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Abstract. In this paper we consider two counting problems associated with com-
pact negatively curved surfaces and improve classical asymptotic estimates due to

Margulis. In the first, we show that the number of closed geodesics of length at most

T has an exponential error term. In the second we show that the number of geodesic
arcs (between two fixed points x and y) of length at most T has an exponential error

term. The proof is based on a detailed study of the zeta function and Poincaré series

and benefits from recent work of Dolgopiat.

0. Introduction

Let V be a compact surface with negative curvature and let Ṽ be its universal
cover (with the lifted metric d). The fundamental group π1(V ) can be realized as
a group of isometries Γ acting on Ṽ with Ṽ /Γ = V . Given a point x ∈ Ṽ , we can
introduce the orbital counting function N(T ) defined by

N(T ) = Card{g ∈ Γ : d(x, gx) ≤ T}.

The compact surface V has a countable infinity of closed geodesics γ (of length
l(γ)) and we can also introduce the closed geodesic counting function

π(T ) = Card{γ : l(γ) ≤ T}.

For the special case of surfaces of constant negative curvature there are results
due to Huber [7], [8] giving both an asymptotic formula and error terms for N(T )
and π(T ), as T tends to infinity. In the more general case of variable negative
curvature Margulis again established an asymptotic formula for N(T ) and π(T ) but
without error terms [10]. While in the constant curvature case one can make use
of harmonic analysis and the Selberg Trace Formula, in the more general setting
it is necessary to resort to an approach based on the dynamics of the geodesic
flow. In this paper, we shall improve Margulis’s original estimates to include the
appropriate error terms.

We can associate to V the geodesic flow φt : SV → SV , where SV is the unit
tangent bundle of V . We shall let h > 0 denote the topological entropy of φ . Then
h is also equal to the exponential growth rate of the area of balls in Ṽ , i.e.,

h = lim
T→+∞

1
T

log Area{y ∈ Ṽ : d(x, y) ≤ T}.
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Notation. We write f(T ) ∼ g(T ) if f(T )/g(T ) → 1 as T → +∞. We write f(T ) =
g(T ) +O(h(T )) if there exists C > 0 such that |f(T )− g(T )| ≤ Ch(T ).

The results of Margulis [10] show that N(T ) and π(T ) have the following first
order asymptotic expansions, as T → +∞:

N(T ) ∼ CehT and π(T ) ∼ li(ehT ),

where C > 0 is a constant and where li(y) is the logarithmic integral

li(y) =
∫ y

2

1
log u

du ∼ y

log y
, as y → +∞.

In this paper we show that the error terms take the form given in the following two
theorems.

Theorem 1. There exists 0 < c < h such that π(T ) = li(ehT ) +O
(
ecT

)
.

Theorem 2. There exists 0 < c < h and C > 0 such that N(T ) = CehT +O(ecT ).

We now give a brief outline of the contents of the paper. In section 1, we discuss
symbolic coding of the geodesic flow from two viewpoints. The first is a geometric
coding best suited to studying N(T ) and the second is a dynamical coding better
suited to studying π(T ). In section 2, we give a brief account of Dolgopiat’s recent
work on transfer operators. In section 3 we use estimates on transfer operators
obtain estimates for a certain zeta function. In section 4 we complete the proof of
Theorem 1.

In section 5 we introduce the Poincaré series associated to orbit counting and a
modified transfer operator. In section 6 prove the necessary results on the associated
Poincaré series to complete the proof of Theorem 2.

1. Symbolic Coding for the Geodesic Flow.

In this section we shall describe two methods for coding the geodesic flow and
the discrete group Γ. The first approach is the geometric coding obtained by Bowen
and Series of Γ and its limit set. The second is the Bowen-Ratner coding for the
geodesic flow.

1.1 The geometric coding. Usually the Bowen-Series coding is only applied to
geodesic flows on surfaces of constant negative curvature. However, it is an easy
observation that it can be adapted to study geodesics flows on surfaces of variable
curvature. This is easily seen because every geodesic flow with respect to a metric
of variable negative curvature is flow equivalent (i.e. conjugate up to a time change)
to one of constant negative curvature [6].

Suppose that V has genus g ≥ 2 then Γ ∼= π1(V ) has the one relator presentation

< a1, . . . , ag, b1, . . . , bg :
g∏

i=1

[ai, bi] = 1 > .

We can associate to this presentation a finite directed graph G with edge set E and
vertex set V together with:

(1) a distinguished vertex ∗ with no edges ending at ∗;
(2) a labeling of the edges λ : E → Γ0 = {a1, . . . , ag, b1, . . . , bg},
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such that there is a bijection between
(i) the set of finite paths starting at ∗; and
(ii) elements of Γ,

given by multiplying the labels on each edge. Furthermore, G has the important
additional property that the map from closed loops to conjugacy classes in Γ ob-
tained by considering the product of the labels around the loop is a bijection [20,
21].

For technical reasons it will prove useful to consider an augmented graph G′.
This is obtained by adding an extra vertex 0 and edges (i, 0), for all i ∈ V − {∗}.
We extend the map λ to the new edges by λ(i, 0) = e, the identity in Γ.

Let A denote the incidence matrix of G′. Let B denote the submatrix of A
obtained by deleting the rows and columns indexed by ∗ and 0.

We can associate one-sided subshifts of finite type σ : X+
A → X+

A and σ : X+
B →

X+
B where

X+
A = {x = (xn)∞n=0 ∈

∞∏
n=0

(V ∪ {0}) : A(xn, xn+1) = 1,∀n ≥ 0};

X+
B = {x = (xn)∞n=0 ∈

∞∏
n=0

(V − {∗}) : B(xn, xn+1) = 1,∀n ≥ 0}

and σ(xn)∞n=0 = (xn+1)∞n=0. We can define metrics on X+
A and X+

B by

d((xn)∞n=0, (yn)∞n=0) =
∞∑

n=0

1− δ(xn, yn)
2n

,

where δ(i, j) = 1 if i = j and 0 otherwise. With respect to these metrics the spaces
X+

A and X+
B are compact zero dimensional spaces and σ is a local homeomorphism.

Since we are dealing with surfaces the matrix B is aperiodic, or equivalently the
subshift σ : X+

B → X+
B is topologically mixing.

1.2 The dynamical coding. We now turn to an alternative approach studied by
Sinai, Bowen, Ratner and others. In this case we obtain a symbolic description of
the geodesic flow via certain families of local cross sections.

