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Abstract. In this paper, we study the distribution of closed geodesics on a compact nega-
tively curved manifold. We concentrate on geodesics lying in a prescribed homology class and,

under certain conditions, obtain a local limit theorem to describe the asymptotic behaviour

of the associated counting function as the homology class varies.

0. Introduction

Let M be a compact smooth Riemannian manifold with first Betti number k > 0 and
with negative sectional curvatures. Suppose also that either dimM = 2 or that M is
1/4-pinched, i.e., the sectional curvatures all lie in an interval [−κ,−κ/4], for some κ > 0.
Such a manifold contains a countable infinity of prime closed geodesics. (We say that a
closed geodesic is prime if it is not a non-trivial multiple of another closed geodesic.) In
this paper we shall be interested in how these closed geodesics are distributed with respect
to homology.

The homology group H1(M,Z) is isomorphic to Zk ⊕ Tor, where Tor is the (finite)
torsion subgroup. In this paper, it will be convenient to consider the torsion-free part of
the homology, H1(M,Z)/Tor. We shall, in fact, assume that an isomorphism has been
fixed and write Zk instead of H1(M,Z)/Tor.

For a typical (prime) closed geodesic γ on M , let l(γ) denote its length and [γ] ∈
H1(M,Z)/Tor = Z

k the torsion-free part of its homology class. For α ∈ Zk, define a
counting function

π(T, α) = #{γ : l(γ) ≤ T, [γ] = α}.

Recently, several papers have studied the asymptotics of this function as T → ∞. In
particular, Anantharaman [1] and Pollicott and Sharp [17] have shown that there exist
constants C0 > 0, independent of α, and Cn(α), n ≥ 1, such that, for any N ≥ 1, we have
the asymptotic expansion

π(T, α) =
ehT

T k/2+1

(
C0 +

C1(α)
T

+
C2(α)
T 2

+ · · ·+ CN (α)
TN

+O

(
1

TN+1

))
, (0.1)
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where h > 0 denotes the topological entropy of the geodesic flow over M . (In fact, the
expansion in [17] contained some extra terms corresponding to powers of T−1/2; a more
careful analysis, as carried out in [11], shows that these terms vanish.) Furthermore, Kotani
[11], has studied the dependence of the coefficients Cn(α) on α = (α1, . . . , αk), showing
that they may be expressed as polynomials of degree 2n in α1, . . . , αk. In the special case
of manifolds of constant negative curvature, the expansion (0.1) was obtained by Phillips
and Sarnak [14] and, independently, Katsuda and Sunada [9] obtained the leading term.
For manifolds of variable negative curvature (without the pinching condition) the leading
term of (0.1) was obtained by Katsuda [8], Lalley [12] and Pollicott [15]. Analogous results
for manifolds with cusps have been obtained by Epstein [6] and Babillot and Peigné [3].

In this note, we take a slightly different view and address the question of the behaviour
of π(T, α) when α is allowed to vary independently of T . We obtain the following “local
limit theorem”.

Theorem 1. Let M be a compact smooth Riemannian manifold with first Betti number
k > 0 and with negative sectional curvatures. Suppose also that either dimM = 2 or that
M is 1/4-pinched. Then there exists a symmetric positive definite real matrix D such that,

lim
T→∞

∣∣∣∣hσkT k/2+1

ehT
π(T, α)− 1

(2π)k/2
e−〈α,D

−1α〉/2T
∣∣∣∣ = 0,

uniformly in α ∈ Zk, where σ > 0 satisfies σ2k = detD.

Here, 〈·, ·〉 denotes the usual inner product 〈x, y〉 = x1y1+· · ·+xkyk. As a particular con-
sequence, we recover the leading term of the expansion (0.1), with C0 = h−1σ−k(2π)−k/2.
Theorem 1 appears not to have been stated even for manifolds of constant negative curva-
ture, although, in that case, the result can be easily deduced from the analysis contained
in [14].

