous then

$$
\operatorname{int}\left(I_{f}\right)=\left\{\int f d \mu_{t f}: t \in \mathbb{R}\right\}
$$

In particular, if $0 \in \operatorname{int}\left(I_{f}\right)$ then there exists a unique $\xi \in \mathbb{R}$ such that $\int f d \mu_{\xi f}=0$. Furthermore,

$$
P(\xi f)=h\left(\mu_{\xi f}\right)=\sup \left\{h(\mu): \mu \in \mathcal{M}_{\sigma} \text { and } \int f d \mu=0\right\}
$$

and $\mu_{\xi f}$ is the only measure for which the supremum is realized.
We say that a function $f: \Sigma_{A}^{+} \rightarrow \mathbb{R}$ is locally constant if there exists $N \geq 0$ such that if $x=\left(x_{n}\right)_{n=0}^{\infty}, y=\left(x_{n}\right)_{n=0}^{\infty}$ have $x_{n}=y_{n}$ for all $n \geq N$ then $f(x)=f(y)$. In other words, f may be regarded as a function on $W_{A}^{(N)}$. Clearly, if f is locally constant then f is Hölder continuous (for any choice of exponent $\alpha>0$).

We may also regard such a locally constant function as a function $f: \Sigma_{A_{N}}^{+} \rightarrow \mathbb{R}$, which depend on only one co-ordinate. As we noted above, there is a natural correspondence between periodic points for $\sigma: \Sigma_{A}^{+} \rightarrow \Sigma_{A}^{+}$and $\sigma: \Sigma_{A_{N}}^{+} \rightarrow \Sigma_{A_{N}}^{+}$. One easily sees that the value of $f^{n}(x)$ is the same for corresponding periodic orbits for the two shift maps.

If f is locally constant then $P(t f)$ may be given in terms of a matrix. For $t \in \mathbb{R}$, define a $W_{A}^{(N)} \times W_{A}^{(N)}$ matrix $A_{f}(t)$ by

$$
A_{f}(t)(\mathbf{x}, \mathbf{y})=A_{N}(\mathbf{x}, \mathbf{y}) e^{t f(\mathbf{x})}
$$

where $\mathbf{x}=\left(x_{0}, x_{1}, \ldots, x_{N-1}\right), \mathbf{y}=\left(y_{0}, y_{1}, \ldots, y_{N-1}\right) \in W_{A}^{(N)}$. One can easily see that $A_{f}(t)$ is non-negative and aperiodic and thus has a simple positive eigenvalue which is strictly greater in modulus that all the other eigenvalues of $A_{f}(t)$; in fact, this eigenvalue is equal to $e^{P(t f)}$.

2. Shifts and Free Groups

In this section we shall consider the shift of finite type $\sigma: \Sigma^{+} \rightarrow \Sigma^{+}$associated to the free group F and free basis $\mathcal{A}=\left\{a_{1}, \ldots, a_{k}\right\}$. Setting $\mathcal{I}=\mathcal{A} \cup \mathcal{A}^{-1}$, it is clear that $\Sigma^{+}=\Sigma_{A}^{+}$, where $A(i, j)=1$ unless j is the inverse of i, and that A is aperiodic. We may also think of Σ^{+}as the space of infinite reduced words in $\mathcal{A} \cup \mathcal{A}^{-1}$ and, for a free group, this may be identified with the Gromov boundary of F. Furthermore, $W^{(n)}=W_{A}^{(n)}$ may be identified with the set $\{x \in F:|x|=n\}$.

A simple calculation shows that the topological entropy of $\sigma: \Sigma^{+} \rightarrow \Sigma^{+}$is $h(\sigma)=$ $\log (2 k-1)$ and the measure of maximal entropy is the measure μ_{0} defined in the introduction.

Recall that $\mathcal{C}(F)$ denotes the set of non-trivial conjugacy classes in F. A conjugacy class $w \in \mathcal{C}(F)$ contains a cyclically reduced word in $\mathcal{A} \cup \mathcal{A}^{-1}$, i.e., a reduced word $x_{0} x_{1} \cdots x_{n-1}$ such that $x_{n-1} \neq x_{0}^{-1}$. The only other cyclically reduced elements of w are obtained from this by cyclic permutation (and also have word length n) and non-cyclically reduced elements of w have word length greater than n. Therefore it is natural to define the length of w (with respect to \mathcal{A}) to be

$$
|w|:=n=\min _{x \in w}|x| .
$$

It is immediate from the definition that, for $m \geq 1$,

$$
\left|w^{m}\right|=m|w|
$$

where w^{m} is the conjugacy class $\left\{x^{m}: x \in w\right\}$. Furthermore, it is clear from the preceding discussion that there is a natural bijection between $\mathcal{C}(F)$ and the set of periodic orbits of $\sigma: \Sigma^{+} \rightarrow \Sigma^{+}$(and between primitive conjugacy classes and prime periodic orbits), such that, if $x, \sigma x, \ldots, \sigma^{n-1} x\left(\sigma^{n} x=x\right)$ corresponds to $w \in \mathcal{C}(F)$ then $|w|=n$.

