DISTORTION AND ENTROPY FOR AUTOMORPHISMS OF FREE GROUPS

RICHARD SHARP

University of Manchester

ABSTRACT. Recently, several numerical invariants have been introduced to characterize the distortion induced by automorphisms of a free group. We unify these by interpreting them in terms of an entropy function of a kind familiar in thermodynamic ergodic theory. We draw an analogy between this approach and the Manhattan curve associated to a pair of hyperbolic surfaces.

0. INTRODUCTION

Let F be a free group on $k \ge 2$ generators and let $\mathcal{A} = \{a_1, \ldots, a_k\}$ be a free basis. We define the word length $|\cdot| = |\cdot|_{\mathcal{A}}$ (with respect to \mathcal{A}) by |1| = 0 and, for $x \ne 1$,

$$|x| = \min\{n : x = x_0 x_1 \cdots x_{n-1}, x_i \in \mathcal{A} \cup \mathcal{A}^{-1}\}$$

where $\mathcal{A}^{-1} = \{a_1^{-1}, \ldots, a_k^{-1}\}$. Recall that any $x \neq 1$ may be written uniquely as

$$x = x_0 x_1 \cdots x_{n-1},$$

where $n = |x|, x_i \in \mathcal{A} \cup \mathcal{A}^{-1}, i = 0, \dots, n-1$, and $x_{i+1} \neq x_i^{-1}, i = 0, \dots, n-2$. We call such an expression a reduced word.

Let $\operatorname{Aut}(F)$ denote the group of automorphisms of F. An automorphism ϕ is said to be inner if it is a conjugation, i.e., $\phi(x) = y^{-1}xy$, for some $y \in F$. If an automorphism ϕ acts by permuting $\mathcal{A} \cup \mathcal{A}^{-1}$ then we call ϕ a permutation automorphism. Following the notation of [7], [12], we say that ϕ is simple if it is the product of an inner automorphism and a permutation automorphism.

Let ∂F denote the boundary of F in the sense of the theory of hyperbolic groups [5], [6]. This is a Cantor set and may be naturally identified with the one-sided shift space

$$\Sigma^{+} = \{ (x_n)_{n=0}^{\infty} \in (\mathcal{A} \cup \mathcal{A}^{-1})^{\mathbb{Z}^{+}} : x_{n+1} \neq x_n^{-1}, n \ge 0 \}.$$

There is a dynamical systems associated to this space, namely the shift map $\sigma : \Sigma^+ \to \Sigma^+$, and its ergodic theory will play a key role in this paper.

Typeset by $\mathcal{AMS}\text{-}T_{\mathrm{E}}X$

Define a σ -invariant Borel probability measure μ_0 on Σ^+ by

$$\mu_0([x_0, x_1, \dots, x_{n-1}]) = \frac{1}{2k(2k-1)^{n-1}},$$

where $[x_0, x_1, \ldots, x_{n-1}] = \{(y_n)_{n=0}^{\infty} \in \Sigma^+ : y_i = x_i, i = 0, \ldots, n-1\}$. This measure allows us to describe generic behaviour of sequences in F, with respect to the basis \mathcal{A} .

In this paper, we shall be interested in various measures of the distortion of F under an automorphism $\phi: F \to F$. The first of these quantifies the generic distortion or stretching. Following Kaimanovich, Kapovich and Schupp [7], define the generic stretching factor $\lambda(\phi)$ (with respect to \mathcal{A}) by

$$\lambda(\phi) = \lim_{n \to +\infty} \int \frac{|\phi(x_0 x_1 \cdots x_{n-1})|}{n} \, d\mu_0((x_n)_{n=0}^\infty)$$
$$= \lim_{n \to +\infty} \frac{|\phi(x_0 x_1 \cdots x_{n-1})|}{n} \quad \text{for } \mu_0\text{-a.e.} \ (x_n)_{n=0}^\infty$$

Proposition 1 [7]. For any $\phi \in Aut(F)$, $\lambda(\phi) \ge 1$. Furthermore, $\lambda(\phi) = 1$ if and only if ϕ is simple.

We now make a further definition, which measures the proportion of elements which are not stretched by a factor greater than one. Following Myasnikov and Shpilrain [12], define the curl of ϕ , Curl (ϕ) , by

$$\operatorname{Curl}(\phi) = \limsup_{n \to +\infty} \left(\frac{\#\{x \in F : |x| \le n, \ |\phi(x)| \le n\}}{\#\{x \in F : \ |x| \le n\}} \right)^{1/n},$$

i.e., the growth rate of the proportion of points in the balls $\{x \in F : |x| \le n\}$ which remain there under ϕ .

Proposition 2 [12]. For any $\phi \in Aut(F)$, $0 < Curl(\phi) \le 1$. Furthermore, $Curl(\phi) = 1$ if and only if ϕ is simple.

Finally, we define a set introduced by Kapovich, which captures all possible distortions induced by ϕ . Let $\mathcal{C}(F)$ denote the set of all non-trivial conjugacy classes in F and note that, for $w \in \mathcal{C}(F)$, $\phi(w) \in \mathcal{C}(F)$ is well-defined. Following Kapovich [8], we define the conjugacy distortion spectrum of ϕ to be the set

$$\mathcal{D}_{\phi} = \left\{ \frac{|\phi(w)|}{|w|} : w \in \mathcal{C}(F) \right\},\$$

where $|w| = \min\{|x| : x \in w\}$, and let $\overline{\mathcal{D}_{\phi}}$ denote the closure of \mathcal{D}_{ϕ} . The structure of \mathcal{D}_{ϕ} was studied by Kapovich, who showed the following.

Proposition 3 [8]. $\overline{\mathcal{D}_{\phi}}$ is a closed interval with rational endpoints and $\mathcal{D}_{\phi} = \overline{\mathcal{D}_{\phi}} \cap \mathbb{Q}$. If ϕ is simple then $\mathcal{D}_{\phi} = \{1\}$. If ϕ is not simple then $\overline{\mathcal{D}_{\phi}}$ has non-empty interior which contains 1 and $\lambda(\phi)$.

These quantities may be related by the following theorem.

Theorem. Suppose that ϕ is not simple. Then there exists a strictly concave analytic function $\mathfrak{h} : \operatorname{int}(\overline{\mathcal{D}_{\phi}}) \to \mathbb{R}^+$ such that, for each $\rho \in \operatorname{int}(\overline{\mathcal{D}_{\phi}}), \ 0 < \mathfrak{h}(\rho) \leq \log(2k-1)$ and, if ρ is rational, then

$$\limsup_{n \to +\infty} \frac{1}{n} \log \# \left\{ w \in \mathcal{C}(F) : |w| = n, \ \frac{|\phi(w)|}{|w|} = \rho \right\} = \mathfrak{h}(\rho). \tag{0.1}$$

Furthermore, $\mathfrak{h}(\rho) = \log(2k-1)$ if and only if $\rho = \lambda(\phi)$ and $\operatorname{Curl}(\phi) = e^{\mathfrak{h}(1)}/(2k-1)$.