Let SV denote the unit tangent bundle for the surface V . Let φt : SV → SV
denote the geodesic flow on unit tangent vectors (i.e., φt(v) is the vector in SV
which comes from parallel transporting the initial unit tangent vector along the
unique unit speed geodesic passing through v at time zero). We shall use h to
denote the topological entropy of φ.

In order to explain the coding we need to introduce two-sided subshifts of finite
type. Given a zero-one matrix B, we can define the two-sided subshift of finite type
σ : XB → XB on the space

XB = {x = (xn)∞n=−∞

∞∏
n=−∞

{1, . . . , k} : B(xn, xn+1) = 1,∀n ∈ Z}

by σ(xn)∞n=−∞ = (xn+1)∞n=−∞. We can define a metric on XB by

d((xn)∞n=−∞, (yn)∞n=−∞) =
∞∑

n=−∞

1− δ(xn, yn)
2|n|

.
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With this metric XB is compact and zero dimensional and σ : XB → XB is a
homeomorphism.

For each 1 ≤ i ≤ k we denote [i] = {(xn)∞n=−∞ : x0 = i}.
Given a strictly positive Hölder continuous function r̂ : XB → R+ we define the

r̂-suspension space by

X r̂
B = {(x, u) : x ∈ XB , 0 ≤ u ≤ r̂(x)}/(x, r̂(x)) ∼ (σx, 0)

and a suspended flow σr̂
t : X r̂

B → X r̂
B defined by σr̂

t (x, u) = (x, u + t) (subject to
the identifications).

The next result relates the geodesic flow to a suspended flow.

Proposition 1. There exists an aperiodic matrix B, a strictly positive Hölder
continuous map r̂ : XB → R and a surjective continuous map π : XB → SV such
that

(1) π ◦ σr̂
t = φt ◦ π

(2) every closed φ-orbit corresponds to a σr-orbit of the same (prime) period,
with at most finitely many exceptions

(cf. [1], [15].)

Let T = {T1, . . . , Tk} be the family of two dimensional local cross sections to the
geodesic flow given by π([i] × {0}), i = 1, . . . , k. The shift σ : XB → XB models
the Poincaré return map P :

∐k
i=1 Ti →

∐k
i=1 Ti and the function r̂ : XB → R

models the return time r :
∐k

i=1 Ti → R, in particular, φr(x)(x) = P(x) (on the
interiors of the disk).

Given ε > 0 we can define the associated local stable manifold and local unstable
manifold for a point x ∈ SV by

W ss
ε (x) = {y ∈ SV : d(φt(x), φt(y)) ≤ ε,∀t ≥ 0}

and
W su

ε (x) = {y ∈ SV : d(φ−t(x), φ−t(y)) ≤ ε,∀t ≥ 0}.

Provided that ε > 0 is sufficiently small these sets are diffeomorphic to one-
dimensional embedded disks.

The local cross sections can be adjusted in the flow direction so that each i =
1, . . . , k:

(i) Ti is foliated by pieces of local stable manifolds Si(x) = W ss
ε (x) ∩ Ti; and

(ii) Ti contains a piece of local unstable manifold, which we denote by Ui.
This does not affect the underlying subshift of finite type σ : XB → XB .

Remark. We can also define the stable manifold and unstable manifold for a point
x ∈ SV by

W ss(x) = {y ∈ SV : d(φt(x), φt(y)) → 0, as t→ +∞}

and
W su(x) = {y ∈ SV : d(φ−t(x), φ−t(y)) → 0, as t→ +∞}.

The families {W ss(x) : x ∈ SV } and {W ss(x) : x ∈ SV } are foliations of SV
with one dimensional leaves. It is well-known that these foliations are not jointly
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integrable. In consequence, under assumption (ii), if x ∈ Ti then its local unstable
manifold W su

ε (x) need not be contained in Ti.

Let Ui(x) denote the projection of the local unstable manifold W su
ε (x) along the

flow lines onto Ti. The families {Ui(x) : x ∈ Ti} and {Si(x) : x ∈ Ti}, i = 1, . . . , k,
can be thought of as local stable and unstable manifolds for the Poincaré map.

For each i = 1, . . . , k, the foliation {Si(x) : x ∈ Ti} gives a natural equivalence
relation on the section Ti and we can identify the corresponding equivalence class
Ii with Ui.

The Poincaré map P :
∐k

i=1 Ti →
∐k

i=1 Ti gives rise to an associated interval
map as follows. We project along the unstable manifolds {Ui(x)} for each local cross
section to obtain an induced expanding map f :

∐k
i=1 Ii →

∐k
i=1 Ii. Moreover, we

can choose 0 < γ < 1 with |f ′(x)| ≥ 1/γ, for all x ∈
∐k

i=1 Ii [16].
A desirable feature of this construction is that the function r :

∐k
i=1 Ti → R is

constant on each unstable manifold Ui(x). In consequence, there is an associated
function r :

∐k
i=1 Ti → R for which we use the same notation. In particular, the

function r̂ = r ◦ π : XB → R depends only on the terms xn, n ≥ 0. Therefore, we
can view r̂ as a function defined on X+

B .

1.3 Relating the two codings. The above two codings can be related by the
following result.

Proposition 2. We can choose the two sided subshift of finite type σ : XB → XB

in Proposition 1 so that B is the matrix arising from the Bowen-Series coding.

Proof. In constant curvature this is a reformulation of a theorem of Series [20]. For
variable curvature this is an easy consequence of structural stability of Anosov flows
and the connectedness of the space of all negatively curved metrics [6].

Let us recall how the directed graph arises in [Series]. The graph G is constructed
geometrically by using the geometry of a fundamental domain to construct a parti-
tion of the boundary of the Poincaré disk into a finite number of intervals I1, . . . , Ik
and defining a map f : I → I, where I =

∐k
i=1 Ii. The vertices of G are identified

with the intervals I1, . . . , Ik and there is a directed edge from vertex i to vertex j
if f(Ii) ⊃ Ij .

