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Abstract. In this note, we study the distribution of closed geodesics in homology on a finite
area hyperbolic surface. We obtain an estimate which is uniform as the homology class varies,

refining an asymptotic formula due to C. Epstein.

0. Introduction

Let M be a finite area hyperbolic surface, i.e., the quotient of the hyperbolic plane H2

by the free action of a group of isometries such that the fundamental domain has finite
area. It is well-known that if we define π(T ) to be the number of (prime) closed geodesics
on M of length at most T then limT→∞ e−TTπ(T ) = 1. A more delicate problem is to
estimate the number of closed geodesics lying in a prescribed homology class. Here there
are striking differences depending on whether or not M is compact. The compact case has
been studied in [11],[15] and [18]; here we shall concentrate on the case where M has at
least one cusp.

Suppose that M has genus g and p+ 1 cusps. Then M has area µ(M) = 2π(2g+ p− 1)
and H1(M,Z) ∼= Zp+2g. We shall write a typical element of H1(M,Z) as (α, β), where
α ∈ Zp and β ∈ Z2g, and use π(α,β)(T ) to denote the number of (prime) closed geodesics
in (α, β) of length at most T . Epstein [4] has shown that

lim
T→∞

T p+g+1π(α,β)(T )
eT

=
1

2g+1

(
2p
p

)
(2g + p− 1)p+g. (0.1)

In this paper, we shall be interested in refining Epstein’s result to obtain a uniform estimate
as the class (α, β) is allowed to vary. This is contained in the following theorem.

Theorem 1. Let M be a finite area hyperbolic surface of genus g with p+ 1 cusps. Then
there exists a strictly positive definite 2g × 2g matrix A of inner products of cusp forms
such that

lim
T→∞

sup
(α,β)∈Zp+2g

∣∣∣∣T p+g+1π(α,β)(T )
eT

− (2g + p− 1)p+g

2g−p+1
e−〈β,A−1β〉/4TI

(
2µ(M)α

T

)∣∣∣∣ = 0,
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where
I(x) =

∫
Rp

e−i〈x,ξ〉e−(
∑p

j=1 |ξj |+|ξ1+···+ξp|)dξ.

(If p = 0 then we set I(x) ≡ 1.)

Epstein has calculated that

I(0) =
1
2p

(
2p
p

)
.

Thus, in particular, our result agrees with (0.1). The integral I(x) may be evaluated by
means of a slightly more general version of the scheme considered in the appendix to [4].
The main point is that, for each subset S ⊂ {1, 2, . . . , p}, one considers separately the
integral over {(ξ1, . . . , ξp) ∈ Rp : ξj ≥ 0, j ∈ S, ξj ≤ 0, j /∈ S}. These calculations rapidly
become complicated as p increases. Nevertheless, one can see that I(x) is a rational
function and, for p = 1, 2, one can calculate that I(x) = 4/(4 + x2) and

I(x) =
8(12 + x2

1 + x2
2 − x1x2)

(4 + x2
1)(4 + x2

2)(4 + (x1 − x2)2)
,

respectively. We use this formula to give a more explicit estimate in the case of the thrice
punctured sphere with hyperbolic metric. This surface is the quotient H2/Γ(2), where
Γ(2) is the principal congruence subgroup Γ(2) = {γ ∈ PSL(2,Z) : γ ≡ I (mod 2)} of the
modular group PSL(2,Z). In this case we have H1(H2/Γ(2),Z) ∼= Z2 and

lim
T→∞

sup
α∈Z2

∣∣∣∣∣∣T
3πα(T )
eT

− 1
2

3 + 4π2

T 2 (α2
1 + α2

2 − α1α2)(
1 + 4π2α2

1
T 2

)(
1 + 4π2α2

2
T 2

)(
1 + 4π2(α1−α2)2

T 2

)
∣∣∣∣∣∣ = 0.