Remarks.
(i) If we take the torsion part of H1(M,Z) into account then we need to modify Theorem
1 to read

lim
T→∞

∣∣∣∣hσkT k/2+1

ehT
π(T, α)− 1

(#Tor) (2π)k/2
e−〈αF ,D

−1αF 〉/2T
∣∣∣∣ = 0,

uniformly in α ∈ H1(M,Z), where αF ∈ Zk denotes the torsion-free part of α ∈ H1(M,Z).
(ii) In Kotani’s formula for the term Cn(α)/Tn in (0.1), the highest power of α makes a
contribution

1
(2π)k/2hσk

1
n!

(
−〈α,D

−1α〉
2T

)n
.

As observed by Kotani in [11], formally summing these contributions gives the expression
e−〈α,D

−1α〉/2T /(2π)k/2hσk.

Theorem 1 should be compared with the results on homology classes varying linearly
in T obtained by Lalley [12] and Babillot and Ledrappier [2]. Using these results, one can
show that, for δ > 0 sufficiently small,

lim
T→∞

sup
||α||≤δT

∣∣∣∣ T k/2+1

C(α/T )eH(α/T )T
π(T, α)− 1

∣∣∣∣ = 0, (0.2)
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where H(x) is an entropy function satisfying H(0) = h, ∇H(0) = 0 and ∇2H(0) = −D−1,
and where C(x) is continuous with C(0) = C0. On the other hand, Theorem 1 is equivalent
to

lim
T→∞

sup
||α||≤δT

∣∣∣∣hσkT k/2+1

ehT
π(T, α)− 1

(2π)k/2
e−〈α,D

−1α〉/2T
∣∣∣∣ = 0 (0.3)

(as the supremum over ||α|| > δT clearly tends to zero). However, even though H(x) =
H(0)− 〈x,D−1x〉/2 +O(||x||3), which gives

exp{H(α/T )T} = exp{H(0)T − 〈α,D−1α〉/2T +O(||α||3/T 2)},

the presence of the third order terms means that one cannot deduce (0.3) from (0.2).
The results of [2] and [12] do imply a central limit theorem: for A ⊂ Rk,

lim
T→∞

#{γ : l(γ) ≤ T, [γ]/
√
T ∈ A}

#{γ : l(γ) ≤ T}
=

1
(2π)k/2σk

∫
A

e−〈x,D
−1x〉/2dx.

A key ingredient in the proof of Theorem 1 is an understanding of the analytic domain of
a family of functions of a complex variable, called L-functions, indexed by the characters
of Zk. In the next section, we shall define these functions and discuss their properties.
In Section 2, we shall introduce a family of functions ST (t), t ∈ [−π, π]k, obtained by
summing a suitably weighted character ei〈t,·〉 over all (multiple) closed geodesics of length
at most T , and show that they are related to contour integrals of the corresponding L-
functions. The results in Section 1 are then used to estimate the sums ST (t). In Section 3,
we shall use an approach adapted from [18] to transfer information from the ST (t) to an
auxiliary function ψ(T, α), which is essentially a weighted version of π(T, α), and obtain
an analogue of Theorem 1 valid for ψ(T, α). In Section 4, we shall complete the proof of
Theorem 1 by elementary arguments. In the final section, we shall discuss the application
of our method to homologically full Anosov flows, giving a new proof of the first order
asymptotic formula for π(T, α) (but without uniformity) in that case.

Notation. For given functions A(T ) and B(T ), we shall write A(T ) ∼ B(T ), as T → ∞,
if limT→∞A(T )/B(T ) = 1, and A(T ) = O(B(T )) if |A(T )| ≤ CB(T ), for some constant
C > 0.