In order to represent elements of F as elements of a shift space, it is convenient to augment Σ^{+}by adding an extra "dummy" symbol 0 . Introduce a square matrix A_{0}, with rows indexed by $\mathcal{A} \cup \mathcal{A}^{-1} \cup\{0\}$, such that

$$
A_{0}(i, j)= \begin{cases}A(i, j) & \text { if } i, j \in \mathcal{A} \cup \mathcal{A}^{-1} \\ 1 & \text { if } i \in \mathcal{A} \cup \mathcal{A}^{-1} \cup\{0\} \text { and } j=0 \\ 0 & \text { if } i=0 \text { and } j \in \mathcal{A} \cup \mathcal{A}^{-1}\end{cases}
$$

We then define $\Sigma_{0}^{+}=\Sigma_{A_{0}}^{+}$. In other words, an element of Σ_{0}^{+}is either an element of Σ^{+} or an element of $W^{(n)}$, for some $n \geq 0$, followed by an infinite string of 0 s, which we shall denote by $\dot{0}$. (Of course, this procedure does not introduce any extra periodic points.)

Let $\phi: F \rightarrow F$ be an automorphism. We wish to encode the quantity $|\phi(\cdot)|$ in terms of a function $r: \Sigma^{+} \rightarrow \mathbb{R}$. The following lemma is easily seen.

Lemma 2.1. Let S be any finite subset of F. Then there exists an integer $M \geq 1$ such that for any reduced word $y_{0} y_{1} \cdots y_{m-1}, m \geq M$, and any $s \in S$

$$
\left|s y_{0} y_{1} \cdots y_{m-1}\right|-m=\left|s y_{0} y_{1} \cdots y_{M-1}\right|-M
$$

Proof. Let $M=\max \{|s|: s \in S\}$ and suppose $m \geq M$. Then $s y_{0} y_{1} \cdots y_{M-1}$ may be written as a reduced word s^{\prime} such that $s^{\prime} y_{M} \cdots y_{m-1}$ is also a reduced word and, in particular, $\left|\left(s y_{0} y_{1} \cdots y_{M-1}\right) y_{M} \cdots y_{m-1}\right|=\left|s y_{0} y_{1} \cdots y_{M-1}\right|+m-M$.

Noting that there exists $C>1$ such that, for all $x \in F$,

$$
C^{-1}|x| \leq|\phi(x)| \leq C|x|
$$

the following may be deduced from Lemma 2.1. (It may be compared with Proposition 4 of [16].)
Lemma 2.2. There exists an integer $N \geq 1$ such that if $x_{0} x_{1} \cdots x_{n-1}$ is a reduced word and $n \geq N$ then

$$
\left|\phi\left(x_{0} x_{1} \cdots x_{n-1}\right)\right|-\left|\phi\left(x_{1} \cdots x_{n-1}\right)\right|=\left|\phi\left(x_{0} x_{1} \cdots x_{N-1}\right)\right|-\left|\phi\left(x_{1} \cdots x_{N-1}\right)\right| .
$$

Proof. We shall apply Lemma 2.1. Let $S=\left\{\phi\left(a_{1}\right)^{ \pm 1}, \ldots, \phi\left(a_{k}\right)^{ \pm 1}\right\}$ and, as before, $M=$ $\max \{|s|: s \in S\}$. For each $p \geq 1$, we have $\left|\phi\left(x_{1} \cdots x_{p}\right)\right| \geq C^{-1} p$. Choose $N=[C M]+1$; then $n \geq N$ implies $\left|\phi\left(x_{1} \cdots x_{n-1}\right)\right| \geq C^{-1}[C M] \geq M$, from which the result follows.

We now introduce a function on Σ_{0}^{+}which the values $|\phi(x)|, x \in F$, may be recovered. Define $r: \Sigma_{0}^{+} \rightarrow \mathbb{R}$ by

$$
r\left(\left(x_{n}\right)_{n=0}^{\infty}\right)=\left|\phi\left(x_{0} \cdots x_{N-1}\right)\right|-\left|\phi\left(x_{1} \cdots x_{N-1}\right)\right| .
$$

The following result is immediate from the definition.
Lemma 2.3. Suppose that $x_{0} x_{1} \cdots x_{n-1}$ is reduced word. Then

$$
\left|\phi\left(x_{0} x_{1} \cdots x_{n-1}\right)\right|=r^{n}\left(x_{0}, x_{1}, \cdots, x_{n-1}, \dot{0}\right)
$$

Remark. This construction has been used by Lalley [10], Bourdon [2] and Pollicott and Sharp [17],[18]. Apparently, it goes back to Eichler [4].

Clearly, r is a locally constant function. To make this explicit, for $\mathbf{x}=\left(x_{0}, x_{1}, \ldots, x_{N-1}\right)$ $\in W^{(N)}$, we also write

$$
r(\mathbf{x})=\left|\phi\left(x_{0} \cdots x_{N-1}\right)\right|-\left|\phi\left(x_{1} \cdots x_{N-1}\right)\right|
$$

and, as above, define

$$
A_{r}(t)(\mathbf{x}, \mathbf{y})=A_{N}(\mathbf{x}, \mathbf{y}) e^{\operatorname{tr}(\mathbf{x})}
$$

Define a function $\mathfrak{p}: \mathbb{R} \rightarrow \mathbb{R}$ by $\mathfrak{p}(t)=P(t r)$ and recall that $e^{\mathfrak{p}(t)}$ may be characterized as the (simple) maximal eigenvalue of $A_{r}(t)$. We know that $\mathfrak{p}(t)$ is a convex real-analytic function of t. We define an associated concave function $\mathfrak{h}: \operatorname{int}\left(I_{r}\right) \rightarrow \mathbb{R}$ by

$$
\mathfrak{h}(\rho)=\sup \left\{h(\mu): \mu \in \mathcal{M}_{\sigma} \text { and } \int r d \mu=\rho\right\} .
$$

