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Abstract. Recently, several numerical invariants have been introduced to characterize the
distortion induced by automorphisms of a free group. We unify these by interpreting them in

terms of an entropy function of a kind familiar in thermodynamic ergodic theory. We draw an

analogy between this approach and the Manhattan curve associated to a pair of hyperbolic
surfaces.

0. Introduction

Let F be a free group on k ≥ 2 generators and let A = {a1, . . . , ak} be a free basis. We
define the word length | · | = | · |A (with respect to A) by |1| = 0 and, for x 6= 1,

|x| = min{n : x = x0x1 · · ·xn−1, xi ∈ A ∪A−1},

where A−1 = {a−11 , . . . , a−1k }. Recall that any x 6= 1 may be written uniquely as

x = x0x1 · · ·xn−1,

where n = |x|, xi ∈ A ∪ A−1, i = 0, . . . , n− 1, and xi+1 6= x−1i , i = 0, . . . , n− 2. We call
such an expression a reduced word.

Let Aut(F ) denote the group of automorphisms of F . An automorphism φ is said to
be inner if it is a conjugation, i.e., φ(x) = y−1xy, for some y ∈ F . If an automorphism φ
acts by permuting A ∪ A−1 then we call φ a permutation automorphism. Following the
notation of [7], [12], we say that φ is simple if it is the product of an inner automorphism
and a permutation automorphism.

Let ∂F denote the boundary of F in the sense of the theory of hyperbolic groups [5],
[6]. This is a Cantor set and may be naturally identified with the one-sided shift space

Σ+ = {(xn)∞n=0 ∈ (A ∪A−1)Z
+

: xn+1 6= x−1n , n ≥ 0}.

There is a dynamical systems associated to this space, namely the shift map σ : Σ+ → Σ+,
and its ergodic theory will play a key role in this paper.
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Define a σ-invariant Borel probability measure µ0 on Σ+ by

µ0([x0, x1, . . . , xn−1]) =
1

2k(2k − 1)n−1
,

where [x0, x1, . . . , xn−1] = {(yn)∞n=0 ∈ Σ+ : yi = xi, i = 0, . . . , n − 1}. This measure
allows us to describe generic behaviour of sequences in F , with respect to the basis A.

In this paper, we shall be interested in various measures of the distortion of F under an
automorphism φ : F → F . The first of these quantifies the generic distortion or stretching.
Following Kaimanovich, Kapovich and Schupp [7], define the generic stretching factor λ(φ)
(with respect to A) by

λ(φ) = lim
n→+∞

∫
|φ(x0x1 · · ·xn−1)|

n
dµ0((xn)∞n=0)

= lim
n→+∞

|φ(x0x1 · · ·xn−1)|
n

for µ0-a.e. (xn)∞n=0.

Proposition 1 [7]. For any φ ∈ Aut(F ), λ(φ) ≥ 1. Furthermore, λ(φ) = 1 if and only if
φ is simple.

We now make a further definition, which measures the proportion of elements which are
not stretched by a factor greater than one. Following Myasnikov and Shpilrain [12], define
the curl of φ, Curl(φ), by

Curl(φ) = lim sup
n→+∞

(
#{x ∈ F : |x| ≤ n, |φ(x)| ≤ n}

#{x ∈ F : |x| ≤ n}

)1/n

,

i.e., the growth rate of the proportion of points in the balls {x ∈ F : |x| ≤ n} which remain
there under φ.

Proposition 2 [12]. For any φ ∈ Aut(F ), 0 < Curl(φ) ≤ 1. Furthermore, Curl(φ) = 1 if
and only if φ is simple.

Finally, we define a set introduced by Kapovich, which captures all possible distortions
induced by φ. Let C(F ) denote the set of all non-trivial conjugacy classes in F and note
that, for w ∈ C(F ), φ(w) ∈ C(F ) is well-defined. Following Kapovich [8], we define the
conjugacy distortion spectrum of φ to be the set

Dφ =

{
|φ(w)|
|w|

: w ∈ C(F )

}
,

where |w| = min{|x| : x ∈ w}, and let Dφ denote the closure of Dφ. The structure of Dφ
was studied by Kapovich, who showed the following.

Proposition 3 [8]. Dφ is a closed interval with rational endpoints and Dφ = Dφ ∩ Q.

If φ is simple then Dφ = {1}. If φ is not simple then Dφ has non-empty interior which
contains 1 and λ(φ).

These quantities may be related by the following theorem.
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Theorem. Suppose that φ is not simple. Then there exists a strictly concave analytic
function h : int(Dφ)→ R+ such that, for each ρ ∈ int(Dφ), 0 < h(ρ) ≤ log(2k − 1) and, if
ρ is rational, then

lim sup
n→+∞

1

n
log #

{
w ∈ C(F ) : |w| = n,

|φ(w)|
|w|

= ρ

}
= h(ρ). (0.1)

Furthermore, h(ρ) = log(2k − 1) if and only if ρ = λ(φ) and Curl(φ) = eh(1)/(2k − 1).