A sequence x = (xn) ∈ XB is used to code a geodesic in the above proposition
as follows. Each geodesic is uniquely determined by its two endpoints (realized
as a pair of points on the boundary of the universal cover). The first point x+ is
coded using f in the sense that fn(x+) ∈ Ixn for n ≥ 0. The second point is coded
by a complementary interval map g : J → J , where again J =

∐k
j=1 Jj is again

a partition of the boundary of the Poincaré disk into a finite number of intervals
J1, . . . , Jk (in general different to I1, . . . , Ik). The reason that we get a two sided
subshift of finite type σ : XB → XB is that the expanding map f : I → I has a
natural extension to f̂ : I × J → I × J (i.e the projection onto the first co-ordinate
is simply f : I → I and similarly, the projection onto the second co-ordinate of
f̂−1 : I × J → I × J is simply g : J → J).

We want to realize the coding in [20,21] in terms of local cross-sections (as
discussed in subsection 1.2). Given intervals Ii and Jj we can consider all geodesics
on the universal cover D2 with end points in Ii and Jj . The tangent vectors to
these geodesics form a subspace Ω ⊂ T1D2. If we consider a sufficiently large ball
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B(0, R) ⊂ D2 then the intersection Ω ∩ T1B(0, R) quotiented along the geodesic
flow direction gives a two dimensional section T̂i,j . The only ambiguity in realizing
this as a section in T1D2 is how to place it in the flow direction. However, this is not
a problem since T̂i,j is only required as a section to the flow and thus its position
can be varied under the geodesic flow.

The sections T̂i,j constructed above are in SṼ . Each section T̂i,j projects to a
section Ti.j for the geodesic flow on the compact manifold SV . We can carry out
this construction for each of the pairs (i, j). The resulting family forms a Markov
section for the geodesic flow by virtue of the properties f̂ .

2. Transfer Operators and zeta functions

Let us fix s = σ + it. We let C1(I) denote the Banach space of C1 functions on
I, with norm

||h||1,t =

{
max

(
||h||∞, ||h

′||∞
|t|

)
if |t| ≥ 1

max (||h||∞, ||h′||∞) if |t| < 1

Notice that with this (non-standard) weighting the norm depends on |t|.

Definition. Given s ∈ C we define the transfer operator L−sr : C1(I) → C1(I) by

L−srw(x) =
∑

fy=x

e−sr(y)w(y)

Given a continuous function g : I → R we define the pressure P (g) by

P (g) = sup{h(µ) +
∫
gdµ : µ = T -invariant probability}.

In the special case that t = 0 the spectrum of L−σr : C1(I) → C1(I) is described
by the following result.

Proposition 3 (Ruelle). The operator L−σr has maximal eigenvalue eP (−σr) and
the rest of the spectrum is contained in a ball of strictly smaller radius.

The following result is due to Dolgopiat [3]. In particular, it gives estimates on
the spectral radius of the operator L−(σ+it)r which are uniform in t ∈ R. This will
be of crucial importance in our analysis.

Proposition 4 (Dolgopiat, [3]). There exist constants σ0 < h, C > 0 and 0 <
ρ < 1 such that whenever s = σ + it with σ ≥ σ0 and n = p[log |t|] + l (p ≥ 0,
0 ≤ l ≤ [log |t|]− 1) then

||Ln
−sr||1,t ≤ Cρp[log |t|]elP (−σr)
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Corollary 4.1. There exist constants σ0 < h, C > 0 and 0 < ρ < 1 such that
whenever s = σ + it with σ ≥ σ0 then the spectral radius of L−sr is less than or
equal to ρ.

Remark. This result can also be extended to a corresponding statement for L−sr

acting on Hölder functions.

In order to study the counting function π(T ) we will consider a function of a
complex variable called the zeta function ζ(s). The required estimates on π(T ) are
obtained by analyzing the analytic domain of ζ(s).

The function ζ(s) is defined by the infinite product

ζ(s) =
∏
γ

(
1− e−sl(γ)

)−1

,

where s ∈ C and γ denotes a closed (directed) geodesic on V of length l(γ). This
converges to a non-zero analytic function for Re(s) > h (cf. [PP]).

The main properties of ζ(s) that we shall use are contained in the following
proposition. The rest of this section will be devoted to its proof.

Proposition 5. There exists c0 < h such that ζ(s) is analytic in the half-plane
Re(s) > c0, except for a simple pole at s = h. Moreover, there exists 0 < α < 1
such that

ζ ′(σ + it)/ζ(σ + it) = O(|t|α), as |t| → +∞

uniformly for σ > c0.

In order to study ζ(s) it is convenient to re-express it in terms of the expanding
map f : I → I. We shall use the notation Zn(−sr) =

∑
fnx=x e

−srn(x). We then
have the following result (cf.[1], [11]).

Lemma 1.

ζ(s) = exp
∞∑

n=1

1
n
Zn(−sr).

We use this formulation of the zeta function ζ(s) to relate it to the Ruelle transfer
operator L−sr : C1(I) → C1(I). In particular, we have the following result.

Lemma 2. For each interval Ii we fix a point xi ∈ Ii. For any max{ρ, γ} < ρ0 < 1
there exists C1 > 0 such that∣∣∣∣∣Zn(−sr)−

k∑
i=1

Ln
−srχIi

(xi)

∣∣∣∣∣ ≤ C1|t|nρn
0 (2.1)

where χIi
is the characteristic function for Ii.

Proof. This result is essentially proved in [18]. We recall the main ideas for the
reader’s benefit. To explain the ideas, assume that for each n ≥ 0 we consider all
strings i = (i0, . . . , in−1) with Ii = Ii0 ∩ f−1Ii1 ∩ . . . ∩ f−(n−1)Iin−1 6= ∅ and write
|i| = n.
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We can consider the characteristic functions χIi . This is not in C1(I), but it is

an element of C1
(∐

|i|=n Ii

)
= ⊕|i|=nC

1
(
Ii

)
. Observe that for 1 ≤ m ≤ n− 1 we

have L−σr : ⊕|i|=m+1C
1
(
Ii

)
→ ⊕|i|=mC

1
(
Ii

)
. Thus, in particular, if |i| = m then

Lk
−σrχIi ∈ C1(I).
We can choose xi ∈ Ii such that:
(1) fnxi = xi if possible; and
(2) xi is arbitrary otherwise.

If i = (i0, . . . , im−1) then we can adopt the notation j(i) = (i0, . . . , im−2) (i.e. we
look at the shorter string after throwing away the last term).

From these observations, we see that

Zn(−sr) =
∑
|i|=n

(Ln
−srχIi)(xi).