Theorem 1 may be used to describe the asymptotics the counting function for homology
classes which are allowed to vary with T . Note that e−〈β,A−1β〉/4TI (2µ(M)α/T ) is a
function of (α/T, β/

√
T ). Hence, if homology classes (α(T ), β(T )) are chosen so that

(α(T )/T, β(T )/
√
T ) → (θ, ϕ), as T →∞, then the leading asymptotic (0.1) is replaced by

lim
T→∞

T p+g+1π(α(T ),β(T ))(T )
eT

=
1

2g+1

(
2p
p

)
(2g + p− 1)p+ge−〈θ,A−1θ〉/4I(2µ(M)ϕ).

The analogue of (0.1) in the compact case was established by Katsuda and Sunada [11]
and Phillips and Sarnak [15], where, for a surface of genus g, it takes the form

lim
T→∞

T g+1πβ(T )
eT

= (g − 1)g.

In fact, [15] contains a more detailed asymptotic expansion and results valid for higher
dimensional compact hyperbolic manifolds. (Related results for variable negative curvature
surfaces and manifolds are contained in [1], [10], [12], [13], [16], [17].) Epstein’s paper [4]
also contains analogues of (0.1) for finite volume hyperbolic manifolds of dimension ≥ 3.
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For such a manifold M , the most interesting new feature is that the polynomial term
T p+g+1 has to be modified according to whether dimM = 3 or dimM ≥ 4. More recently,
Babillot and Peigné [2] have made a detailed study of the behaviour of π(α,β)(T ) for (infinite
volume) quotients of hyperbolic space by Schottky groups with cusps. In particular, they
have understood the dependence of the asymptotics on the ranks of the cusps. A version of
Theorem 1 for compact variable negative curvature surfaces was obtained in [18]; however,
in the constant curvature case the result may be more easily deduced directly from the
analysis in [15].

It is interesting to compare Theorem 1 with the stable laws for the geodesic flow on
surfaces with cusps obtained by Guivarc’h and Le Jan [7], [8], [14]. (More recent papers
consider the stable laws relative to cusps associated to certain infinite volume surfaces and
higher dimensional manifolds [3], [5].)

Notation. For given functions A(T ) and B(T ) > 0, we shall write A(T ) = O(B(T )) if
|A(T )| ≤ CB(T ), for some constant C > 0.

1. Preliminaries

The fundamental group π1M has the simple presentation

〈
γ1, . . . , γ2g, δ0, δ1, . . . , δp

∣∣∣∣∣∣
g∏

i=1

γiγi+gγ
−1
i γ−1

i+g

p∏
j=0

δj = 1

〉
.

The integer first homology group H1(M,Z) may be identified with the abelianization
π1M/[π1M,π1M ] and this induces a map [·] : π1M → H1(M,Z), called the Hurewicz
map [6, Chapter 12c]. Then (α, β) ∈ Zp+2g represents the homology class

(α, β) =
p∑

j=1

αj [δj ] +
2g∑

k=1

βk[γk].

The character group of H1(M,Z) is the torus Tp+2g and may be given co-ordinates (ξ, η)
with ξ = (ξ1, . . . , ξp) ∈ [−π, π]p, η = (η1, . . . , η2g) ∈ [−π, π]2g by

χ(ξ,η)(α, β) = ei(
∑p

j=1 ξjαj+
∑2g

k=1 ηkβk).

For convenience, we shall write ξ0 = ξ1 + · · ·+ ξp.
Choose simple closed curves C1, . . . , C2g lying in γ1, . . . , γ2g, respectively. LetM denote

the compactification of M and identify H1(M,R) with the space of harmonic cusp forms
on M (i.e. forms which vanish at the cusps of M). Introduce a basis ω1, . . . , ω2g for
H1(M,R) by

∫
Ci
ωj = δij and define a 2g × 2g matrix A = (aij) by

aij =
1

µ(M)

∫
M

ωi ∧ ∗ωj .
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Then detA = µ(M)−2g. The matrix A is positive definite and defines the inner product