This will be proved as Theorems 1, 2 and 3 below.
We shall now outline the contents of the paper. In section 1, we discuss the thermo-

dynamic formalism associated to a class of dynamical systems called subshifts of finite.
In section 2, we discuss the subshift associated to a free group, the relationship between
periodic orbits and conjugacy classes and how to encode the quantity |φ(·)| in terms of a
function on this subshift. We also introduce the function h and relate it to the generic
stretch. In section 3, we study the conjugacy distortion spectrum via the periodic points
of the shift map, proving equation (0.1). In sections 4 and 5, we show how to obtain the
relationship between Curl(φ) and h(1). In the final section, we recast our results in terms
of a “Manhattan curve”, analogous to that associated by Burger to a pair of hyperbolic
surfaces.

I am grateful to Ilya Kapovich for some helpful comments.

1. Thermodynamic Formalism

In this section, we shall describe the ergodic theory associated to the shift map σ :
Σ+ → Σ+. The theory we describe goes under the name of thermodynamic formalism;
standard references are [13], [14, Appendix II], [23].

We begin with the definition of a subshift of finite type. Let A be finite matrix, indexed
by a set I, with entries zero and one. We define the shift space

Σ+
A = {(xn)∞n=0 ∈ IZ

+

: A(xn, xn+1) = 1 ∀n ∈ Z+}

and the (one-sided) subshift of finite type σ : Σ+
A → Σ+

A by (σx)n = xn+1. We give I the

discrete topology, IZ+

the product topology and Σ+
A the subspace topology. A compatible

metric is given by

d((xn)∞n=0, (yn)∞n=0) =

∞∑
n=0

1− δxnyn
2n

,

where δij is the Kronecker symbol.
We say that A is irreducible if, for each (i, j) ∈ I2, there exists n(i, j) ≥ 1 such

that An(i,j)(i, j) > 0 and aperiodic if there exists n ≥ 1 such that, for each (i, j) ∈ I2,
An(i, j) > 0. The latter statement is equivalent to σ : Σ+

A → Σ+
A being topologically

mixing (i.e. that there exists n ≥ 1 such that for any two non-empty open sets U, V ⊂ Σ+
A,

σ−m(U) ∩ V 6= ∅, for all m ≥ n).
If A is aperiodic then it has a positive simple eigenvalue β which is strictly maximal in

modulus (i.e. every other eigenvalue has modulus strictly less that β) and the topological
entropy h(σ) of σ is equal to log β.
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If an ordered n-tuple (x0, x1, . . . , xn−1) ∈ In is such that A(xm, xm+1) = 1, m =
0, 1, . . . , n−2 then we say that (x0, x1, . . . , xn−1) is an allowed word of length n in Σ+

A; the

set of these is denoted W
(n)
A . If σnx = x then we say that {x, σx, . . . , σn−1x} is a periodic

orbit for σ. Clearly any such an x is obtained by repeating a word (x0, x1, . . . , xn−1) ∈
W

(n)
A with the additional property that A(xn−1, x0) = 1. Note that we regard the periodic

orbits {x, σx, . . . , σn−1x}, {x, σx, . . . , σn−1x}, x, . . . , σn−1x, etc., as distinct objects (even
though they are identical as point sets). If σnx = x but σmx 6= x for 0 < m < n then we
say that {x, σx, . . . , σn−1x} is a prime periodic orbit.

It is sometimes convenient to replace σ : Σ+
A → Σ+

A by a shift of finite type on a new space

Σ+
AN

, whose symbols are W
(N)
A and for which x = (x0, x1, . . . , xN−1) may be followed by

y = (y0, y1, . . . , yN−1) if and only if yn = xn+1, n = 0, 1, . . . , N − 2. (Since x ∈W (N)
A , the

latter condition automatically implies that A(xN−1, yN−1) = 1.) We continue to denote

the shift map by σ : Σ+
AN
→ Σ+

AN
. More formally, define a W

(N)
A ×W (N)

A zero-one matrix
AN by

AN (x,y) =

{
1 if yn = xn+1, n = 0, . . . , N − 2

0 otherwise.

Then
Σ+
AN

= {(xn)∞n=0 ∈ (W
(n)
A )Z

+

: AN (xn,xn+1) ∀n ∈ Z+}.

Note that there is a natural period preserving bijection between periodic points for σ :
Σ+
A → Σ+

A and σ : Σ+
AN
→ Σ+

AN
.