Recalling that $\operatorname{int}\left(I_{r}\right)=\left\{\mathfrak{p}^{\prime}(t): t \in \mathbb{R}\right\}$, we have $\mathfrak{h}(\rho)=\mathfrak{p}(\xi)-\xi \rho$, where $\xi \in \mathbb{R}$ is chosen to be the unique value with $\mathfrak{p}^{\prime}(\xi)=\rho$ and, in particular, \mathfrak{h} is real-analytic. (In the language of convex analysis, $-\mathfrak{h}$ is the Legendre transform of \mathfrak{p} [19].)

The next result relates the generic stretch $\lambda(\phi)$ to the functions $\mathfrak{p}(t)$ and $\mathfrak{h}(\rho)$.
Theorem 1. Suppose that ϕ is not simple.
(i)

$$
\lambda(\phi)=\int r d \mu_{0}=\mathfrak{p}^{\prime}(0) .
$$

(ii) For $\rho \in \operatorname{int}\left(I_{r}\right), 0<\mathfrak{h}(\rho) \leq 2 k-1$ and $\mathfrak{h}(\rho)=2 k-1$ if and only if $\rho=\lambda(\phi)$.

Proof.
(i) For $x=\left(x_{n}\right)_{n=0}^{\infty} \in \Sigma^{+}$,

$$
r^{n}(x)=r^{n}\left(x_{0}, x_{1}, \cdots, x_{n-1}, \dot{0}\right)+O(1)
$$

Thus, by Lemma 2.3,

$$
\lim _{n \rightarrow+\infty} \frac{r^{n}(x)}{n}=\lim _{n \rightarrow+\infty} \frac{\left|\phi\left(x_{0} x_{1} \cdots x_{n-1}\right)\right|}{n}
$$

(provided the limit exists). By the ergodic theorem, the Left Hand Side exists $\mu_{0}-$ a.e. and the limit is equal to $\int r d \mu_{0}$.
(ii) It is clear that $\mathfrak{h}(\rho) \leq 2 k-1$. Using the formula $\mathfrak{h}(\rho)=\mathfrak{p}(\xi)-\xi \rho$ and the definition of \mathfrak{p}, we see that $\mathfrak{h}(\rho)=h\left(\mu_{\xi r}\right)>0$. By part (i), we have $\mathfrak{h}(\lambda(\phi))=2 k-1$ while, for $\rho \neq \lambda(\phi), \xi \neq 0$, so $\mathfrak{h}(\rho)<2 k-1$.

3. Conjugacy Distortion Spectrum

The construction in the preceding section is particularly well suited to studying the action of ϕ on conjugacy classes. As shown in the next lemma, the length of the resulting conjugacy classes is simply obtained by summing r around the corresponding periodic orbit. Fortunately, there is a well developed theory of periodic orbit sums which we will then able to use.

Lemma 3.1. Let $\sigma^{n} x=x$ correspond to the conjugacy class w containing the cyclically reduced word $x_{0} x_{1} \cdots x_{n-1}$. Then

$$
|\phi(w)|=r^{n}(x) .
$$

Proof. Let $x^{(m)}$ denote the reduced word obtained from the m-fold concatenation of $x_{0} x_{1} \cdots x_{n-1}$. Since r is locally constant, there exists $N \geq 1$ such that

$$
\left|r^{m n}(x)-r^{m n}\left(x^{(m)}, 0,0, \ldots\right)\right| \leq 2 N\|r\|_{\infty}
$$

Noting that $r^{m n}(x)=m r^{n}(x)$, the above estimate gives us that

$$
r^{n}(x)=\lim _{m \rightarrow+\infty} \frac{1}{m} r^{m n}\left(x^{(m)}, 0,0, \ldots\right)=\lim _{m \rightarrow+\infty} \frac{1}{m}\left|\phi\left(x^{(m)}\right)\right|
$$

Thus it remains to show that this last quantity is equal to $|\phi(w)|$. We shall do this by proving inequalities in both directions.

First observe that $x^{(m)}$ is a cyclically reduced word in w^{m}. Therefore

$$
m|\phi(w)|=\left|\phi(w)^{m}\right|=\left|\phi\left(w^{m}\right)\right| \leq\left|\phi\left(x^{(m)}\right)\right|
$$

and so $|\phi(w)| \leq \lim _{m \rightarrow+\infty} m^{-1}\left|\phi\left(x^{(m)}\right)\right|$.
Now suppose that $v \in w$. It is clear that

$$
\lim _{m \rightarrow+\infty} m^{-1}\left|\phi\left(v^{m}\right)\right|=\lim _{m \rightarrow+\infty} m^{-1}\left|\phi\left(x^{(m)}\right)\right| .
$$

On the other hand, since $\left\{\left|\phi\left(v^{m}\right)\right|\right\}_{m \geq 1}$ is a subadditive sequence,

$$
\lim _{m \rightarrow+\infty} m^{-1}\left|\phi\left(v^{m}\right)\right|=\inf _{m \geq 1} m^{-1}\left|\phi\left(v^{m}\right)\right|
$$

and so $\lim _{m \rightarrow+\infty} m^{-1}\left|\phi\left(x^{(m)}\right)\right| \leq|\phi(v)|$. Hence

$$
\lim _{m \rightarrow+\infty} m^{-1}\left|\phi\left(v^{m}\right)\right| \leq \inf _{v \in w}|\phi(v)|=|\phi(w)| .
$$