In addition, we can write

∑
|i|=n

Ln
−srχIi

(xi)−
k∑

i=1

Ln
−srχIi

(xi)

=
n∑

m=1

 ∑
|i|=m

Ln
−srχIi

(xi)−
∑

|j|=m−1

Ln
−srχIj

(xj)


=

n∑
m=1

 ∑
|i|=m

(
Ln
−srχIi

(xi)− Ln
−srχIi

(xj(i))
) .

Observe that many of the terms in these summations may well be zero and others
may be very simple. For example

Ln
−srχIi

(xj(i)) = e
−srn

(
(f |Ii)

−1xj(i)

)
.

Since for |i| = m we have that Lm
−srχIi ∈ C1(I) we can use the estimate∣∣∣∣∣∣

∑
|i|=n

Ln
−srχIi

(xi)−
k∑

i=1

Ln
−srχIi

(xi)

∣∣∣∣∣∣
≤

n−1∑
m=1

||Ln−m
−sr ||C1

∑
|i|=m

||Lm
−srχIi

||C1d(xi, xj(i)).

(2.2)

We can estimate
(1) ||Ln−m

−σr ||C1 ≤ Cρk[log |t|]elP (−σr) ≤ Cρ
k[log |t|]
0 elP (−σr), by Proposition 4

(2) ||Lm
−srχIi ||C1 ≤ const.|t|, since Lm

−srχIi = e
−srm

(
(f |Ii)

−1xj(i)

)
,

(3) d(xi, xj(i)) ≤ const.γm ≤ const.ρm
0 where |i| = m and |f ′| ≥ 1/γ > 1
8



We can compare these estimates with the inequality (2.2) to deduce inequality (2.1).
This completes the proof of Lemma 2.

We now return to the proof of Proposition 5. Let us fix ρ0 > ρ (in Lemma 2).
Using Lemma 2 and Proposition 4 we can bound

|Zn(−sr)| ≤

∣∣∣∣∣Zn(−sr)−
k∑

i=1

Ln
−srχIi

(xi)

∣∣∣∣∣ +

∣∣∣∣∣
k∑

i=1

Ln
−srχIi(xi)

∣∣∣∣∣
≤ C1|t|nρn

0 +
k∑

i=1

||Ln
−sr||

≤ C1|t|nρn
0 + k

(
Cρ

p[log t]
0 elP (−σr)

)
,

where n = p[log |t|] + l.
This gives us the following estimate on log |ζ(s)| for s = σ+ it where σ > σ0 and

|t| ≥ 1:

log |ζ(s)| ≤
∞∑

n=1

1
n
|Zn(−sr)|

≤
∞∑

n=1

C1|t|ρn
0 + kC

∞∑
p=0

ρp[log |t|]

[log |t|]−1∑
l=0

elP (−σr)


≤ C1|t|+ kC

∞∑
p=0

ρp[log |t|]

[log |t|]−1∑
l=0

elP (−σr)


≤ C1|t|+ kC

(
1

1− |t|−| log ρ|

)
max

{
[log |t|], e

[log |t|]P (−σr) − 1
eP (−σr) − 1

}
.

For |t| sufficiently large we see that 1/
(
1− |t|−| log ρ|) is uniformly bounded and

thus
log |ζ(s)| ≤ C1|t|+ C2max

(
[log |t|], |t|P (−σr)

)
, (2.3)

for some C2 > 0.
To proceed, we need a standard result from complex analysis which allows us to

convert (2.3) into a bound for ζ ′(s)/ζ(s) in the half-plane σ > σ0.

Lemma 3 ([4, Theorem 4.2]). Let z ∈ C. Given R > 0 and ε > 0 suppose that
F (s) is analytic on the disk ∆ = {s = σ + it : |s− z| ≤ R(1 + ε)3} and that there
are no zeros for F (s) on the open subset

{s = σ + it ∈ C : |s− z| ≤ R(1 + ε)2 and σ > Re(z)−R(1 + ε)}.

Suppose in addition that there exists a constant U(z) ≥ 0 such that log |F (s)| ≤
U(z) + log |F (z)| on the set {s = σ + it : |s − z| ≤ R(1 + ε3)}. Then we have the
following bound for the logarithmic derivative on the disk {s = σ+ it : |s−z| ≤ R}:

∣∣∣∣F ′(s)F (s)

∣∣∣∣ ≤ 2 + ε

ε

∣∣∣∣F ′(z)F (z)

∣∣∣∣ +

(
2 + 1

(1+ε)2

)
(1 + ε)

Rε2
U(z)

 .
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Figure 1. Applying the Lemma

We want to apply the above lemma to ζ(s) where s = σ + it lies in the strip
σ1 < σ ≤ h, where σ1 > σ0. (We need to consider this smaller strip in order to get
a uniform bound on the logarithmic derivative.)

We set z = (h+ 1) + it. In particular, this implies that we have the uniform
lower bound |ζ(z)| ≥ 1

|ζ(Re(z))| ≥
1

|ζ(h+1)| , independent of t. In consequence, we see
that by (2.3) we can choose U(z) in Lemma 3 to satisfy

U(z) ≤ C3|t|+ C4max{log |t|+ |t|P (−σ1r)}.

If we set R = 1 + (h−σ1)
2 then we can choose ε > 0 such that R(1 + ε)3 =

1 + (h− σ1). In particular, ∆ is contained in the half-plane Re(s) > σ1 and thus is
a non-zero analytic domain for ζ(s).

This allows us to deduce that there exists a constant C5 > 0 such that for
Re(s) > σ2 := h+σ1

2 we have∣∣∣∣ζ ′(s)ζ(s)

∣∣∣∣ ≤ C5max{|t|, |t|P (−σ1r)}.

Furthermore, since P (−hr) = 0 and σ 7→ P (−σr) is continuous [17] we can assume
without loss of generality that P (−σ1r) ≤ 1 by choosing σ1 sufficiently close to h.
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To complete the proof we need to show that we can choose the exponent of |t|
to be strictly less than 1. To do this we make use of the well-known Phragmén-
Lindelöf Theorem [22, §5.65]. We know that the function (ζ ′/ζ)(s) + (s − h)−1 is
analytic in the strip σ2 ≤ Re(s) ≤ h + δ, for any δ > 0. Moreover, we have the
bounds

(1) |(ζ ′/ζ)(σ2 + it)| ≤ C5|t|
(2) for each δ > 0 there exists C6 > 0 such that |(ζ ′/ζ)(h + δ + it)| ≤ C6, (cf.