This will be proved as Theorems 1, 2 and 3 below.

We shall now outline the contents of the paper. In section 1, we discuss the thermodynamic formalism associated to a class of dynamical systems called subshifts of finite. In section 2, we discuss the subshift associated to a free group, the relationship between periodic orbits and conjugacy classes and how to encode the quantity $|\phi(\cdot)|$ in terms of a function on this subshift. We also introduce the function \mathfrak{h} and relate it to the generic stretch. In section 3, we study the conjugacy distortion spectrum via the periodic points of the shift map, proving equation (0.1). In sections 4 and 5, we show how to obtain the relationship between $\operatorname{Curl}(\phi)$ and $\mathfrak{h}(1)$. In the final section, we recast our results in terms of a "Manhattan curve", analogous to that associated by Burger to a pair of hyperbolic surfaces.

I am grateful to Ilya Kapovich for some helpful comments.

1. Thermodynamic Formalism

In this section, we shall describe the ergodic theory associated to the shift map σ : $\Sigma^+ \to \Sigma^+$. The theory we describe goes under the name of thermodynamic formalism; standard references are [13], [14, Appendix II], [23].

We begin with the definition of a subshift of finite type. Let A be finite matrix, indexed by a set \mathcal{I} , with entries zero and one. We define the shift space

$$\Sigma_A^+ = \{ (x_n)_{n=0}^\infty \in \mathcal{I}^{\mathbb{Z}^+} : A(x_n, x_{n+1}) = 1 \ \forall n \in \mathbb{Z}^+ \}$$

and the (one-sided) subshift of finite type $\sigma : \Sigma_A^+ \to \Sigma_A^+$ by $(\sigma x)_n = x_{n+1}$. We give \mathcal{I} the discrete topology, $\mathcal{I}^{\mathbb{Z}^+}$ the product topology and Σ_A^+ the subspace topology. A compatible metric is given by

$$d((x_n)_{n=0}^{\infty}, (y_n)_{n=0}^{\infty}) = \sum_{n=0}^{\infty} \frac{1 - \delta_{x_n y_n}}{2^n},$$

where δ_{ij} is the Kronecker symbol.

We say that A is irreducible if, for each $(i,j) \in \mathcal{I}^2$, there exists $n(i,j) \geq 1$ such that $A^{n(i,j)}(i,j) > 0$ and aperiodic if there exists $n \geq 1$ such that, for each $(i,j) \in \mathcal{I}^2$, $A^n(i,j) > 0$. The latter statement is equivalent to $\sigma : \Sigma_A^+ \to \Sigma_A^+$ being topologically mixing (i.e. that there exists $n \geq 1$ such that for any two non-empty open sets $U, V \subset \Sigma_A^+$, $\sigma^{-m}(U) \cap V \neq \emptyset$, for all $m \geq n$).

If A is aperiodic then it has a positive simple eigenvalue β which is strictly maximal in modulus (i.e. every other eigenvalue has modulus strictly less that β) and the topological entropy $h(\sigma)$ of σ is equal to $\log \beta$.

If an ordered *n*-tuple $(x_0, x_1, \ldots, x_{n-1}) \in \mathcal{I}^n$ is such that $A(x_m, x_{m+1}) = 1, m =$ $0, 1, \ldots, n-2$ then we say that $(x_0, x_1, \ldots, x_{n-1})$ is an allowed word of length n in Σ_A^+ ; the set of these is denoted $W_A^{(n)}$. If $\sigma^n x = x$ then we say that $\{x, \sigma x, \dots, \sigma^{n-1}x\}$ is a periodic orbit for σ . Clearly any such an x is obtained by repeating a word $(x_0, x_1, \ldots, x_{n-1}) \in$ $W_A^{(n)}$ with the additional property that $A(x_{n-1}, x_0) = 1$. Note that we regard the periodic orbits $\{x, \sigma x, \ldots, \sigma^{n-1}x\}, \{x, \sigma x, \ldots, \sigma^{n-1}x\}, x, \ldots, \sigma^{n-1}x$, etc., as distinct objects (even though they are identical as point sets). If $\sigma^n x = x$ but $\sigma^m x \neq x$ for 0 < m < n then we say that $\{x, \sigma x, \ldots, \sigma^{n-1}x\}$ is a prime periodic orbit.

It is sometimes convenient to replace $\sigma: \Sigma_A^+ \to \Sigma_A^+$ by a shift of finite type on a new space $\Sigma_{A_N}^+$, whose symbols are $W_A^{(N)}$ and for which $\mathbf{x} = (x_0, x_1, \dots, x_{N-1})$ may be followed by $\mathbf{y} = (y_0, y_1, \dots, y_{N-1})$ if and only if $y_n = x_{n+1}, n = 0, 1, \dots, N-2$. (Since $\mathbf{x} \in W_A^{(N)}$, the latter condition automatically implies that $A(x_{N-1}, y_{N-1}) = 1$.) We continue to denote the shift map by $\sigma: \Sigma_{A_N}^+ \to \Sigma_{A_N}^+$. More formally, define a $W_A^{(N)} \times W_A^{(N)}$ zero-one matrix A_N by

$$A_N(\mathbf{x}, \mathbf{y}) = \begin{cases} 1 \text{ if } y_n = x_{n+1}, n = 0, \dots, N-2\\ 0 \text{ otherwise.} \end{cases}$$

Then

$$\Sigma_{A_N}^+ = \{ (\mathbf{x}_n)_{n=0}^\infty \in (W_A^{(n)})^{\mathbb{Z}^+} : A_N(\mathbf{x}_n, \mathbf{x}_{n+1}) \ \forall n \in \mathbb{Z}^+ \}.$$

Note that there is a natural period preserving bijection between periodic points for σ : $\Sigma_A^+ \to \Sigma_A^+$ and $\sigma : \Sigma_{A_N}^+ \to \Sigma_{A_N}^+$.

Let \mathcal{M} denote the space of all Borel probability measures on Σ_A^+ , equipped with the weak^{*} topology, and let \mathcal{M}_{σ} denote the subspace consisting of σ -invariant probability measures. For $\mu \in \mathcal{M}_{\sigma}$, write $h(\mu)$ for the measure theoretic entropy of μ . There is a unique measure $\mu_0 \in \mathcal{M}_{\sigma}$, called the measure of maximal entropy, for which

$$h(\mu_0) = \sup_{\mu \in \mathcal{M}_\sigma} h(\mu)$$

and this value coincides with the topological entropy $h(\sigma)$.