Suppose that $w \in \mathcal{C}(F)$. If $x, y \in w$ then $\phi(x), \phi(y)$ are conjugate, so the conjugacy class $\phi(w)$ is well defined. As in the introduction, we define the conjugacy distortion spectrum of ϕ to be the set

$$
\mathcal{D}_{\phi}=\left\{\frac{|\phi(w)|}{|w|}: w \in \mathcal{C}(F)\right\}
$$

and let $\overline{\mathcal{D}_{\phi}}$ be the closure of \mathcal{D}_{ϕ}. The structure of \mathcal{D}_{ϕ} was studied by Kapovich [8], who showed the following.

Proposition 3.1 [8].

(i) $\overline{\mathcal{D}_{\phi}}$ is a closed interval with rational endpoints and $\mathcal{D}_{\phi}=\overline{\mathcal{D}_{\phi}} \cap \mathbb{Q}$. (In other words, if $\rho \in \overline{\mathcal{D}_{\phi}}$ is rational then there exists $w \in \mathcal{C}(F)$ such that $|\phi(w)|=\rho|w|$.)
(ii) If ϕ is not simple then $\overline{\mathcal{D}_{\phi}}$ has non-empty interior which contains 1 and $\lambda(\phi)$.

We shall strengthen Kapovich's result by showing that the set conjugacy classes with a given distortion has exponential growth and that the growth rate is given by the function \mathfrak{h}.
Theorem 2. Suppose that ϕ is not simple.
(i) $\overline{\mathcal{D}_{\phi}}=I_{r}$.
(ii) If $\rho \in \overline{\mathcal{D}_{\phi}}$ is rational then

$$
\limsup _{n \rightarrow+\infty} \frac{1}{n} \log \#\left\{w \in \mathcal{C}(F):|w|=n, \frac{|\phi(w)|}{|w|}=\rho\right\}=\mathfrak{h}(\rho)
$$

(iii) If $\rho \in \operatorname{int}\left(\overline{\mathcal{D}_{\phi}}\right)$ is rational then there exists an integer $d(\rho) \geq 1$ and a constant $C(\rho)>0$ such that

$$
\#\left\{w \in \mathcal{C}(F):|w|=d(r) n, \frac{|\phi(w)|}{|w|}=\rho\right\} \sim C(\rho) \frac{e^{d(\rho) n \mathfrak{h}(\rho)}}{\sqrt{d(r) n}}, \quad \text { as } n \rightarrow+\infty
$$

Corollary. For each ρ, the set $\{w \in \mathcal{C}(F):|\phi(w)| /|w|=\rho\}$ has zero density in in $\mathcal{C}(F)$, i.e.,

$$
\lim _{n \rightarrow+\infty} \frac{\#\{w \in \mathcal{C}(F):|w|=n,|\phi(w)| /|w|=\rho\}}{\#\{w \in \mathcal{C}(F):|w|=n\}}=0
$$

We shall prove this theorem by rephrasing it in terms of periodic points for the shift map $\sigma: \Sigma^{+} \rightarrow \Sigma^{+}$(or, more precisely, $\sigma: \Sigma_{A_{N}}^{+} \rightarrow \Sigma_{A_{N}}^{+}$). In view of the correspondence between $\mathcal{C}(F)$ and periodic points for σ and Lemma 3.1, we have that

$$
\left\{w \in \mathcal{C}(F):|w|=n, \frac{|\phi(w)|}{|w|}=\rho\right\}=\left\{x \in \operatorname{Fix}_{n}: \frac{r^{n}(x)}{n}=\rho\right\}
$$

The theorem will follow from the main result of [15], stated in the lemma below, once we have checked the hypotheses.
Lemma 3.2 [15]. Let A be an aperiodic zero-one matrix. Suppose that $f: \Sigma_{A}^{+} \rightarrow \mathbb{Z}$ is a locally constant function depending on two coordinates, i.e., $f(x)=f\left(x_{0}, x_{1}\right)$, satisfying the following conditions:
(1) there exists $\xi \in \mathbb{R}$ such that

$$
\int f d \mu_{\xi f}=0
$$

(2) $\bigcup_{n \geq 1}\left\{f^{n}(x): \sigma^{n} x=x\right\}$ is not contained in any proper subgroup of \mathbb{Z}.

Then there exists an integer $d(f) \geq 1$ and a constant $C(f)>0$ such that

$$
\left\{x \in F i x_{d n}: f^{d n}(x)=0\right\} \sim C(f) \frac{e^{d(f) n h\left(\mu_{\xi f}\right)}}{\sqrt{d(f) n}}, \quad \text { as } n \rightarrow+\infty
$$

Remark. The requirement that f depends on only two coordinates is only a technical simplification and may be easily removed.
Proof of Theorem 2. Write $\rho=p / q$ in lowest terms. Note that $r^{n}(x) / n=\rho$ if and only if $(q r-p)^{n}(x)=q r^{n}(x)-n p=0$. Thus we will apply the above result to the function $f_{\rho}=q r-p$. We shall show that f_{ρ} satisfies conditions (1) and (2).

