UNIFORM ESTIMATES FOR CLOSED GEODESICS AND HOMOLOGY ON FINITE AREA HYPERBOLIC SURFACES

Richard Sharp
University of Manchester

Abstract

In this note, we study the distribution of closed geodesics in homology on a finite area hyperbolic surface. We obtain an estimate which is uniform as the homology class varies, refining an asymptotic formula due to C. Epstein.

0. Introduction

Let M be a finite area hyperbolic surface, i.e., the quotient of the hyperbolic plane \mathbb{H}^{2} by the free action of a group of isometries such that the fundamental domain has finite area. It is well-known that if we define $\pi(T)$ to be the number of (prime) closed geodesics on M of length at most T then $\lim _{T \rightarrow \infty} e^{-T} T \pi(T)=1$. A more delicate problem is to estimate the number of closed geodesics lying in a prescribed homology class. Here there are striking differences depending on whether or not M is compact. The compact case has been studied in [11],[15] and [18]; here we shall concentrate on the case where M has at least one cusp.

Suppose that M has genus g and $p+1$ cusps. Then M has area $\mu(M)=2 \pi(2 g+p-1)$ and $H_{1}(M, \mathbb{Z}) \cong \mathbb{Z}^{p+2 g}$. We shall write a typical element of $H_{1}(M, \mathbb{Z})$ as (α, β), where $\alpha \in \mathbb{Z}^{p}$ and $\beta \in \mathbb{Z}^{2 g}$, and use $\pi_{(\alpha, \beta)}(T)$ to denote the number of (prime) closed geodesics in (α, β) of length at most T. Epstein [4] has shown that

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \frac{T^{p+g+1} \pi_{(\alpha, \beta)}(T)}{e^{T}}=\frac{1}{2^{g+1}}\binom{2 p}{p}(2 g+p-1)^{p+g} . \tag{0.1}
\end{equation*}
$$

In this paper, we shall be interested in refining Epstein's result to obtain a uniform estimate as the class (α, β) is allowed to vary. This is contained in the following theorem.

Theorem 1. Let M be a finite area hyperbolic surface of genus g with $p+1$ cusps. Then there exists a strictly positive definite $2 g \times 2 g$ matrix A of inner products of cusp forms such that

$$
\lim _{T \rightarrow \infty} \sup _{(\alpha, \beta) \in \mathbb{Z}^{p+2 g}}\left|\frac{T^{p+g+1} \pi_{(\alpha, \beta)}(T)}{e^{T}}-\frac{(2 g+p-1)^{p+g}}{2^{g-p+1}} e^{-\left\langle\beta, A^{-1} \beta\right\rangle / 4 T} \mathcal{I}\left(\frac{2 \mu(M) \alpha}{T}\right)\right|=0,
$$

The author was supported by an EPSRC Advanced Research Fellowship.
where

$$
\mathcal{I}(x)=\int_{\mathbb{R}^{p}} e^{-i\langle x, \xi\rangle} e^{-\left(\sum_{j=1}^{p}\left|\xi_{j}\right|+\left|\xi_{1}+\cdots+\xi_{p}\right|\right)} d \xi
$$

(If $p=0$ then we set $\mathcal{I}(x) \equiv 1$.)
Epstein has calculated that

$$
\mathcal{I}(0)=\frac{1}{2^{p}}\binom{2 p}{p}
$$

Thus, in particular, our result agrees with (0.1). The integral $\mathcal{I}(x)$ may be evaluated by means of a slightly more general version of the scheme considered in the appendix to [4]. The main point is that, for each subset $\mathcal{S} \subset\{1,2, \ldots, p\}$, one considers separately the integral over $\left\{\left(\xi_{1}, \ldots, \xi_{p}\right) \in \mathbb{R}^{p}: \xi_{j} \geq 0, j \in \mathcal{S}, \xi_{j} \leq 0, j \notin \mathcal{S}\right\}$. These calculations rapidly become complicated as p increases. Nevertheless, one can see that $\mathcal{I}(x)$ is a rational function and, for $p=1,2$, one can calculate that $\mathcal{I}(x)=4 /\left(4+x^{2}\right)$ and

$$
\mathcal{I}(x)=\frac{8\left(12+x_{1}^{2}+x_{2}^{2}-x_{1} x_{2}\right)}{\left(4+x_{1}^{2}\right)\left(4+x_{2}^{2}\right)\left(4+\left(x_{1}-x_{2}\right)^{2}\right)}
$$

respectively. We use this formula to give a more explicit estimate in the case of the thrice punctured sphere with hyperbolic metric. This surface is the quotient $\mathbb{H}^{2} / \Gamma(2)$, where $\Gamma(2)$ is the principal congruence subgroup $\Gamma(2)=\{\gamma \in P S L(2, \mathbb{Z}): \gamma \equiv I(\bmod 2)\}$ of the modular group $P S L(2, \mathbb{Z})$. In this case we have $H_{1}\left(\mathbb{H}^{2} / \Gamma(2), \mathbb{Z}\right) \cong \mathbb{Z}^{2}$ and

$$
\lim _{T \rightarrow \infty} \sup _{\alpha \in \mathbb{Z}^{2}}\left|\frac{T^{3} \pi_{\alpha}(T)}{e^{T}}-\frac{1}{2} \frac{3+\frac{4 \pi^{2}}{T^{2}}\left(\alpha_{1}^{2}+\alpha_{2}^{2}-\alpha_{1} \alpha_{2}\right)}{\left(1+\frac{4 \pi^{2} \alpha_{1}^{2}}{T^{2}}\right)\left(1+\frac{4 \pi^{2} \alpha_{2}^{2}}{T^{2}}\right)\left(1+\frac{4 \pi^{2}\left(\alpha_{1}-\alpha_{2}\right)^{2}}{T^{2}}\right)}\right|=0
$$