〈η,Aη〉 =
1

µ(M)

∫
M

η ∧ ∗η

on H1(M,R) ∼= R2g.
We shall now summarize some results from [4]. Let ∆ denote the Laplace-Beltrami op-

erator on H2 and let F be a fundamental domain for the action of π1M on H2. For (ξ, η) ∈
Tp+2g define the twisted Laplace operator ∆(ξ,η) by ∆(ξ,η)f = ∆f for f ∈ C∞(H2)∩C∞

0 (F)
with

f(γx) = χ(ξ,η)([γ])f(x), x ∈ H2, γ ∈ π1M.

(We have been deliberately vague about the domains of definition of these operators; full
details may be found in [4].) Then, for (ξ, η) in a neighbourhood of (0, 0), ∆(ξ,η) has a
unique eigenvalue λ(ξ, η) ≥ 0 such that (ξ, η) 7→ λ(ξ, η) is continuous and λ(0, 0) = 0.
Furthermore, λ is monotone on each ray {(tξ, tη) : 0 ≤ t ≤ 1}.

We shall write B(ε1, ε2) = {(ξ, η) : ||ξ|| < ε1, ||η|| < ε2} and, for δ > 0, κ > 0,

D(δ) = D(δ, κ) =
p⋂

j=0

{(ξ, η) : |ξj | ≥ e−δ/(||ξ||1−κ+||η||2)}.

The following estimates on λ(ξ, η) are established in [4].

Proposition 1. Given κ > 0, there exist ε1, ε2 > 0 such that the following hold:
(i) there exist constants C1, C2 > 0 such that, for (ξ, η) ∈ B(ε1, ε2),

C1(||ξ||+ ||η||2) ≤ λ(ξ, η) ≤ C2(||ξ||1−κ + ||η||2);

(ii) given δ > 0, there exists ∆(ε1, ε2, δ) > 0 such that, for (ξ, η) ∈ B(ε1, ε2) ∩D(δ),

1
2µ(M)

p∑
j=0

|ξj |(1−∆(ε1, ε2, δ)) + 〈η,Aη〉 −∆(ε1, ε2, δ)||η||2 ≤ λ(ξ, η)

≤ 1
2µ(M)

p∑
j=0

|ξj |(1 + ∆(ε1, ε2, δ)) + 〈η,Aη〉+ ∆(ε1, ε2, δ)||η||2.

Furthermore, ∆(ε1, ε2, δ) → 0 as (ε1, ε2, δ) → 0.

Write %(ξ, η) = i
√
λ(ξ, η)− 1/4 + 1/2, so that %(ξ, η) ≥ 0 and %(0, 0) = 0. For future

use, we have the estimates

e−%(ξ,η)T

1/2− %(ξ, η)
= e−(λ(ξ,η)+O(λ2(ξ,η)))T (2 +O(λ(ξ, η))) = O(e−Cλ(ξ,η)T ), (1.1)

for some C > 0.
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2. An Auxiliary Function

In this section, we follow the lines of the analysis in Section 8 of [4] but taking into
account the dependence of our quantities on (α, β). For a closed geodesic γ, let l(γ) denote
its length and [γ] its homology class. Set

R(α,β)(T ) =
∑

l(γ)≤T
[γ]=(α,β)

l(γ)
2 sinh(l(γ)/2)

,

where the sum is taken over prime closed geodesics γ of length l(γ) ≤ T and homology
class [γ] = (α, β). Then, as in [4], the following estimate may be deduced from the Selberg
Trace Formula for the twisted Laplacians ∆(ξ,η) [9, p.302]. (The uniformity may be easily
checked.)

Proposition 2 [4].

R(α,β)(T )
eT/2

=
1

(2π)p+2g

∫
N

e−i〈(α,β),(ξ,η)〉e−%(ξ,η)T

1/2− %(ξ, η)
dξdη +O

(
e−aT

)
,

where N is a small neighbourhood of 0 in Tp+2g and a > 0. Furthermore, a and the implied
constant in the big-O term are independent of (α, β).