1. L-functions

In order to obtain our main result, we shall need to understand the analytic behaviour
of a certain family of functions of a complex variable. We will identify the character group
of Zk with [−π, π]k. For t ∈ [−π, π]k, define

L(s, t) =
∏
γ

(
1− e−sl(γ)+i〈t,[γ]〉

)−1

,

where the product is taken over all prime closed geodesics γ. This converges for Re(s) > h
and has a meromorphic extension to a strictly larger half-plane [13].
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It will be convenient to consider multiple closed geodesics γ′ = γn, n ≥ 1. In this case
we shall write l(γ′) = nl(γ), [γ′] = n[γ], and Λ(γ′) = l(γ). (Note that Λ is analogous to
the von Mangoldt function in number theory.)

We shall be interested in the logarithmic derivative L′(s, t)/L(s, t) of L(s, t). Whenever
the summation converges, we have the identity

L′(s, t)
L(s, t)

= −
∑
γ′

Λ(γ′)e−sl(γ
′)+i〈t,[γ′]〉.

We shall make use of the properties of L′(s, t)/L(s, t) described by the following two
propositions. These results were obtained in [17] and rely heavily on the techniques of
Dolgopyat [4]. We write U(δ) = {t : ||t|| < δ}.

Proposition 1 ([17]). For all sufficiently small δ > 0 the following statements are true.

(i) There exists ε > 0 and an analytic function s : U(δ)→ (−∞, h], satisfying s(0) = h
and s(t) < h for t 6= 0, such that

L′(s, t)
L(s, t)

+
1

s− s(t)

is analytic in Re(s) > h− ε.
(ii) There exists ε > 0 such that, for t /∈ U(δ), L′(s, t)/L(s, t) is analytic in Re(s) >

h− ε.

Proposition 2 ([17]). There exists ε > 0, C > 0, and 0 < β < 1, such that, for all
t ∈ [−π, π]k, ∣∣∣∣L′(s, t)L(s, t)

∣∣∣∣ ≤ C|Im(s)|β ,

for Re(s) > 1− ε and |Im(s)| ≥ 1.

The function s(t) enjoys the following properties.

Lemma 1. ∇s(0) = 0 and ∇2s(0) is strictly negative definite.

We shall write D = −∇2s(0) and define σ > 0 by σ2k = detD. The next result is
crucial for our subsequent analysis.

Proposition 3. There exists δ > 0 such that, for t ∈ U(δσ
√
T ),

lim
T→∞

e(s(t/σ
√
T )−h)T = e−〈t,Dt〉/2σ

2
.

Furthermore, |e(s(t/σ
√
T )−h)T | ≤ e−〈t,Dt〉/4σ2

and∣∣∣e(s(t/σ
√
T )−h)T − e−〈t,Dt〉/2σ

2
∣∣∣ ≤ 2e−〈t,Dt〉/4σ

2
.
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Proof. Let f(t) = es(t)−h. Then f(0) = 1, ∇f(0) = ∇s(0) = 0, and ∇2f(0) = ∇2s(0) =
−D. Applying Taylor’s Theorem, we have that, for ||t/σ

√
T || ≤ δ,

f

(
t

σ
√
T

)
= 1− 〈t,Dt〉

2σ2T
+O

(
||t||3

T 3/2

)
(where the implied constant is independent of t). The first statement follows from the
identity limT→∞(1− x/T )T = e−x.

Provided δ > 0 is sufficiently small, for ||u|| ≤ δ, we have

〈u,Du〉/2 +O(||u||3) ≥ 〈u,Du〉/4.

Since (1 − x/T )T < e−x, this gives us |f(t/σ
√
T )| ≤ e−〈t,Dt〉/4σ

2
. Applying the triangle

inequality, we obtain

|f(t/σ
√
T )− e−〈t,Dt〉/2σ

2
| ≤ e−〈t,Dt〉/4σ

2
+ e−〈t,Dt〉/2σ

2

≤ 2e−〈t,Dt〉/4σ
2
.