Theorem 1 may be used to describe the asymptotics the counting function for homology classes which are allowed to vary with T. Note that $e^{-\left\langle\beta, A^{-1} \beta\right\rangle / 4 T} \mathcal{I}(2 \mu(M) \alpha / T)$ is a function of $(\alpha / T, \beta / \sqrt{T})$. Hence, if homology classes $(\alpha(T), \beta(T))$ are chosen so that $(\alpha(T) / T, \beta(T) / \sqrt{T}) \rightarrow(\theta, \varphi)$, as $T \rightarrow \infty$, then the leading asymptotic (0.1) is replaced by

$$
\lim _{T \rightarrow \infty} \frac{T^{p+g+1} \pi_{(\alpha(T), \beta(T))}(T)}{e^{T}}=\frac{1}{2^{g+1}}\binom{2 p}{p}(2 g+p-1)^{p+g} e^{-\left\langle\theta, A^{-1} \theta\right\rangle / 4} \mathcal{I}(2 \mu(M) \varphi)
$$

The analogue of (0.1) in the compact case was established by Katsuda and Sunada [11] and Phillips and Sarnak [15], where, for a surface of genus g, it takes the form

$$
\lim _{T \rightarrow \infty} \frac{T^{g+1} \pi_{\beta}(T)}{e^{T}}=(g-1)^{g}
$$

In fact, [15] contains a more detailed asymptotic expansion and results valid for higher dimensional compact hyperbolic manifolds. (Related results for variable negative curvature surfaces and manifolds are contained in [1], [10], [12], [13], [16], [17].) Epstein's paper [4] also contains analogues of (0.1) for finite volume hyperbolic manifolds of dimension ≥ 3.

For such a manifold M, the most interesting new feature is that the polynomial term T^{p+g+1} has to be modified according to whether $\operatorname{dim} M=3$ or $\operatorname{dim} M \geq 4$. More recently, Babillot and Peigné [2] have made a detailed study of the behaviour of $\pi_{(\alpha, \beta)}(T)$ for (infinite volume) quotients of hyperbolic space by Schottky groups with cusps. In particular, they have understood the dependence of the asymptotics on the ranks of the cusps. A version of Theorem 1 for compact variable negative curvature surfaces was obtained in [18]; however, in the constant curvature case the result may be more easily deduced directly from the analysis in [15].

It is interesting to compare Theorem 1 with the stable laws for the geodesic flow on surfaces with cusps obtained by Guivarc'h and Le Jan [7], [8], [14]. (More recent papers consider the stable laws relative to cusps associated to certain infinite volume surfaces and higher dimensional manifolds [3], [5].)

Notation. For given functions $A(T)$ and $B(T)>0$, we shall write $A(T)=O(B(T))$ if $|A(T)| \leq C B(T)$, for some constant $C>0$.

1. Preliminaries

The fundamental group $\pi_{1} M$ has the simple presentation

$$
\left\langle\gamma_{1}, \ldots, \gamma_{2 g}, \delta_{0}, \delta_{1}, \ldots, \delta_{p} \mid \prod_{i=1}^{g} \gamma_{i} \gamma_{i+g} \gamma_{i}^{-1} \gamma_{i+g}^{-1} \prod_{j=0}^{p} \delta_{j}=1\right\rangle
$$

The integer first homology group $H_{1}(M, \mathbb{Z})$ may be identified with the abelianization $\pi_{1} M /\left[\pi_{1} M, \pi_{1} M\right]$ and this induces a map [•] : $\pi_{1} M \rightarrow H_{1}(M, \mathbb{Z})$, called the Hurewicz map [6 , Chapter 12c]. Then $(\alpha, \beta) \in \mathbb{Z}^{p+2 g}$ represents the homology class

$$
(\alpha, \beta)=\sum_{j=1}^{p} \alpha_{j}\left[\delta_{j}\right]+\sum_{k=1}^{2 g} \beta_{k}\left[\gamma_{k}\right] .
$$

The character group of $H_{1}(M, \mathbb{Z})$ is the torus $\mathbb{T}^{p+2 g}$ and may be given co-ordinates (ξ, η) with $\xi=\left(\xi_{1}, \ldots, \xi_{p}\right) \in[-\pi, \pi]^{p}, \eta=\left(\eta_{1}, \ldots, \eta_{2 g}\right) \in[-\pi, \pi]^{2 g}$ by

$$
\chi_{(\xi, \eta)}(\alpha, \beta)=e^{i\left(\sum_{j=1}^{p} \xi_{j} \alpha_{j}+\sum_{k=1}^{2 g} \eta_{k} \beta_{k}\right)}
$$

For convenience, we shall write $\xi_{0}=\xi_{1}+\cdots+\xi_{p}$.
Choose simple closed curves $C_{1}, \ldots, C_{2 g}$ lying in $\gamma_{1}, \ldots, \gamma_{2 g}$, respectively. Let \bar{M} denote the compactification of M and identify $H^{1}(\bar{M}, \mathbb{R})$ with the space of harmonic cusp forms on M (i.e. forms which vanish at the cusps of M). Introduce a basis $\omega_{1}, \ldots, \omega_{2 g}$ for $H^{1}(\bar{M}, \mathbb{R})$ by $\int_{C_{i}} \omega_{j}=\delta_{i j}$ and define a $2 g \times 2 g$ matrix $A=\left(a_{i j}\right)$ by

$$
a_{i j}=\frac{1}{\mu(M)} \int_{3} \omega_{i} \wedge * \omega_{j} .
$$

Then $\operatorname{det} A=\mu(M)^{-2 g}$. The matrix A is positive definite and defines the inner product

$$
\langle\eta, A \eta\rangle=\frac{1}{\mu(M)} \int_{M} \eta \wedge * \eta
$$

on $H^{1}(\bar{M}, \mathbb{R}) \cong \mathbb{R}^{2 g}$.
We shall now summarize some results from [4]. Let Δ denote the Laplace-Beltrami operator on \mathbb{H}^{2} and let \mathcal{F} be a fundamental domain for the action of $\pi_{1} M$ on \mathbb{H}^{2}. For $(\xi, \eta) \in$ $\mathbb{T}^{p+2 g}$ define the twisted Laplace operator $\Delta_{(\xi, \eta)}$ by $\Delta_{(\xi, \eta)} f=\Delta f$ for $f \in C^{\infty}\left(\mathbb{H}^{2}\right) \cap C_{0}^{\infty}(\overline{\mathcal{F}})$ with

$$
f(\gamma x)=\chi_{(\xi, \eta)}([\gamma]) f(x), \quad x \in \mathbb{H}^{2}, \gamma \in \pi_{1} M .
$$