Fix 0 < κ < 1, 0 < τ < 1/2 and σ ∈ (2τκ, 2τ). Write ε1 = 1/T 2τ , ε2 = 1/T τ , and
δ = 1/T 2τ−σ. Then, for T sufficiently large, the estimates of Proposition 1 will hold. Write
∆(T ) = ∆(ε1, ε2, δ). The next lemma allows us to replace N by the set B(ε1, ε2) ∩D(δ),
where we have good estimates on λ(ξ, η) and hence on %(ξ, η).

Lemma 1. For any k ≥ 1,

R(α,β)(T )
eT/2

=
1

(2π)p+2g

∫
B(ε1,ε2)∩D(δ)

e−%(ξ,η)T e−i〈(α,β),(ξ,η)〉

1/2− %(ξ, η)
dξdη +O

(
1
T k

)
.

Furthermore, the implied constants in the big-O estimates are independent of (α, β).

Proof. Clearly,∣∣∣∣∣ (2π)p+2g

eT/2
R(α,β)(T )−

∫
B(ε1,ε2)∩D(δ)

e−i〈(α,β),(ξ,η)〉e−%(ξ,η)T

1/2− %(ξ, η)
dξdη

∣∣∣∣∣
≤
∫

N\B(ε1,ε2)

e−%(ξ,η)T

1/2− %(ξ, η)
dξdη +

∫
B(ε1,ε2)∩D(δ)c

e−%(ξ,η)T

1/2− %(ξ, η)
dξdη +O(e−aT ).

To prove the lemma, we shall estimate the two integrals on the Right Hand Side.
In the first case we have, using Proposition 1(i) and the fact that λ is monotone on rays

{(tξ, tη) : 0 ≤ t ≤ 1},∫
N\B(ε1,ε2)

e−%(ξ,η)T

1/2− %(ξ, η)
dξdη = O

(∫
N\B(ε1,ε2)

e−Cλ(ξ,η)T dξdη

)
= O(e−C(ε1+ε22)T ) = O(e−CT 1−2τ

).
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Since τ < 1/2, this is O(T−k), for any k ≥ 1.
To estimate the second integral, notice first that

B(ε1, ε2) ∩D(δ)c ⊂
p⋃

j=0

{
(ξ, η) : |ξj | < e−δ/(ε1−κ

1 +ε22), ||ξ|| < ε1, ||η|| < ε2

}
.

Thus ∫
B(ε1,ε2)∩D(δ)c

e−%(ξ,η)T

1/2− %(ξ, η)
dξdη = O

(∫
B(ε1,ε2)∩D(δ)c

e−Cλ(ξ,η)T dξdη

)

= O

∫
||η||<ε2

∫ e
−δ/(ε

1−κ
1 +ε22)

0

∫ ε1

0

· · ·
∫ ε1

0

e−C(ξ1+···+ξp+||η||2)T dξ1 · · · dξpdη


= O(εp−1

1 ε2g
2 e

−δ/(ε1−κ
1 +ε22))

= O

(
e−T σ−2τκ

T 2τ(g+p−1)

)
.

Since σ > 2τκ, this last term is O(T−k), for any k ≥ 1.

Next we wish to replace the exponent −%(ξ, η)T in the integral over B(ε1, ε2) ∩ D(δ)
with the expression given in Proposition 1(ii). For simplicity, we shall write Ξ(ξ) =
(
∑p

j=0 |ξj |)/2µ(M).

Lemma 2.

lim
T→∞

sup
(α,β)∈Zp+2g

T p+g

∣∣∣∣∣
∫

B(ε1,ε2)∩D(δ)

e−i〈(α,β),(ξ,η)〉e−%(ξ,η)T

1/2− %(ξ, η)
dξdη

−
∫

B(ε1,ε2)

e−i〈(α,β),(ξ,η)〉e−(Ξ(ξ)+〈η,Aη〉)T

1/2− %(ξ, η)
dξdη

∣∣∣∣∣ = 0.