First observe that $I_{f_{\rho}}=q I_{r}-p$. We know that $p / q \in \operatorname{int}\left(I_{r}\right)$, so $0 \in \operatorname{int}\left(I_{f_{\rho}}\right)$. Hence condition (1) is satisfied. Furthermore, as $I_{f_{\rho}}$ has interior, f_{ρ} is not cohomologous to a constant (necessarily zero), so $\bigcup_{n \geq 1}\left\{f^{n}(x): \sigma^{n} x=x\right\}$ generates a group $a \mathbb{Z}$, where $a \geq 1$ is an integer. Replacing f_{ρ} by f_{ρ} / a, condition (2) is satisfied. This proves part (iii) and hence part (ii) of Theorem 2 .

Remark. One may read off upper and lower bounds on the number of $w \in \mathcal{C}(F)$ with $|w|=n$ and $|\phi(w)| /|w|=\rho$ from the paper [11]. One has

$$
\#\left\{w \in \mathcal{C}(F):|w|=n, \frac{|\phi(w)|}{|w|}=\rho\right\} \leq(n+1)^{2 k(2 k-1)^{N}+1} e^{n \mathfrak{h}(\rho)}
$$

The lower bound is more involved. Given $\epsilon>0$, there exists $\delta>0$ and $m \in \mathbb{N}$ such that, if $d(\rho) \mid n$ and n is sufficiently large then

$$
\#\left\{w \in \mathcal{C}(F):|w|=n, \frac{|\phi(w)|}{|w|}=\rho\right\} \geq \delta n^{-m} e^{n(\mathfrak{h}(\rho)-\epsilon)}
$$

4. Counting Group Elements

Our aim in the next two sections is to relate the number $\operatorname{Curl}(\phi)$ to the function \mathfrak{h}. This is complicated by the fact that $\operatorname{Curl}(\phi)$ is defined in terms of the action of ϕ on elements of F rather than conjugacy classes. Group elements do not have such a nice correspondence to elements of Σ^{+}as occurs in the correspondence between conjugacy classes and periodic orbits for $\sigma: \Sigma^{+} \rightarrow \Sigma^{+}$. However, if we consider the larger shift space Σ_{0}^{+}then we may identify F with a set of pre-images of a point under $\sigma: \Sigma_{0}^{+} \rightarrow \Sigma_{0}^{+}$.

Suppose that ϕ is not simple. As in the previous section, write $f=f_{1}=r-1$ and define ξ by

$$
h\left(\mu_{\xi f}\right)=\mathfrak{h}(1)=\sup \left\{h(\mu): \mu \in \mathcal{M}_{\sigma} \text { and } \int f d \mu=0\right\} .
$$

We know f is a locally constant function and may be regarded as a function on $W_{A_{0}}^{(N)}$. To avoid too many subscripts, we shall write $B=A_{0}$. As in section 1 , we write

$$
B_{f}(\xi+i t)(\mathbf{x}, \mathbf{y})=B_{N}(\mathbf{x}, \mathbf{y}) e^{(\xi+i t) f(\mathbf{x})}
$$

where $\mathbf{x}=\left(x_{0}, x_{1}, \ldots, x_{N-1}\right), \mathbf{y}=\left(y_{0}, y_{1}, \ldots, y_{N-1}\right) \in W_{B}^{(N)}$. (Note that the argument is now $\xi+i t$.) The matrices $A_{f}(\xi+i t)$ are defined similarly and have the same non-zero spectrum as $B_{f}(\xi+i t)$. In particular, $B_{f}(\xi)$ has a simple maximal eigenvalue equal to $e^{P(\xi f)}=e^{\mathfrak{p}(\xi)-\xi}=e^{\mathfrak{h}(1)}$. For small values of $|t|$, this eigenvalue persists and $B_{f}(\xi+i t)$ has a simple eigenvalue $\beta(t)$, depending analytically on t, with $\beta(0)=e^{\mathfrak{h}(1)}$.

A simple calculation shows that

$$
\begin{equation*}
\#\{x \in F:|x|=n\}=\sum_{\mathbf{x} \in W_{A}^{(N)}} \sum_{a \in \mathcal{A} \cup \mathcal{A}^{-1}} B^{n}(\mathbf{x}, \mathbf{a}), \tag{4.1}
\end{equation*}
$$

where $\mathbf{a}=(a, 0, \ldots, 0)$.
Lemma 4.1.

$$
\begin{aligned}
\#\{x \in F:|\phi(x)|=|x|=n\} & =\sum_{|x|=n} \frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{(\xi+i t)(|\phi(x)|-|x|)} d t \\
& =\sum_{\mathbf{x} \in W_{A}^{(N)}} \sum_{a \in \mathcal{A} \cup \mathcal{A}^{-1}} \frac{1}{2 \pi} \int_{-\pi}^{\pi} B_{f}(\xi+i t)(\mathbf{x}, \mathbf{a}) d t
\end{aligned}
$$

Proof. By orthogonality,

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i t(|\phi(x)|-|x|)} d t= \begin{cases}1 & \text { if }|\phi(x)|=|x| \\ 0 & \text { otherwise. }\end{cases}
$$

In the former case, the factor $e^{\xi(|\phi(x)|-|x|)}=1$, so the first equality holds. The second follows from Lemma 2.3 and (4.1).

This may be handled as in [22, pp.899-900] (where the roles of A and B are switched) to show the following.