Remark. The function s(t) has an interpretation in terms of the thermodynamic formalism
of the geodesic flow on SM . For a continuous function G : SM → R, define its pressure
P (G) = supµ

{
hµ(φ) +

∫
Gdµ

}
, where the supremum is taken over all probability measures

invariant under the geodesic flow. We can define a (smooth) function F : SM → R
k with

the property that, for each closed geodesic γ,
∫ l(γ)

0
F (γ(t), γ̇(t))dt = [γ]. Then Rk 3 z 7→

P (〈z, F 〉) is real analytic and has an analytic extension to a neighbourhood of Rk in Ck.
We have that s(t) = P (〈it, F 〉) and that D = ∇2P (〈z, F 〉)|z=0 [10], [19].

2. Contour Integration

We shall now use the results on L-functions obtained in the preceding section to examine
the behaviour of the summatory function

ST (t) =
∑

l(γ′)≤T

′
Λ(γ′)ei〈t,[γ

′]〉,

as T →∞. (Here, the ′ on the summation sign denotes that the terms with l(γ′) = T are
counted with weight 1/2.)

We begin by relating ST (t) to L′(s, t)/L(s, t). This is achieved through the following
lemma.

Lemma 2 [20, p.132] (Effective Perron Formula). Define a function θ(y) by

θ(y) =


0 if 0 < y < 1
1
2 if y = 1
1 if y > 1

.
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Then, uniformly for d > 0, R > 0,∣∣∣∣∣θ(y)− 1
2πi

∫ d+iR

d−iR

ys

s
ds

∣∣∣∣∣ = O

(
yd

1 +R| log y|

)
.

Set d = h+ T−1 and R = TK (where K > 0 will be chosen later). Applying Lemma 2
term-by-term to −L′(s, t)/L(s, t), we obtain

ST (t) =
1

2πi

∫ d+iR

d−iR

(
−L
′(s, t)
L(s, t)

)
esT

s
ds+O

∑
γ′

Λ(γ′)edT e−dl(γ
′)

1 +R|T − l(γ′)|

 . (2.1)

We will estimate the big-O term in this expression. First set ε = T−M (where M > 0 will
be chosen later) and consider the terms for which |T − l(γ′)| ≤ ε. We will use the following
result contained in [16].

Proposition 4 [16]. There exists c < h such that

#{γ′ : l(γ′) ≤ T} =
∫ ehT

2

1
log u

du+O(ecT ).

As a consequence, we may write

#{γ′ : |T − l(γ′)| ≤ ε} =
∫ ehT+hε

ehT−hε

1
log u

du+O(ecT ) = O

(
εehT

T

)
.

Furthermore, if |T − l(γ′)| ≤ ε then edT e−dl(γ
′) = O(1). Thus

∑
|T−l(γ′)|≤ε

Λ(γ′)edT e−dl(γ
′)

1 +R|T − l(γ′)|
= O

(
ehT

TM

)
.

On the other hand,

∑
|T−l(γ′)|>ε

Λ(γ′)edT e−dl(γ
′)

1 +R|T − l(γ′)|
≤ edT

Rε

∑
γ′

Λ(γ′)e−dl(γ
′) = O

(
ehT

TK−M−1

)
,

where we have used the estimate∣∣∣∣L′(h+ T−1, 0)
L(h+ T−1, 0)

∣∣∣∣ = O(T ).

Combining the estimates above, equation (2.1) becomes

ST (t) =
1

2πi

∫ d+iR

d−iR

(
−L
′(s, t)
L(s, t)

)
esT

s
ds+O

(
ehT

Tmin{M,K−M−1}

)
. (2.2)
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Lemma 3. For all N ≥ 1 we have the following estimates. (The implied constants are
independent of t.)

(i) For t ∈ U(δ),

ST (t) =
es(t)T

s(t)
+O

(
ehT

TN

)
;

(ii) For t /∈ U(δ),

ST (t) = O

(
ehT

TN

)
.