(We have been deliberately vague about the domains of definition of these operators; full details may be found in [4].) Then, for (ξ, η) in a neighbourhood of $(0,0), \Delta_{(\xi, \eta)}$ has a unique eigenvalue $\lambda(\xi, \eta) \geq 0$ such that $(\xi, \eta) \mapsto \lambda(\xi, \eta)$ is continuous and $\lambda(0,0)=0$. Furthermore, λ is monotone on each ray $\{(t \xi, t \eta): 0 \leq t \leq 1\}$.

We shall write $B\left(\epsilon_{1}, \epsilon_{2}\right)=\left\{(\xi, \eta):\|\xi\|<\epsilon_{1},\|\eta\|<\epsilon_{2}\right\}$ and, for $\delta>0, \kappa>0$,

$$
D(\delta)=D(\delta, \kappa)=\bigcap_{j=0}^{p}\left\{(\xi, \eta):\left|\xi_{j}\right| \geq e^{-\delta /\left(\|\xi\|\left\|^{1-\kappa}+\right\| \eta \|^{2}\right)}\right\}
$$

The following estimates on $\lambda(\xi, \eta)$ are established in [4].
Proposition 1. Given $\kappa>0$, there exist $\epsilon_{1}, \epsilon_{2}>0$ such that the following hold:
(i) there exist constants $C_{1}, C_{2}>0$ such that, for $(\xi, \eta) \in B\left(\epsilon_{1}, \epsilon_{2}\right)$,

$$
C_{1}\left(\|\xi\|+\|\eta\|^{2}\right) \leq \lambda(\xi, \eta) \leq C_{2}\left(\|\xi\|^{1-\kappa}+\|\eta\|^{2}\right)
$$

(ii) given $\delta>0$, there exists $\Delta\left(\epsilon_{1}, \epsilon_{2}, \delta\right)>0$ such that, for $(\xi, \eta) \in B\left(\epsilon_{1}, \epsilon_{2}\right) \cap D(\delta)$,

$$
\begin{aligned}
& \frac{1}{2 \mu(M)} \sum_{j=0}^{p}\left|\xi_{j}\right|\left(1-\Delta\left(\epsilon_{1}, \epsilon_{2}, \delta\right)\right)+\langle\eta, A \eta\rangle-\Delta\left(\epsilon_{1}, \epsilon_{2}, \delta\right)\|\eta\|^{2} \leq \lambda(\xi, \eta) \\
& \leq \frac{1}{2 \mu(M)} \sum_{j=0}^{p}\left|\xi_{j}\right|\left(1+\Delta\left(\epsilon_{1}, \epsilon_{2}, \delta\right)\right)+\langle\eta, A \eta\rangle+\Delta\left(\epsilon_{1}, \epsilon_{2}, \delta\right)\|\eta\|^{2}
\end{aligned}
$$

Furthermore, $\Delta\left(\epsilon_{1}, \epsilon_{2}, \delta\right) \rightarrow 0$ as $\left(\epsilon_{1}, \epsilon_{2}, \delta\right) \rightarrow 0$.
Write $\varrho(\xi, \eta)=i \sqrt{\lambda(\xi, \eta)-1 / 4}+1 / 2$, so that $\varrho(\xi, \eta) \geq 0$ and $\varrho(0,0)=0$. For future use, we have the estimates

$$
\begin{equation*}
\frac{e^{-\varrho(\xi, \eta) T}}{1 / 2-\varrho(\xi, \eta)}=e^{-\left(\lambda(\xi, \eta)+O\left(\lambda^{2}(\xi, \eta)\right)\right) T}(2+O(\lambda(\xi, \eta)))=O\left(e^{-C \lambda(\xi, \eta) T}\right) \tag{1.1}
\end{equation*}
$$

for some $C>0$.

2. An Auxiliary Function

In this section, we follow the lines of the analysis in Section 8 of [4] but taking into account the dependence of our quantities on (α, β). For a closed geodesic γ, let $l(\gamma)$ denote its length and $[\gamma]$ its homology class. Set

$$
R_{(\alpha, \beta)}(T)=\sum_{\substack{l(\gamma) \leq T \\[\gamma]=(\alpha, \beta)}} \frac{l(\gamma)}{2 \sinh (l(\gamma) / 2)},
$$

where the sum is taken over prime closed geodesics γ of length $l(\gamma) \leq T$ and homology class $[\gamma]=(\alpha, \beta)$. Then, as in [4], the following estimate may be deduced from the Selberg Trace Formula for the twisted Laplacians $\Delta_{(\xi, \eta)}[9$, p.302]. (The uniformity may be easily checked.)
Proposition 2 [4].

$$
\frac{R_{(\alpha, \beta)}(T)}{e^{T / 2}}=\frac{1}{(2 \pi)^{p+2 g}} \int_{N} \frac{e^{-i\langle(\alpha, \beta),(\xi, \eta)\rangle} e^{-\varrho(\xi, \eta) T}}{1 / 2-\varrho(\xi, \eta)} d \xi d \eta+O\left(e^{-a T}\right),
$$

where N is a small neighbourhood of 0 in $\mathbb{T}^{p+2 g}$ and $a>0$. Furthermore, a and the implied constant in the big- O term are independent of (α, β).