Proposition 4.1. There exists an integer $d \geq 1$ and a real number $C>0$ such that

$$
\#\{x \in F:|\phi(x)|=|x|=d n\} \sim C \frac{e^{d n \mathfrak{h}(1)}}{\sqrt{n}}, \quad \text { as } n \rightarrow+\infty
$$

Corollary.

$$
\operatorname{Curl}(\phi) \geq \frac{e^{\mathfrak{h}(1)}}{2 k-1}
$$

Proof. Since

$$
\#\{x \in F:|\phi(x)|=|x|=d n\} \leq \#\{x \in F:|x| \leq d n,|\phi(x)| \leq d n\}
$$

this follows from Proposition 4.1 and the definition of $\operatorname{Curl}(\phi)$.

5. The Formula for $\operatorname{Curl}(\phi)$

We now establish our formula for $\operatorname{Curl}(\phi)$ by obtaining an upper bound. It is clear that, for each $n \geq 1$ and $0 \leq p \leq 1$,

$$
\#\{x \in F:|x| \leq n,|\phi(x)| \leq n\} \leq \#\{x \in F:(1-p)|x|+p \mid \phi(x) \leq n\}
$$

so

$$
\begin{equation*}
\operatorname{Curl}(\phi) \leq \frac{1}{2 k-1} \inf _{0 \leq p \leq 1}\left(\limsup _{n \rightarrow+\infty}(\#\{x \in F:(1-p)|x|+p|\phi(x)| \leq n\})^{1 / n}\right) \tag{5.1}
\end{equation*}
$$

We shall show that there exists a value of p for which the above limsup is equal to $\mathfrak{h}(1)$. Combining this with the corollary to Proposition 4.1 will give the desired formula.

For $0 \leq p \leq 1$, write

$$
\alpha(p)=\limsup _{n \rightarrow+\infty} \frac{1}{n} \#\{x \in F:(1-p)|x|+p|\phi(x)| \leq n\}
$$

Then $\alpha(p)$ is the abscissa of convergence of the Dirichlet series

$$
\sum_{x \in F} e^{-t((1-p)|x|+p|\phi(x)|)}
$$

To analyse this series, define locally constant functions $r_{p}: \Sigma_{0}^{+} \rightarrow \mathbb{R}$ by $r_{p}=(1-p)+p r$ and introduce matrices

$$
B_{p}(t):=B_{r_{p}}(t)=B_{N}(\mathbf{x}, \mathbf{y}) e^{t r_{p}(\mathbf{x})}
$$

Then

$$
\sum_{x \in F} e^{-t((1-p)|x|+p|\phi(x)|)}=\sum_{n=0}^{\infty} \sum_{\mathbf{x} \in W_{A}^{(N)}} \sum_{a \in \mathcal{A} \cup \mathcal{A}^{-1}} B_{p}^{n}(-t)(\mathbf{x}, \mathbf{a}),
$$

so $\alpha(p)$ is the value of t for which $B_{p}(-t)$ has spectral radius equal to one. Thus, $\alpha(p)$ is determined by the equation

$$
P\left(-\alpha(p) r_{p}\right)=0
$$

which is equivalent to

$$
\sup _{m \in \mathcal{M}_{\sigma}}\left(h(m)-\alpha(p) \int r_{p} d m\right)=0
$$

or

$$
\begin{equation*}
\alpha(p)(1-p)=\sup _{m \in \mathcal{M}_{\sigma}}\left(h(m)-\alpha(p) p \int r d m\right) \tag{5.2}
\end{equation*}
$$

The supremum in (5.2) is uniquely attained at $\mu_{-\alpha(p) p r}$, the equilibrium state of $-\alpha(p) p r$.

Lemma 5.1. There exists $0<p^{*}<1$ such that

$$
\int r d \mu_{\alpha\left(p^{*}\right) p^{*} r}=1
$$

Proof. First note that $R(p):=\int r d \mu_{\alpha(p) p r}$ depends continuously on p. We shall show that $R(0)>1$ and $R(1)<1$; hence, by the Intermediate Value Theorem, there will be a value p^{*} with $0<p^{*}<1$ and $R\left(p^{*}\right)=1$.

The first inequality is straightforward since

$$
R(0)=\int r d \mu_{0}=\lambda(\phi)>1
$$

Since $|\phi(x)|=|x|_{\phi^{-1}(\mathcal{A})}$, one has $\alpha(1)=\log (2 k-1)=h(\sigma)$. On the other hand, by equation (1.2),

$$
\alpha(1)=\frac{h\left(\mu_{-\alpha(1) r}\right)}{\int r d \mu_{-\alpha(1) r}}=\frac{h\left(\mu_{-h(\sigma) r}\right)}{R(1)} .
$$

Since r is not cohomologous to a constant, $\mu_{-h(\sigma) r} \neq \mu_{0}$, so $h\left(\mu_{-h(\sigma) r}\right)<h(\sigma)$. Consequently, $R(1)<1$.