Proof. Choose h − ε < c < h and let Γ denote the contour formed by the rectangle with
vertices at d− iR, d+ iR, c+ iR, and c− iR, oriented counter-clockwise.

(i) Suppose that t ∈ U(δ). By Proposition 1(i) we can choose c < s(t) so that, using
the Residue Theorem,

1
2πi

∫
Γ

(
−L
′(s, t)
L(s, t)

)
esT

s
ds =

es(t)T

s(t)
.

Using Proposition 2, we also have the following bounds:

(a) ∣∣∣∣∣
(∫ d+iR

c+iR

+
∫ d−iR

c−iR

)(
−L
′(s, t)
L(s, t)

)
esT

s
ds

∣∣∣∣∣ = O(Rβ−1ehT ) = O

(
ehT

TK(1−β)

)
;

(b) ∣∣∣∣∣
∫ c+iR

c−iR

(
−L
′(s, t)
L(s, t)

)
esT

s
ds

∣∣∣∣∣ = O(RβecT ) = O(T βKecT ).

Combining this with (2.2) gives

ST (t) =
es(t)T

s(t)
+O

(
ehT

TN

)
,

where
N = min{M,K −M − 1,K(1− β)}.

Since K and M are arbitrary, we may take N as large as we please.
(ii) Suppose that t /∈ U(δ). Then, by Proposition 1(ii),

1
2πi

∫
Γ

(
−L
′(s, t)
L(s, t)

)
esT

s
ds = 0.

The result now follows as in the proof of (i).
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3. An Auxiliary Function

In this section, we shall prove a result analogous to Theorem 1 but where π(T, α) is
replaced by the auxiliary function

ψ(T, α) =
∑

l(γ′)≤T
[γ′]=α

′
Λ(γ′),

which can be related to the sums ST (t) considered in the previous section. We shall adapt
an approach used by Rousseau-Egele [18] to examine the quantity σkT k/2e−hTψ(T, α).
For a > 0, write I(a) = [−a, a]k. Using the orthogonality relationship

1
(2π)k

∫
I(π)

e−i〈t,α〉ei〈t,y〉dt =
{

1 if y = α

0 if y ∈ Zk\α
,

we have that
ψ(T, α) =

1
(2π)k

∫
I(π)

e−i〈t,α〉ST (t)dt.

Making the substitution t 7→ t/σ
√
T , we obtain

σkT k/2ψ(T, α) =
1

(2π)k

∫
I(πσ

√
T )

e−i〈t,α〉/σ
√
TST (t/σ

√
T )dt.

The next result is the key to the proof of Theorem 1.

Proposition 5.

lim
T→∞

sup
α∈Zk

∣∣∣∣hσkT k/2ehT
ψ(T, α)− 1

(2π)k/2
e−〈α,D

−1α〉/2T
∣∣∣∣ = 0.

Using the identity,

e−〈α,D
−1α〉/2T =

1
(2π)k/2

∫
Rk

ei〈t,α〉/σ
√
T e−〈t,Dt〉/2σ

2
dt,

we have established the bound

(2π)k
∣∣∣∣∣hσkT k/2ehT

ψ(T, α)− e−〈α,D
−1α〉/2T

(2π)k/2

∣∣∣∣∣
≤

∣∣∣∣∣
∫
U(δσ

√
T )

e−i〈t,α〉/σ
√
T
{
he−hTST (t/σ

√
T )− e−〈t,Dt〉/2σ

2
}
dt

∣∣∣∣∣
+

∣∣∣∣∣
∫
I(πσ

√
T )\U(δσ

√
T )

e−i〈t,α〉/σ
√
The−hTST (t/σ

√
T )dt

∣∣∣∣∣
+

∣∣∣∣∣
∫
Rk\U(δσ

√
T )

e−i〈t,α〉/σ
√
T e−〈t,Dt〉/2σ

2
dt

∣∣∣∣∣
= A1(T, α) +A2(T, α) +A3(T, α).
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An easy calculation shows that

lim
T→∞

sup
α∈Zk

A3(T, α) = 0,

so, to complete the proof of Proposition 5, it remains to estimate A1(T, α) and A2(T, α).
To do this we shall use the information on s(t) and ST (t) contained in Proposition 3 and
Lemma 3.