For a continuous function $f: \Sigma_A^+ \to \mathbb{R}$, we define the pressure P(f) of f by the formula

$$P(f) = \sup_{\mu \in \mathcal{M}_{\sigma}} \left(h(\mu) + \int f \ d\mu \right)$$
(1.1)

and call any measure for which the supremum is attained an equilibrium state for f. If fis Hölder continuous (i.e. there exists $\alpha > 0$ and $C(f, \alpha) \ge 0$ such that $|f(x) - f(y)| \le 1$ $C(f,\alpha)d(x,y)^{\alpha}$, for all $x, y \in \Sigma_A^+$, then f has a unique equilibrium state which we denote by μ_f . The latter is fully supported and $h(\mu_f) > 0$. The equilibrium state of the zero function is the measure of maximal entropy, so this is consistent with our earlier notation. The pressure of f also has the following characterization in terms of periodic points:

$$P(f) = \lim_{n \to +\infty} \frac{1}{n} \log \sum_{\sigma^n x = x} e^{f^n(x)}.$$

We say that two functions $f, g: \Sigma_A^+ \to \mathbb{R}$ are (continuously) cohomologous if there is a continuous function $u: \Sigma_A^+ \to \mathbb{R}$ such that $f = g + u \circ \sigma - u$. The cohomology class of a Hölder continuous function is determined by its values around periodic orbits. More precisely, writing $f^n = f + f \circ \sigma + \cdots + f \circ \sigma^{n-1}$, two Hölder continuous functions $f, g: \Sigma_A^+ \to \mathbb{R}$ are cohomologous if and only if $f^n(x) = g^n(x)$ whenever $\sigma^n x = x$.

If f and g are cohomologous then P(f) = P(g) and if c is a real number then P(f+c) = P(f) + c. Now suppose that f is Hölder continuous and, for $t \in \mathbb{R}$, consider the function $t \mapsto P(tf)$ This function is convex and real analytic and

$$P'(tf) = \int f \ d\mu_{tf}.$$

Furthermore, if f is not cohomologous to a constant then P(tf) is strictly convex and P''(tf) > 0 everywhere. (If f is cohomologous to a constant c then $P(tf) = h(\sigma) + tc$.)

Suppose that a Hölder continuous function $r: \Sigma_A^+ \to \mathbb{R}$ is cohomologous to a strictly positive function. If $\delta > 0$ satisfies $P(-\delta r) = 0$ then, since $\mu_{-\delta r}$ attains the supremum in (1.1), we have the relation

$$\delta = \frac{h(\mu_{-\delta r})}{\int r d\mu_{-\delta r}}.$$
(1.2)

For any continuous function $f: \Sigma_A^+ \to \mathbb{R}$, we have

$$I_f := \left\{ \int f \ d\mu : \mu \in \mathcal{M}_\sigma \right\} = \overline{\left\{ \frac{f^n(x)}{n} : \sigma^n x = x \right\}}$$

and I_f is a closed interval. If f is Hölder continuous then

$$\operatorname{int}(I_f) = \left\{ \int f \ d\mu_{tf} : t \in \mathbb{R} \right\}.$$

In particular, if $0 \in int(I_f)$ then there exists a unique $\xi \in \mathbb{R}$ such that $\int f d\mu_{\xi f} = 0$. Furthermore,

$$P(\xi f) = h(\mu_{\xi f}) = \sup\left\{h(\mu) : \mu \in \mathcal{M}_{\sigma} \text{ and } \int f \ d\mu = 0\right\}$$

and $\mu_{\xi f}$ is the only measure for which the supremum is realized.

We say that a function $f: \Sigma_A^+ \to \mathbb{R}$ is locally constant if there exists $N \ge 0$ such that if $x = (x_n)_{n=0}^{\infty}, y = (x_n)_{n=0}^{\infty}$ have $x_n = y_n$ for all $n \ge N$ then f(x) = f(y). In other words, f may be regarded as a function on $W_A^{(N)}$. Clearly, if f is locally constant then f is Hölder continuous (for any choice of exponent $\alpha > 0$).

We may also regard such a locally constant function as a function $f: \Sigma_{A_N}^+ \to \mathbb{R}$, which depend on only one co-ordinate. As we noted above, there is a natural correspondence between periodic points for $\sigma: \Sigma_A^+ \to \Sigma_A^+$ and $\sigma: \Sigma_{A_N}^+ \to \Sigma_{A_N}^+$. One easily sees that the value of $f^n(x)$ is the same for corresponding periodic orbits for the two shift maps. If f is locally constant then P(tf) may be given in terms of a matrix. For $t \in \mathbb{R}$, define a $W_A^{(N)} \times W_A^{(N)}$ matrix $A_f(t)$ by

$$A_f(t)(\mathbf{x}, \mathbf{y}) = A_N(\mathbf{x}, \mathbf{y})e^{tf(\mathbf{x})},$$

where $\mathbf{x} = (x_0, x_1, \dots, x_{N-1}), \mathbf{y} = (y_0, y_1, \dots, y_{N-1}) \in W_A^{(N)}$. One can easily see that $A_f(t)$ is non-negative and aperiodic and thus has a simple positive eigenvalue which is strictly greater in modulus that all the other eigenvalues of $A_f(t)$; in fact, this eigenvalue is equal to $e^{P(tf)}$.

2. Shifts and Free Groups

In this section we shall consider the shift of finite type $\sigma : \Sigma^+ \to \Sigma^+$ associated to the free group F and free basis $\mathcal{A} = \{a_1, \ldots, a_k\}$. Setting $\mathcal{I} = \mathcal{A} \cup \mathcal{A}^{-1}$, it is clear that $\Sigma^+ = \Sigma_A^+$, where A(i, j) = 1 unless j is the inverse of i, and that A is aperiodic. We may also think of Σ^+ as the space of infinite reduced words in $\mathcal{A} \cup \mathcal{A}^{-1}$ and, for a free group, this may be identified with the Gromov boundary of F. Furthermore, $W^{(n)} = W_A^{(n)}$ may be identified with the set $\{x \in F : |x| = n\}$.

A simple calculation shows that the topological entropy of $\sigma : \Sigma^+ \to \Sigma^+$ is $h(\sigma) = \log(2k-1)$ and the measure of maximal entropy is the measure μ_0 defined in the introduction.

Recall that $\mathcal{C}(F)$ denotes the set of non-trivial conjugacy classes in F. A conjugacy class $w \in \mathcal{C}(F)$ contains a cyclically reduced word in $\mathcal{A} \cup \mathcal{A}^{-1}$, i.e., a reduced word $x_0 x_1 \cdots x_{n-1}$ such that $x_{n-1} \neq x_0^{-1}$. The only other cyclically reduced elements of w are obtained from this by cyclic permutation (and also have word length n) and non-cyclically reduced elements of w have word length greater than n. Therefore it is natural to define the length of w (with respect to \mathcal{A}) to be

$$|w| := n = \min_{x \in w} |x|.$$

It is immediate from the definition that, for $m \ge 1$,

$$|w^m| = m|w|,$$

where w^m is the conjugacy class $\{x^m : x \in w\}$. Furthermore, it is clear from the preceding discussion that there is a natural bijection between $\mathcal{C}(F)$ and the set of periodic orbits of $\sigma : \Sigma^+ \to \Sigma^+$ (and between primitive conjugacy classes and prime periodic orbits), such that, if $x, \sigma x, \ldots, \sigma^{n-1}x$ ($\sigma^n x = x$) corresponds to $w \in \mathcal{C}(F)$ then |w| = n.