Fix $0<\kappa<1,0<\tau<1 / 2$ and $\sigma \in(2 \tau \kappa, 2 \tau)$. Write $\epsilon_{1}=1 / T^{2 \tau}, \epsilon_{2}=1 / T^{\tau}$, and $\delta=1 / T^{2 \tau-\sigma}$. Then, for T sufficiently large, the estimates of Proposition 1 will hold. Write $\Delta(T)=\Delta\left(\epsilon_{1}, \epsilon_{2}, \delta\right)$. The next lemma allows us to replace N by the set $B\left(\epsilon_{1}, \epsilon_{2}\right) \cap D(\delta)$, where we have good estimates on $\lambda(\xi, \eta)$ and hence on $\varrho(\xi, \eta)$.
Lemma 1. For any $k \geq 1$,

$$
\frac{R_{(\alpha, \beta)}(T)}{e^{T / 2}}=\frac{1}{(2 \pi)^{p+2 g}} \int_{B\left(\epsilon_{1}, \epsilon_{2}\right) \cap D(\delta)} \frac{e^{-\varrho(\xi, \eta) T} e^{-i\langle(\alpha, \beta),(\xi, \eta)\rangle}}{1 / 2-\varrho(\xi, \eta)} d \xi d \eta+O\left(\frac{1}{T^{k}}\right) .
$$

Furthermore, the implied constants in the big- O estimates are independent of (α, β).
Proof. Clearly,

$$
\begin{aligned}
& \left|\frac{(2 \pi)^{p+2 g}}{e^{T / 2}} R_{(\alpha, \beta)}(T)-\int_{B\left(\epsilon_{1}, \epsilon_{2}\right) \cap D(\delta)} \frac{e^{-i\langle(\alpha, \beta),(\xi, \eta)\rangle} e^{-\varrho(\xi, \eta) T}}{1 / 2-\varrho(\xi, \eta)} d \xi d \eta\right| \\
& \leq \int_{N \backslash B\left(\epsilon_{1}, \epsilon_{2}\right)} \frac{e^{-\varrho(\xi, \eta) T}}{1 / 2-\varrho(\xi, \eta)} d \xi d \eta+\int_{B\left(\epsilon_{1}, \epsilon_{2}\right) \cap D(\delta)^{c}} \frac{e^{-\varrho(\xi, \eta) T}}{1 / 2-\varrho(\xi, \eta)} d \xi d \eta+O\left(e^{-a T}\right) .
\end{aligned}
$$

To prove the lemma, we shall estimate the two integrals on the Right Hand Side.
In the first case we have, using Proposition 1(i) and the fact that λ is monotone on rays $\{(t \xi, t \eta): 0 \leq t \leq 1\}$,

$$
\begin{aligned}
& \int_{N \backslash B\left(\epsilon_{1}, \epsilon_{2}\right)} \frac{e^{-\varrho(\xi, \eta) T}}{1 / 2-\varrho(\xi, \eta)} d \xi d \eta=O\left(\int_{N \backslash B\left(\epsilon_{1}, \epsilon_{2}\right)} e^{-C \lambda(\xi, \eta) T} d \xi d \eta\right) \\
& =O\left(e^{-C\left(\epsilon_{1}+\epsilon_{2}^{2}\right) T}\right)=O\left(e^{-C T^{1-2 \tau}}\right) .
\end{aligned}
$$

Since $\tau<1 / 2$, this is $O\left(T^{-k}\right)$, for any $k \geq 1$.
To estimate the second integral, notice first that

$$
B\left(\epsilon_{1}, \epsilon_{2}\right) \cap D(\delta)^{c} \subset \bigcup_{j=0}^{p}\left\{(\xi, \eta):\left|\xi_{j}\right|<e^{-\delta /\left(\epsilon_{1}^{1-\kappa}+\epsilon_{2}^{2}\right)},\|\xi\|<\epsilon_{1},\|\eta\|<\epsilon_{2}\right\}
$$

Thus

$$
\begin{aligned}
& \int_{B\left(\epsilon_{1}, \epsilon_{2}\right) \cap D(\delta)^{c}} \frac{e^{-\varrho(\xi, \eta) T}}{1 / 2-\varrho(\xi, \eta)} d \xi d \eta=O\left(\int_{B\left(\epsilon_{1}, \epsilon_{2}\right) \cap D(\delta)^{c}} e^{-C \lambda(\xi, \eta) T} d \xi d \eta\right) \\
& =O\left(\int_{\|\eta\|<\epsilon_{2}} \int_{0}^{e^{-\delta /\left(\epsilon_{1}^{1-\kappa}+\epsilon_{2}^{2}\right)}} \int_{0}^{\epsilon_{1}} \cdots \int_{0}^{\epsilon_{1}} e^{-C\left(\xi_{1}+\cdots+\xi_{p}+\|\eta\|^{2}\right) T} d \xi_{1} \cdots d \xi_{p} d \eta\right) \\
& =O\left(\epsilon_{1}^{p-1} \epsilon_{2}^{2 g} e^{-\delta /\left(\epsilon_{1}^{1-\kappa}+\epsilon_{2}^{2}\right)}\right) \\
& =O\left(\frac{e^{-T^{\sigma-2 \tau \kappa}}}{T^{2 \tau(g+p-1)}}\right)
\end{aligned}
$$

Since $\sigma>2 \tau \kappa$, this last term is $O\left(T^{-k}\right)$, for any $k \geq 1$.
Next we wish to replace the exponent $-\varrho(\xi, \eta) T$ in the integral over $B\left(\epsilon_{1}, \epsilon_{2}\right) \cap D(\delta)$ with the expression given in Proposition 1(ii). For simplicity, we shall write $\Xi(\xi)=$ $\left(\sum_{j=0}^{p}\left|\xi_{j}\right|\right) / 2 \mu(M)$.