Proof. Applying equation (1.1) we have that, for any k ≥ 1,

T p+g

∣∣∣∣∣
∫

B(ε1,ε2)∩D(δ)

{
e−i〈(α,β),(ξ,η)〉e−%(ξ,η)T

1/2− %(ξ, η)
− e−(Ξ(ξ)+〈η,Aη〉)T e−i〈(α,β),(ξ,η)〉

1/2− %(ξ, η)

}
dξdη

∣∣∣∣∣
≤ T p+g

∫
B(ε1,ε2)∩D(δ)

e−(Ξ(ξ)+〈η,Aη〉)T

1/2− %(ξ, η)

(
e(Ξ(ξ)+||η||2)∆(T ) − 1

)
dξdη

≤ T p+g

∫
B(ε1,ε2)

e−(Ξ(ξ)+〈η,Aη〉)T
(
e(Ξ(ξ)+||η||2)∆(T ) − 1

)
dξdη +O

(
1
T k

)
=
∫

B(ε1T,ε2
√

T )

e−(Ξ(ξ)+〈η,Aη〉)
(
e(Ξ(ξ)+||η||2)∆(T )/T − 1

)
dξdη +O

(
1
T k

)
,
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which converges to zero, as T →∞.
We can replace the integral over B(ε1, ε2) ∩ D(δ) by one over B(ε1, ε2) by observing

that, as in the proof of Lemma 1, for any k ≥ 1,∫
B(ε1,ε2)∩D(δ)

e−i〈(α,β),(ξ,η)〉e−(Ξ(ξ)+〈η,Aη〉)T

1/2− %(ξ, η)
dξdη

=
∫

B(ε1,ε2)

e−i〈(α,β),(ξ,η)〉e−(Ξ(ξ)+〈η,Aη〉)T

1/2− %(ξ, η)
dξdη +O

(
1
T k

)
.

The next result gives a uniform estimate on e−T/2T p+gR(α,β)(T ). Recall that

I(x) =
∫

Rp

e−i〈x,ξ〉e−
∑p

j=0 |ξj |dξ.

Proposition 3.

lim
T→∞

sup
(α,β)∈Zp+2g

∣∣∣∣T p+gR(α,β)(T )
eT/2

− (2g + p− 1)p+g

2g−p
e−〈β,A−1β〉/4TI

(
2µ(M)α

T

)∣∣∣∣ = 0.

Proof. Combining Lemma 1 and Lemma 2, we have that

T p+gR(α,β)(T )
eT/2

− T p+g

(2π)p+2g

∫
B(ε1,ε2)

e−i〈(α,β),(ξ,η)〉e−(Ξ(ξ)+〈η,Aη〉)T

1/2− %(ξ, η)
dξdη → 0, as T →∞,

uniformly in (α, β).
Our first step is to replace the above integral over B(ε1, ε2) by one over Rp+2g. First

note that |(1/2− %(ξ, η))−1 − 2| = O(λ(ξ, η)) = O(||ξ||1−κ + ||η||2)) on B(ε1, ε2), so that

T p+g

∣∣∣∣∣
∫

B(ε1,ε2)

e−i〈(α,β),(ξ,η)〉
{
e−(Ξ(ξ)+〈η,Aη〉)T

1/2− %(ξ, η)
− 2e−(Ξ(ξ)+〈η,Aη〉)T

}
dξdη

∣∣∣∣∣
=

∣∣∣∣∣
∫

B(ε1T,ε2
√

T )

e−i〈(α,β),(ξ/T,η/
√

T )〉
{

e−(Ξ(ξ)+〈η,Aη〉)

1/2− %(ξ/T, η/
√
T )