Lemma 4. There exists C > 0 such that, for all sufficiently small δ > 0,

lim
T→∞

sup
α∈Zk

A1(T, α) ≤ C
{∫

Rk

e−〈t,Dt〉/4σ
2
dt

}
δ2.

Proof. By Lemma 3, we have that, for t ∈ U(δσ
√
T ),

he−hTST (t/σ
√
T ) =

he(s(t/σ
√
T )−h)T

s(t/σ
√
T )

+O(T−(k/2+1)).

Using the analyticity of s(t) and the fact that ∇s(0) = 0, we have∣∣∣∣e(s(t/σ
√
T )−h)T

(
h

s(t/σ
√
T )
− 1
)∣∣∣∣ ≤ Cδ2e−〈t,Dt〉/4σ

2
,

for some constant C > 0. Thus,

A1(T, α) ≤
∫
U(δσ

√
T )

∣∣∣e(s(t/σ
√
T )−h)T − e−〈t,Dt〉/2σ

2
∣∣∣ dt

+ Cδ2

∫
U(δσ

√
T )

e−〈t,Dt〉/4σ
2
dt+O

(
1
T

)
.

By Proposition 3, we know that e(s(t/σ
√
T )−h)T converges to e−〈t,Dt〉/2σ

2
, as T → ∞.

Furthermore, we have the estimate∣∣∣e(s(t/σ
√
T )−h)T − e−〈t,Dt〉/2σ

2
∣∣∣ ≤ 2e−〈t,Dt〉/4σ

2
.

Hence, applying the Dominated Convergence Theorem, we obtain the desired result.

Lemma 5.
lim
T→∞

sup
α∈Zk

A2(T, α) = 0.

Proof. By Lemma 3(ii), for t /∈ U(δ/σ
√
T ),

e−hTST (t/σ
√
T ) = O(T−(k/2+1)),

so that supα∈Zk A2(T, α) = O(T−1).

Proof of Proposition 5. Combining the above results we have that

lim
T→∞

sup
α∈Zk

∣∣∣∣hσkT k/2ehT
ψ(T, α)− 1

(2π)k/2
e−〈α,D

−1α〉/2T
∣∣∣∣ ≤ C {∫

Rk

e−〈t,Dt〉/4σ
2
dt

}
δ2.

Since this holds for all sufficiently small δ > 0, the proof is complete.
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4. Proof of Theorem 1

In this section we will use elementary arguments to deduce Theorem 1 from Proposition
5. Whenever we make a big-O estimate, the implied constant will be independent of α.

Write
ψ∗(T, α) =

∑
l(γ)≤T
[γ]=α

l(γ).

An easy argument shows that

ψ(T, α) = ψ∗(T, α) +O(T 2ehT/2).

Thus Proposition 5 implies the following.

Proposition 6.

lim
T→∞

sup
α∈Zk

∣∣∣∣hσkT k/2ehT
ψ∗(T, α)− 1

(2π)k/2
e−〈α,D

−1α〉/2T
∣∣∣∣ = 0.

Finally we consider π(T, α). It is easy to see that

ψ∗(T, α) ≤ Tπ(T, α).

For the corresponding lower bound, choose τ > 0 and set θ = (1 + τ)−1 < 1. Then

Tπ(T, α)
ehT

=
T

ehT

∑
θT<l(γ)≤T

[γ]=α

1 +
Tπ(θT, α)

ehT

≤ 1 + τ

ehT

∑
θT<l(γ)≤T

[γ]=α

l(γ′) +
Tπ(θT, α)

ehT

≤ (1 + τ)ψ∗(T, α)
ehT

+
T#{γ : l(γ) ≤ θT}

ehT
.