Lemma 2.

$$
\begin{aligned}
\lim _{T \rightarrow \infty} \sup _{(\alpha, \beta) \in \mathbb{Z}^{p+2 g}} T^{p+g} & \left\lvert\, \int_{B\left(\epsilon_{1}, \epsilon_{2}\right) \cap D(\delta)} \frac{e^{-i\langle(\alpha, \beta),(\xi, \eta)\rangle} e^{-\varrho(\xi, \eta) T}}{1 / 2-\varrho(\xi, \eta)} d \xi d \eta\right. \\
& \left.-\int_{B\left(\epsilon_{1}, \epsilon_{2}\right)} \frac{e^{-i\langle(\alpha, \beta),(\xi, \eta)\rangle} e^{-(\Xi(\xi)+\langle\eta, A \eta\rangle) T}}{1 / 2-\varrho(\xi, \eta)} d \xi d \eta \right\rvert\,=0 .
\end{aligned}
$$

Proof. Applying equation (1.1) we have that, for any $k \geq 1$,

$$
\begin{aligned}
& T^{p+g}\left|\int_{B\left(\epsilon_{1}, \epsilon_{2}\right) \cap D(\delta)}\left\{\frac{e^{-i\langle(\alpha, \beta),(\xi, \eta)\rangle} e^{-\varrho(\xi, \eta) T}}{1 / 2-\varrho(\xi, \eta)}-\frac{e^{-(\Xi(\xi)+\langle\eta, A \eta\rangle) T} e^{-i\langle(\alpha, \beta),(\xi, \eta)\rangle}}{1 / 2-\varrho(\xi, \eta)}\right\} d \xi d \eta\right| \\
& \leq T^{p+g} \int_{B\left(\epsilon_{1}, \epsilon_{2}\right) \cap D(\delta)} \frac{e^{-(\Xi(\xi)+\langle\eta, A \eta\rangle) T}}{1 / 2-\varrho(\xi, \eta)}\left(e^{\left(\Xi(\xi)+\|\eta\|^{2}\right) \Delta(T)}-1\right) d \xi d \eta \\
& \leq T^{p+g} \int_{B\left(\epsilon_{1}, \epsilon_{2}\right)} e^{-(\Xi(\xi)+\langle\eta, A \eta\rangle) T}\left(e^{\left(\Xi(\xi)+\|\eta\|^{2}\right) \Delta(T)}-1\right) d \xi d \eta+O\left(\frac{1}{T^{k}}\right) \\
& =\int_{B\left(\epsilon_{1} T, \epsilon_{2} \sqrt{T}\right)} e^{-(\Xi(\xi)+\langle\eta, A \eta\rangle)}\left(e^{\left(\Xi(\xi)+\|\eta\|^{2}\right) \Delta(T) / T}-1\right) d \xi d \eta+O\left(\frac{1}{T^{k}}\right),
\end{aligned}
$$

which converges to zero, as $T \rightarrow \infty$.
We can replace the integral over $B\left(\epsilon_{1}, \epsilon_{2}\right) \cap D(\delta)$ by one over $B\left(\epsilon_{1}, \epsilon_{2}\right)$ by observing that, as in the proof of Lemma 1 , for any $k \geq 1$,

$$
\begin{aligned}
& \int_{B\left(\epsilon_{1}, \epsilon_{2}\right) \cap D(\delta)} \frac{e^{-i\langle(\alpha, \beta),(\xi, \eta)\rangle} e^{-(\Xi(\xi)+\langle\eta, A \eta\rangle) T}}{1 / 2-\varrho(\xi, \eta)} d \xi d \eta \\
& =\int_{B\left(\epsilon_{1}, \epsilon_{2}\right)} \frac{e^{-i\langle(\alpha, \beta),(\xi, \eta)\rangle} e^{-(\Xi(\xi)+\langle\eta, A \eta\rangle) T}}{1 / 2-\varrho(\xi, \eta)} d \xi d \eta+O\left(\frac{1}{T^{k}}\right) .
\end{aligned}
$$

The next result gives a uniform estimate on $e^{-T / 2} T^{p+g} R_{(\alpha, \beta)}(T)$. Recall that

$$
\mathcal{I}(x)=\int_{\mathbb{R}^{p}} e^{-i\langle x, \xi\rangle} e^{-\sum_{j=0}^{p}\left|\xi_{j}\right|} d \xi .
$$

Proposition 3.

$$
\lim _{T \rightarrow \infty} \sup _{(\alpha, \beta) \in \mathbb{Z}^{p+2 g}}\left|\frac{T^{p+g} R_{(\alpha, \beta)}(T)}{e^{T / 2}}-\frac{(2 g+p-1)^{p+g}}{2^{g-p}} e^{-\left\langle\beta, A^{-1} \beta\right\rangle / 4 T} \mathcal{I}\left(\frac{2 \mu(M) \alpha}{T}\right)\right|=0 .
$$

Proof. Combining Lemma 1 and Lemma 2, we have that

$$
\frac{T^{p+g} R_{(\alpha, \beta)}(T)}{e^{T / 2}}-\frac{T^{p+g}}{(2 \pi)^{p+2 g}} \int_{B\left(\epsilon_{1}, \epsilon_{2}\right)} \frac{e^{-i\langle(\alpha, \beta),(\xi, \eta)\rangle} e^{-(\Xi(\xi)+\langle\eta, A \eta\rangle) T}}{1 / 2-\varrho(\xi, \eta)} d \xi d \eta \rightarrow 0, \text { as } T \rightarrow \infty
$$

uniformly in (α, β).
Our first step is to replace the above integral over $B\left(\epsilon_{1}, \epsilon_{2}\right)$ by one over $\mathbb{R}^{p+2 g}$. First note that $\left.\left|(1 / 2-\varrho(\xi, \eta))^{-1}-2\right|=O(\lambda(\xi, \eta))=O\left(\|\xi\|^{1-\kappa}+\|\eta\|^{2}\right)\right)$ on $B\left(\epsilon_{1}, \epsilon_{2}\right)$, so that