In order to represent elements of F as elements of a shift space, it is convenient to augment Σ^+ by adding an extra "dummy" symbol 0. Introduce a square matrix A_0 , with rows indexed by $\mathcal{A} \cup \mathcal{A}^{-1} \cup \{0\}$, such that

$$A_0(i,j) = \begin{cases} A(i,j) \text{ if } i, j \in \mathcal{A} \cup \mathcal{A}^{-1} \\ 1 & \text{if } i \in \mathcal{A} \cup \mathcal{A}^{-1} \cup \{0\} \text{ and } j = 0 \\ 0 & \text{if } i = 0 \text{ and } j \in \mathcal{A} \cup \mathcal{A}^{-1}. \\ 6 \end{cases}$$

We then define $\Sigma_0^+ = \Sigma_{A_0}^+$. In other words, an element of Σ_0^+ is either an element of Σ^+ or an element of $W^{(n)}$, for some $n \ge 0$, followed by an infinite string of 0s, which we shall denote by 0. (Of course, this procedure does not introduce any extra periodic points.)

Let $\phi: F \to F$ be an automorphism. We wish to encode the quantity $|\phi(\cdot)|$ in terms of a function $r: \Sigma^+ \to \mathbb{R}$. The following lemma is easily seen.

Lemma 2.1. Let S be any finite subset of F. Then there exists an integer $M \ge 1$ such that for any reduced word $y_0y_1 \cdots y_{m-1}$, $m \ge M$, and any $s \in S$

$$|sy_0y_1\cdots y_{m-1}| - m = |sy_0y_1\cdots y_{M-1}| - M.$$

Proof. Let $M = \max\{|s| : s \in S\}$ and suppose $m \ge M$. Then $sy_0y_1 \cdots y_{M-1}$ may be written as a reduced word s' such that $s'y_M \cdots y_{m-1}$ is also a reduced word and, in particular, $|(sy_0y_1\cdots y_{M-1})y_M\cdots y_{m-1}| = |sy_0y_1\cdots y_{M-1}| + m - M.$

Noting that there exists C > 1 such that, for all $x \in F$,

$$C^{-1}|x| \le |\phi(x)| \le C|x|,$$

the following may be deduced from Lemma 2.1. (It may be compared with Proposition 4 of [16].)

Lemma 2.2. There exists an integer $N \ge 1$ such that if $x_0x_1 \cdots x_{n-1}$ is a reduced word and n > N then

$$|\phi(x_0x_1\cdots x_{n-1})| - |\phi(x_1\cdots x_{n-1})| = |\phi(x_0x_1\cdots x_{N-1})| - |\phi(x_1\cdots x_{N-1})|$$

Proof. We shall apply Lemma 2.1. Let $S = \{\phi(a_1)^{\pm 1}, \ldots, \phi(a_k)^{\pm 1}\}$ and, as before, M = $\max\{|s|: s \in S\}$. For each $p \ge 1$, we have $|\phi(x_1 \cdots x_p)| \ge C^{-1}p$. Choose N = [CM] + 1; then $n \ge N$ implies $|\phi(x_1 \cdots x_{n-1})| \ge C^{-1}[CM] \ge M$, from which the result follows. \Box

We now introduce a function on Σ_0^+ which the values $|\phi(x)|, x \in F$, may be recovered. Define $r: \Sigma_0^+ \to \mathbb{R}$ by

$$r((x_n)_{n=0}^{\infty}) = |\phi(x_0 \cdots x_{N-1})| - |\phi(x_1 \cdots x_{N-1})|.$$

The following result is immediate from the definition.

Lemma 2.3. Suppose that $x_0x_1 \cdots x_{n-1}$ is reduced word. Then

$$|\phi(x_0x_1\cdots x_{n-1})| = r^n(x_0, x_1, \cdots, x_{n-1}, 0).$$

Remark. This construction has been used by Lalley [10], Bourdon [2] and Pollicott and Sharp [17], [18]. Apparently, it goes back to Eichler [4].

Clearly, r is a locally constant function. To make this explicit, for $\mathbf{x} = (x_0, x_1, \dots, x_{N-1})$ $\in W^{(N)}$, we also write

$$r(\mathbf{x}) = |\phi(x_0 \cdots x_{N-1})| - |\phi(x_1 \cdots x_{N-1})|$$
7

and, as above, define

$$A_r(t)(\mathbf{x}, \mathbf{y}) = A_N(\mathbf{x}, \mathbf{y})e^{tr(\mathbf{x})}$$

Define a function $\mathfrak{p} : \mathbb{R} \to \mathbb{R}$ by $\mathfrak{p}(t) = P(tr)$ and recall that $e^{\mathfrak{p}(t)}$ may be characterized as the (simple) maximal eigenvalue of $A_r(t)$. We know that $\mathfrak{p}(t)$ is a convex real-analytic function of t. We define an associated concave function $\mathfrak{h} : \operatorname{int}(I_r) \to \mathbb{R}$ by

$$\mathfrak{h}(\rho) = \sup \left\{ h(\mu) : \mu \in \mathcal{M}_{\sigma} \text{ and } \int r \ d\mu = \rho \right\}.$$

Recalling that $\operatorname{int}(I_r) = \{\mathfrak{p}'(t) : t \in \mathbb{R}\}\)$, we have $\mathfrak{h}(\rho) = \mathfrak{p}(\xi) - \xi\rho$, where $\xi \in \mathbb{R}$ is chosen to be the unique value with $\mathfrak{p}'(\xi) = \rho$ and, in particular, \mathfrak{h} is real-analytic. (In the language of convex analysis, $-\mathfrak{h}$ is the Legendre transform of \mathfrak{p} [19].)

The next result relates the generic stretch $\lambda(\phi)$ to the functions $\mathfrak{p}(t)$ and $\mathfrak{h}(\rho)$.

Theorem 1. Suppose that ϕ is not simple. *(i)*

$$\lambda(\phi) = \int r \ d\mu_0 = \mathfrak{p}'(0).$$

(ii) For $\rho \in int(I_r)$, $0 < \mathfrak{h}(\rho) \le 2k - 1$ and $\mathfrak{h}(\rho) = 2k - 1$ if and only if $\rho = \lambda(\phi)$.

Proof.

(i) For $x = (x_n)_{n=0}^{\infty} \in \Sigma^+$,

$$r^{n}(x) = r^{n}(x_{0}, x_{1}, \cdots, x_{n-1}, \dot{0}) + O(1).$$

Thus, by Lemma 2.3,

$$\lim_{n \to +\infty} \frac{r^n(x)}{n} = \lim_{n \to +\infty} \frac{|\phi(x_0 x_1 \cdots x_{n-1})|}{n}$$

(provided the limit exists). By the ergodic theorem, the Left Hand Side exists μ_0 -a.e. and the limit is equal to $\int r d\mu_0$.