Consider (5.2) for the value p^{*}. Since the supremum is attained at $\mu_{-\alpha\left(p^{*}\right) p^{*} r}$ and $\int r d \mu_{-\alpha\left(p^{*}\right) p^{*} r}=1$, we may rewrite (5.2) as

$$
\begin{aligned}
\alpha\left(p^{*}\right)\left(1-p^{*}\right) & =\sup \left\{h(m)-\alpha\left(p^{*}\right) p^{*} \int r d m: m \in \mathcal{M}_{\sigma}, \int r d m=1\right\} \\
& =\sup \left\{h(m): m \in \mathcal{M}_{\sigma}, \int r d m=1\right\}-\alpha\left(p^{*}\right) p^{*} \\
& =\mathfrak{h}(1)-\alpha\left(p^{*}\right) p^{*}
\end{aligned}
$$

The terms $-\alpha\left(p^{*}\right) p^{*}$ cancel on each side to give

$$
\alpha\left(p^{*}\right)=\mathfrak{h}(1) .
$$

Substituting this in inequality (5.1) gives

$$
\operatorname{Curl}(\phi) \leq \frac{e^{\mathfrak{h}(1)}}{2 k-1}
$$

Combining this with the corollary to Proposition 4.1 gives the following theorem.
Theorem 3. If ϕ is not simple then

$$
\operatorname{Curl}(\phi)=\frac{e^{\mathfrak{h}(1)}}{2 k-1}
$$

6. A Manhattan Curve

In this final section, we draw a parallel between the functions introduced in this paper and Burger's "Manhattan Curve", associated to a pair of hyperbolic Riemann surfaces [3].

We recall Burger's definition. Let Σ_{1} and Σ_{2} be two compact hyperbolic Riemann surfaces, which are assumed to be homeomorphic, and let $\psi: \Sigma_{1} \rightarrow \Sigma_{2}$ be a homeomorphism between them. In particular, ψ allow us to identify free homotopy classes on the surfaces. For a free homotopy class γ, we write $l_{1}(\gamma)$ and $l_{2}(\gamma)$, respectively, for the lengths of the corresponding closed geodesics on the two surfaces.

The Manhattan curve $\mathfrak{M}\left(\Sigma_{1}, \Sigma_{2}\right)$ is defined to be the boundary of the convex set

$$
\left\{(a, b) \in \mathbb{R}^{2}: \sum_{\gamma} e^{-a l_{1}(\gamma)-b l_{2}(\gamma)}<+\infty\right\}
$$

This was studied in [3] and [21], where the following results were proved.
Proposition 6.1 [3],[21].
(i) $\mathfrak{M}\left(\Sigma_{1}, \Sigma_{2}\right)$ is a straight line if and only if Σ_{1} and Σ_{2} are isometric.
(ii) $\mathfrak{M}\left(\Sigma_{1}, \Sigma_{2}\right)$ is real analytic.
(iii) $\mathfrak{M}\left(\Sigma_{1}, \Sigma_{2}\right)$ has asymptotes whose normals have slopes equal to the maximum and minimum geodesic stretch between Σ_{1} and Σ_{2}.
(iv) $\mathfrak{M}\left(\Sigma_{1}, \Sigma_{2}\right)$ passes through $(1,0)$, where its normal has slope equal to the intersection $i\left(\Sigma_{1}, \Sigma_{2}\right)$. (It also passes through $(0,1)$, where its normal has slope equal to $1 / i\left(\Sigma_{2}, \Sigma_{1}\right)$.
(v) There is a unique point $(a, b) \in \mathfrak{M}\left(\Sigma_{1}, \Sigma_{2}\right)$ where the normal has slope 1 and $a+b$ is equal to the correlation number of Σ_{1} and Σ_{2}.

See [1],[3] for the definitions of max and min geodesic stretch and intersection. The correlation number of Σ_{1} and Σ_{2} is defined to be the exponential growth rate of

$$
\#\left\{\gamma: l_{1}(\gamma), l_{2}(\gamma) \in(T, T+\epsilon)\right\}
$$

for fixed $\epsilon>0$, as $T \rightarrow+\infty$ [20].
In our setting, let us define a Manhattan curve \mathfrak{M}_{ϕ}, associated to ϕ, to be the boundary of the set

$$
\left\{(a, b) \in \mathbb{R}^{2}: \sum_{w \in \mathcal{C}(F)} e^{-a|w|-b|\phi(w)|}<+\infty\right\}
$$

By writing this in terms of periodic points for the shift map, this may be described as the set

$$
\left\{(a, b) \in \mathbb{R}^{2}: P(-a-b r)=0\right\}
$$

or, equivalently,

$$
\left\{(a, b) \in \mathbb{R}^{2}: \mathfrak{p}(-b)=a\right\}
$$

Let us define $\mathfrak{q}(s)$ implicitly by

$$
\begin{equation*}
\mathfrak{p}(-\mathfrak{q}(s))=s \tag{6.1}
\end{equation*}
$$

then \mathfrak{M}_{ϕ} is the graph of \mathfrak{q}. Since $\mathfrak{p}^{\prime}(-t)=-\int r d \mu_{-t r} \neq 0$, the Implicit Function Theorem gives that \mathfrak{q} is real analytic. (This parallels the analysis of [21].)

Let us examine the slope of the normal at a point $(a, b)=(s, \mathfrak{q}(s))$ on \mathfrak{M}_{ϕ}. At this point, the normal has slope $-1 / \mathfrak{q}^{\prime}(s)$. Now, differentiating (6.1),

$$
1=\frac{d}{d s} \mathfrak{p}(-\mathfrak{q}(s))=\left(-\int r d \mu_{-\mathfrak{q}(s) r}\right) \mathfrak{q}^{\prime}(s)
$$

so the normal to \mathfrak{M}_{ϕ} at $(s, \mathfrak{q}(s))$ has slope

$$
\frac{-1}{\mathfrak{q}^{\prime}(s)}=\int r d \mu_{-\mathfrak{q}(s) r} .
$$

Therefore the set of normals to \mathfrak{M}_{ϕ} is equal to

$$
\left\{\int r d \mu_{t}: t \in \mathbb{R}\right\}=\operatorname{int}\left(I_{r}\right)=\operatorname{int}\left(\overline{\mathcal{D}_{\phi}}\right)
$$

and it is easy to recover the following statements.