Using the estimate #{γ : l(γ) ≤ T} = O(ehT /T ) [13], we have established

0 ≤ T k/2+1

ehT
π(T, α)− T k/2

ehT
ψ∗(T, α)

≤ τT k/2

ehT
ψ∗(T, α) +O(T k/2e(θ−1)hT ),

so that, by applying Proposition 6,

lim sup
T→∞

sup
α∈Zk

∣∣∣∣T k/2+1

ehT
π(T, α)− T k/2

ehT
ψ∗(T, α)

∣∣∣∣ ≤ τ

(2π)k/2hσk
.

Since τ > 0 is arbitrary, this proves Theorem 1.
10



5. Homologically Full Anosov Flows

The asymptotic identity identity (0.1) has been generalized to certain transitive Anosov
flows φt : N → N , where N is a compact smooth Riemannian manifold. We now use γ to
denote a (prime) periodic orbit of φ, with least period l(γ). Once again, we write [γ] for
the torsion-free part of the homology class of γ in H1(N,Z) ∼= Z

k ⊕Tor. We say that φ is
homologically full if every homology class in H1(N,Z) is represented by a closed orbit. In
this case, there exist ξ ∈ H1(N,R), 0 < h∗ ≤ h and C0 > 0 such that

π(T, α) ∼ C0e
−〈ξ,α〉 eh

∗T

T k/2+1
, as T →∞. (5.1)

This result was first proved in [19], drawing on ideas from [10]. An alternative proof was
given in [2] and a more precise version is contained in [17]. In this section, we shall sketch
a new proof of (5.1), using the techniques discussed above. However, we will not make any
claims about uniformity.

Remark. We can define a function p : H1(N,R) → R by p([ω]) = P (ω(X )), where ω is a
closed 1-form representing the cohomology class [ω] and X is the vector field tangent to φ.
Then ξ and h∗ are characterized by the formulae

h∗ = p(ξ) = min{p(ξ′) : ξ′ ∈ H1(N,R)}.

We begin by considering a modified family of L-functions. We define

L(s, t) =
∏
γ

(
1− e−sl(γ)+〈ξ,α〉+i〈t,[γ]〉

)−1

, (5.2)

which converges for Re(s) > h∗. The extension of L′/L to a uniform strip, described
in Propositions 1 and 2, is no longer valid; however, the next result provides a weaker
substitute. As in the case of closed geodesics, an analysis due to Dolgopyat [5] is crucial
here. For ρ > 0, write

R(ρ) = {s : Re(s) > h∗ − |Im(s)|−ρ, |Im(s)| ≥ 1}.

Proposition 7 ([17]). There exists a constant ρ > 0 such that, for all sufficiently small
δ > 0, the following statements are true.

(i) There exists an analytic function s : U(δ) → {z ∈ C : Re(z) ≤ z}, satisfying
s(0) = h∗ and Re(s(t)) < h∗ for t 6= 0, such that

L′(s, t)
L(s, t)

+
1

s− s(t)

is analytic in R(ρ).
(ii) For t /∈ U(δ), L′(s, t)/L(s, t) is analytic in R(ρ).

11



Proposition 8 ([17]). There exist C > 0 and β > 0, such that, for all t ∈ [−π, π]k,∣∣∣∣L′(s, t)L(s, t)

∣∣∣∣ ≤ C|Im(s)|β ,

for s ∈ R(ρ).

Although the function s(t) is now complex valued, it is still the case that ∇s(0) = 0 and
that ∇2s(0) is real and strictly negative definite. Moreover, again writing D = −∇2s(0)
and σ2k = detD, the function es(t)−h

∗
still satisfies the conclusions of Proposition 3.