Let M denote the space of all Borel probability measures on Σ+
A, equipped with the

weak∗ topology, and let Mσ denote the subspace consisting of σ-invariant probability
measures. For µ ∈ Mσ, write h(µ) for the measure theoretic entropy of µ. There is a
unique measure µ0 ∈Mσ, called the measure of maximal entropy, for which

h(µ0) = sup
µ∈Mσ

h(µ)

and this value coincides with the topological entropy h(σ).
For a continuous function f : Σ+

A → R, we define the pressure P (f) of f by the formula

P (f) = sup
µ∈Mσ

(
h(µ) +

∫
f dµ

)
(1.1)

and call any measure for which the supremum is attained an equilibrium state for f . If f
is Hölder continuous (i.e. there exists α > 0 and C(f, α) ≥ 0 such that |f(x) − f(y)| ≤
C(f, α)d(x, y)α, for all x, y ∈ Σ+

A), then f has a unique equilibrium state which we denote
by µf . The latter is fully supported and h(µf ) > 0. The equilibrium state of the zero
function is the measure of maximal entropy, so this is consistent with our earlier notation.
The pressure of f also has the following characterization in terms of periodic points:

P (f) = lim
n→+∞

1

n
log

∑
σnx=x

ef
n(x).
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We say that two functions f, g : Σ+
A → R are (continuously) cohomologous if there

is a continuous function u : Σ+
A → R such that f = g + u ◦ σ − u. The cohomology

class of a Hölder continuous function is determined by its values around periodic orbits.
More precisely, writing fn = f + f ◦ σ + · · · + f ◦ σn−1, two Hölder continuous functions
f, g : Σ+

A → R are cohomologous if and only if fn(x) = gn(x) whenever σnx = x.
If f and g are cohomologous then P (f) = P (g) and if c is a real number then P (f+c) =

P (f) + c. Now suppose that f is Hölder continuous and, for t ∈ R, consider the function
t 7→ P (tf) This function is convex and real analytic and

P ′(tf) =

∫
f dµtf .

Furthermore, if f is not cohomologous to a constant then P (tf) is strictly convex and
P ′′(tf) > 0 everywhere. (If f is cohomologous to a constant c then P (tf) = h(σ) + tc.)

Suppose that a Hölder continuous function r : Σ+
A → R is cohomologous to a strictly

positive function. If δ > 0 satisfies P (−δr) = 0 then, since µ−δr attains the supremum in
(1.1), we have the relation

δ =
h(µ−δr)∫
rdµ−δr

. (1.2)

For any continuous function f : Σ+
A → R, we have

If :=

{∫
f dµ : µ ∈Mσ

}
=

{
fn(x)

n
: σnx = x

}
and If is a closed interval. If f is Hölder continuous then

int(If ) =

{∫
f dµtf : t ∈ R

}
.

In particular, if 0 ∈ int(If ) then there exists a unique ξ ∈ R such that
∫
fdµξf = 0.

Furthermore,

P (ξf) = h(µξf ) = sup

{
h(µ) : µ ∈Mσ and

∫
f dµ = 0

}
and µξf is the only measure for which the supremum is realized.

We say that a function f : Σ+
A → R is locally constant if there exists N ≥ 0 such that if

x = (xn)∞n=0, y = (xn)∞n=0 have xn = yn for all n ≥ N then f(x) = f(y). In other words, f

may be regarded as a function on W
(N)
A . Clearly, if f is locally constant then f is Hölder

continuous (for any choice of exponent α > 0).
We may also regard such a locally constant function as a function f : Σ+

AN
→ R, which

depend on only one co-ordinate. As we noted above, there is a natural correspondence
between periodic points for σ : Σ+

A → Σ+
A and σ : Σ+

AN
→ Σ+

AN
. One easily sees that the

value of fn(x) is the same for corresponding periodic orbits for the two shift maps.
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If f is locally constant then P (tf) may be given in terms of a matrix. For t ∈ R, define

a W
(N)
A ×W (N)

A matrix Af (t) by

Af (t)(x,y) = AN (x,y)etf(x),

where x = (x0, x1, . . . , xN−1),y = (y0, y1, . . . , yN−1) ∈ W
(N)
A . One can easily see that

Af (t) is non-negative and aperiodic and thus has a simple positive eigenvalue which is
strictly greater in modulus that all the other eigenvalues of Af (t); in fact, this eigenvalue

is equal to eP (tf).

2. Shifts and Free Groups

In this section we shall consider the shift of finite type σ : Σ+ → Σ+ associated to
the free group F and free basis A = {a1, . . . , ak}. Setting I = A ∪ A−1, it is clear that
Σ+ = Σ+

A, where A(i, j) = 1 unless j is the inverse of i, and that A is aperiodic. We may
also think of Σ+ as the space of infinite reduced words in A ∪ A−1 and, for a free group,

this may be identified with the Gromov boundary of F . Furthermore, W (n) = W
(n)
A may

be identified with the set {x ∈ F : |x| = n}.
A simple calculation shows that the topological entropy of σ : Σ+ → Σ+ is h(σ) =

log(2k − 1) and the measure of maximal entropy is the measure µ0 defined in the intro-
duction.