[11]).
The Phragmén-Lindelöf Theorem tell us that for any σ2 ≤ σ3 ≤ h+ δ we have that
|(ζ ′/ζ)(σ3 + it)| = O(|t|α), where

α =
(

(h+ δ)− σ3

(h+ δ)− σ2

)
.

Provided we fix σ3 > σ2 then 0 < α < 1.
By taking c0 = σ3, the proof of Proposition 5 is complete.

4. The error term in counting closed orbits

In this section we shall establish the estimates that prove Theorem 1. To prove
the asymptotic estimate it is technically easier to establish first the corresponding
result for the following related functions.

For T > 0 define ψ(T ) =
∑

enhl(γ)≤T hl(γ) and ψ1(T ) =
∫ T

1
ψ(x)dx. It is an easy

observation that ψ1(T ) =
∑

enhl(γ)≤T hl(γ)(T − enhl(γ)).

It will prove convenient to slightly modify the original definition of the zeta
function and instead work with the function

ζ0(s) =
∏
γ

(
1− e−shl(γ)

)−1

.

Observe that ζ(sh) = ζ0(s). Clearly similar conclusions to those of Proposition
5 for ζ(s) also hold for ζ0(s). However, for simplicity, let us assume that ζ0(s) is
analytic (with the corresponding bounds) in the strip Re(s) > c0, for some c0 < 1.

Using our estimates on the logarithmic derivative of the zeta function from the
previous section we obtain the following elegant formula for ψ1(t).

Proposition 6. If c0 < c < 1 then

ψ1(T ) =
T 2

2
+

1
2πi

∫ c+i∞

c−i∞

(
−ζ

′
0(s)
ζ0(s)

)
T s+1

s(s+ 1)
ds.

In particular, ψ1(T ) = T 2

2 +O(T c+1).

Proof. One need only apply the identity

1
2πi

∫ d+i∞

d−i∞

ys+1

s(s+ 1)
ds =

{
0 if 0 < y ≤ 1
y − 1 if y > 1

11



[4, p. 50] with d > 1 term by term to −ζ ′0(s)/ζ0(s) =
∑∞

n=1

∑
γ hl(γ)e

−snhl(γ) to
obtain

ψ1(T ) =
1

2πi

∫ d+i∞

d−i∞

(
−ζ

′
0(s)
ζ0(s)

)
T s+1

s(s+ 1)
ds

Using the estimate ζ ′(s)/ζ(s) = O(|t|α) we can see that 1
2πi

∫ c+i∞
c−i∞

(
− ζ′0(s)

ζ0(s)

)
T s+1

s(s+1)ds

exists and satisfies the bound

1
2πi

∫ c+i∞

c−i∞

(
−ζ

′
0(s)
ζ0(s)

)
T s+1

s(s+ 1)
ds = O

(
T c+1

)
Furthermore,

1
2πi

∫ c+i∞

c−i∞

(
−ζ

′
0(s)
ζ0(s)

)
T s+1

s(s+ 1)
ds− 1

2πi

∫ d+i∞

d−i∞

(
−ζ

′
0(s)
ζ0(s)

)
T s+1

s(s+ 1)
ds

= lim
R→+∞

1
2πi

∫
ΓR

(
−ζ

′
0(s)
ζ0(s)

)
T s+1

s(s+ 1)
ds

where ΓR is the contour consisting of line segments joining d− iR, d+ iR, c+ iR
and c− iR. The result now follows by applying the residue theorem to see that

1
2πi

∫
ΓR

(
−ζ

′
0(s)
ζ0(s)

)
T s+1

s(s+ 1)
ds =

T 2

2

for all R > 0.

We can now use elementary arguments to translate the estimate for ψ1(T ) into
an estimate for ψ(T ).

Proposition 7. ψ(T ) = T +O(T (c+1)/2).

Proof. We define a function of T by ε = ε(T ) := T (c+1)/2. Since T → ψ(T ) is
monotone increasing we see that

ψ1(T + ε)− ψ1(T )
ε

=
1
ε

∫ T+ε

T

ψ(t)dt ≥ ψ(T ).

Observe that by Proposition 6

ψ1(T + ε)− ψ1(T )
ε

=
1
ε

(
(T + ε)2

2
− T 2

2
+O

(
T c+1)

)
= T +O

(
ε,
T c+1

ε

)
= T +O

(
T (c+1)/2

)
Thus ψ(T ) ≤ T +O

(
T (c+1)/2

)
. A similar argument based on the inequality

ψ1(T )− ψ1(T − ε)
ε

=
1
ε

∫ T

T−ε

ψ(t)dt ≤ ψ(T ).

12



gives that ψ(T ) ≥ T +O
(
T (c+1)/2

)
. This complete the proof.

We are now in a position to complete the proof of Theorem 1. We define π0(T ) =∑
enhl(γ)≤T 1 and observe that

π0(T ) =
∫ T

2

1
log x

dψ(x) +O(1)

=
[
ψ(x)
log x

]T

2

+
∫ T

2

ψ(x)
d

dx

(
− 1

log x

)
dx+O(1).

However the identity∫ T

2

x
d

dx

(
− 1

log x

)
dx+

T

log T
= li(T ) +

2
log 2

allows us to conclude that π0(T ) = li(T ) + O
(
T (c+1)/2/ log T

)
. We introduce

π1(T ) =
∑

ehl(γ)≤T 1. Clearly,

π0(T ) = π1(T ) +
∑
n≥2

π(T 1/n) = π1(T ) +O
(
T 1/2 log T

)
.

In particular, π1(T ) = li(T ) + O
(
T (c+1)/2/ log T

)
+ O

(
T 1/2 log T

)
= O(T c′), for

any c′ satisfying max{1/2, (c+ 1)/2} < c′ < 1. By changing variables we obtain

π(T ) = li(ehT ) +O
(
ec′hT

)
,

where we observe that c′h < h. This proves the theorem.

5. Poincaré series

We now turn our attention to the proof of Theorem 2. In order to obtain the
promised estimate on N(T ) we need to study an appropriate analytic function.
This function is the Poincaré series

η(s) =
∑
g∈Γ

e−sd(x,gx)

(which converges to an analytic function for Re(s) > h).
The following proposition allows us to write the Poincaré series in a more con-

venient symbolic form.