(ii) It is clear that $\mathfrak{h}(\rho) \leq 2k - 1$. Using the formula $\mathfrak{h}(\rho) = \mathfrak{p}(\xi) - \xi\rho$ and the definition of \mathfrak{p} , we see that $\mathfrak{h}(\rho) = h(\mu_{\xi r}) > 0$. By part (i), we have $\mathfrak{h}(\lambda(\phi)) = 2k - 1$ while, for $\rho \neq \lambda(\phi), \xi \neq 0$, so $\mathfrak{h}(\rho) < 2k - 1$. \Box

3. Conjugacy Distortion Spectrum

The construction in the preceding section is particularly well suited to studying the action of ϕ on conjugacy classes. As shown in the next lemma, the length of the resulting conjugacy classes is simply obtained by summing r around the corresponding periodic orbit. Fortunately, there is a well developed theory of periodic orbit sums which we will then able to use.

Lemma 3.1. Let $\sigma^n x = x$ correspond to the conjugacy class w containing the cyclically reduced word $x_0x_1 \cdots x_{n-1}$. Then

$$|\phi(w)| = r^n(x).$$

Proof. Let $x^{(m)}$ denote the reduced word obtained from the *m*-fold concatenation of $x_0x_1\cdots x_{n-1}$. Since *r* is locally constant, there exists $N \ge 1$ such that

$$|r^{mn}(x) - r^{mn}(x^{(m)}, 0, 0, \dots)| \le 2N ||r||_{\infty}.$$

Noting that $r^{mn}(x) = mr^n(x)$, the above estimate gives us that

$$r^{n}(x) = \lim_{m \to +\infty} \frac{1}{m} r^{mn}(x^{(m)}, 0, 0, \dots) = \lim_{m \to +\infty} \frac{1}{m} |\phi(x^{(m)})|.$$

Thus it remains to show that this last quantity is equal to $|\phi(w)|$. We shall do this by proving inequalities in both directions.

First observe that $x^{(m)}$ is a cyclically reduced word in w^m . Therefore

$$|m|\phi(w)| = |\phi(w)^m| = |\phi(w^m)| \le |\phi(x^{(m)})|$$

and so $|\phi(w)| \le \lim_{m \to +\infty} m^{-1} |\phi(x^{(m)})|.$

Now suppose that $v \in w$. It is clear that

$$\lim_{m \to +\infty} m^{-1} |\phi(v^m)| = \lim_{m \to +\infty} m^{-1} |\phi(x^{(m)})|.$$

On the other hand, since $\{|\phi(v^m)|\}_{m>1}$ is a subadditive sequence,

$$\lim_{m \to +\infty} m^{-1} |\phi(v^m)| = \inf_{m \ge 1} m^{-1} |\phi(v^m)|$$

and so $\lim_{m \to +\infty} m^{-1} |\phi(x^{(m)})| \le |\phi(v)|$. Hence

$$\lim_{m \to +\infty} m^{-1} |\phi(v^m)| \le \inf_{v \in w} |\phi(v)| = |\phi(w)|. \quad \Box$$

Suppose that $w \in \mathcal{C}(F)$. If $x, y \in w$ then $\phi(x), \phi(y)$ are conjugate, so the conjugacy class $\phi(w)$ is well defined. As in the introduction, we define the *conjugacy distortion spectrum* of ϕ to be the set

$$\mathcal{D}_{\phi} = \left\{ \frac{|\phi(w)|}{|w|} : w \in \mathcal{C}(F) \right\}$$

and let $\overline{\mathcal{D}_{\phi}}$ be the closure of \mathcal{D}_{ϕ} . The structure of \mathcal{D}_{ϕ} was studied by Kapovich [8], who showed the following.

Proposition 3.1 [8].

(i) $\overline{\mathcal{D}_{\phi}}$ is a closed interval with rational endpoints and $\mathcal{D}_{\phi} = \overline{\mathcal{D}_{\phi}} \cap \mathbb{Q}$. (In other words, if $\rho \in \overline{\mathcal{D}_{\phi}}$ is rational then there exists $w \in \mathcal{C}(F)$ such that $|\phi(w)| = \rho |w|$.) (ii) If ϕ is not simple then $\overline{\mathcal{D}_{\phi}}$ has non-empty interior which contains 1 and $\lambda(\phi)$.

We shall strengthen Kapovich's result by showing that the set conjugacy classes with a given distortion has exponential growth and that the growth rate is given by the function \mathfrak{h} .

Theorem 2. Suppose that ϕ is not simple. (i) $\overline{\mathcal{D}_{\phi}} = I_r$. (ii) If $\rho \in \overline{\mathcal{D}_{\phi}}$ is rational then

$$\limsup_{n \to +\infty} \frac{1}{n} \log \# \left\{ w \in \mathcal{C}(F) : |w| = n, \ \frac{|\phi(w)|}{|w|} = \rho \right\} = \mathfrak{h}(\rho).$$

(iii) If $\rho \in int(\overline{\mathcal{D}_{\phi}})$ is rational then there exists an integer $d(\rho) \geq 1$ and a constant $C(\rho) > 0$ such that

$$\#\left\{w\in\mathcal{C}(F)\,:\,|w|=d(r)n,\;\frac{|\phi(w)|}{|w|}=\rho\right\}\sim C(\rho)\frac{e^{d(\rho)n\mathfrak{h}(\rho)}}{\sqrt{d(r)n}},\quad as\;n\to+\infty$$

Corollary. For each ρ , the set $\{w \in \mathcal{C}(F) : |\phi(w)|/|w| = \rho\}$ has zero density in in $\mathcal{C}(F)$, *i.e.*,

$$\lim_{n \to +\infty} \frac{\#\{w \in \mathcal{C}(F) : |w| = n, |\phi(w)|/|w| = \rho\}}{\#\{w \in \mathcal{C}(F) : |w| = n\}} = 0.$$

We shall prove this theorem by rephrasing it in terms of periodic points for the shift map $\sigma: \Sigma^+ \to \Sigma^+$ (or, more precisely, $\sigma: \Sigma^+_{A_N} \to \Sigma^+_{A_N}$). In view of the correspondence between $\mathcal{C}(F)$ and periodic points for σ and Lemma 3.1, we have that

$$\left\{w \in \mathcal{C}(F) : |w| = n, \ \frac{|\phi(w)|}{|w|} = \rho\right\} = \left\{x \in \operatorname{Fix}_n : \ \frac{r^n(x)}{n} = \rho\right\}.$$

The theorem will follow from the main result of [15], stated in the lemma below, once we have checked the hypotheses.

Lemma 3.2 [15]. Let A be an aperiodic zero-one matrix. Suppose that $f : \Sigma_A^+ \to \mathbb{Z}$ is a locally constant function depending on two coordinates, i.e., $f(x) = f(x_0, x_1)$, satisfying the following conditions:

(1) there exists $\xi \in \mathbb{R}$ such that

$$\int f \ d\mu_{\xi f} = 0;$$

(2) $\bigcup_{n>1} \{f^n(x) : \sigma^n x = x\}$ is not contained in any proper subgroup of \mathbb{Z} .