Recall that C(F ) denotes the set of non-trivial conjugacy classes in F . A conjugacy class
w ∈ C(F ) contains a cyclically reduced word in A∪A−1, i.e., a reduced word x0x1 · · ·xn−1
such that xn−1 6= x−10 . The only other cyclically reduced elements of w are obtained
from this by cyclic permutation (and also have word length n) and non-cyclically reduced
elements of w have word length greater than n. Therefore it is natural to define the length
of w (with respect to A) to be

|w| := n = min
x∈w
|x|.

It is immediate from the definition that, for m ≥ 1,

|wm| = m|w|,

where wm is the conjugacy class {xm : x ∈ w}. Furthermore, it is clear from the preceding
discussion that there is a natural bijection between C(F ) and the set of periodic orbits of
σ : Σ+ → Σ+ (and between primitive conjugacy classes and prime periodic orbits), such
that, if x, σx, . . . , σn−1x (σnx = x) corresponds to w ∈ C(F ) then |w| = n.

In order to represent elements of F as elements of a shift space, it is convenient to
augment Σ+ by adding an extra “dummy” symbol 0. Introduce a square matrix A0, with
rows indexed by A ∪A−1 ∪ {0}, such that

A0(i, j) =


A(i, j) if i, j ∈ A ∪A−1

1 if i ∈ A ∪A−1 ∪ {0} and j = 0

0 if i = 0 and j ∈ A ∪A−1.
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We then define Σ+
0 = Σ+

A0
. In other words, an element of Σ+

0 is either an element of Σ+

or an element of W (n), for some n ≥ 0, followed by an infinite string of 0s, which we shall
denote by 0̇. (Of course, this procedure does not introduce any extra periodic points.)

Let φ : F → F be an automorphism. We wish to encode the quantity |φ(·)| in terms of
a function r : Σ+ → R. The following lemma is easily seen.

Lemma 2.1. Let S be any finite subset of F . Then there exists an integer M ≥ 1 such
that for any reduced word y0y1 · · · ym−1, m ≥M , and any s ∈ S

|sy0y1 · · · ym−1| −m = |sy0y1 · · · yM−1| −M.

Proof. Let M = max{|s| : s ∈ S} and suppose m ≥ M . Then sy0y1 · · · yM−1 may be
written as a reduced word s′ such that s′yM · · · ym−1 is also a reduced word and, in
particular, |(sy0y1 · · · yM−1)yM · · · ym−1| = |sy0y1 · · · yM−1|+m−M . �

Noting that there exists C > 1 such that, for all x ∈ F ,

C−1|x| ≤ |φ(x)| ≤ C|x|,

the following may be deduced from Lemma 2.1. (It may be compared with Proposition 4
of [16].)

Lemma 2.2. There exists an integer N ≥ 1 such that if x0x1 · · ·xn−1 is a reduced word
and n ≥ N then

|φ(x0x1 · · ·xn−1)| − |φ(x1 · · ·xn−1)| = |φ(x0x1 · · ·xN−1)| − |φ(x1 · · ·xN−1)|.

Proof. We shall apply Lemma 2.1. Let S = {φ(a1)±1, . . . , φ(ak)±1} and, as before, M =
max{|s| : s ∈ S}. For each p ≥ 1, we have |φ(x1 · · ·xp)| ≥ C−1p. Choose N = [CM ] + 1;
then n ≥ N implies |φ(x1 · · ·xn−1)| ≥ C−1[CM ] ≥M , from which the result follows. �

We now introduce a function on Σ+
0 which the values |φ(x)|, x ∈ F , may be recovered.

Define r : Σ+
0 → R by

r((xn)∞n=0) = |φ(x0 · · ·xN−1)| − |φ(x1 · · ·xN−1)|.

The following result is immediate from the definition.

Lemma 2.3. Suppose that x0x1 · · ·xn−1 is reduced word. Then

|φ(x0x1 · · ·xn−1)| = rn(x0, x1, · · · , xn−1, 0̇).

Remark. This construction has been used by Lalley [10], Bourdon [2] and Pollicott and
Sharp [17],[18]. Apparently, it goes back to Eichler [4].

Clearly, r is a locally constant function. To make this explicit, for x = (x0, x1, . . . , xN−1)
∈W (N), we also write

r(x) = |φ(x0 · · ·xN−1)| − |φ(x1 · · ·xN−1)|
7



and, as above, define

Ar(t)(x,y) = AN (x,y)etr(x).