Proposition 8. There exists a Hölder continuous function R : X+
A → R such that:

(a) for every allowed word (∗, i1, . . . , in) with associated group element g =
λ(∗, i1) . . . λ(in−1, in) we have that d(x, gx) = Rn (∗, i1, . . . , in, 0, 0, . . . ) where
Rn(x) = R(x) +R(σx) + . . .+R(σn−1x);

(b) for every closed loop (i0, i1, . . . , in) in G with i0 = in and with associated
group element g = λ(i0, i1) . . . λ(in−1, in) we have that

l(γ) = Rn (i0, i1, . . . , in−1, i0, i1, . . . , in−1, . . . ) ,

where γ is the unique closed geodesic in the conjugacy class of g and where
l(γ) denotes its length;

(c) the restriction R : X+
B → R+ and the function r̂ : X+

B → R+ differ by a
Hölder coboundary (i.e, there exists a continuous function u : X+

B → R such
that R = r̂ + u ◦ σ − u).

13



Part (a) was established by the authors in [14]. Part (b) has essentially estab-
lished in [14, Proposition 2]. Part (c) follows from part (b) and a consideration of
the closed orbits of the geodesic flow and an application of Livsic’s theorem [9].

Using Proposition 8 we can rewrite η(s) in terms of the subshift of finite type as

η(s) = 1 +
∞∑

n=1

∑
z∈Sn

e−sRn(z0̇),

where Sn denotes the set of all allowed paths z = z0 . . . zn in G of (edge) length n
with z0 = ∗ and where z0̇ = (z0, . . . , zn, 0, 0, . . . ) (cf. [12], [13], [14]).

The complex function η(s) can be studied via a modified transfer operator.

Definition. We define M−sR : Cα(X+
A ) → Cα(X+

A ) by

M−sRg(x) =
∑

σy=x
y 6=0̇

e−sR(y)g(y),

where we equip Cα(X+
A ) with the norm

||g||α,t =

{
max

(
||g||∞, ||g||α|t|

)
if |t| ≥ 1

max (||g||∞, ||g||α) if |t| < 1
.

Here we let |h|α = supx6=y
|h(x)−h(y)|

d(x,y)α and t be the imaginary part of s.

Using this definition we may rewrite the Poincaré series in the form

η(s) = 1 +
∞∑

n=1

Mn
−sR(χ[∗])(0̇)

where χ[∗] is the indicator function for the set of sequences in X+
A beginning with

∗.
We need to present an analogue to Proposition 4 giving a bounds on ||Mn

−sR||.
This takes the following form.

Proposition 9. There exists constants C > 0, σ0 < h and 0 < ρ < 1 such that
whenever s = σ + it with σ0 ≥ σ and n = p[log |t|] + l (p ≥ 0, 0 ≤ l ≤ [log |t|]− 1)
then

||Mn
−sR|| ≤ Cρk[log |t|]elP (−σR)

We postpone the proof of this result until the next section.

We now use Proposition 9 to estimate η(s). For Re(s) > σ0 and |t| ≥ 1 we have

|η(s)| ≤
∞∑

k=0

[log |t|]−1∑
l=1

Cρk[log |t|]elP (−σR)

≤ 1
1− ρ[log |t|]

[log |t|]−1∑
l=0

CelP (−σR)

≤ C ′max
{

log |t|, |t|P (−σR)
}
.

14



Observe, that without loss of generality, we may choose σ0 sufficiently close to h
to ensure that P (−σ0R) < 1 (this again follows by continuity of σ 7→ P (−σR) and
the fact that P (−hR) = 0).

This estimate allows us to conclude the following.

Proposition 10. There exists c0 < h such that η(s) is analytic in the half-plane
Re(s) > c0, except for a simple pole at s = h. Moreover, writing s = σ + it, there
exists 0 < α < 1 and C ′′ > 0 such that for c0 < σ < h we have

|η(s)| ≤ C ′′|t|α, for |t| ≥ 1.

Remark. Notice that, in contrast to the case of Proposition 5, the proof of Propo-
sition 10 does not require the Phragmén-Lindelöf Theorem.

6. Norm Estimates

In this section we give the proof of Proposition 9. The argument follows the same
lines as that in [3], although during the proof we need to address three important
differences between the operators M−sR and L−sr:

(a) M−sR acts on Hölder functions whereas L−sr acts on C1 functions;
(b) σ : X+

A → X+
A is not transitive, whereas f : I → I here are two cases to

consider and σ : X+
B → X+

B are transitive; and
(c) we replace r with R.

6.1 Generalities. In this subsection we explain the salient features of the ge-
odesic flow which lead to the norm estimates. Recall that the expanding map
f :

∐k
i=1 Ii →

∐k
i=1 Ii is modelled by the mixing one-sided subshift σ : X+

B → X+
B .

We fix n0 > 0 such that for the corresponding aperiodic transition matrix B we
have that Bn0 has all entries positive. Given n ≥ n0 we write for y1, y2 ∈ I that
y1 ∼n y2 if there exists 1 ≤ i ≤ k with fn(y1), fn(y2) ∈ Ii and fn(y1) = fn(y2).
Given x ∈ I we shall:

(1) consider distinct y1 ∼n y2 such that x = fn(y1) = fn(y2).
We can fix a x0 ∈ I and

(2) choose y0
1 , y0

2 (corresponding to y1, y2, respectively) such that x0 = fn(y0
1) =

fn(y0
2)

We introduce the function

ψ(x, x0) = (rn(y1)− rn(y2))−
(
rn(y0

1)− rn(y0
2)

)
An essential feature of the stable and unstable foliations for the geodesic flow is

their uniform non-integrability [2], [5], which is associated to the contact property.
In particular, it allows for each x0 (and sufficiently close x) choices of y1, y2, y0

1 , y
0
2

as in (1) and (2) above such that the maps Ii 3 x 7→ ψ(x, x0) are C1 and locally
strictly monotonic. Furthermore, there exists constants B1, B2 > 0 with

B1|x− x0| ≤ |ψ(x, x0)| ≤ B2|x− x0|.
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Figure 2. Non joint integrability.

6.2 Relating Cα and C0 norms. Our main goal is to show that the operator
M−(σ+it)R is a contraction with respect to the norm || · ||α,t on Cα(X+

A ). In this
subsection we introduce a proposition which will allow us to achieve this contraction
via the a priori weaker || · ||∞ contraction of the same operator.