$$
\begin{aligned}
& T^{p+g}\left|\int_{B\left(\epsilon_{1}, \epsilon_{2}\right)} e^{-i\langle(\alpha, \beta),(\xi, \eta)\rangle}\left\{\frac{e^{-(\Xi(\xi)+\langle\eta, A \eta\rangle) T}}{1 / 2-\varrho(\xi, \eta)}-2 e^{-(\Xi(\xi)+\langle\eta, A \eta\rangle) T}\right\} d \xi d \eta\right| \\
& =\left|\int_{B\left(\epsilon_{1} T, \epsilon_{2} \sqrt{T}\right)} e^{-i\langle(\alpha, \beta),(\xi / T, \eta / \sqrt{T})\rangle}\left\{\frac{e^{-(\Xi(\xi)+\langle\eta, A \eta\rangle)}}{1 / 2-\varrho(\xi / T, \eta / \sqrt{T})}-2 e^{-(\Xi(\xi)+\langle\eta, A \eta\rangle)}\right\} d \xi d \eta\right| \\
& =O\left(\left(\epsilon_{1}^{1-\kappa}+\epsilon_{2}^{2}\right) \int_{B\left(\epsilon_{1} T, \epsilon_{2} \sqrt{T}\right)} e^{-(\Xi(\xi)+\langle\eta, A \eta\rangle)} d \xi d \eta\right) \\
& =O\left(\epsilon_{1}^{1-\kappa}+\epsilon_{2}^{2}\right)=O\left(T^{-2 \tau(1-\kappa)}\right)
\end{aligned}
$$

(since $\left.\int_{\mathbb{R}^{p}} e^{-(\Xi(\xi)+\langle\eta, A \eta\rangle)} d \xi d \eta<+\infty\right)$. Next we observe that

$$
\int_{\mathbb{R}^{p+2 g} \backslash B\left(\epsilon_{1}, \epsilon_{2}\right)} e^{-i\langle(\alpha, \beta),(\xi, \eta)\rangle} e^{-(\Xi(\xi)+\langle\eta, A \eta\rangle) T} d \xi d \eta=O\left(e^{-c T}\right),
$$

for some $c>0$, uniformly in (α, β). Thus,

$$
\frac{T^{p+g} R_{(\alpha, \beta)}(T)}{e^{T / 2}}-\frac{2}{(2 \pi)^{p+2 g}} \int_{\mathbb{R}^{p+2 g}} e^{-i\langle(\alpha, \beta),(\xi, \eta)\rangle} e^{-(\Xi(\xi)+\langle\eta, A \eta\rangle) T} d \xi d \eta \rightarrow 0, \text { as } T \rightarrow \infty
$$

uniformly in (α, β).
It remains to evaluate the integral. Firstly,

$$
\frac{T^{g}}{(2 \pi)^{2 g}} \int_{\mathbb{R}^{2 g}} e^{-i\langle\beta, \eta\rangle} e^{-\langle\eta, A \eta\rangle T} d \eta=\frac{1}{(2 \pi)^{g}} \frac{1}{2^{g}} \frac{1}{\sqrt{\operatorname{det} A}} e^{-\left\langle\beta, A^{-1} \beta\right\rangle / 4 T}
$$

Also

$$
\frac{T^{p}}{(2 \pi)^{p}} \int_{\mathbb{R}^{p}} e^{-i\langle\alpha, \xi\rangle} e^{-\Xi(\xi) T} d \xi=\frac{(2 \mu(M))^{p}}{(2 \pi)^{p}} \mathcal{I}\left(\frac{2 \mu(M) \alpha}{T}\right)
$$

Since $\operatorname{det} A=\mu(M)^{-2 g}$, this completes the proof.

3. Proof of Theorem 1

In this section we shall transfer the uniform estimate on $R_{(\alpha, \beta)}(T)$ contained in Proposition 3 into the estimate on $\pi_{(\alpha, \beta)}(T)$ required by Theorem 1. All big- O estimates will be independent of (α, β). To simplify some expressions we shall write $n=p+g+1$. First note that, using integration by parts,

$$
\begin{aligned}
\pi_{(\alpha, \beta)}(T) & =\int_{1}^{T} \frac{2 \sinh (t / 2)}{t} d R_{(\alpha, \beta)}(t)+O(1) \\
& =\int_{1}^{T} \frac{e^{t / 2}}{t} d R_{(\alpha, \beta)}(t)+O\left(e^{T / 2}\right) \\
& =\frac{e^{T / 2}}{T} R_{(\alpha, \beta)}(T)-\int_{1}^{T}\left(\frac{e^{t / 2}}{2 t}-\frac{e^{t / 2}}{t^{2}}\right) R_{(\alpha, \beta)}(t) d t+O\left(e^{T / 2}\right)
\end{aligned}
$$

Thus, we have the estimate

$$
\begin{aligned}
& \frac{T^{n}}{e^{T}} \pi_{(\alpha, \beta)}(T)-\frac{T^{n-1}}{2 e^{T / 2}} R_{(\alpha, \beta)}(T) \\
& =\frac{T^{n-1}}{e^{T / 2}} R_{(\alpha, \beta)}(T)-\frac{T^{n}}{e^{T}} \int_{1}^{T}\left(\frac{e^{t / 2}}{2 t}-\frac{e^{t / 2}}{t^{2}}\right) R_{(\alpha, \beta)}(t) d t+O\left(T^{n} e^{-T / 2}\right)
\end{aligned}
$$

Since $R_{(\alpha, \beta)}(T)=O\left(e^{T / 2} / T^{p+g}\right)$, we have that

$$
\begin{aligned}
& \frac{T^{n}}{e^{T}} \int_{1}^{T} \frac{e^{t / 2}}{t^{2}} R_{(\alpha, \beta)}(t) d t=\frac{T^{n}}{e^{T}}\left(\int_{1}^{T / 2}+\int_{T / 2}^{T}\right) \frac{e^{t / 2}}{t^{2}} R_{(\alpha, \beta)}(t) d t \\
& =O\left(\frac{T^{n}}{e^{T}} \int_{1}^{T / 2} \frac{e^{t}}{t^{n+1}} d t\right)+O\left(\frac{T^{n}}{e^{T}} \int_{T / 2}^{T} \frac{e^{t}}{t^{n+1}} d t\right)=O\left(e^{-T / 2}\right)+O\left(T^{-1}\right)
\end{aligned}
$$