Define a function p : R→ R by p(t) = P (tr) and recall that ep(t) may be characterized
as the (simple) maximal eigenvalue of Ar(t). We know that p(t) is a convex real-analytic
function of t. We define an associated concave function h : int(Ir)→ R by

h(ρ) = sup

{
h(µ) : µ ∈Mσ and

∫
r dµ = ρ

}
.

Recalling that int(Ir) = {p′(t) : t ∈ R}, we have h(ρ) = p(ξ)−ξρ, where ξ ∈ R is chosen to
be the unique value with p′(ξ) = ρ and, in particular, h is real-analytic. (In the language
of convex analysis, −h is the Legendre transform of p [19].)

The next result relates the generic stretch λ(φ) to the functions p(t) and h(ρ).

Theorem 1. Suppose that φ is not simple.

(i)

λ(φ) =

∫
r dµ0 = p′(0).

(ii) For ρ ∈ int(Ir), 0 < h(ρ) ≤ 2k − 1 and h(ρ) = 2k − 1 if and only if ρ = λ(φ).

Proof.

(i) For x = (xn)∞n=0 ∈ Σ+,

rn(x) = rn(x0, x1, · · · , xn−1, 0̇) +O(1).

Thus, by Lemma 2.3,

lim
n→+∞

rn(x)

n
= lim
n→+∞

|φ(x0x1 · · ·xn−1)|
n

(provided the limit exists). By the ergodic theorem, the Left Hand Side exists µ0-a.e. and
the limit is equal to

∫
r dµ0.

(ii) It is clear that h(ρ) ≤ 2k − 1. Using the formula h(ρ) = p(ξ) − ξρ and the definition
of p, we see that h(ρ) = h(µξr) > 0. By part (i), we have h(λ(φ)) = 2k − 1 while, for
ρ 6= λ(φ), ξ 6= 0, so h(ρ) < 2k − 1. �

3. Conjugacy Distortion Spectrum

The construction in the preceding section is particularly well suited to studying the
action of φ on conjugacy classes. As shown in the next lemma, the length of the resulting
conjugacy classes is simply obtained by summing r around the corresponding periodic
orbit. Fortunately, there is a well developed theory of periodic orbit sums which we will
then able to use.
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Lemma 3.1. Let σnx = x correspond to the conjugacy class w containing the cyclically
reduced word x0x1 · · ·xn−1. Then

|φ(w)| = rn(x).

Proof. Let x(m) denote the reduced word obtained from the m-fold concatenation of
x0x1 · · ·xn−1. Since r is locally constant, there exists N ≥ 1 such that

|rmn(x)− rmn(x(m), 0, 0, . . . )| ≤ 2N‖r‖∞.

Noting that rmn(x) = mrn(x), the above estimate gives us that

rn(x) = lim
m→+∞

1

m
rmn(x(m), 0, 0, . . . ) = lim

m→+∞

1

m
|φ(x(m))|.

Thus it remains to show that this last quantity is equal to |φ(w)|. We shall do this by
proving inequalities in both directions.

First observe that x(m) is a cyclically reduced word in wm. Therefore

m|φ(w)| = |φ(w)m| = |φ(wm)| ≤ |φ(x(m))|

and so |φ(w)| ≤ limm→+∞m−1|φ(x(m))|.
Now suppose that v ∈ w. It is clear that

lim
m→+∞

m−1|φ(vm)| = lim
m→+∞

m−1|φ(x(m))|.

On the other hand, since {|φ(vm)|}m≥1 is a subadditive sequence,

lim
m→+∞

m−1|φ(vm)| = inf
m≥1

m−1|φ(vm)|

and so limm→+∞m−1|φ(x(m))| ≤ |φ(v)|. Hence

lim
m→+∞

m−1|φ(vm)| ≤ inf
v∈w
|φ(v)| = |φ(w)|. �

Suppose that w ∈ C(F ). If x, y ∈ w then φ(x), φ(y) are conjugate, so the conjugacy class
φ(w) is well defined. As in the introduction, we define the conjugacy distortion spectrum
of φ to be the set

Dφ =

{
|φ(w)|
|w|

: w ∈ C(F )

}
and let Dφ be the closure of Dφ. The structure of Dφ was studied by Kapovich [8], who
showed the following.
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Proposition 3.1 [8].
(i) Dφ is a closed interval with rational endpoints and Dφ = Dφ ∩ Q. (In other words, if

ρ ∈ Dφ is rational then there exists w ∈ C(F ) such that |φ(w)| = ρ|w|.)
(ii) If φ is not simple then Dφ has non-empty interior which contains 1 and λ(φ).

We shall strengthen Kapovich’s result by showing that the set conjugacy classes with a
given distortion has exponential growth and that the growth rate is given by the function
h.

Theorem 2. Suppose that φ is not simple.
(i) Dφ = Ir.

(ii) If ρ ∈ Dφ is rational then

lim sup
n→+∞

1

n
log #

{
w ∈ C(F ) : |w| = n,

|φ(w)|
|w|

= ρ

}
= h(ρ).