For the purposes of the proof the function r should, in fact, depend on the value of
σ. We shall denote this by rσ. More specifically, by adding coboundaries (depending
on σ) we can arrange that, for σ0 ≤ σ ≤ h, we have L−σrσ1 = eP (−sigmarσ)1. In
particular, rh = r and L−hrh

1 = 1 [11]. By adding coboundaries (depending
on σ) we can assume that for each σ0 ≤ σ ≤ h the roof function rσ satisfies
L−σrσ1 = eP (−σrσ)1.

By Proposition 8(c) we know that Rh restricted to X+
B is cohomologous to r̂h.

Similarly, we see that Rσ restricted to X+
B is cohomologous to r̂σ. The following

result is essentially a well-known estimate [11] (observing from the proof that no
transitivity assumption on the shift is required).

Proposition 11. There exists C > 1 and 0 < θ < 1 (both independent of |t| ≥ 1
and σ0 ≤ σ ≤ h) such that

||(Ln
−(σ+it)rσ

w)′||∞ ≤ enP (−σrσ) (C|t|||w||∞ + θn||w′||∞) , for n ≥ 0
16



and
|Mn

−(σ+it)Rσ
g|α ≤ ||Mn

−σRσ
||∞ (C|t|||g||∞ + θn|g|α) , for n ≥ 0.

For simplicity, we will ignore the contributions of eP (−σrσ) and ||Mn
σ ||∞ (since

these can be made to grow at arbitrarily slow rates by choosing σ sufficiently close
to 1). In order to actually show that M−(σ+it)Rσ

is a || · ||α,t contraction we have
consider two cases: the first (relatively easy) case is when 2C|t|||g||∞ ≤ |g|α; the
second is when 2C|t||g|∞ ≥ |g|α. We consider these two situations separately.

6.3 Case I : 2C|t|||g||∞ ≤ |g|α.
If we make the additional hypothesis that 2C|t|||g||∞ ≤ |g|α then we can fix

1
2 < η < 1 and choose k > 0 and σ0 < h sufficiently large that

(
1
2 + θk

)
< η.

Proposition 11 gives that

1
|t|
|Mk

−(σ+it)Rσ
g|α ≤ C||g||∞ + θk 1

|t|
|gα ≤

(
1
2

+ θk

)
1
|t|
|g|α ≤ η||g||α,t.

In addition, ||Mk
−(σ+it)Rσ

g||∞ ≤ ||g||∞ ≤ 1
2C

1
|t| |g|α ≤ η||g||α,t. Together these two

inequalities show that ||Mk
−(σ+it)Rσ

g||α,t ≤ η||g||α,t.

6.4 Case II : |g|α ≤ 2C|t|||g||∞. To prove || · ||∞-convergence (and consequently
|| · ||α,t-convergence) we first establish L1(µσ)-convergence with respect to an ap-
propriate measure µσ.

A key observation is that the measure µσ is supported on X+
B ⊂ X+

A . The first
important consequence is that we shall only need to consider the corresponding
operator on functions defined on the transitive shift space X+

B . The second im-
portant feature is that for L1 contraction we need only study L−(σ+it)rσ

rather
than M−(σ+it)Rσ

because of the fact that R and r̂ are cohomologous on X+
B by

Proposition 8(c).
Let us assume for simplicity that g is induced from a function ŵ ∈ C1(I) (i.e.

g = w ◦ π under the canonical mapping π : X+
B → I) and that w ∈ C1(I) satisfies

||ŵ′||∞ ≤ 2C|t|||w||∞ and ||ŵ||∞ = 1 then we want to associate a sequence of
functions uN > 0, N ≥ 0, such that

(1) 0 ≤ |LnN
−(σ+it)rσ

g(x)| ≤ uN (x);
(2) There exists 0 < β < 1 such that

∫
uN (x)dµ(x) ≤ βn (and β is independent

of ĥ, t and σ).
In addition, the functions uN are constructed so that they are C1 on each Ui and

(3) | log u′N (x)| = |u
′
N (x)

uN (x) | ≤ 2C|t|.

Remark. For completeness, we mention that the functions uN are defined induc-
tively as follows:

(i) Fix u0 = 1;
(ii) Given the C1 function uN (x) we want to pair up corresponding terms y1,

y1 for Ln
−(σ+it)rσ

uN . We can choose 0 < η0 < 1, 0 ≤ θ0 ≤ 2π and π
2 > δ > 0

such that whenever t|rn(y1)− rn(y2)| ∈ [θ0 − δ, θ0 + δ] (mod 2π) then

|e−(σ+it)rn(y1)h(y1) + e−(σ+it)rn(y1)h(y2)|

≤ η
(
e−σrn(y1)un(y1) + e−σrn(y2)un(y2)

)
.
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The variation of x 7→ un(y), h(y) (and their arguments) can be made arbi-
trarily small by arranging m sufficiently large. Let

At,θ0,δ = {x : tψ(w1, w2) ∈ [θ0 − δ, θ0 + δ] (mod 2π)}

then we can choose a smooth function η0 ≤ η(y) ≤ 1 such that

η(y) =

{
η0 if x ∈ At,θ0, δ

2

1 if x ∈
(
∪k

i=1Ui

)
−At,θ0,δ

.

We then set uN+1(x) = Ln+m
−σrσ

(ηuN ) (x).

The following lemma gives important estimates on the probability measures sat-
isfying L∗−σrσ

µσ = µσ.

Lemma 4. If we identify Ui with [0, 1] then we write At,θ0, δ
2

= ∪k
i=1[t2i, t2i+1]

where 0 ≤ t1 < t2 < . . . < t2k+1 ≤ 1, say, then for all σ0 < σ < h:

(a) There exists C1, C2 > 0 such that C1 ≤ µσ([t2i+1,t2i+2])
µσ([t2i,t2i+1])

≤ C2 ;

(b) There exists C3, C4 > 0 such that C3 ≤ un(z′)
un(z) ≤ C4 for t2i ≤ z ≤ t2i+1 and

t2i+1 ≤ z′ ≤ t2i+2 for all n ≥ 0; and
(c) There exists 0 < α < 1 such that∫

A
t,θ0, δ

2

un+1(x)dµσ ≤ α

∫
A

t,θ0, δ
2

un(x)dµσ, and

∫
Ac

t,θ0, δ
2

un+1(x)dµσ ≤
∫
Ac

t,θ0, δ
2

un(x)dµσ.