− 2e−(Ξ(ξ)+〈η,Aη〉)
}
dξdη

∣∣∣∣∣
= O

(
(ε1−κ

1 + ε22)
∫

B(ε1T,ε2
√

T )

e−(Ξ(ξ)+〈η,Aη〉)dξdη

)
= O(ε1−κ

1 + ε22) = O(T−2τ(1−κ))

(since
∫

Rp e
−(Ξ(ξ)+〈η,Aη〉)dξdη < +∞). Next we observe that∫

Rp+2g\B(ε1,ε2)

e−i〈(α,β),(ξ,η)〉e−(Ξ(ξ)+〈η,Aη〉)T dξdη = O(e−cT ),
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for some c > 0, uniformly in (α, β). Thus,

T p+gR(α,β)(T )
eT/2

− 2
(2π)p+2g

∫
Rp+2g

e−i〈(α,β),(ξ,η)〉e−(Ξ(ξ)+〈η,Aη〉)T dξdη → 0, as T →∞,

uniformly in (α, β).
It remains to evaluate the integral. Firstly,

T g

(2π)2g

∫
R2g

e−i〈β,η〉e−〈η,Aη〉T dη =
1

(2π)g

1
2g

1√
detA

e−〈β,A−1β〉/4T .

Also
T p

(2π)p

∫
Rp

e−i〈α,ξ〉e−Ξ(ξ)T dξ =
(2µ(M))p

(2π)p
I
(

2µ(M)α
T

)
.

Since detA = µ(M)−2g, this completes the proof.

3. Proof of Theorem 1

In this section we shall transfer the uniform estimate on R(α,β)(T ) contained in Propo-
sition 3 into the estimate on π(α,β)(T ) required by Theorem 1. All big-O estimates will be
independent of (α, β). To simplify some expressions we shall write n = p + g + 1. First
note that, using integration by parts,

π(α,β)(T ) =
∫ T

1

2 sinh(t/2)
t

dR(α,β)(t) +O(1)

=
∫ T

1

et/2

t
dR(α,β)(t) +O(eT/2)

=
eT/2

T
R(α,β)(T )−

∫ T

1

(
et/2

2t
− et/2

t2

)
R(α,β)(t)dt+O(eT/2).

Thus, we have the estimate

Tn

eT
π(α,β)(T )− Tn−1

2eT/2
R(α,β)(T )

=
Tn−1

eT/2
R(α,β)(T )− Tn

eT

∫ T

1

(
et/2

2t
− et/2

t2

)
R(α,β)(t)dt+O(Tne−T/2).

Since R(α,β)(T ) = O(eT/2/T p+g), we have that

Tn

eT

∫ T

1

et/2

t2
R(α,β)(t)dt =

Tn

eT

(∫ T/2

1

+
∫ T

T/2

)
et/2

t2
R(α,β)(t)dt

= O

(
Tn

eT

∫ T/2

1

et

tn+1
dt

)
+O

(
Tn

eT

∫ T

T/2

et

tn+1
dt

)
= O(e−T/2) +O(T−1).
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Thus, to prove Theorem 1, it suffices to show that

lim
T→∞

sup
(α,β)∈Zp+2g

∣∣∣∣∣Tn−1

2eT/2
R(α,β)(T )− Tn

2eT

∫ T

1

et/2

t
R(α,β)(t)dt

∣∣∣∣∣ = 0.

By Proposition 3, we may write

sup
(α,β)∈Zp+2g

∣∣∣∣Tn−1

eT/2
R(α,β)(T )− C(p, g)e−〈β,A−1β〉/4TI(α′/T )

∣∣∣∣ ≤ ψ(T ),

where C(p, g) = 2−g+p+1(2g+ p− 1)p+g, α′ = 2µ(M)α, and where ψ(T ) decreases to zero
as T →∞. Hence

sup
(α,β)∈Zp+2g

∣∣∣∣∣Tn−1

2eT/2
R(α,β)(T )− Tn

2eT

∫ T

1

et/2

t
R(α,β)(t)dt

∣∣∣∣∣
≤ ψ(T )