Thus, to prove Theorem 1, it suffices to show that

$$
\lim _{T \rightarrow \infty} \sup _{(\alpha, \beta) \in \mathbb{Z}^{p+2 g}}\left|\frac{T^{n-1}}{2 e^{T / 2}} R_{(\alpha, \beta)}(T)-\frac{T^{n}}{2 e^{T}} \int_{1}^{T} \frac{e^{t / 2}}{t} R_{(\alpha, \beta)}(t) d t\right|=0
$$

By Proposition 3, we may write

$$
\sup _{(\alpha, \beta) \in \mathbb{Z}^{p+2 g}}\left|\frac{T^{n-1}}{e^{T / 2}} R_{(\alpha, \beta)}(T)-C(p, g) e^{-\left\langle\beta, A^{-1} \beta\right\rangle / 4 T} \mathcal{I}\left(\alpha^{\prime} / T\right)\right| \leq \psi(T)
$$

where $C(p, g)=2^{-g+p+1}(2 g+p-1)^{p+g}, \alpha^{\prime}=2 \mu(M) \alpha$, and where $\psi(T)$ decreases to zero as $T \rightarrow \infty$. Hence

$$
\begin{aligned}
& \sup _{(\alpha, \beta) \in \mathbb{Z}^{p+2 g}}\left|\frac{T^{n-1}}{2 e^{T / 2}} R_{(\alpha, \beta)}(T)-\frac{T^{n}}{2 e^{T}} \int_{1}^{T} \frac{e^{t / 2}}{t} R_{(\alpha, \beta)}(t) d t\right| \\
& \leq \frac{\psi(T)}{2}+\frac{T^{n}}{2 e^{T}} \int_{1}^{T} \frac{e^{t}}{t^{n}} \psi(t) d t \\
& +\frac{C(p, g)}{2} \sup _{(\alpha, \beta) \in \mathbb{Z}^{p+2 g}}\left|e^{-\left\langle\beta, A^{-1} \beta\right\rangle / 4 T} \mathcal{I}\left(\alpha^{\prime} / T\right)-\frac{T^{n}}{e^{T}} \int_{1}^{T} \frac{e^{t}}{t^{n}} e^{-\left\langle\beta, A^{-1} \beta\right\rangle / 4 t} \mathcal{I}\left(\alpha^{\prime} / t\right) d t\right|
\end{aligned}
$$

We have

$$
\begin{aligned}
& \frac{T^{n}}{2 e^{T}} \int_{1}^{T} \frac{e^{t}}{t^{n}} \psi(t) d t=\frac{T^{n}}{2 e^{T}}\left(\int_{1}^{T / 2}+\int_{T / 2}^{T}\right) \frac{e^{t}}{t^{n}} \psi(t) d t \\
& =O\left(T^{n} e^{-T / 2}\right)+O(\psi(T / 2))
\end{aligned}
$$

so that, to complete the proof, we need to show that

$$
\lim _{T \rightarrow \infty} \sup _{(\alpha, \beta) \in \mathbb{Z}^{p+2 g}}\left|e^{-\left\langle\beta, A^{-1} \beta\right\rangle / 4 T} \mathcal{I}\left(\alpha^{\prime} / T\right)-\frac{T^{n}}{e^{T}} \int_{1}^{T} \frac{e^{t}}{t^{n}} e^{-\left\langle\beta, A^{-1} \beta\right\rangle / 4 t} \mathcal{I}\left(\alpha^{\prime} / t\right) d t\right|=0
$$

First note that

$$
\frac{T^{n}}{e^{T}} \int_{1}^{T-T^{1 / 2}} \frac{e^{t}}{t^{n}} e^{-\left\langle\beta, A^{-1} \beta\right\rangle / 4 t} \mathcal{I}\left(\alpha^{\prime} / t\right) d t=O\left(T^{n} e^{-T^{1 / 2}}\right)
$$

so we need only consider the integral between $T-T^{1 / 2}$ and T. However,

$$
\begin{aligned}
& \left|e^{-\left\langle\beta, A^{-1} \beta\right\rangle / 4 T} \mathcal{I}\left(\alpha^{\prime} / T\right)-\frac{T^{n}}{e^{T}} \int_{T-T^{1 / 2}}^{T} \frac{e^{t}}{t^{n}} e^{-\left\langle\beta, A^{-1} \beta\right\rangle / 4 t} \mathcal{I}\left(\alpha^{\prime} / t\right) d t\right| \\
& \leq\left|e^{-\left\langle\beta, A^{-1} \beta\right\rangle / 4 T} \mathcal{I}\left(\alpha^{\prime} / T\right)-\frac{T^{n}}{e^{T}} e^{-\left\langle\beta, A^{-1} \beta\right\rangle / 4 T} \mathcal{I}\left(\alpha^{\prime} / T\right) \int_{T-T^{1 / 2}}^{T} \frac{e^{t}}{t^{n}} d t\right| \\
& +\frac{T^{n}}{e^{T}} \int_{T-T^{1 / 2}}^{T} \frac{e^{t}}{t^{n}} d t \sup _{t \in\left[T-T^{1 / 2}, T\right]}\left|e^{-\left\langle\beta, A^{-1} \beta\right\rangle / 4 T} \mathcal{I}\left(\alpha^{\prime} / T\right)-e^{-\left\langle\beta, A^{-1} \beta\right\rangle / 4 t} \mathcal{I}\left(\alpha^{\prime} / t\right)\right|
\end{aligned}
$$

Clearly, the first term on the Right Hand Side above is of order $O\left(e^{-T^{1 / 2}}\right)$.