We now establish L1(µσ)-convergence. From estimates (a) and (b) above we
have

C1C3 ≤

∫
A

t,θ0, δ
2

uNdµσ∫
Ac

t,θ0, δ
2

uNdµσ
≤ C2C4.

Estimate (c) then shows that for some α < β < 1 we have
∫
uN+1(x)dµσ ≤

β
∫
uN (x)dµσ. Since µ is supported on X+

B we conclude that∫
|M (n+m)N

−(σ+it)Rσ
g|dµ =

∫
|L(n+m)N
−(σ+it)rσ

w|dµ ≤ βN

where g = w ◦ π.
Using a straightforward approximation argument a similar estimate can be seen

to remain valid for any g ∈ Cα(X+
A ). We refer the reader to [3] for details.

We now establish uniform contraction of M−(σ+it)Rσ
We can use the quasi-

compactness of M−σRσ
to choose D > 0 and 0 < ρ < 1 (independent of σ0 ≤ σ ≤ h)

such that
|Mn

−σRσ
g −

∫
gdµσ|∞ ≤ D||g||α,tρ

n, ∀n ≥ 0
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We can use this to write

||M (n+m)2N
−(σ+it)Rσ

g||∞

≤ ||M (n+m)N
−σRσ

(
M

(n+m)N
−(σ+it)Rσ

g
)
||∞

≤
∫
|M (m+n)N

−(σ+it)Rσ
g|dµσ +D||M (m+n)N

−(σ+it)Rσ
g||α,tρ

(n+m)N

≤ βN +D (C|t|||g||∞ + ||h′||∞) ρ(n+m)N

≤
(
βN + 3DC|t|

)
ρ(n+m)N

≤ EγN = EγN ||g||∞

with E > 0 and max(β, ρn+m) < γ < 1 (and where E > 0 can be assumed to be
independent of |t| provided we allow that N = O(log |t|)).

We now establish norm contraction of Mσ+it in Case II. We can use Proposition
11 to write

1
|t|
|M2N(n+m)

−(σ+it)Rσ
g|α ≤

(
C||MN(n+m)

−(σ+it)Rσ
g||∞ + θN(n+m) 1

|t|
||(MN(n+m)

−(σ+it)Rσ
g)′||∞

)
≤ CEγN ||g||∞ + αN(n+m)

(
C||g||∞ +

1
|t|
||g′||∞

)
≤ FτN ||w||α,t

with F > 0 and max(γ, θn+m) < τ < 1.

7. The error term in the orbital counting functions

In this final section we complete the proof of Theorem 2 by obtaining the ap-
propriate error term for N(T ). To do this it is convenient to introduce auxiliary
functions defined by χ(T ) =

∑
ehd(x,γx)≤T 1 and χ1(T ) =

∫ T

1
N(x)dx. It is a simple

observation that χ1(T ) =
∑

ehd(x,γx)≤T

(
T − ehd(x,gx)

)
.

It will prove convenient to slightly modify the definition of the Poincaré series
and to work with the following function

η0(s) =
∑
g∈Γ

e−shd(x,gx).

Observe that η(sh) = η0(s), so that, in particular, η0 has a simple pole at s = 1,
with residue C > 0, say. Clearly similar conclusions to those of Proposition 10 for
η(s) also hold for η0(s). By a slight abuse of notation, we shall assume that η0(s)
is analytic in the strip c0 < Re(s) ≤ 1, for some c0 < 1, except for a simple pole at
s = 1, with the bounds

|η(σ + it)| ≤ D|t|α, for |t| ≥ 1

for some D > 0 and 0 < α < 1.
The link between the analytic properties of η0(s) and the asymptotic behaviour

of χ1(T ) is given by the following proposition.
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Proposition 12. If c0 < c < 1 then

χ1(T ) =
CT 2

2
+

1
2πi

∫ c+i∞

c−i∞
η0(s)

T s+1

s(s+ 1)
ds.

In particular, χ1(T ) = CT 2/2 +O(T c+1).

Proof. As in the proof of Proposition 6, we use the identity

1
2πi

∫ d+i∞

d−i∞

ys+1

s(s+ 1)
ds =

{
0 if 0 < y ≤ 1
y − 1 if y > 1

(7.1)

for d > 1. By applying (7.1) term by term to the series η0(s) we obtain

χ1(T ) =
1

2πi

∫ d+i∞

d−i∞
η0(s)

T s+1

s(s+ 1)
ds.

Using the estimate η0(s) = O(|t|α) we see that the integral 1
2πi

∫ c+i∞
c−i∞ η(s) T s+1

s(s+1)ds

exists. Furthermore,

1
2πi

∫ c+i∞

c−i∞
η0(s)

T s+1

s(s+ 1)
ds− 1

2πi

∫ d+i∞

d−i∞
η0(s)

T s+1

s(s+ 1)
ds

= lim
R→+∞

1
2πi

∫
ΓR

η0(s)
T s+1

s(s+ 1)
ds

where ΓR is the contour consisting of line segments joining d− iR, d+ iR, c+ iR
and c− iR. The result now follows by applying the residue theorem to see that

1
2πi

∫
ΓR

η0(s)
T s+1

s(s+ 1)
ds =

CT 2

2

for all R > 0.

As in section 4, we can use elementary arguments to translate the estimate for
χ1(T ) into one for χ(T ) and hence complete the proof of Theorem 2.

Proposition 13. We have the estimate χ(T ) = CT +O(T (c+1)/2).

Proof. We define a function of T by ε = ε(T ) := T (c+1)/2. Since T → χ(T ) is
monotone increasing we see that

χ1(T + ε)− χ1(T )
ε

=
1
ε

∫ T+ε

T

χ(t)dt ≥ χ(T ).

Observe that by Proposition 12

χ1(T + ε)− χ1(T )
ε

=
(T + ε)2

2
− T 2

2
+O

(
T c+1

)
= T +O

(
ε,
T c+1

ε

)
= T +O

(
T (c+1)/2

)
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Thus χ(T ) ≤ T +O
(
T (c+1)/2

)
. A similar argument based on the inequality

χ1(T )− χ1(T − ε)
ε

=
1
ε

∫ T

T−ε

χ(t)dt ≤ χ(T )

gives that χ(T ) ≥ T +O
(
T (c+1)/2

)
. This completes the proof.

It only remains to observe that, since N(T ) = χ(ehT ), Proposition 13 is equiva-
lent to Theorem 2.
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