Theorem 4.

(i) \mathfrak{M}_{ϕ} is a straight line if and only if ϕ is simple.
(ii) \mathfrak{M}_{ϕ} is real analytic.
(iii) \mathfrak{M}_{ϕ} has asymptotes whose normals have slopes equal to the $\max \mathcal{D}_{\phi}$ and $\min \mathcal{D}_{\phi}$.
(iv) \mathfrak{M}_{ϕ} passes through $(\log (2 k-1), 0)$, where its normal has slope equal to the generic stretch $\lambda(\phi)$
(v) There is a unique point $(a, b) \in \mathfrak{M}_{\phi}$ where the normal has slope 1 and $a+b=\mathfrak{h}(1)$.

Proof. The only statement which requires proof is (v). If the normal has slope 1 at $(a, b)=$ $(s, \mathfrak{q}(s))$ then

$$
\int r d \mu_{-\mathfrak{q}(s) r}=1
$$

and $-\mathfrak{q}(s)=\xi$, where

$$
\mathfrak{h}(1)=\mathfrak{p}(\xi)-\xi=\mathfrak{p}(-\mathfrak{q}(s))+\mathfrak{q}(s)=s+\mathfrak{q}(s)=a+b
$$

Remark. Kaimanovich, Kapovich and Schupp have shown how to identify the generic stretching factor $\lambda(\phi)$ as an intersection of currents [7], [9].

References

1. F. Bonahon, The geometry of Teichmüller space via geodesic currents, Invent. math. 92 (1988), 139162.
2. M. Bourdon, Actions quasi-convexes d'un groupe hyperbolique, flot géodésique, PhD thesis (Orsay) 1993.
3. M. Burger, Intersection, the Manhattan curve, and the Patterson-Sullivan theory in rank 2, Int. Math. Res. Notices 7 (1993), 217-225.
4. M. Eichler, Grenzkreisgruppen und kettenbruchartige Algorithmen, Acta Arith. 11 (1965), 169-180.
5. E. Ghys and P. de la Harpe, Sur les groupes hyperboliques d'après Mikhael Gromov, Birkhauser., Boston, 1990.
6. M. Gromov, Hyperbolic groups, Essys in group theory, M.S.R.I. publication vol. 8, MSRI, Berkeley.
7. V. Kaimanovich, I. Kapovich and P. Schupp, The subadditive ergodic theorem and generic stretching factors for free group automorphisms, Israel J. Math. 157 (2007), 1-46.
8. I. Kapovich, The frequency space of a free group, Internat. J. Algebra Comput. 15 (2005), 939-969.
9. I. Kapovich, Currents on free groups, Topological and asymptotic aspects of group theory, Contemp. Math., 394, Amer. Math. Soc., Providence, RI, 2006, pp. 149-176.
10. S. Lalley, Renewal theorems in symbolic dynamics, with applications to geodesic flows, noneuclidean tessellations and their fractal limits, Acta Math. 163 (1989), 1-55.
11. B. Marcus and S. Tuncel, Entropy at a weight-per-symbol and embeddings of Markov chains, Invent. math. 102 (1990), 235-266.
12. A. G. Myasnikov and V. Shpilrain, Some metric properties of automorphisms of groups, J. Algebra 304 (2006), 782-792.
13. W. Parry and M. Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque 187-188 (1990), 1-268.
14. Y. Pesin, Dimension theory in dynamical systems. Contemporary views and applications, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1997.
15. M. Pollicott and R. Sharp, Rates of recurrence for \mathbb{Z}^{q} and \mathbb{R}^{q} extensions of subshifts of finite type, J. London Math. Soc. 49 (1994), 401-416.
16. M. Pollicott and R. Sharp, Poincaré series and zeta functions for surface group actions on \mathbb{R}-trees, Math. Zeit. 226 (1997), 335-347.
17. M. Pollicott and R. Sharp, Comparison theorems and orbit counting in hyperbolic geometry, Trans. Amer. Math. Soc. 350 (1998), 473-499.
18. M. Pollicott and R. Sharp, Poincaré series and comparison theorems for variable negative curvature, Topology, ergodic theory, real algebraic geometry, Amer. Math. Soc. Transl. Ser. 2, 202, Amer. Math. Soc., Providence, RI, 2001, pp. 229-240.
19. R. Rockafeller, Convex Analysis, Princeton University Press, Princeton, New Jersey, 1970.
20. R. Schwartz and R. Sharp, The correlation of length spectra of two hyperbolic surfaces, Comm. Math. Phys. 153 (1993), 423-430.
21. R. Sharp, The Manhattan curve and the correlation of length spectra on hyperbolic surfaces, Math. Zeit. 228 (1998), 745-750.
22. R. Sharp, Local limit theorems for free groups, Math. Ann. 321 (2001), 889-904.
23. P. Walters, An introduction to ergodic theory, Springer-Verlag, Berlin, 1982.

School of Mathematics, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.