2
+
Tn

2eT

∫ T

1

et

tn
ψ(t)dt

+
C(p, g)

2
sup

(α,β)∈Zp+2g

∣∣∣∣∣e−〈β,A−1β〉/4TI(α′/T )− Tn

eT

∫ T

1

et

tn
e−〈β,A−1β〉/4tI(α′/t)dt

∣∣∣∣∣ .
We have

Tn

2eT

∫ T

1

et

tn
ψ(t)dt =

Tn

2eT

(∫ T/2

1

+
∫ T

T/2

)
et

tn
ψ(t)dt

= O(Tne−T/2) +O(ψ(T/2)),

so that, to complete the proof, we need to show that

lim
T→∞

sup
(α,β)∈Zp+2g

∣∣∣∣∣e−〈β,A−1β〉/4TI(α′/T )− Tn

eT

∫ T

1

et

tn
e−〈β,A−1β〉/4tI(α′/t)dt

∣∣∣∣∣ = 0.

First note that

Tn

eT

∫ T−T 1/2

1

et

tn
e−〈β,A−1β〉/4tI(α′/t)dt = O(Tne−T 1/2

)

so we need only consider the integral between T − T 1/2 and T . However,∣∣∣∣∣e−〈β,A−1β〉/4TI(α′/T )− Tn

eT

∫ T

T−T 1/2

et

tn
e−〈β,A−1β〉/4tI(α′/t)dt

∣∣∣∣∣
≤

∣∣∣∣∣e−〈β,A−1β〉/4TI(α′/T )− Tn

eT
e−〈β,A−1β〉/4TI(α′/T )

∫ T

T−T 1/2

et

tn
dt

∣∣∣∣∣
+
Tn

eT

∫ T

T−T 1/2

et

tn
dt sup

t∈[T−T 1/2,T ]

∣∣∣e−〈β,A−1β〉/4TI(α′/T )− e−〈β,A−1β〉/4tI(α′/t)
∣∣∣ .

Clearly, the first term on the Right Hand Side above is of order O(e−T 1/2
).
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Lemma 3.

sup
t∈[T−T 1/2,T ]

|e−〈β,A−1β〉/4T − e−〈β,A−1β〉/4t| = O(T−1/2) (3.1)

and
sup

t∈[T−T 1/2,T ]

|I(α′/T )− I(α′/t)| = O(T−1/2). (3.2)

Proof. By the Mean Value Theorem, the Left Hand Side in (3.1) is of order

O

(
〈β,A−1β〉
T 3/2

e−〈β,A−1β〉/4T

)

and a simple calculation shows this is O(T−1/2). Again by the Mean Value Theorem, the
Left Hand Side in (3.2) is of order

O

T−1/2

∣∣∣∣∣∣
p∑

j=1

αj

θT

∂I(α/θT )
∂xj

∣∣∣∣∣∣
 ,

for some θT ∈ (T − T 1/2, T ). To show that the required O(T−1/2) estimate again holds,
we shall show that

sup
x∈Rp

∣∣∣∣∣∣
p∑

j=1

xj
∂I(x)
∂xj

∣∣∣∣∣∣ < +∞. (3.3)

We may write

p∑
j=1

xj
∂I(x)
∂xj

=
∂

∂τ

∫
Rp

e−iτ〈x,ξ〉e−
∑p

j=0 |ξj |dξ

∣∣∣∣
τ=1

=
∂

∂τ

(
τ−p

∫
Rp

e−i〈x,y〉e−
∑p

j=0 |yj |/τdy

)∣∣∣∣
τ=1

,

where we have made the substitution y = τξ. The bound (3.3) now follows from the
Riemann-Lebesgue Lemma.

Applying the lemma, we have that

sup
t∈[T−T 1/2,T ]

∣∣∣e−〈β,A−1β〉/4TI(α′/T )− e−〈β,A−1β〉/4tI(α′/t)
∣∣∣ = O(T−1/2)

and the proof of Theorem 1 is complete.
10
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