(iii) If ρ ∈ int(Dφ) is rational then there exists an integer d(ρ) ≥ 1 and a constant C(ρ) > 0
such that

#

{
w ∈ C(F ) : |w| = d(r)n,

|φ(w)|
|w|

= ρ

}
∼ C(ρ)

ed(ρ)nh(ρ)√
d(r)n

, as n→ +∞.

Corollary. For each ρ, the set {w ∈ C(F ) : |φ(w)|/|w| = ρ} has zero density in in C(F ),
i.e.,

lim
n→+∞

#{w ∈ C(F ) : |w| = n, |φ(w)|/|w| = ρ}
#{w ∈ C(F ) : |w| = n}

= 0.

We shall prove this theorem by rephrasing it in terms of periodic points for the shift
map σ : Σ+ → Σ+ (or, more precisely, σ : Σ+

AN
→ Σ+

AN
). In view of the correspondence

between C(F ) and periodic points for σ and Lemma 3.1, we have that{
w ∈ C(F ) : |w| = n,

|φ(w)|
|w|

= ρ

}
=

{
x ∈ Fixn :

rn(x)

n
= ρ

}
.

The theorem will follow from the main result of [15], stated in the lemma below, once we
have checked the hypotheses.

Lemma 3.2 [15]. Let A be an aperiodic zero-one matrix. Suppose that f : Σ+
A → Z is a

locally constant function depending on two coordinates, i.e., f(x) = f(x0, x1), satisfying
the following conditions:

(1) there exists ξ ∈ R such that ∫
f dµξf = 0;

(2)
⋃
n≥1{fn(x) : σnx = x} is not contained in any proper subgroup of Z.
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Then there exists an integer d(f) ≥ 1 and a constant C(f) > 0 such that

{x ∈ Fixdn : fdn(x) = 0} ∼ C(f)
ed(f)nh(µξf )√

d(f)n
, as n→ +∞.

Remark. The requirement that f depends on only two coordinates is only a technical
simplification and may be easily removed.

Proof of Theorem 2. Write ρ = p/q in lowest terms. Note that rn(x)/n = ρ if and only
if (qr − p)n(x) = qrn(x) − np = 0. Thus we will apply the above result to the function
fρ = qr − p. We shall show that fρ satisfies conditions (1) and (2).

First observe that Ifρ = qIr − p. We know that p/q ∈ int(Ir), so 0 ∈ int(Ifρ). Hence
condition (1) is satisfied. Furthermore, as Ifρ has interior, fρ is not cohomologous to a
constant (necessarily zero), so

⋃
n≥1{fn(x) : σnx = x} generates a group aZ, where a ≥ 1

is an integer. Replacing fρ by fρ/a, condition (2) is satisfied. This proves part (iii) and
hence part (ii) of Theorem 2. �

Remark. One may read off upper and lower bounds on the number of w ∈ C(F ) with
|w| = n and |φ(w)|/|w| = ρ from the paper [11]. One has

#

{
w ∈ C(F ) : |w| = n,

|φ(w)|
|w|

= ρ

}
≤ (n+ 1)2k(2k−1)

N+1enh(ρ).

The lower bound is more involved. Given ε > 0, there exists δ > 0 and m ∈ N such that,
if d(ρ)|n and n is sufficiently large then

#

{
w ∈ C(F ) : |w| = n,

|φ(w)|
|w|

= ρ

}
≥ δn−men(h(ρ)−ε).

4. Counting Group Elements

Our aim in the next two sections is to relate the number Curl(φ) to the function h. This
is complicated by the fact that Curl(φ) is defined in terms of the action of φ on elements of
F rather than conjugacy classes. Group elements do not have such a nice correspondence
to elements of Σ+ as occurs in the correspondence between conjugacy classes and periodic
orbits for σ : Σ+ → Σ+. However, if we consider the larger shift space Σ+

0 then we may
identify F with a set of pre-images of a point under σ : Σ+

0 → Σ+
0 .

Suppose that φ is not simple. As in the previous section, write f = f1 = r − 1 and
define ξ by

h(µξf ) = h(1) = sup

{
h(µ) : µ ∈Mσ and

∫
fdµ = 0

}
.

We know f is a locally constant function and may be regarded as a function on W
(N)
A0

.
To avoid too many subscripts, we shall write B = A0. As in section 1, we write

Bf (ξ + it)(x,y) = BN (x,y)e(ξ+it)f(x),
11



where x = (x0, x1, . . . , xN−1),y = (y0, y1, . . . , yN−1) ∈ W (N)
B . (Note that the argument

is now ξ + it.) The matrices Af (ξ + it) are defined similarly and have the same non-zero
spectrum as Bf (ξ + it). In particular, Bf (ξ) has a simple maximal eigenvalue equal to

eP (ξf) = ep(ξ)−ξ = eh(1). For small values of |t|, this eigenvalue persists and Bf (ξ+ it) has

a simple eigenvalue β(t), depending analytically on t, with β(0) = eh(1).
A simple calculation shows that

#{x ∈ F : |x| = n} =
∑

x∈W (N)
A

∑
a∈A∪A−1

Bn(x,a), (4.1)

where a = (a, 0, . . . , 0).