We shall now mimic the arguments of Section 2. However, the weaker bounds on
L′(s, t)/L(s, t) force us to use a more complicated auxiliary function. For n ≥ 0, define

ψn(T, α) =
e〈ξ,α〉

n!

∑
l(γ′)≤T
[γ′]=α

′
Λ(γ′)

(
eh
∗T − eh

∗l(γ′)
)n

.

Then we have the identity

σkT k/2ψn(T, α) =
1

(2π)k

∫
I(πσ

√
T )

e−i〈t,α〉/σ
√
TS∗T (t/σ

√
T )dt,

where
S∗T (t) =

∑
l(γ′)≤T

′
Λ(γ′)e〈ξ,[γ

′]〉+i〈t,[γ′]〉
(
eh
∗T − eh

∗l(γ′)
)n

.

In order to estimate the function S∗T (t) we need the following identity, for d > h∗,

S∗T (t) =
1

2πi

∫ d+i∞

d−i∞

(
−L
′(s, t)
L(s, t)

)
e(s+n)T

s(s+ 1) · · · (s+ n)
ds, (5.3)

where we have used the formula

1
2πi

∫ d+i∞

d−i∞

ys

s(s+ 1) · · · (s+ n)
ds =

{
0 if 0 < y < 1
1
n!

(
1− 1

y

)n
if y ≥ 1

.

Choose 0 < ε < 1/ρ and set R = T ε and d = h∗+T−1. Then replacing the integral in (5.3)
with the truncated integral

∫ d+iR

d−iR introduces an error of order O(e(h∗+n)T /T εn). Using
the estimates

(a) ∣∣∣∣∣
(∫ d+iR

h∗−R−ρ+iR

+
∫ d−iR

h∗−R−ρ−iR

)(
−L
′(s, t)
L(s, t)

)
e(s+n)T

s(s+ 1) · · · (s+ n)
ds

∣∣∣∣∣
= O(Rβ−ρ−n−1e(h∗+n)T ) = O(e(h∗+n)TT−ε(ρ+n+1−β));

(b) ∣∣∣∣∣
∫ h∗−R−ρ±iR

h∗−R−ρ±i

(
−L
′(s, t)
L(s, t)

)
e(s+n)T

s(s+ 1) · · · (s+ n)
ds

∣∣∣∣∣
= O(Rβe(h∗+n−R−ρ)T ) = O(T βεe(h∗+n)T e−T

1−ερ
),

we may repeat the proof of Lemma 3 to obtain the following lemma.
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Lemma 6. Setting N = min{εn, ε(ρ + n + 1 − β)}, we have the following. (The implied
constants are independent of t.)

(i) For t ∈ U(δ),

S∗T (t) =
e(s(t)+n)T

s(t)(s(t) + 1) · · · (s(t) + n)
+O

(
e(h∗+n)T

TN

)
;

(ii) For t /∈ U(δ), S∗T (t) = O(e(h∗+n)T /TN ).

Provided n is sufficiently large that N > k/2, we may repeat the arguments used in the
proof of Proposition 5 to obtain

lim
T→∞

sup
α∈Zk

∣∣∣∣∣∣
n∏
j=0

(h∗ + j)
σkT k/2

e(h∗+n)T
ψn(T, α)− 1

(2π)k/2
e−〈α,D

−1α〉/2T

∣∣∣∣∣∣ = 0.

From this it immediately follows that

ψn(T, α) ∼ 1
(2π)k/2σk

n∏
j=0

1
(h∗ + j)

e(h∗+n)T

T k/2
, as T →∞.

The asymptotic formula

ψ0(T, α) ∼ 1
(2π)k/2h∗σk

eh
∗T

T k/2
, as T →∞,

now follows by a standard inductive argument (cf. p.35 of [7]). Finally, (5.1) may be de-
duced as in section 3. (Note that one needs the a priori estimate lim supT→∞(π(T, α))1/T ≤
eh
∗
, which follows from the convergence of (5.2) for Re(s) > h∗.)
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