Then there exists an integer $d(f) \ge 1$ and a constant C(f) > 0 such that

$$\{x \in Fix_{dn} : f^{dn}(x) = 0\} \sim C(f) \frac{e^{d(f)nh(\mu_{\xi f})}}{\sqrt{d(f)n}}, \quad as \ n \to +\infty.$$

Remark. The requirement that f depends on only two coordinates is only a technical simplification and may be easily removed.

Proof of Theorem 2. Write $\rho = p/q$ in lowest terms. Note that $r^n(x)/n = \rho$ if and only if $(qr - p)^n(x) = qr^n(x) - np = 0$. Thus we will apply the above result to the function $f_{\rho} = qr - p$. We shall show that f_{ρ} satisfies conditions (1) and (2).

First observe that $I_{f_{\rho}} = qI_r - p$. We know that $p/q \in \operatorname{int}(I_r)$, so $0 \in \operatorname{int}(I_{f_{\rho}})$. Hence condition (1) is satisfied. Furthermore, as $I_{f_{\rho}}$ has interior, f_{ρ} is not cohomologous to a constant (necessarily zero), so $\bigcup_{n\geq 1} \{f^n(x) : \sigma^n x = x\}$ generates a group $a\mathbb{Z}$, where $a \geq 1$ is an integer. Replacing f_{ρ} by f_{ρ}/a , condition (2) is satisfied. This proves part (iii) and hence part (ii) of Theorem 2. \Box

Remark. One may read off upper and lower bounds on the number of $w \in C(F)$ with |w| = n and $|\phi(w)|/|w| = \rho$ from the paper [11]. One has

$$\#\left\{w \in \mathcal{C}(F) : |w| = n, \ \frac{|\phi(w)|}{|w|} = \rho\right\} \le (n+1)^{2k(2k-1)^N + 1} e^{n\mathfrak{h}(\rho)}$$

The lower bound is more involved. Given $\epsilon > 0$, there exists $\delta > 0$ and $m \in \mathbb{N}$ such that, if $d(\rho)|n$ and n is sufficiently large then

$$\#\left\{w\in\mathcal{C}(F): |w|=n, \ \frac{|\phi(w)|}{|w|}=\rho\right\}\geq\delta n^{-m}e^{n(\mathfrak{h}(\rho)-\epsilon)}.$$

4. Counting Group Elements

Our aim in the next two sections is to relate the number $\operatorname{Curl}(\phi)$ to the function \mathfrak{h} . This is complicated by the fact that $\operatorname{Curl}(\phi)$ is defined in terms of the action of ϕ on elements of F rather than conjugacy classes. Group elements do not have such a nice correspondence to elements of Σ^+ as occurs in the correspondence between conjugacy classes and periodic orbits for $\sigma: \Sigma^+ \to \Sigma^+$. However, if we consider the larger shift space Σ_0^+ then we may identify F with a set of pre-images of a point under $\sigma: \Sigma_0^+ \to \Sigma_0^+$.

Suppose that ϕ is not simple. As in the previous section, write $f = f_1 = r - 1$ and define ξ by

$$h(\mu_{\xi f}) = \mathfrak{h}(1) = \sup \left\{ h(\mu) : \mu \in \mathcal{M}_{\sigma} \text{ and } \int f d\mu = 0 \right\}.$$

We know f is a locally constant function and may be regarded as a function on $W_{A_0}^{(N)}$. To avoid too many subscripts, we shall write $B = A_0$. As in section 1, we write

$$B_f(\xi + it)(\mathbf{x}, \mathbf{y}) = B_N(\mathbf{x}, \mathbf{y})e^{(\xi + it)f(\mathbf{x})},$$
11

where $\mathbf{x} = (x_0, x_1, \dots, x_{N-1}), \mathbf{y} = (y_0, y_1, \dots, y_{N-1}) \in W_B^{(N)}$. (Note that the argument is now $\xi + it$.) The matrices $A_f(\xi + it)$ are defined similarly and have the same non-zero spectrum as $B_f(\xi + it)$. In particular, $B_f(\xi)$ has a simple maximal eigenvalue equal to $e^{P(\xi f)} = e^{\mathfrak{p}(\xi) - \xi} = e^{\mathfrak{h}(1)}$. For small values of |t|, this eigenvalue persists and $B_f(\xi + it)$ has a simple eigenvalue $\beta(t)$, depending analytically on t, with $\beta(0) = e^{\mathfrak{h}(1)}$.

A simple calculation shows that

$$\#\{x \in F : |x| = n\} = \sum_{\mathbf{x} \in W_A^{(N)}} \sum_{a \in \mathcal{A} \cup \mathcal{A}^{-1}} B^n(\mathbf{x}, \mathbf{a}),$$
(4.1)

where $\mathbf{a} = (a, 0, \dots, 0)$.

Lemma 4.1.

$$\#\{x \in F : |\phi(x)| = |x| = n\} = \sum_{|x|=n} \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{(\xi+it)(|\phi(x)|-|x|)} dt$$
$$= \sum_{\mathbf{x} \in W_A^{(N)}} \sum_{a \in \mathcal{A} \cup \mathcal{A}^{-1}} \frac{1}{2\pi} \int_{-\pi}^{\pi} B_f(\xi+it)(\mathbf{x}, \mathbf{a}) dt.$$

Proof. By orthogonality,

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} e^{it(|\phi(x)| - |x|)} dt = \begin{cases} 1 & \text{if } |\phi(x)| = |x| \\ 0 & \text{otherwise.} \end{cases}$$

In the former case, the factor $e^{\xi(|\phi(x)|-|x|)} = 1$, so the first equality holds. The second follows from Lemma 2.3 and (4.1). \Box

This may be handled as in [22, pp.899-900] (where the roles of A and B are switched) to show the following.

Proposition 4.1. There exists an integer $d \ge 1$ and a real number C > 0 such that

$$\#\{x \in F : |\phi(x)| = |x| = dn\} \sim C \frac{e^{dn\mathfrak{h}(1)}}{\sqrt{n}}, \text{ as } n \to +\infty.$$

Corollary.

$$\operatorname{Curl}(\phi) \ge \frac{e^{\mathfrak{h}(1)}}{2k-1}.$$

Proof. Since

$$\#\{x \in F : |\phi(x)| = |x| = dn\} \le \#\{x \in F : |x| \le dn, |\phi(x)| \le dn\},\$$

this follows from Proposition 4.1 and the definition of $\operatorname{Curl}(\phi)$.

5. The Formula for $\text{Curl}(\phi)$

We now establish our formula for $\operatorname{Curl}(\phi)$ by obtaining an upper bound. It is clear that, for each $n \ge 1$ and $0 \le p \le 1$,

$$\#\{x \in F : |x| \le n, |\phi(x)| \le n\} \le \#\{x \in F : (1-p)|x| + p|\phi(x) \le n\},\$$

 \mathbf{SO}

$$\operatorname{Curl}(\phi) \le \frac{1}{2k - 1} \inf_{0 \le p \le 1} \left(\limsup_{n \to +\infty} (\#\{x \in F : (1 - p)|x| + p|\phi(x)| \le n\})^{1/n} \right).$$
(5.1)

We shall show that there exists a value of p for which the above lim sup is equal to $\mathfrak{h}(1)$. Combining this with the corollary to Proposition 4.1 will give the desired formula.