Lemma 3.

$$
\begin{equation*}
\sup _{t \in\left[T-T^{1 / 2}, T\right]}\left|e^{-\left\langle\beta, A^{-1} \beta\right\rangle / 4 T}-e^{-\left\langle\beta, A^{-1} \beta\right\rangle / 4 t}\right|=O\left(T^{-1 / 2}\right) \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup _{t \in\left[T-T^{1 / 2}, T\right]}\left|\mathcal{I}\left(\alpha^{\prime} / T\right)-\mathcal{I}\left(\alpha^{\prime} / t\right)\right|=O\left(T^{-1 / 2}\right) . \tag{3.2}
\end{equation*}
$$

Proof. By the Mean Value Theorem, the Left Hand Side in (3.1) is of order

$$
O\left(\frac{\left\langle\beta, A^{-1} \beta\right\rangle}{T^{3 / 2}} e^{-\left\langle\beta, A^{-1} \beta\right\rangle / 4 T}\right)
$$

and a simple calculation shows this is $O\left(T^{-1 / 2}\right)$. Again by the Mean Value Theorem, the Left Hand Side in (3.2) is of order

$$
O\left(T^{-1 / 2}\left|\sum_{j=1}^{p} \frac{\alpha_{j}}{\theta_{T}} \frac{\partial \mathcal{I}\left(\alpha / \theta_{T}\right)}{\partial x_{j}}\right|\right)
$$

for some $\theta_{T} \in\left(T-T^{1 / 2}, T\right)$. To show that the required $O\left(T^{-1 / 2}\right)$ estimate again holds, we shall show that

$$
\begin{equation*}
\sup _{x \in \mathbb{R}^{p}}\left|\sum_{j=1}^{p} x_{j} \frac{\partial \mathcal{I}(x)}{\partial x_{j}}\right|<+\infty \tag{3.3}
\end{equation*}
$$

We may write

$$
\begin{aligned}
\sum_{j=1}^{p} x_{j} \frac{\partial \mathcal{I}(x)}{\partial x_{j}} & =\left.\frac{\partial}{\partial \tau} \int_{\mathbb{R}^{p}} e^{-i \tau\langle x, \xi\rangle} e^{-\sum_{j=0}^{p}\left|\xi_{j}\right|} d \xi\right|_{\tau=1} \\
& =\left.\frac{\partial}{\partial \tau}\left(\tau^{-p} \int_{\mathbb{R}^{p}} e^{-i\langle x, y\rangle} e^{-\sum_{j=0}^{p}\left|y_{j}\right| / \tau} d y\right)\right|_{\tau=1}
\end{aligned}
$$

where we have made the substitution $y=\tau \xi$. The bound (3.3) now follows from the Riemann-Lebesgue Lemma.

Applying the lemma, we have that

$$
\sup _{t \in\left[T-T^{1 / 2}, T\right]}\left|e^{-\left\langle\beta, A^{-1} \beta\right\rangle / 4 T} \mathcal{I}\left(\alpha^{\prime} / T\right)-e^{-\left\langle\beta, A^{-1} \beta\right\rangle / 4 t} \mathcal{I}\left(\alpha^{\prime} / t\right)\right|=O\left(T^{-1 / 2}\right)
$$

and the proof of Theorem 1 is complete.

References

1. N. Anantharaman, Precise counting results for closed orbits of Anosov flows, Ann. Sci. École Norm. Sup. 33 (2000), 33-56.
2. M. Babillot and M. Peigné, Homologie des géodésiques fermées sur des variétés hyperboliques avec bouts cuspidaux, Ann. Sci. École Norm. Sup. 33 (2000), 81-120.
3. N. Enriquez, J. Franchi and Y. Le Jan, Stable windings on hyperbolic surfaces, Probab. Theory Related Fields 119 (2001), 213-255.
4. C. Epstein, Asymptotics for closed geodesics in a homology class, the finite volume case, Duke Math. J. 55 (1987), 717-757.
5. J. Franchi, Asymptotic singular homology of a complete hyperbolic 3-manifold of finite volume, Proc. London Math. Soc. 79 (1999), 451-480.
6. W. Fulton, Algebraic Toplogy. A First Course, Graduate Texts in Mathematics, 153, Springer-Verlag, New York, 1995.
7. Y. Guivarc'h and Y. Le Jan, Sur l'enroulement du flot géodésique, C. R. Acad. Sci. Paris Sér. I Math. 311 (1990), 645-648.
8. Y. Guivarc'h and Y. Le Jan, Asymptotic winding of the geodesic flow on modular surfaces and continued fractions, Ann. Sci. École Norm. Sup. 26 (1993), 23-50.
9. D. Hejhal, The Selberg trace formula for $\operatorname{PSL}(2, \mathbb{R})$. Vol. 2, Lecture Notes in Mathematics 1001, Springer-Verlag, Berlin, 1983.
10. A. Katsuda, Density theorems for closed orbits, Geometry and analysis on manifolds (T. Sunada, ed.), Lecture Notes in Mathematics 1339, Springer, Berlin, 1988, pp. 182-202.
11. A. Katsuda and T. Sunada, Homology and closed geodesics in a compact Riemann surface, Amer. J. Math. 110 (1988), 145-156.
12. M. Kotani, A note on asymptotic expansions for closed geodesics in homology classes, Math. Ann. 320 (2001), 507-529.
13. S. Lalley, Closed geodesics in homology classes on surfaces of variable negative curvature, Duke Math. J. 58 (1989), 795-821.
14. Y. Le Jan, Sur l'enroulement géodésique des surfaces de Riemann, C. R. Acad. Sci. Paris Sér. I Math. 314 (1992), 763-765.
15. R. Phillips and P. Sarnak, Geodesics in homology classes, Duke Math. J. 55 (1987), 287-297.
16. M. Pollicott, Homology and closed geodesics in a compact negatively curved surface, Amer. J. Math. 113 (1991), 379-385.
17. M. Pollicott and R. Sharp, Asymptotic expansions for closed orbits in homology classes, Geom. Ded. 87 (2001), 123-160.
18. R. Sharp, A local limit theorem for closed geodesics and homology, preprint (2001).

Department of Mathematics, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.