Lemma 4.1.

#{x ∈ F : |φ(x)| = |x| = n} =
∑
|x|=n

1

2π

∫ π

−π
e(ξ+it)(|φ(x)|−|x|) dt

=
∑

x∈W (N)
A

∑
a∈A∪A−1

1

2π

∫ π

−π
Bf (ξ + it)(x,a) dt.

Proof. By orthogonality,

1

2π

∫ π

−π
eit(|φ(x)|−|x|) dt =

{
1 if |φ(x)| = |x|
0 otherwise.

In the former case, the factor eξ(|φ(x)|−|x|) = 1, so the first equality holds. The second
follows from Lemma 2.3 and (4.1). �

This may be handled as in [22, pp.899-900] (where the roles of A and B are switched)
to show the following.

Proposition 4.1. There exists an integer d ≥ 1 and a real number C > 0 such that

#{x ∈ F : |φ(x)| = |x| = dn} ∼ C e
dnh(1)

√
n

, as n→ +∞.

Corollary.

Curl(φ) ≥ eh(1)

2k − 1
.

Proof. Since

#{x ∈ F : |φ(x)| = |x| = dn} ≤ #{x ∈ F : |x| ≤ dn, |φ(x)| ≤ dn},

this follows from Proposition 4.1 and the definition of Curl(φ). �
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5. The Formula for Curl(φ)

We now establish our formula for Curl(φ) by obtaining an upper bound. It is clear that,
for each n ≥ 1 and 0 ≤ p ≤ 1,

#{x ∈ F : |x| ≤ n, |φ(x)| ≤ n} ≤ #{x ∈ F : (1− p)|x|+ p|φ(x) ≤ n},

so

Curl(φ) ≤ 1

2k − 1
inf

0≤p≤1

(
lim sup
n→+∞

(#{x ∈ F : (1− p)|x|+ p|φ(x)| ≤ n})1/n
)
. (5.1)

We shall show that there exists a value of p for which the above lim sup is equal to h(1).
Combining this with the corollary to Proposition 4.1 will give the desired formula.

For 0 ≤ p ≤ 1, write

α(p) = lim sup
n→+∞

1

n
#{x ∈ F : (1− p)|x|+ p|φ(x)| ≤ n}.

Then α(p) is the abscissa of convergence of the Dirichlet series∑
x∈F

e−t((1−p)|x|+p|φ(x)|).

To analyse this series, define locally constant functions rp : Σ+
0 → R by rp = (1− p) + pr

and introduce matrices

Bp(t) := Brp(t) = BN (x,y)etrp(x).

Then ∑
x∈F

e−t((1−p)|x|+p|φ(x)|) =
∞∑
n=0

∑
x∈W (N)

A

∑
a∈A∪A−1

Bnp (−t)(x,a),

so α(p) is the value of t for which Bp(−t) has spectral radius equal to one. Thus, α(p) is
determined by the equation

P (−α(p)rp) = 0,

which is equivalent to

sup
m∈Mσ

(
h(m)− α(p)

∫
rp dm

)
= 0

or

α(p)(1− p) = sup
m∈Mσ

(
h(m)− α(p)p

∫
r dm

)
. (5.2)

The supremum in (5.2) is uniquely attained at µ−α(p)pr, the equilibrium state of −α(p)pr.
13



Lemma 5.1. There exists 0 < p∗ < 1 such that∫
r dµα(p∗)p∗r = 1.

Proof. First note that R(p) :=
∫
r dµα(p)pr depends continuously on p. We shall show that

R(0) > 1 and R(1) < 1; hence, by the Intermediate Value Theorem, there will be a value
p∗ with 0 < p∗ < 1 and R(p∗) = 1.

The first inequality is straightforward since

R(0) =

∫
r dµ0 = λ(φ) > 1.

Since |φ(x)| = |x|φ−1(A), one has α(1) = log(2k − 1) = h(σ). On the other hand, by
equation (1.2),

α(1) =
h(µ−α(1)r)∫
rdµ−α(1)r

=
h(µ−h(σ)r)

R(1)
.