For $0 \le p \le 1$, write

$$\alpha(p) = \limsup_{n \to +\infty} \frac{1}{n} \# \{ x \in F : (1-p)|x| + p|\phi(x)| \le n \}.$$

Then $\alpha(p)$ is the abscissa of convergence of the Dirichlet series

$$\sum_{x \in F} e^{-t((1-p)|x|+p|\phi(x)|)}.$$

To analyse this series, define locally constant functions $r_p: \Sigma_0^+ \to \mathbb{R}$ by $r_p = (1-p) + pr$ and introduce matrices

$$B_p(t) := B_{r_p}(t) = B_N(\mathbf{x}, \mathbf{y})e^{tr_p(\mathbf{x})}.$$

Then

$$\sum_{x \in F} e^{-t((1-p)|x|+p|\phi(x)|)} = \sum_{n=0}^{\infty} \sum_{\mathbf{x} \in W_A^{(N)}} \sum_{a \in \mathcal{A} \cup \mathcal{A}^{-1}} B_p^n(-t)(\mathbf{x}, \mathbf{a}),$$

so $\alpha(p)$ is the value of t for which $B_p(-t)$ has spectral radius equal to one. Thus, $\alpha(p)$ is determined by the equation

$$P(-\alpha(p)r_p) = 0,$$

which is equivalent to

$$\sup_{m \in \mathcal{M}_{\sigma}} \left(h(m) - \alpha(p) \int r_p \ dm \right) = 0$$

or

$$\alpha(p)(1-p) = \sup_{m \in \mathcal{M}_{\sigma}} \left(h(m) - \alpha(p)p \int r \ dm \right).$$
(5.2)

The supremum in (5.2) is uniquely attained at $\mu_{-\alpha(p)pr}$, the equilibrium state of $-\alpha(p)pr$.

Lemma 5.1. There exists $0 < p^* < 1$ such that

$$\int r \ d\mu_{\alpha(p^*)p^*r} = 1.$$

Proof. First note that $R(p) := \int r d\mu_{\alpha(p)pr}$ depends continuously on p. We shall show that R(0) > 1 and R(1) < 1; hence, by the Intermediate Value Theorem, there will be a value p^* with $0 < p^* < 1$ and $R(p^*) = 1$.

The first inequality is straightforward since

$$R(0) = \int r \ d\mu_0 = \lambda(\phi) > 1.$$

Since $|\phi(x)| = |x|_{\phi^{-1}(\mathcal{A})}$, one has $\alpha(1) = \log(2k - 1) = h(\sigma)$. On the other hand, by equation (1.2),

$$\alpha(1) = \frac{h(\mu_{-\alpha(1)r})}{\int r d\mu_{-\alpha(1)r}} = \frac{h(\mu_{-h(\sigma)r})}{R(1)}.$$

Since r is not cohomologous to a constant, $\mu_{-h(\sigma)r} \neq \mu_0$, so $h(\mu_{-h(\sigma)r}) < h(\sigma)$. Consequently, R(1) < 1. \Box

Consider (5.2) for the value p^* . Since the supremum is attained at $\mu_{-\alpha(p^*)p^*r}$ and $\int r d\mu_{-\alpha(p^*)p^*r} = 1$, we may rewrite (5.2) as

$$\alpha(p^*)(1-p^*) = \sup\left\{h(m) - \alpha(p^*)p^* \int r \ dm : \ m \in \mathcal{M}_{\sigma}, \ \int r \ dm = 1\right\}$$
$$= \sup\left\{h(m) : \ m \in \mathcal{M}_{\sigma}, \ \int r \ dm = 1\right\} - \alpha(p^*)p^*$$
$$= \mathfrak{h}(1) - \alpha(p^*)p^*.$$

The terms $-\alpha(p^*)p^*$ cancel on each side to give

$$\alpha(p^*) = \mathfrak{h}(1).$$

Substituting this in inequality (5.1) gives

$$\operatorname{Curl}(\phi) \le \frac{e^{\mathfrak{h}(1)}}{2k-1}.$$

Combining this with the corollary to Proposition 4.1 gives the following theorem. **Theorem 3.** If ϕ is not simple then

$$\operatorname{Curl}(\phi) = \frac{e^{\mathfrak{h}(1)}}{2k-1}.$$

6. A MANHATTAN CURVE

In this final section, we draw a parallel between the functions introduced in this paper and Burger's "Manhattan Curve", associated to a pair of hyperbolic Riemann surfaces [3].

We recall Burger's definition. Let Σ_1 and Σ_2 be two compact hyperbolic Riemann surfaces, which are assumed to be homeomorphic, and let $\psi : \Sigma_1 \to \Sigma_2$ be a homeomorphism between them. In particular, ψ allow us to identify free homotopy classes on the surfaces. For a free homotopy class γ , we write $l_1(\gamma)$ and $l_2(\gamma)$, respectively, for the lengths of the corresponding closed geodesics on the two surfaces.

The Manhattan curve $\mathfrak{M}(\Sigma_1, \Sigma_2)$ is defined to be the boundary of the convex set

$$\left\{ (a,b) \in \mathbb{R}^2 : \sum_{\gamma} e^{-al_1(\gamma) - bl_2(\gamma)} < +\infty \right\}.$$

This was studied in [3] and [21], where the following results were proved.

Proposition 6.1 [3],[21].

- (i) $\mathfrak{M}(\Sigma_1, \Sigma_2)$ is a straight line if and only if Σ_1 and Σ_2 are isometric.
- (ii) $\mathfrak{M}(\Sigma_1, \Sigma_2)$ is real analytic.
- (iii) $\mathfrak{M}(\Sigma_1, \Sigma_2)$ has asymptotes whose normals have slopes equal to the maximum and minimum geodesic stretch between Σ_1 and Σ_2 .
- (iv) $\mathfrak{M}(\Sigma_1, \Sigma_2)$ passes through (1, 0), where its normal has slope equal to the intersection $i(\Sigma_1, \Sigma_2)$. (It also passes through (0, 1), where its normal has slope equal to $1/i(\Sigma_2, \Sigma_1)$.
- (v) There is a unique point $(a, b) \in \mathfrak{M}(\Sigma_1, \Sigma_2)$ where the normal has slope 1 and a + b is equal to the correlation number of Σ_1 and Σ_2 .

See [1],[3] for the definitions of max and min geodesic stretch and intersection. The correlation number of Σ_1 and Σ_2 is defined to be the exponential growth rate of

$$#\{\gamma: l_1(\gamma), l_2(\gamma) \in (T, T+\epsilon)\},\$$

for fixed $\epsilon > 0$, as $T \to +\infty$ [20].