Since r is not cohomologous to a constant, µ−h(σ)r 6= µ0, so h(µ−h(σ)r) < h(σ). Conse-
quently, R(1) < 1. �

Consider (5.2) for the value p∗. Since the supremum is attained at µ−α(p∗)p∗r and∫
rdµ−α(p∗)p∗r = 1, we may rewrite (5.2) as

α(p∗)(1− p∗) = sup

{
h(m)− α(p∗)p∗

∫
r dm : m ∈Mσ,

∫
r dm = 1

}
= sup

{
h(m) : m ∈Mσ,

∫
r dm = 1

}
− α(p∗)p∗

= h(1)− α(p∗)p∗.

The terms −α(p∗)p∗ cancel on each side to give

α(p∗) = h(1).

Substituting this in inequality (5.1) gives

Curl(φ) ≤ eh(1)

2k − 1
.

Combining this with the corollary to Proposition 4.1 gives the following theorem.

Theorem 3. If φ is not simple then

Curl(φ) =
eh(1)

2k − 1
.
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6. A Manhattan Curve

In this final section, we draw a parallel between the functions introduced in this paper
and Burger’s “Manhattan Curve”, associated to a pair of hyperbolic Riemann surfaces [3].

We recall Burger’s definition. Let Σ1 and Σ2 be two compact hyperbolic Riemann sur-
faces, which are assumed to be homeomorphic, and let ψ : Σ1 → Σ2 be a homeomorphism
between them. In particular, ψ allow us to identify free homotopy classes on the surfaces.
For a free homotopy class γ, we write l1(γ) and l2(γ), respectively, for the lengths of the
corresponding closed geodesics on the two surfaces.

The Manhattan curve M(Σ1,Σ2) is defined to be the boundary of the convex set{
(a, b) ∈ R2 :

∑
γ

e−al1(γ)−bl2(γ) < +∞

}
.

This was studied in [3] and [21], where the following results were proved.

Proposition 6.1 [3],[21].

(i) M(Σ1,Σ2) is a straight line if and only if Σ1 and Σ2 are isometric.
(ii) M(Σ1,Σ2) is real analytic.
(iii) M(Σ1,Σ2) has asymptotes whose normals have slopes equal to the maximum and

minimum geodesic stretch between Σ1 and Σ2.
(iv) M(Σ1,Σ2) passes through (1, 0), where its normal has slope equal to the intersec-

tion i(Σ1,Σ2). (It also passes through (0, 1), where its normal has slope equal to
1/i(Σ2,Σ1).

(v) There is a unique point (a, b) ∈M(Σ1,Σ2) where the normal has slope 1 and a+ b
is equal to the correlation number of Σ1 and Σ2.

See [1],[3] for the definitions of max and min geodesic stretch and intersection. The
correlation number of Σ1 and Σ2 is defined to be the exponential growth rate of

#{γ : l1(γ), l2(γ) ∈ (T, T + ε)},

for fixed ε > 0, as T → +∞ [20].
In our setting, let us define a Manhattan curve Mφ, associated to φ, to be the boundary

of the set (a, b) ∈ R2 :
∑

w∈C(F )

e−a|w|−b|φ(w)| < +∞

 .

By writing this in terms of periodic points for the shift map, this may be described as the
set

{(a, b) ∈ R2 : P (−a− br) = 0}

or, equivalently,
{(a, b) ∈ R2 : p(−b) = a}.

Let us define q(s) implicitly by
p(−q(s)) = s; (6.1)
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then Mφ is the graph of q. Since p′(−t) = −
∫
rdµ−tr 6= 0, the Implicit Function Theorem

gives that q is real analytic. (This parallels the analysis of [21].)
Let us examine the slope of the normal at a point (a, b) = (s, q(s)) on Mφ. At this

point, the normal has slope −1/q′(s). Now, differentiating (6.1),

1 =
d

ds
p(−q(s)) =

(
−
∫
r dµ−q(s)r

)
q′(s),

so the normal to Mφ at (s, q(s)) has slope

−1

q′(s)
=

∫
r dµ−q(s)r.

Therefore the set of normals to Mφ is equal to{∫
r dµt : t ∈ R

}
= int(Ir) = int(Dφ)

and it is easy to recover the following statements.

Theorem 4.

(i) Mφ is a straight line if and only if φ is simple.
(ii) Mφ is real analytic.

(iii) Mφ has asymptotes whose normals have slopes equal to the maxDφ and minDφ.
(iv) Mφ passes through (log(2k− 1), 0), where its normal has slope equal to the generic

stretch λ(φ)
(v) There is a unique point (a, b) ∈Mφ where the normal has slope 1 and a+ b = h(1).

Proof. The only statement which requires proof is (v). If the normal has slope 1 at (a, b) =
(s, q(s)) then ∫

r dµ−q(s)r = 1,

and −q(s) = ξ, where

h(1) = p(ξ)− ξ = p(−q(s)) + q(s) = s+ q(s) = a+ b. �

Remark. Kaimanovich, Kapovich and Schupp have shown how to identify the generic
stretching factor λ(φ) as an intersection of currents [7], [9].
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