In our setting, let us define a Manhattan curve \mathfrak{M}_{ϕ} , associated to ϕ , to be the boundary of the set

$$\left\{ (a,b) \in \mathbb{R}^2 : \sum_{w \in \mathcal{C}(F)} e^{-a|w| - b|\phi(w)|} < +\infty \right\}.$$

By writing this in terms of periodic points for the shift map, this may be described as the set

$$\{(a,b) \in \mathbb{R}^2 : P(-a-br) = 0\}$$

or, equivalently,

$$\{(a,b)\in\mathbb{R}^2:\,\mathfrak{p}(-b)=a\}.$$

Let us define q(s) implicitly by

$$\mathfrak{p}(-\mathfrak{q}(s)) = s; \tag{6.1}$$

then \mathfrak{M}_{ϕ} is the graph of \mathfrak{q} . Since $\mathfrak{p}'(-t) = -\int r d\mu_{-tr} \neq 0$, the Implicit Function Theorem gives that \mathfrak{q} is real analytic. (This parallels the analysis of [21].)

Let us examine the slope of the normal at a point $(a, b) = (s, \mathfrak{q}(s))$ on \mathfrak{M}_{ϕ} . At this point, the normal has slope $-1/\mathfrak{q}'(s)$. Now, differentiating (6.1),

$$1 = \frac{d}{ds}\mathfrak{p}(-\mathfrak{q}(s)) = \left(-\int r \ d\mu_{-\mathfrak{q}(s)r}\right)\mathfrak{q}'(s),$$

so the normal to \mathfrak{M}_{ϕ} at $(s, \mathfrak{q}(s))$ has slope

$$\frac{-1}{\mathfrak{q}'(s)} = \int r \ d\mu_{-\mathfrak{q}(s)r}.$$

Therefore the set of normals to \mathfrak{M}_{ϕ} is equal to

$$\left\{\int r \ d\mu_t : t \in \mathbb{R}\right\} = \operatorname{int}(I_r) = \operatorname{int}(\overline{\mathcal{D}_{\phi}})$$

and it is easy to recover the following statements.

Theorem 4.

- (i) \mathfrak{M}_{ϕ} is a straight line if and only if ϕ is simple.
- (ii) \mathfrak{M}_{ϕ} is real analytic.
- (iii) \mathfrak{M}_{ϕ} has asymptotes whose normals have slopes equal to the max \mathcal{D}_{ϕ} and min \mathcal{D}_{ϕ} .
- (iv) \mathfrak{M}_{ϕ} passes through $(\log(2k-1), 0)$, where its normal has slope equal to the generic stretch $\lambda(\phi)$
- (v) There is a unique point $(a, b) \in \mathfrak{M}_{\phi}$ where the normal has slope 1 and $a + b = \mathfrak{h}(1)$.

Proof. The only statement which requires proof is (v). If the normal has slope 1 at $(a, b) = (s, \mathfrak{q}(s))$ then

$$\int r \ d\mu_{-\mathfrak{q}(s)r} = 1,$$

and $-\mathfrak{q}(s) = \xi$, where

$$\mathfrak{h}(1) = \mathfrak{p}(\xi) - \xi = \mathfrak{p}(-\mathfrak{q}(s)) + \mathfrak{q}(s) = s + \mathfrak{q}(s) = a + b. \quad \Box$$

Remark. Kaimanovich, Kapovich and Schupp have shown how to identify the generic stretching factor $\lambda(\phi)$ as an intersection of currents [7], [9].

References

- F. Bonahon, The geometry of Teichmüller space via geodesic currents, Invent. math. 92 (1988), 139-162.
- 2. M. Bourdon, Actions quasi-convexes d'un groupe hyperbolique, flot géodésique, PhD thesis (Orsay) 1993.
- M. Burger, Intersection, the Manhattan curve, and the Patterson-Sullivan theory in rank 2, Int. Math. Res. Notices 7 (1993), 217-225.

- 4. M. Eichler, Grenzkreisgruppen und kettenbruchartige Algorithmen, Acta Arith. 11 (1965), 169-180.
- 5. E. Ghys and P. de la Harpe, Sur les groupes hyperboliques d'après Mikhael Gromov, Birkhauser., Boston, 1990.
- 6. M. Gromov, Hyperbolic groups, Essys in group theory, M.S.R.I. publication vol. 8, MSRI, Berkeley.
- V. Kaimanovich, I. Kapovich and P. Schupp, The subadditive ergodic theorem and generic stretching factors for free group automorphisms, Israel J. Math. 157 (2007), 1-46.
- 8. I. Kapovich, The frequency space of a free group, Internat. J. Algebra Comput. 15 (2005), 939-969.
- 9. I. Kapovich, *Currents on free groups*, Topological and asymptotic aspects of group theory, Contemp. Math., 394, Amer. Math. Soc., Providence, RI, 2006, pp. 149-176.
- 10. S. Lalley, Renewal theorems in symbolic dynamics, with applications to geodesic flows, noneuclidean tessellations and their fractal limits, Acta Math. 163 (1989), 1-55.
- B. Marcus and S. Tuncel, Entropy at a weight-per-symbol and embeddings of Markov chains, Invent. math. 102 (1990), 235-266.
- A. G. Myasnikov and V. Shpilrain, Some metric properties of automorphisms of groups, J. Algebra 304 (2006), 782-792.
- W. Parry and M. Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque 187-188 (1990), 1-268.
- 14. Y. Pesin, Dimension theory in dynamical systems. Contemporary views and applications, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1997.
- 15. M. Pollicott and R. Sharp, Rates of recurrence for \mathbb{Z}^q and \mathbb{R}^q extensions of subshifts of finite type, J. London Math. Soc. **49** (1994), 401-416.
- M. Pollicott and R. Sharp, Poincaré series and zeta functions for surface group actions on ℝ-trees, Math. Zeit. 226 (1997), 335-347.
- M. Pollicott and R. Sharp, Comparison theorems and orbit counting in hyperbolic geometry, Trans. Amer. Math. Soc. 350 (1998), 473-499.
- M. Pollicott and R. Sharp, *Poincaré series and comparison theorems for variable negative curvature*, Topology, ergodic theory, real algebraic geometry, Amer. Math. Soc. Transl. Ser. 2, 202, Amer. Math. Soc., Providence, RI, 2001, pp. 229-240.
- 19. R. Rockafeller, Convex Analysis, Princeton University Press, Princeton, New Jersey, 1970.
- R. Schwartz and R. Sharp, The correlation of length spectra of two hyperbolic surfaces, Comm. Math. Phys. 153 (1993), 423-430.
- R. Sharp, The Manhattan curve and the correlation of length spectra on hyperbolic surfaces, Math. Zeit. 228 (1998), 745-750.
- 22. R. Sharp, Local limit theorems for free groups, Math. Ann. **321** (2001), 889-904.
- 23. P. Walters, An introduction to ergodic theory, Springer-Verlag, Berlin, 1982.

School of Mathematics, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.